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Abstract

Ensuring the verifiability of model answers is a001
fundamental challenge for retrieval-augmented002
generation (RAG) in the question answering003
(QA) domain. Recently, self-citation prompt-004
ing was proposed to make large language mod-005
els (LLMs) generate citations to supporting006
documents along with their answers. However,007
self-citing LLMs often struggle to match the008
required format, refer to non-existent sources,009
and fail to faithfully reflect LLMs’ context us-010
age throughout the generation. In this work,011
we present MIRAGE – Model Internals-based012
RAG Explanations – a plug-and-play approach013
using model internals for faithful answer attri-014
bution in RAG applications. MIRAGE detects015
context-sensitive answer tokens and pairs them016
with retrieved documents contributing to their017
prediction via saliency methods. We evaluate018
our proposed approach on a multilingual ex-019
tractive QA dataset, finding high agreement020
with human answer attribution. On open-ended021
QA, MIRAGE achieves citation quality and effi-022
ciency comparable to self-citation while also al-023
lowing for a finer-grained control of attribution024
parameters. Our qualitative evaluation high-025
lights the faithfulness of MIRAGE’s attributions026
and underscores the promising application of027
model internals for RAG answer attribution.1028

1 Introduction029

Retrieval-augmented generation (RAG) with large030

language models (LLMs) has become the de-facto031

standard methodology for Question Answering032

(QA) in both academic (Lewis et al., 2020b; Izac-033

ard et al., 2022) and industrial settings (Dao and Le,034

2023; Ma et al., 2024). This approach was shown035

to be effective at mitigating hallucinations and pro-036

ducing factually accurate answers (Petroni et al.,037

2020; Lewis et al., 2020a; Borgeaud et al., 2022;038

Ren et al., 2023). However, verifying whether the039

1Code and data released at https://anonymized.

Figure 1: MIRAGE is a model internals-based answer at-
tribution framework for RAG settings. Context-sensitive
answer spans (in color) are detected and matched with
contextual cues in retrieved sources to evaluate the trust-
worthiness of models’ answers.

model answer is faithfully supported by the re- 040

trieved sources is often non-trivial due to the large 041

context size and the variety of potentially correct 042

answers (Krishna et al., 2021; Xu et al., 2023). In 043

light of this issue, several answer attribution2 ap- 044

proaches were recently proposed to ensure the trust- 045

worthiness of RAG outputs (Rashkin et al., 2021; 046

Bohnet et al., 2022; Muller et al., 2023). Initial ef- 047

2We use the term answer attribution (AA) when referring
to the task of citing relevant sources to distinguish it from the
feature attribution methods used in MIRAGE.
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forts in this area employed models trained on Natu-048

ral Language Inference (NLI) to automate the iden-049

tification of supporting documents (Bohnet et al.,050

2022; Yue et al., 2023). Being based on an external051

validator, this approach does not faithfully explain052

the answer generation process but simply identifies053

plausible supporting sources post-hoc. Following054

recent progress in the instruction-following abili-055

ties of LLMs, self-citation (i.e. prompting LLMs056

to generate inline citations alongside their answers)057

has been proposed to mitigate the training and in-058

ference costs of external validator modules (Gao059

et al., 2023a). However, self-citation is hindered060

by the imperfect instruction-following capacity of061

modern LLMs (Mu et al., 2023; Liu et al., 2023).062

Moreover, the black-box nature of these models063

can make it difficult to evaluate self-citation faith-064

fulness. We argue that this is a pivotal issue since065

the primary goal of answer attribution should be066

to ensure that the LLM is not ‘right for the wrong067

reasons’ (McCoy et al., 2019).068

In light of this, we introduce MIRAGE, an exten-069

sion of the context-reliance evaluation PECORE070

framework (Sarti et al., 2024) that uses model in-071

ternals for efficient and faithful answer attributions.072

This approach first identifies context-sensitive to-073

kens in a generated sentence by measuring the074

shift in LM predictive distribution caused by the075

added input context. Then, it attributes this shift076

to specific influential tokens in the context using077

gradient-based saliency or other feature attribution078

techniques (Madsen et al., 2022). We adapt this079

approach to the RAG setup by matching context-080

dependent generated sentences to retrieved docu-081

ments that contribute to their prediction and con-082

verting the resulting pairs to citations using the083

standard answer attribution (AA) format. We begin084

our assessment of MIRAGE on the short-form XOR-085

AttriQA dataset (Muller et al., 2023), showing high086

agreement between MIRAGE results and human an-087

notations across several languages. We then test088

our method on the open-ended ELI5 dataset (Fan089

et al., 2019), achieving AA quality comparable to090

or better than self-citation, while ensuring a higher091

degree of control over attribution parameters. In092

summary, we make the following contributions:093

• We introduce MIRAGE, a model internals-094

based answer attribution framework opti-095

mized for RAG applications.096

• We show that MIRAGE outperforms NLI and097

self-citation methods while being more effi- 098

cient and controllable. 099

• We analyze challenging attribution settings, 100

highlighting MIRAGE’s faithfulness to LLMs’ 101

reasoning process. 102

2 Background and Related Work 103

In RAG settings, a set of documents relevant to a 104

user query is retrieved from an external dataset and 105

infilled into an LLM prompt to improve the gen- 106

eration process (Petroni et al., 2020; Lewis et al., 107

2020a). Answer attribution (Rashkin et al., 2021; 108

Bohnet et al., 2022; Muller et al., 2023) aims to 109

identify which retrieved documents support the 110

generated answer (answer faithfulness, Gao et al., 111

2023b), e.g., by exploiting the similarity between 112

model outputs and references.3 Simplifying access 113

to relevant sources via answer attribution is a funda- 114

mental step towards ensuring RAG trustworthiness 115

in customer-facing scenarios (Liu et al., 2023). 116

2.1 Answer Attribution Methods 117

Entailment-based Answer Attribution Bohnet 118

et al. (2022) and Muller et al. (2023) approximate 119

human annotation by leveraging the prediction of a 120

pre-trained NLI system given a retrieved document 121

as premise and a generated sentence as hypothesis. 122

AAs produced by NLI systems such as TRUE (Hon- 123

ovich et al., 2022) were shown to correlate strongly 124

with human annotations, prompting their adoption 125

in AA studies (Muller et al., 2023; Gao et al., 126

2023a). Despite their effectiveness, entailment- 127

based methods can be computationally expensive 128

when several answer sentence-document pairs are 129

present. Moreover, this approach assumes that the 130

NLI model can robustly detect entailment between 131

answers and supporting documents across several 132

domains and languages. In practice, however, NLI 133

systems were shown to be brittle in challenging 134

scenarios, exploiting shallow heuristics (McCoy 135

et al., 2019; Nie et al., 2020; Sinha et al., 2021; 136

Luo et al., 2022), and require dedicated efforts 137

for less-resourced settings (Conneau et al., 2018). 138

For example, NLI may fail to correctly attribute 139

answers in multi-hop QA settings when consider- 140

ing individual documents as premises (Yang et al., 141

2018; Welbl et al., 2018). 142

3Popular frameworks such as LangChain (Chase, 2022)
and LlamaIndex (Liu, 2022) support similarity-based cita-
tions using vector databases.
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Figure 2: Instruction-following errors in a self-citation
example, using the setup of Gao et al. (2023a).

Self-citation Gao et al. (2023a) is a recent AA143

approach exploiting the ability of recent LLMs to144

follow instructions in natural language (Raffel et al.,145

2020; Chung et al., 2022; Sanh et al., 2022; Brown146

et al., 2020), thereby avoiding the need for an ex-147

ternal validator. Nakano et al. (2021) and Menick148

et al. (2022) propose citation fine-tuning for LLMs,149

while Gao et al. (2023a) instruct general-purpose150

LLMs to produce inline citations in a few-shot set-151

ting. Answers produced via self-citation prompting152

are generally found to be of higher quality and153

more related to information contained in provided154

sources, but can still contain unsupported state-155

ments and inaccurate citations (Liu et al., 2023). In156

our preliminary analysis, we find that self-citation157

often misses relevant citations, uses a wrong for-158

mat, or refers to non-existing documents (Figure 2).159

Table 1 shows LLaMA 2 7B Chat (Touvron et al.,160

2023) and Zephyr β 7B (Tunstall et al., 2023) re-161

sults on the ELI5 dataset (Fan et al., 2019) us-162

ing Gao et al. (2023a) self-citation setup. Both163

tested models fail to produce AAs matching the164

prompt instructions for the majority of generated165

sentences, with almost all answers having at least166

one unattributed sentence.167

2.2 Attribution Faithfulness168

Answer Attribution can be Unfaithful The169

aforementioned approaches do not account for at-170

Model Missing citation (%)
Answer Sentence

Zephyr 7B β 54.5 95.7
LLaMA 2 7B Chat 62.4 99.3

Table 1: % of unattributed sentences and answers with
≥ 1 unattributed sentences on ELI5.

tributions’ faithfulness, i.e. whether the selected 171

documents influence the LLM during the genera- 172

tion. Indeed, the presence of an entailment relation 173

or high semantic similarity does not imply that a re- 174

trieved document was functional in generating the 175

selected answer. For example, an LLM may rely on 176

memorized knowledge while ignoring the provided 177

relevant context. Even in the case of self-citation, 178

recent work showed that, while the justifications of 179

self-explaining LLMs appear plausible, they gener- 180

ally do not align with their internal reasoning pro- 181

cess (Atanasova et al., 2023; Madsen et al., 2024; 182

Agarwal et al., 2024), with little to no predictive 183

efficacy (Huang et al., 2023). Concurrent to our 184

work, Phukan et al. (2024) propose an internals- 185

based method for granular AA of LLM generations. 186

While the two-step approach they proposed is simi- 187

lar to MIRAGE, their usage of embedding similarity 188

as an attribution indicator has inherent faithfulness 189

limitations since it does not capture the functional 190

aspect of context usage during prediction. 191

Feature Attribution in Interpretability The 192

task of faithfully identifying salient context infor- 193

mation has been studied extensively in the NLP in- 194

terpretability field (Ferrando et al., 2024). In partic- 195

ular, post-hoc feature attribution approaches (Mad- 196

sen et al., 2022) exploit information sourced from 197

model internals, e.g., attention weights or gradients 198

of next-word probabilities, to identify input tokens 199

playing an important role towards the model’s pre- 200

diction. While feature attribution studies in NLP 201

typically focused on classification tasks (Atanasova 202

et al., 2020; Wallace et al., 2020; Chrysostomou 203

and Aletras, 2022), recent work applies these meth- 204

ods to evaluate context usage in language genera- 205

tion (Yin and Neubig, 2022; Ferrando et al., 2023; 206

Sarti et al., 2023, 2024). Importantly, feature at- 207

tribution techniques are designed to maximize the 208

faithfulness of selected context tokens by accessing 209

models’ intermediate computations, as opposed to 210

the AA methods of Section 2.1. While the faithful- 211

ness of such approaches can still vary depending on 212

models and tasks, the development of robust and 213

faithful methods is an active area of research (Ja- 214
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covi and Goldberg, 2020; Chan et al., 2022; Bast-215

ings et al., 2022; Lyu et al., 2024).216

3 Method217

Identifying which generated spans were most in-218

fluenced by preceding information is a key chal-219

lenge for LM attribution. The Model Internals-220

based RAG Explanations (MIRAGE) method we221

propose is an extension of the Plausibility Eval-222

uation for Context Reliance (PECORE) frame-223

work (Sarti et al., 2024) for context-aware machine224

translation. This section provides an overview of225

PECORE’s two-step procedure and clarifies how226

MIRAGE adapts it for RAG answer attribution.227

3.1 Step 1: Context-sensitive Token228

Identification (CTI)229

For every token in an answer sentence y =230

⟨y1, . . . , yn⟩ generated by a LM prompted with231

a query q and a context c = ⟨c1, . . . , c|c|⟩, a con-232

trastive metric m such as KL divergence (Kullback233

and Leibler, 1951) is used to quantify the shift in234

the LM predictive distribution at the i-th genera-235

tion step when the context is present or absent (P i
ctx236

or P i
no-ctx). Resulting scores m = ⟨m1, . . . ,mn⟩237

reflect the context sensitivity of every generated238

token and can be converted into binary labels using239

a selector function sCTI:240

CTI(q, c,y) = { yi | sCTI (mi) = 1∀yi ∈ y}
with mi = KL(P i

ctx ∥ P i
no-ctx)

(1)241

3.2 Step 2: Contextual Cues Imputation242

(CCI)243

For every context-sensitive token yi identified by244

CTI, a contrastive alternative y
\c
i is produced by245

excluding c from the prompt, but using the origi-246

nal generated prefix y<i. Then, contrastive feature247

attribution (Yin and Neubig, 2022) is used to ob-248

tain attribution scores ai = ⟨ai1, . . . , ai|c|⟩ for every249

context token cj ∈ c:250

aij =
{
∇j

(
p(yi)− p(y∗i )

)
, ∀cj ∈ c } (2)251

where∇j is the L2 norm of the gradient vector over252

the input embedding of context token cj , and both253

probabilities are computed from the same contex-254

tual inputs (q, c,y<i). Intuitively, this procedure255

identifies which tokens in c influence the prediction256

of yi while accounting for the non-contextual op-257

tion y
\c
i . Resulting scores are once again binarized258

with a selector sCCI: 259

CCI(yi) = { cj | sCCI (a
i
j) = 1, ∀cj ∈ c} (3) 260

This results in pairs of context-sensitive generated 261

tokens and the respective input-context tokens in- 262

fluencing their prediction: 263

P =
{
⟨ yi, cj ⟩, ∀yi ∈ CTI, ∀cj ∈ CCI(yi)

}
(4) 264

3.3 From Granular Attributions to 265

Document-level Citations 266

CTI Filtering First, we set sCTI(mi) = mi ≥ 267

m∗, where m∗ is a threshold value for selecting 268

context-sensitive generated tokens. We experiment 269

with two variants of m∗: a calibrated threshold 270

m∗
CAL obtained by maximizing agreement between 271

the contrastive metric and human annotations on a 272

calibration set with human AA annotations, and an 273

example-level threshold m∗
EX using only within- 274

example scores to avoid the need of calibration data. 275

In our experiments, we follow the approach by Sarti 276

et al. (2024) and set m∗
EX = m + σm, where m 277

and σm are respectively the average and standard 278

deviation of m scores for the given example. 279

CCI Filtering To extract granular document ci- 280

tations (e.g., colored spans with document indices 281

in Figure 1), we set sCCI = aij ≥ ai∗, where 282

ai∗ is either the Top-K or Top-% highest attribu- 283

tion value in ai, to filter attributed context tokens 284

cj ∈ CCI(yi). Then, we use the identifier docid(cj) 285

of the documents they belong to as citation for 286

context-sensitive token yi. Since token-level ci- 287

tations may be hard to interpret, we collate con- 288

secutive tokens citing the same documents into a 289

single span and map highlights from subword to 290

word-level for visualization purposes. 291

Sentence-level Aggregation AA is commonly 292

performed at the sentence level to follow stan- 293

dard citation practices and facilitate user assess- 294

ment. To enable a direct comparison with other 295

sentence-level methods, we aggregate token-level 296

citations as the union over all cited documents 297

docid(·) across context-sensitive tokens in y: 298

MIRAGE(y) =
⋃

yi∈CTI(y)

docid(cj) ∀cj ∈ CCI(yi)

with sCTI = mi ≥ m∗, sCCI = aij ≥ ai∗

(5) 299

In the following sections, we use MIRAGE CAL and 300

MIRAGE EX to refer to sentence-level answer attribu- 301

tion using m∗
CAL and m∗

EX thresholds, respectively. 302
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4 Agreement with Human Answer303

Attribution Annotations304

We begin our evaluation by comparing MIRAGE pre-305

dictions with human-produced answer attributions.306

We employ the XOR-AttriQA dataset (Muller et al.,307

2023), which, to our knowledge, is the only open308

dataset with human annotations over RAG outputs309

produced by a publicly accessible LM.4 We limit310

our assessment to open-weights LLMs to ensure311

that MIRAGE answer attribution can faithfully re-312

flect the model’s inner processing towards the nat-313

ural production of the annotated answer used for314

evaluation. Moreover, while cross-linguality is not315

the focus of our work, XOR-AttriQA allows us to316

assess the robustness of MIRAGE across several lan-317

guages and its agreement with human annotations318

compared to an entailment-based system.319

4.1 Experimental Setup320

XOR-AttriQA consists of 500/4720 validation/test321

tuples, each containing a concise factual query q, a322

set of retrieved documents that we use as context323

c = ⟨doc1, . . . , dock⟩, and a single-sentence an-324

swer y produced by an mT5-base model (Xue et al.,325

2021) fine-tuned on cross-lingual QA in a RAG326

setup (CORA; Asai et al., 2021).5 Queries and327

documents span five languages (Bengali, Finnish,328

Japanese, Russian, and Telugu), with no constraint329

on documents to match the language of the query.6330

Although the RAG generator employs a set of re-331

trieved documents during generation, human an-332

notators were asked to label tuples (q, doci,y) to333

indicate whether the information in doci supports334

the generation of y. Importantly, MIRAGE requires335

extracting model internals in the naturalistic setting336

that leads to the generation of the desired answer,337

i.e., the one assessed by human annotators. Hence,338

we perform a selection procedure to identify XOR-339

AttriQA examples where the answer produced by340

filling in the concatenated documents c in the LM341

prompt matches the one provided. The resulting342

subset, which we dub XOR-AttriQAmatch, contains343

142/1144 calibration/test examples and is used for344

our evaluation.7345

4E.g., the human-annotated answers in Bohnet et al. (2022)
were generated by the proprietary PALM 540B (Chowdhery
et al., 2023), whose internals are inaccessible.

5https://hf.co/gsarti/cora_mgen
6In practice, Muller et al., 2023 report that most retrieved

documents are in the same language as the query or in English.
7See Appendix A for more details on this selection. Ap-

pendix B presents experiments on the full XOR-AttriQA.

4.2 Entailment-based Baselines 346

Muller et al. (2023) use an mT5 XXL model fine- 347

tuned on NLI for performing answer attribution 348

on XOR-AttriQA. Since neither the tuned model 349

nor the tuning data are released, we opt to use 350

TRUE8 (Honovich et al., 2022), a fine-tuned T5 351

11B model (Raffel et al., 2020), which was shown 352

to highly overlap with human annotation on En- 353

glish answer attribution tasks (Muller et al., 2023; 354

Gao et al., 2023a). We evaluate TRUE agreement 355

with human annotation in two setups. In NLI ORIG, 356

we evaluate the model directly on all examples, 357

including non-English data. While this leads the 358

English-centric TRUE model out-of-distribution, 359

it accounts for real-world scenarios with noisy 360

data, and can be used to assess the robustness 361

of the method in less-resourced settings. Instead, 362

in NLIMT, all queries and documents are machine 363

translated to English using the Google Translate 364

API.9 While this simplifies the task by ensuring all 365

TRUE inputs are in English, it can lead to informa- 366

tion loss caused by imprecise translation. 367

4.3 Results and Analysis 368

MIRAGE agrees with human answer attribution 369

Table 2 presents our results. MIRAGE is found to 370

largely agree with human annotations on XOR- 371

AttriQAmatch, with scores on par or slightly better 372

than those of the ad-hoc NLIMT system augmented 373

with automatic translation. Although calibration 374

appears to generally improve MIRAGE’s agreement 375

with human annotators, we note that the uncali- 376

brated MIRAGE EX achieves strong performances 377

despite having no access to external modules or 378

tuning data. These findings confirm that the inner 379

workings of LMs can be used to perform answer 380

attribution, resulting in performances on par with 381

supervised answer attribution approaches even in 382

the absence of annotations for calibration. 383

MIRAGE is robust across languages and filter- 384

ing procedures Table 2 shows that NLI ORIG an- 385

swer attribution performances are largely language- 386

dependent due to the unbalanced multilingual abil- 387

ities of the TRUE NLI model. This highlights 388

the brittleness of entailment-based approaches in 389

OOD settings, as discussed in Section 2.1. Instead, 390

MIRAGE variants perform similarly across all lan- 391

guages by exploiting the internals of the multilin- 392

gual RAG model. MIRAGE’s performance across 393

8https://hf.co/google/t5_xxl_true_nli_mixture
9https://cloud.google.com/translate
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Method Extra Requirements CCI Filter BN FI JA RU TE Avg. / Std

NLI ORIG (Honovich et al.) 11B NLI model – 33.8 83.7 86.5 85.8 50.0 68.0 / 21.9
NLI MT (Honovich et al.) 11B NLI model + MT engine 82.6 83.7 90.5 81.7 82.5 84.2 / 3.2

MIRAGE CAL (Ours) 142 annotated AA examples Top 3 81.7 84.2 87.8 83.3 87.0 84.8 / 2.3
Top 5% 84.4 83.0 91.4 85.8 88.9 86.7 / 3.1

MIRAGE EX (Ours) – Top 3 80.2 78.5 83.8 77.2 75.2 79.0 / 2.9
Top 5% 81.7 80.1 89.2 84.4 81.8 83.4 / 3.2

Table 2: Agreement % of MIRAGE and entailment-based baselines with human AA on XOR-AttriQAmatch using
CORA for RAG. Extra Requirements: data/models needed for AA in addition to the RAG model and the current
example. Filter: sCCI filtering for saliency scores. Best overall and best uncalibrated scores are highlighted.

Agreement (%)

Figure 3: Robustness of MIRAGE EX agreement with hu-
man annotations across Top-% CCI filtering thresholds.

languages is comparable to that of NLI MT, which394

requires an extra translation step to operate on En-395

glish inputs.396

We further validate the robustness of the CCI fil-397

tering process by testing percentile values between398

Top 3-100% for the MIRAGE EX setting. Figure 3399

shows that Top % values between 3 and 20% lead400

to a comparably high agreement with human an-401

notation, suggesting this filtering threshold can be402

selected without ad-hoc parameter tuning.403

5 Answer Attribution for Long-form QA404

XOR-AttriQA can only provide limited insights for405

real-world answer attribution evaluation since its406

examples are sourced from Wikipedia articles, and407

its answers are very concise. In this section, we408

extend our evaluation to ELI5 (Fan et al., 2019),409

a challenging long-form QA dataset that was re-410

cently employed to evaluate LLM self-citation ca-411

pabilities (Gao et al., 2023a). Different from XOR-412

AttriQA, ELI5 answers are expected to contain413

multiple sentences of variable length, making it es-414

pecially fitting to assess MIRAGE context-sensitive415

token identification capabilities before document416

attribution. Alongside our quantitative assessment417

of MIRAGE in relation to self-citation baselines, we418

conduct a qualitative evaluation of the disagree-419

ment between the two methods.420

5.1 Experimental Setup 421

Dataset The ELI5 dataset contains open-ended 422

why/how/what queries q from the “Explain Like 423

I’m Five” subreddit10 eliciting long-form multi- 424

sentence answers. For our evaluation, we use 425

the RAG-adapted ELI5 version by Gao et al. 426

(2023a), containing top-5 matching documents 427

c = ⟨doc1, . . . , doc5⟩ retrieved from a filtered ver- 428

sion of the Common Crawl (Sphere; Piktus et al., 429

2021) for every query. The answer attribution task 430

is performed by generating a multi-sentence answer 431

ans = ⟨y1, . . . ,ym⟩ with an LLM using (q, c) as 432

inputs, and identifying documents in c supporting 433

the generation of answer sentence yi, ∀yi ∈ ans. 434

Models and Answer Attribution Procedure We 435

select LLaMA 2 7B Chat (Touvron et al., 2023) 436

and Zephyr β 7B (Tunstall et al., 2023) for our ex- 437

periments since they are high-quality open-source 438

LLMs of manageable size. To enable a fair com- 439

parison between the tested attribution methods, we 440

first generate answers with inline citations using 441

the self-citation prompt by Gao et al. (2023b).11 442

Then, we remove citation tags and use MIRAGE to 443

attribute the resulting answers to retrieved docu- 444

ments. This process ensures that citation quality 445

is compared over the same set of answers, control- 446

ling for the variability that could be produced by 447

a different prompt.12 For more robust results, we 448

perform generation three times using different sam- 449

pling seeds, and report the averaged scores. Since 450

human-annotated data is not available, we only as- 451

sess the calibration-free MIRAGE EX. 452

Entailment-based Evaluation Differently from 453

the XOR-AttriQA dataset used in Section 4, ELI5 454

does not contain human annotations of AA. For this 455

reason, and to ensure consistency with Gao et al. 456

10https://reddit.com/r/explainlikeimfive
11The full prompt is provided in Appendix D (Table 9).
12For completeness, we also report MIRAGE results without

self-citation prompting in Appendix D.
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Model Answer Attrib. Citation ↑
Prec. Rec. F1

Zephyr β
Self-citation 41.4 24.3 30.6
MIRAGE EX Top 3 38.3 46.2 41.9
MIRAGE EX Top 5% 44.7 46.5 45.6

LLaMA 2
Self-citation 37.9 19.8 26.0
MIRAGE EX Top 3 21.8 29.6 25.1
MIRAGE EX Top 5% 26.2 29.1 27.6

Table 3: Answer attribution quality estimated by TRUE
for self-citation and MIRAGE on ELI5.

40
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Doc1 Doc2 Doc3 Doc4 Doc5

Max: 38.3  Min: 0.2

5%
(1)

CCI Scores

Contextual tokens

Range Top (#Tokens)

20%
(2)

50%
(6)

100%
(849)

Generation: Firms like Snapchat, Uber, and Xiaomi, valued at $19 billion [...]
Contextual-sensitive token: 9

Doc 1: [...] $16 billion to $19 billion, making it the third most highly valued tech [...]

Figure 4: Attribution scores over retrieved documents’
tokens for the prediction of context-sensitive token ‘9’.

(2023a)’s self-citation assessment, we adopt the457

TRUE model as a high-quality approximation of458

expected annotation behavior. Despite the potential459

OOD issues of entailment-based AA highlighted460

in Section 4, we expect TRUE to perform well on461

ELI5 since it closely matches the general/scientific462

knowledge queries in TRUE’s fine-tuning corpora463

and contains only English sentences. To overcome464

the multi-hop issue when using single documents465

for entailment-based answer attribution, we follow466

the ALCE evaluation (Gao et al., 2023a)13 to mea-467

sure citation quality as NLI precision and recall468

(summarized by F1 scores) over the concatenation469

of retrieved documents.470

5.2 Results471

Results in Table 3 show that MIRAGE provides a472

significant boost in answer attribution precision473

and recall for the Zephyr β model, while it greatly474

improves citation recall at the expense of precision475

for LLaMA 2, resulting in an overall higher F1476

score for the MIRAGE EX Top 5% setting. These477

results confirm that MIRAGE can produce effective478

answer attributions in longer and more complex479

13ALCE is an evaluation framework for RAG, evaluating
LLM responses in terms of citation quality, correctness, and
fluency. More details can be found in Appendix C

Percentage (%)

Sentence length (#Tokens)

79%

100%

Figure 5: MIRAGE EX (top) and self-citation (bottom)
average performance on ELI5 answer sentences binned
by length. red: % of sentences with ≥ 1 citation.

settings while employing no external resources like 480

the self-citation approach. 481

From the comparison between Top 3 and Top 5% 482

CCI filtering strategies, we note that the latter gen- 483

erally results in better performance. This intuitively 484

supports the idea that an adaptive selection strategy 485

is more fitting to accommodate the large variabil- 486

ity of attribution scores across different examples. 487

Figure 4 visualizes the distributions of attribution 488

scores aij for an answer produced by Zephyr β, 489

showing that most context tokens in retrieved doc- 490

uments receive low attribution scores, with only a 491

handful of them contributing to the prediction of 492

the context-sensitive token ‘9’ in the generation. 493

This example also provides an intuitive explanation 494

of the robustness of Top-% selection thresholds 495

discussed in Section 4.3. Ultimately, the Top 5% 496

threshold is sufficient to select the document con- 497

taining the direct mention of the generated token. 498

Since the m∗
EX threshold used to select context- 499

sensitive tokens by MIRAGE EX depends on the 500

mean and standard deviation of generated answer’s 501

scores, we expect that the length of the generated 502

answer might play a role in citation quality. As 503

shown in Figure 5, MIRAGE citation quality is in- 504

deed lower for shorter answer sentences. However, 505

a similar trend is observed for self-citation, which 506

is outperformed by MIRAGE for all but the short- 507

est length bin (≤ 10 tokens). The proportion of 508

non-attributed sentences (red line) suggests that the 509

lower quality could be a byproduct of the ALCE 510

evaluation protocol, where non-attributed sentences 511

receive 0 precision/recall. Future availability of 512

human-annotated RAG datasets may shed more 513

light on this effect. 514
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INPUT: PROMPT + RETRIEVED DOCS (N=5) + QUERY

Document [1] [...] Q. What does it mean for books to be
Sensitized or Desensitized? A security strip is embedded
into each library book. When a book is checked out, it
must be "desensitized" so that it will not set off the alarm
when it leaves or enters the library. When the book is
returned, it is “sensitized” so that the alarm will be set off
should someone attempt to take the book from the library
without going through the proper borrowing procedure.
Document [2] [...]

Query: How does a small paper library bar code set off
the security alarm when you haven’t checked a book out?

ANSWER ATTRIBUTION RESULTS

Self-citation: [...] When a book is checked out, it is
"desensitized" to prevent the alarm from going off. [∅]
When the book is returned, it is "sensitized" so the alarm
will sound if the item is taken without authorization. [∅]
[...]

MIRAGE: [...] When a book is checked (1) out, it (1) is
"desensitized" (1) to prevent the alarm from going off.

[1] When the book (1) is returned, it is "sensitized" (1)

so the alarm will sound if the item is taken without autho-
rization. [1] [...]

NLI (TRUE model): [1] entails both answer sentences.

Table 4: Example of self-citation failure using Zephyr β
on ELI5. NLI and MIRAGE produce the correct citation,
while self-citation does not cite any document ([∅]).

5.3 Qualitative Analysis of Disagreements515

To better understand MIRAGE’s performance, we516

examine some ELI5 examples where MIRAGE dis-517

agrees with self-citation on Zephyr β’s generations.518

Table 4 and 5 illustrate two cases in which the519

entailment-based TRUE model results agree with520

either MIRAGE or self-citation. In Table 4, the an-521

swer provided by the model is directly supported522

by Document [1], as also identified by TRUE. How-523

ever, self-citation fails to cite the related document524

at the end of the two sentences. By contrast, MI-525

RAGE attributes several spans to Document [1],526

resulting in the correct answer attribution for both527

sentences.528

While TRUE achieves high consistency with hu-529

man judgment (e.g., for the example in Table 4),530

NLI-based AA can still prove unreliable in cases of531

high lexical overlap between the answer and sup-532

porting documents. Table 5 illustrates one such533

case, where both self-citation and TRUE attribute534

the answer to Document [3], whereas MIRAGE535

does not label any context document as salient536

for the answer. Here, the answer wrongly states537

that the bar code can used to prevent the alarm,538

while Document [3] mentions that the code can539

be used to cancel the alarm after an accidental540

INPUT: PROMPT + RETRIEVED DOCS (N=5) + QUERY

Document [2] [...]
Document [3] [...] What will happen if you accidentally
set off your security system? The siren will sound and it
will be loud, but you should be able to stop the siren by
entering your code into your keypad. [...]
Document [4] [...]

Query: How does a small paper library bar code set off
the security alarm when you haven’t checked a book out?

ANSWER ATTRIBUTION RESULTS

Self-citation: [...] False alarms can be prevented by enter-
ing the code on the keypad, as documented in [3]. [...]

MIRAGE: [...] False alarms can be prevented by entering
the code on the keypad [∅] [...]

NLI (TRUE model): [3] entails the answer sentence.

Table 5: Example showcasing the brittleness of
entailment-based AA. MIRAGE correctly finds that the
answer cannot be attributed ([∅]), while NLI and self-
citation attribute the lexically similar Document [3].

activation. Thus, despite the high lexical and se- 541

mantic relatedness, the answer is not supported by 542

Document [3]. The failure of TRUE in this set- 543

ting highlights the sensitivity of entailment-based 544

systems to surface-level similarity, making them 545

brittle in cases where the model’s context usage is 546

not straightforward. Using another sampling seed 547

for the same query produces the answer “[...] the 548

individual can cancel the alarm by providing their 549

password at the keypad”, which MIRAGE correctly 550

attributes to Document [3].14 551

6 Conclusion 552

In this study, we introduced MIRAGE, a novel ap- 553

proach to enhance the faithfulness of answer at- 554

tribution in RAG systems. By leveraging model 555

internals, MIRAGE effectively addresses the limita- 556

tions of previous methods based on prompting or 557

external NLI validators. Our experiments demon- 558

strate that MIRAGE produces outputs that strongly 559

agree with human annotations while being more 560

efficient and controllable than its counterparts. Our 561

qualitative analysis shows that MIRAGE can pro- 562

duce faithful attributions that reflect actual context 563

usage during generation, reducing the risk of false 564

positives motivated by surface-level similarity. 565

In conclusion, MIRAGE represents a promising 566

first step in exploiting interpretability insights to 567

develop faithful answer attribution methods, paving 568

the way for the usage of LLM-powered question- 569

answering systems in mission-critical applications. 570

14This and other examples are provided in Appendix E.
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7 Limitations571

LLMs Optimized for Self-citation In this study,572

we focus our analysis on models that are not explic-573

itly trained to perform self-citation and can provide574

citations only when prompted to do so. While re-575

cent systems include self-citation in their optimiza-576

tion scheme for RAG applications15, we believe577

incorporating model internals in the attribution pro-578

cess will remain a valuable and inexpensive method579

to ensure faithful answer attributions.580

Brittleness of NLI-based evaluation Follow-581

ing Gao et al. (2023a), the evaluation of Section 5582

employs the NLI-based system TRUE due to the583

lack of AA-annotated answers produced by open-584

source LLMs. However, using the predictions of585

NLI models as AA references is far from ideal in586

light of their brittleness in challenging scenarios587

and their tendency to exploit shallow heuristics.588

While the ELI5 dataset is reasonably in-domain for589

the TRUE model, this factor might still undermine590

the reliability of some of our quantitative evalua-591

tion results. Future work should produce a wider592

variety of annotated datasets for reproducible an-593

swer attribution using open-source LLMs, enabling594

us to extend our analysis to a broader set of lan-595

guages and model sizes and ultimately enhance the596

robustness of our findings.597

Applicability to Other Domains and Model Sizes598

Our evaluation is conducted on relatively homoge-599

neous QA datasets and does not include language600

models with >7B parameters. This limits the gen-601

eralizability of our findings to other domains and602

larger models. Future work should extend our anal-603

ysis to a broader range of domains and model sizes604

to further validate the robustness and applicability605

of MIRAGE. This said, we expect MIRAGE to be less606

vulnerable to language and quality shifts compared607

to existing AA methods that depend on external608

validators or on the model’s instruction-following609

abilities.610

MIRAGE’s Parametrization and Choice of At-611

tribution Method While Section 4.1 highlights612

the robustness of MIRAGE to various CCI filter-613

ing thresholds, the method still requires non-trivial614

parametrization. In particular, we emphasize that615

the choice of the attribution method employed to616

generate attribution scores in the CCI step can sig-617

nificantly impact the faithfulness of the resulting618

15For example, the Command-R models: https://
huggingface.co/CohereForAI/c4ai-command-r-plus

answer attributions. Although we employed a rela- 619

tively simple gradient-based approach in this study, 620

we note that our proposed framework is method- 621

agnostic and can incorporate more sophisticated 622

feature attribution techniques. Finally, we remark 623

that MIRAGE can produce redundant citations for 624

repeated information across multiple documents, 625

which might result in misleading answer attribu- 626

tions (see e.g. Appendix E). 627
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A Construction of XOR-AttriQAmatch1062

XOR-AttriQAmatch is a subset of the original XOR-1063

AttriQA containing only examples for which our1064

LLM generation matches exactly the answer anno-1065

tated in the dataset. Replicating the original answer1066

generation process is challenging since the origi-1067

nal ordering of the documents doci in c unavail-1068

able.16 To maximize the chances of replication, we1069

16 Muller et al. 2023 only provide the split documents with-
out the original ordering.

Algorithm 1 Restore original document sequence

Input: {Doc1, ..., Docn}, query, answer, M
1: iter ← 0, found = False
2: while iter < 200 do
3: pred←M({Doc1, ..., Docn}, query)
4: if pred == answer then
5: found = True break
6: else
7: Shuffle({Doc1, ..., Docn})
8: end if
9: iter += 1

10: end while
11: if found then
12: return {Doc1, ..., Docn}
13: end if

Dataset BN FI JA RU TE Total

Orig. 1407 659 1066 954 634 4720
Match 274 214 232 254 170 1144

Table 6: Statistic for tests sets of the original (Orig.)
XOR-AttriQA and XOR-AttriQAmatch.

attempt to restore the original document sequence 1070

by randomly shuffling the order of docis until LLM 1071

can naturally predict the answer y (otherwise, at 1072

most 200 iterations), as shown in Algorithm 1. The 1073

statistics of the original XOR-AttriQA and XOR- 1074

AttriQAmatch are shown in Table 6. 1075

B Answer Attribution on the Full 1076

XOR-AttriQA 1077

Differently from the concatenation setup in Sec- 1078

tion 4.1, we also test MIRAGE on the full XOR- 1079

AttriQA dataset by constraining CORA generation 1080

to match the annotated answer y. We adopt a proce- 1081

dure similar to Muller et al. (2023) by considering 1082

a single document-answer pair (doci,y) at a time, 1083

and using MIRAGE’s CTI step to detect whether y 1084

is sensitive to the context doci. Results in Table 7 1085

show that MIRAGE achieves performances in line 1086

with other AA methods despite these approaches 1087

employing ad-hoc validators trained with as many 1088

as 540B parameters. 1089

C ALCE Evaluation Benchmark 1090

Gao et al. (2023a) propose ALCE, an evaluation 1091

framework for RAG QA tasks. ALCE assesses 1092

the LLMs’ response from three diverse aspects: 1093

citation quality, correctness, and fluency. Cita- 1094
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Method Extra Requirements BN FI JA RU TE Avg. / Std

mT5 XXL NLI (Honovich et al.)
11B NLI model (250 FT ex.) 81.9 80.9 94.5 87.1 88.7 86.6 / 4.9
11B NLI model (100k FT ex.) 89.4 88.3 91.5 91.0 92.4 90.5 / 1.5
11B NLI model (1M FT ex.) 91.1 90.4 93.0 92.9 93.8 92.2 / 1.3

PALM2LORA (Anil et al.) 540B LLM (250 FT ex.) 91.5 88.3 94.7 93.7 93.7 92.4 / 2.3
PALM2 (Anil et al.) 540B LLM (250 FT ex.) 92.3 92.6 96.4 94.5 94.8 94.1 / 1.5
PALM2 (Anil et al.) 540B LLM (4-shot prompting) 91.5 87.4 92.0 90.5 90.6 90.4 / 1.6
PALM2CoT (Anil et al.) 540B LLM (4-shot prompting) 83.7 78.8 71.7 81.9 84.7 80.2 / 4.7

MIRAGE CAL (Ours) 500 AA calibration ex. 82.2 82.5 92.0 87.7 90.2 86.9 / 4.0
MIRAGE EX (Ours) – 79.0 74.1 90.8 82.6 86.9 82.7 / 5.8

Table 7: Agreement % of MIRAGE and entailment-based baselines with human AA on the full XOR-AttriQA
using CORA for RAG (annotated answers not matching the LM’s natural generation are force-decoded). Extra
Requirements: data/models needed for AA in addition to the RAG model itself. Best overall and best validator-free
scores are highlighted. PALM and mT5 results are taken from Muller et al. (2023).

Model Prompt Answer Filter Citation↑ Correctness↑ Fluency↑Attribution Prec. Rec. F1

Zephyr
Self-citation

Self-citation - 41.4 24.3 30.6
9.9 28.6

MIRAGE EX
Top 3 38.3 46.2 41.9

Top 5% 44.7 46.5 45.6

Standard MIRAGE EX
Top 3 29.8 34.5 32.0 11.3 34.3Top 5% 34.1 34.2 34.1

LLaMA
Self-citation

Self-citation - 37.9 19.8 26.0
11.8 24.8

MIRAGE EX
Top 3 21.8 29.6 25.1

Top 5% 26.2 29.1 27.6

Standard MIRAGE EX
Top 3 17.8 20.9 19.2 13.0 26.4Top 5% 21.1 20.1 20.6

Table 8: Citation quality (F1, Recall, Precision), correctness, and fluency of self-citation and MIRAGE on ELI5 when
using self-citation instruction and standard prompts of Table 9.

tion quality evaluates the answer attribution perfor-1095

mance with recall and precision scores. The recall1096

score calculates if the concatenation of the cited1097

documents entails the generated sentence. The1098

precision measures if each document is cited pre-1099

cisely by verifying if the concatenated text still1100

entails the generation whenever one of the docu-1101

ments is removed. We further calculate F1 scores1102

to summarize the overall performance. Correct-1103

ness checks whether the generated answer entails1104

the golden reference answer according to the NLI1105

model TRUE. Gold-reference answers are provided1106

in the original dataset, and some were summarized1107

by Gao et al. (2023b) by using GPT-4 in case they1108

were too long. Fluency reflects the coherence1109

and fluency of the generated response according to1110

MAUVE (Pillutla et al., 2021), a popular NLG met-1111

ric. We report the average score for all instances1112

for each evaluation metric.1113

D ELI5 Evaluation with Standard 1114

Prompt 1115

In the main experiments, we use self-citation 1116

prompts by Gao et al. (2023a) for MIRAGE an- 1117

swer attribution to control for the effect of different 1118

prompts on model responses, enabling a direct com- 1119

parison with self-citation. In Table 8, we provide 1120

additional results where a standard prompt without 1121

citation instructions is used ("Standard" prompt in 1122

Table 9). We observe the overall citation quality 1123

of MIRAGE drops when a standard prompt is used 1124

instead of self-citation instructions. We conjecture 1125

this might be due to answers that are, in general, 1126

less attributable to the provided context due to a 1127

lack of explicit instructions to do so. We also ob- 1128

serve higher correctness and fluency in the standard 1129

prompt setting, suggesting a trade-off between an- 1130

swer and citation quality. 1131
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SELF-CITATION (Gao et al., 2023a)

Instruction: Write an accurate, engaging, and concise
answer for the given question using only the provided
search results (some of which might be irrelevant) and
cite them properly. Use an unbiased and journalistic
tone. Always cite for any factual claim. When citing
several search results, use [1][2][3]. Cite at least one
document and at most three documents in each sentence.
If multiple documents support the sentence, only cite a
minimum sufficient subset of the documents.

STANDARD

Instruction: Write an accurate, engaging, and concise
answer for the given question using only the provided
search results (some of which might be irrelevant). Use
an unbiased and journalistic tone.

Table 9: Self-citation prompt, taken from Gao et al.,
2023a, and standard prompt with no citation instruction.

E More Examples of Disagreement1132

Table 10 to 12 show three cases where MIRAGE1133

answer attributions disagree with self-citation at-1134

tributions of the same generation17. We adopt the1135

Top-5% threshold for CCI Filtering. In Table 10,1136

the generated answer becomes the consistent de-1137

scription ‘cancel the alarm’ as mentioned in Doc-1138

ument [3]. In this case, MIRAGE attributes this1139

sentence to the corresponding Document [3] while1140

NLI maintains its attribution of Document [3] due1141

to lexical overlap, as suggested in Section 5.3.1142

On several occasions, we observe that MIRAGE1143

attributes all occurrences of lexically similar tokens1144

in the context when the LLM is generating the same1145

word. For example, in Table 11 the named entity1146

“Science ABC” is mentioned in both Document [1]1147

and [4], and MIRAGE finds both occurrences as1148

salient towards the prediction of the same entity1149

in the output. Similarly, in Table 12, the gener-1150

ated word ‘Document’ is attributed to the previous1151

mentions of the same word in the context. In both1152

cases, when moving from token-level to sentence-1153

level AA, this dependence would result in wrong1154

AA according to NLI, since the documents are not1155

entailing the answer, but rather making a specific1156

token more likely. These cases reflect the possible1157

discrepancy between AA intended as logical entail-1158

ment and actual context usage during generation.1159

Future work could explore more elaborate ways to1160

aggregate granular information at sentence level1161

while preserving faithfulness to context usage.1162

17Note that we remove citation tags in self-citation gen-
erated answers and use MIRAGE to attribute the resulting
answers, as introduced in Section 5

INPUT: PROMPT + RETRIEVED DOCS (N=5) + QUERY

Document [2] [...]
Document [3] [...] What will happen if you accidentally
set off your security system? The siren will sound and it
will be loud, but you should be able to stop the siren by
entering your code into your keypad. [...]
Document [4] [...]

Query: How does a small paper library bar code set off
the security alarm when you haven’t checked a book out.

ANSWER ATTRIBUTION RESULTS

Self-citation: [...] The response center may contact the in-
dividual to confirm if it’s a false alarm, and the individual
can cancel the alarm by providing their password at the
keypad. [∅] [...]

MIRAGE: ... The response center (3) may (3) contact

the individual to confirm if it (3)’s a false alarm, and the
individual (3) can cancel (3) the alarm by providing (3)

their password at the keypad (3).[3] ...

NLI (TRUE model): [3] entails the answer sentence.

Table 10: Example described in Section 5.3: MIRAGE
attributes the generation to Document [3] when cancel
is used instead of prevent (Table 5).
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INPUT: PROMPT + RETRIEVED DOCS (N=5) + QUERY

Document [1](Title: Why Do Airlines Sell More Tickets
Than The Aircraft’s Capacity? » Science ABC): [...] They
know that some people simply won’t show up for their
appointments [...] To account for this discrepancy, where
the flight would have to fly with some very expensive seats
empty, they decide to opt for a more profitable strategy.
Assuming that out of the maximum capacity of 200 seats
only 185 show up for the flight, this leaves 15 seats avail-
able. The airline could try to sell these seats quickly to
avoid losses, but this rarely happens. What the airline does
instead is try to sell 220 seats in advance.
Document [2] [...] Document [3] [...]
Document [4](Title: Why Do Airlines Sell More Tickets
Than The Aircraft’s Capacity? » Science ABC): your
own interests, as the airlines have clearly looked after
theirs. First of all, if the airline is offering you a seat on
a different flight, check if that seat is definitely available.
If it is also full and it looks like you might be bumped
yet again, you might as well be stranded! If the airline
is offering compensation, such as free meals, hotel costs,
and transportation between the airport and the hotel, look
for the most profitable outcome. The airline might offer
you vouchers for future flights, but since airline employees
are given guidelines for negotiation, you might
Document [5] [...]

Query: Why are airlines able to sell more seats than are
available on a flight?

ANSWER ATTRIBUTION RESULTS

Self-citation: [...] According to a report from Science
ABC [1], airlines assume that out of the maximum capac-
ity of 200 seats, only 185 will actually board the aircraft.
To avoid empty seats and potential losses, airlines opt to
sell up to 220 seats in advance [1]. [...]

MIRAGE: [...] According to a report from
Science ABC (1)(4), airlines assume that out (1) of
the maximum capacity (1) of 200 seats (1), only 185 (1)

will actually board the aircraft. [1][4] [...]

NLI (TRUE model): Only [1] entails the answer sentence.

Table 11: Example of counterintuitive MIRAGE attri-
bution: the generation is grounded to Document [4]
because the named entity ‘Science ABC’ is made more
probable by the occurrence of the same named entity
‘Science ABC’. However, Document [4] does not logi-
cally entails the answer.

INPUT: PROMPT + RETRIEVED DOCS (N=5) + QUERY

Document [1](Title: Why Do Airlines Sell More Tickets
Than The Aircraft’s Capacity? » Science ABC): board the
aircraft. They know that some people simply won’t show
up for their appointments (just like at hospitals, hotels,
restaurants etc.). To account for this discrepancy, where
the flight would have to fly with some very expensive seats
empty, they decide to opt for a more profitable strategy.
Assuming that out of the maximum capacity of 200 seats
only 185 show up for the flight, this leaves 15 seats avail-
able. The airline could try to sell these seats quickly to
avoid losses, but this rarely happens. What the airline does
instead is try to sell 220 seats in advance.
Document [2] [...]
Document [3] [...]
Document [4](Title: Why Do Airlines Sell More Tickets
Than The Aircraft’s Capacity? » Science ABC): your
own interests, as the airlines have clearly looked after
theirs. First of all, if the airline is offering you a seat on
a different flight, check if that seat is definitely available.
If it is also full and it looks like you might be bumped
yet again, you might as well be stranded! If the airline
is offering compensation, such as free meals, hotel costs,
and transportation between the airport and the hotel, look
for the most profitable outcome. The airline might offer
you vouchers for future flights, but since airline employees
are given guidelines for negotiation, you might
Document [5] [...]

Query: Why are airlines able to sell more seats than are
available on a flight?

ANSWER ATTRIBUTION RESULTS

Self-citation: [...] According to a source in Document [1],
airlines assume that not all passengers will show up for
their flights, leaving some seats empty. [...]

MIRAGE: [...] According to a source in Document (4),
airlines assume that not (1) all passengers will show up
for their flights, leaving some seats empty. [1][4] [...]

NLI (TRUE model): Only [1] entails the answer sentence.

Table 12: Example of counterintuitive MIRAGE attribu-
tion: Document [4] is attributed by MIRAGE due to the
repetition of the keyword ‘Document’.
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