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Abstract

We introduce TAPIP3D, a novel approach for long-term 3D point tracking in
monocular RGB and RGB-D videos. TAPIP3D represents videos as camera-
stabilized spatio-temporal feature clouds, leveraging depth and camera motion
information to lift 2D video features into a 3D world space where camera movement
is effectively canceled out. Within this stabilized 3D representation, TAPIP3D
iteratively refines multi-frame motion estimates, enabling robust point tracking over
long time horizons. To handle the irregular structure of 3D point distributions, we
propose a 3D Neighborhood-to-Neighborhood (N2N) attention mechanism—a 3D-
aware contextualization strategy that builds informative, spatially coherent feature
neighborhoods to support precise trajectory estimation. Our 3D-centric formulation
significantly improves performance over existing 3D point tracking methods and
even surpasses state-of-the-art 2D pixel trackers in accuracy when reliable depth is
available. The model supports inference in both camera-centric (unstabilized) and
world-centric (stabilized) coordinates, with experiments showing that compensating
for camera motion leads to substantial gains in tracking robustness. By replacing
the conventional 2D square correlation windows used in prior 2D and 3D trackers
with a spatially grounded 3D attention mechanism, TAPIP3D achieves strong and
consistent results across multiple 3D point tracking benchmarks. Project Page:
tapip3d.github.io

1 Introduction

Tracking points over time in video—especially through occlusions—has become a valuable tool in
robotics and action recognition [20, 19, 12]. Fine-grained motion estimation at the particle level offers
a unified framework for capturing temporal changes in object pose, part articulation, deformable
structures, and even granular materials. However, most existing point trackers operate either directly
in pixel space [20, 19, 12] or in pixel space augmented with depth information [48, 30]. Yet, the
predominant source of apparent motion in video is often camera movement, not object motion. Since
real-world dynamics unfold in 3D, tracking points directly in 3D space—rather than in the image
plane—may be more natural and effective.

In this paper, we ask: Can recent advances in camera pose and depth estimation enable more effective
3D point tracking by explicitly representing and tracking points in 3D, while compensating for camera
motion?

To this end, we propose TAPIP3D for Tracking Any Point in Persistent 3D Geometry, a 3D point
tracking method that represents and iteratively updates multi-frame 3D point trajectories through
spatio-temporal attentions in an RGB-D video. Our method represents a video as a spatio-temporal
3D feature cloud. Each point in the cloud represents a 2D feature vector lifted to a corresponding 3D
coordinate (X,Y, Z) using sensed or estimated depth. Under known camera motion, we construct
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Figure 1: TAPIP3D performs long-term 3D point tracking in a persistent, camera-stabilized world
space of 3D feature clouds, surpassing prior methods [48, 30] that operate in camera-dependent
UVD (UV pixels + Depth) spaces. Using depth maps and camera poses provided or estimated
via MegaSaM [25], TAPIP3D constructs a 3D world space in which camera motion is effectively
canceled out. As a result, the 3D trajectories of sampled dynamic points—represented in XYZ world
coordinates—are significantly smoother and more linear than those produced in UVD space.

camera-stabilized spatio-temporal feature clouds by applying extrinsics, as shown in Figure 1. Our
method performs tracking in either the camera or world 3D feature space by directly featurizing
scene coordinates using 3D attentions. Specifically, it identifies the local 3D neighborhood for
each query trajectory coordinate as a query group and replaces traditional 2D CNNs with a novel
Neighborhood-to-Neighborhood cross-attention design. This mechanism enables the deep feature
representation of a query point group at a given timestep to attend to the features of a key point
group, i.e., its neighboring 3D points at future timesteps. Moreover, within these cross attentions, we
incorporate the 3D relative offset between the query trajectory point and the neighboring target point
into the attention values, alongside appearance features, thereby enhancing spatial context awareness.

We test TAPIP3D in established 3D point tracking benchmarks of TAPVid3D [21], LSFOdyssey [40],
Dynamic Replica [18] and DexYCB [4] for tracking points in 2D and 3D, using depth from ground-
truth, sensors, or estimators, in camera and world 3D coordinate frames. We show TAPIP3D
outperforms all previous methods in 3D point tracking metrics, with an especially large margin when
accurate depth is available. While existing methods pursue 3D tracking in camera coordinates [30, 48],
our experiments show that it is better to track in a “world” coordinate frame, which can be estimated
by recent camera and depth estimation methods such as MegaSaM [25]. In addition to showing the
impact of coordinate system choices, we ablate the contributions to performance from 3D-centric
featurization and quality of depth estimation.

In summary, we present TAPIP3D for 3D point tracking from RGB-D and RGB videos that uses 3D
feature clouds for video to estimate 3D point tracks, which demonstrates state-of-the-art performance
when ground-truth / sensor depth is available and competitive performance with estimated depth [25].
It can exploit recent advances in depth and camera pose estimation [25, 47] and deliver both camera
and world-centric 3D tracks. To our knowledge, TAPIP3D is a pioneering 3D tracking method
capable of tracking in a 3D world-centric space, with camera motion factored out. We will release
our code upon acceptance.

2 Related Work

2D and 3D Point Tracking Recent advances in point tracking formulate the task as the estimation
of multi-frame point trajectories, moving beyond traditional pairwise optical flow estimation. Inspired
by earlier work on particle video [35], PIPs [12] introduces an iterative refinement approach with dense
cost maps. This work along with the Tracking Any Point (TAP) benchmark [7] have catalyzed a series
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of advancements [23, 24] including the use of multi-point context [20, 19], enhanced initialization
schemes [8], broader correlation contexts [2, 5], and post-hoc densification techniques [22].

Beyond 2D, recent works such as SpatialTracker [48] have extended point tracking to 3D by in-
corporating depth information. SpatialTracker employs a Triplane representation [3], where 3D
featured point clouds per frame from pixel (UV) and depth (D) coordinates are projected onto onto
three orthogonal planes. Triplane featurization is faster than our k-NN attention, but this speedup
comes at the cost of decreased performance. The works of DELTA [30] and SceneTracker [40] also
operate on a UVD coordinate system to separately compute appearance and depth correlation features,
directly extending the 2D method of CoTracker [20]. DELTA [30] proposes a coarse-to-fine trajectory
estimation that manages to estimate dense point tracks across the whole image plane, instead of on
a set of sparse locations. In contrast to previous 3D point trackers, TAPIP3D leverages an explicit
spatio-temporal 3D feature cloud video representation, instead of a 2.5D one of the image-space and
depth, for feature extraction and tracking. By fully utilizing the underlying geometric structure of the
scene, our method achieves better point tracking accuracy and consistency. Moreover, our model can
estimate trajectories in a 3D world space, by canceling inferred camera motion from the scene image
pixels during lifting, which helps performance further.

Point Tracking via Reconstruction 3D point tracks can also be extracted from monocular videos
through test-time optimization by fitting dynamic radiance fields, such as dynamic NeRFs [33, 41]
or Gaussians [29, 42, 36, 6] to the observed video frames supervised from reprojection RGB, depth
and motion error. These approaches require per-video optimization and are thus computationally
expensive. In contrast, TAPIP3D is a learning-based feed-forward approach for 3D point tracking.

Scene Flow Estimation Scene flow estimation extends optical flow into three dimensions by
considering pairs of point clouds and estimating the 3D motion between them [11, 13, 34, 39, 27, 46,
10, 31]. Recent works incorporate rigid motion priors, explicitly [39] or implicitly [49] or leveraging
diffusion models [26]. Linking 3D scene flow estimates terminates at pixel occlusions by design,
similarly to linking 2D flow estimates. Instead our work focuses on inferring multiframe point
trajectories through occlusions.

Learning-Based 3D Foundation Models Recent methods in learning based camera motion and
depth estimation, such as MoGe [44], DUSt3R [45], MonST3R [50], and MegaSaM [25], focus on
predicting dense 3D reconstructions from single images, image pairs, or videos, bringing the vision
of video to 4D translation closer. MegaSaM [25] delivers highly accurate camera motion and depth
by combining learning based initialization and updates with second order optimization, extending
earlier work of DROID-SLAM [38]. None of the methods above addresses the problem of estimating
the 3D point motion, which is the focus of our work. TAPIP3D builds upon the progress of recent
learning-based 3D camera motion and depth estimation methods to explore their use in 3D point
tracking, by lifting videos to a 3D world space which makes the scene points easier to track than in
the original 2D image plane.

3 Method

Overview. TAPIP3D takes as input an RGB-D video, and outputs 3D trajectories for query points,
specified by XY Z coordinates. If given camera poses, TAPIP3D outputs trajectories in the coordinate
system of the first camera (i.e., “world” coordinates). TAPIP3D begins by featurizing the RGB-D data
into per-timestep feature maps, and initializing 3D tracks for the query points, and then iteratively
refining the tracks with reference to 3D-based lookups in the features.

Concretely, we take as input an RGB video of S frames V = {It ∈ RH×W×3}Ss=1, a sequence
of depth maps D = {Dt ∈ RH×W }Ss=1, camera intrinsics (constant over time), and optionally, a
sequence of camera poses. The input depth maps can originate from an off-the-shelf monocular depth
estimator [44], depth sensors, or GT depth provided by simulation environments. Camera intrinsics
and extrinsics can either be estimated algorithmically by video 3D reconstruction models [25] or
be provided by the dataset. We are given a set of Q different query points Q = {(Xtq

q , Y
tq
q , Z

tq
q ),

q = 1 . . . Q}, where tq represents the timestep at which a query is provided. Queries may also be
specified in 2D, in which case we lift them to 3D using depth and camera intrinsics before sending
them to the model. For each query, our model produces a 3D point trajectory τq = (Xs

q , Y
s
q , Z

s
q ), s =

1 . . . S, and a visibility trajectory oq . The architecture of TAPIP3D is illustrated in Figure 2.
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Figure 2: Architecture of TAPIP3D. The model takes RGB frames and corresponding 3D point
maps as input, computes features from the RGB frames, and transfers them to the 3D points, forming
a feature cloud for each timestep. Using camera poses, these feature clouds can be arranged in
either world space or camera space. We then apply our 3D neighborhood module (Figure 3) to
extract features local to the estimated tracks, followed by a transformer, which iteratively updates
the estimated trajectories. Top right: Illustration of the difference between 3D k-NN (used in our
approach) and fixed 2D neighborhoods (used in prior works [19, 5]).

Tracking in world space vs. camera space. Previous 3D point trackers [30, 40, 48] represent
3D point trajectories by concatenating depth values to pixel coordinates, which we refer to as UV D
space. In contrast, we use XY Z coordinates, which allows us to better leverage 3D priors, and also
compensate for camera motion by transforming all frames’ points into the first camera’s coordinate
system (if poses are available). Disentangling camera motion from scene motion is helpful because it
makes the 3D tracks more predictable.

3.1 Preliminaries: Point tracking as iterative trajectory refinement

TAPIP3D builds on the trend of iterative architectures for point tracking [12, 8, 20, 19]. We build
from the most recent such tracker, CoTracker3 [19].

CoTracker3 overview. CoTracker3 tracks 2D points across time by iteratively refining their
coordinates and visibilities through a transformer. The transformer model is designed to operate
on fixed-length sequences of T frames only, and longer videos are processed in a sliding-window
manner. Given such a sequence and a set of query points, for each query q it maintains and updates
per-frame (2D) locations τ tq = (ut

q, v
t
q), and confidences ctq, and visibilities otq. The trajectory τq

is initialized by copying the query coordinate to all frames (zero motion assumption); cq and oq
are initialized with zeros. The model then performs M iterations of refinement, producing additive
updates to the coordinates and visibilities and confidences.

At each iteration m, CoTracker3 samples a patch of 2D features F t
q ∈ RC around the current location

τ t,mq , and samples a similar 2D patch around the query’s reference location, and computes a 4D
correlation Corrtq between these two feature patches. This correlation provides signal for how well
the image content matches the query, at the current estimated location. This correlation information,
along with confidence and visibility estimates from the previous step, and position embeddings for
motion and time, form a token for each timestep of each track:

Gt
q = [Corrtq, c

t
q, o

t
q, γ(τ

t
q − τ t−1

q ), γ(τ t+1
q − τ tq), γ(t)], (1)

where γ is a Fourier-based position embedding function. The trajectory tokens are then updated
through spatio-temporal attentions, which predict updated point positions, confidences and visibilities.
At test time, to track points in a video longer than T frames, CoTracker3 advances the inference
window by T

2 frames, and initializes the first half of the trajectories with the estimates of the previous
window, and then repeats inference.
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3.2 Tracking in a Persistent 3D Geometric Space

Video representation as 3D-enriched 2D maps. Our key innovation is to represent the input video
as a sequence of multi-scale 2D feature maps enriched with 3D coordinates [14, 15]: each 2D cell
holds both a C-dimensional feature vector and a 3D (X,Y, Z) position, where the 3D positions come
from unprojected depths. This representation allows us to treat the data as a sequence of featurized
point clouds (or “feature clouds”), despite their 2D grid arrangement in memory. Compared to
other 3D scene representations such as tri-plane encoders [48] and UVD coordinates [30], our
representation encodes 3D geometry more explicitly and without distortions or approximations. We
first encode each video frame with a 2D image encoder with downsampling rate ℓ, producing a
sequence of feature maps at a reduced resolution H

ℓ × W
ℓ , where W and H are the original width

and height of the image. We convert these into L levels of multi-scale features via 2D downsampling:
Fl = {Fl,t ∈ R

H

ℓ2l−1 × W

ℓ2l−1 ×(3+C)}Tt=1, for l = 1, . . . , L. Our downsampling uses nearest-neighbor
interpolation for coordinates and average pooling for features.
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Figure 3: 3D Neighborhood-to-Neighborhood (N2N) at-
tention. Given a 3D query point at a specific timestep, we
first identify its local 3D neighbors using k-NN to form a sup-
port group. Then, within the point cloud at another timestep,
we find another K nearest 3D neighbors to construct context
tokens. We apply bi-directional cross-attention between the
support tokens and context tokens to capture spatio-temporal
correspondences.

3D Neighborhood-to-Neighborhood
Attention. Our next step is to con-
textualize each timestep of each trajec-
tory (τ tq ) with information local to it in
the input data. Previous methods com-
pute correlation features for each tra-
jectory point using 2D neighborhoods,
either on the image plane [20, 5] or
on triplanes [48]. Our representation
enables us to use 3D neighborhoods
at this step, which lets the model take
advantage of the fact that the targets
are in a 3D world and are often disam-
biguated by 3D distance. Our overall
strategy is illustrated in Figure 3.

We remind the reader that there are Q
queries, and the model operates on a
window of T timesteps at once.

We begin by supplementing each
query point with features from a lo-
cal neighborhood of points. For a trajectory τq whose query originates in frame tq, we retrieve K
nearest neighbors from the feature cloud of that timestep (e.g., K = 32), using 3D distances to
find neighbors. For each neighbor, we also store its relative offset from the query, and compute a
positional embedding from this offset. These K features, with their position embeddings, serve as
“support” tokens for the query, capturing shape information about the query. In total, we have Q ·K
support tokens.

Next, for each trajectory, at each timestep, we use the current estimated coordinate (τ tq) to obtain K
nearest neighbors from that timestep’s feature cloud. For each neighbor, we also store its relative
offset from the estimated coordinate (τ tq), and compute a positional embedding from this offset.
These K features, with their position embeddings, serve as “context” tokens, capturing 3D-localized
information about the scene at that timestep. In total, we have Q · T ·K context tokens.

We now have a bag of “support” tokens available for each track, and a bag of “context” tokens
available for each track at each timestep, and we would like to compute information about how
well each track is corresponding at every timestep. For each query, we copy its “support” bag to all
timesteps (making a total of Q ·T ·K support tokens), and then perform bi-directional cross-attention
between each “support” bag and its corresponding “context” bag, followed by a per-token MLP. We
then compress each bag into a single token, via attention pooling: free-variable tokens (one per bag
type) cross-attend to the bags, retrieving their contents, yielding a total of Q · T · 2 tokens (two
summaries per query per timestep). We reduce this to Q · T summaries with a sum.
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We perform this 3D neighborhood-to-neighborhood contextualization for all scale levels in parallel,
yielding a total of Q ·T ·L tokens. We concatenate across scales, to produce Q×T vectors capturing
the multi-scale neighborhood information, which we denote as N t

q .

3D trajectory updating transformer To complement the multi-scale neighborhood features with
information about the trajectory itself, we concatenate sinusoidal embeddings of motion vectors
implied by the trajectory, sinusoidal embeddings of 2D coordinates implied by the trajectory, occlusion
estimates, and a sinusoidal embedding of the timestep, creating general-purpose trajectory tokens Gt

q:

Gt
q = [N t

q , γ(τ
t
q − τ t−1

q ), γ(τ t+1
q − τ tq), γ(πt(τ

t
q)), o

t
q, γ(t)], (2)

where γ denotes the Fourier encoding function and πt : R3 → R2 denotes camera projection. Pixel
coordinates are explicitly included to assist the model in identifying points located outside the image
boundaries.

These trajectory tokens are processed by a transformer utilizing proxy tokens, following Co-
Tracker3 [19]. That is, we use virtual trajectories (that do no correspond to any query points)
to help approximate spatial and temporal attention across our main Q · T tokens. The transformer
outputs additive updates for positions and visibility scores:

τ tq = τ tq +∆τ tq , otq = otq +∆otq (3)

which serve as inputs for subsequent iterations.

Training We train with four iterative inference steps, and supervise each iteration’s output. Let
{τq}Qq=1 denote the predicted trajectories, and let {τ̃q}Qq=1 denote the ground truth trajectories, and
similarly define {oq}Qq=1 and {õq}Qq=1 for visibility. We define the loss for one iteration as:

L =

Q∑
q=1

T∑
t=1

1

dti

∥∥τ tq − τ̃ tq
∥∥
2
+ αvisCE(otq, õ

t
q) (4)

where dtq denotes the depth of τ tq , and 1
dt
q

scales down the loss of far-away points. CE denotes the
binary cross entropy loss and αvis is a weighting factor balancing the visibility loss with the tracking
loss. During training, we augment the training data by applying random rigid transforms to each
frame’s point cloud.

Implementation Details Our model is trained on the Kubric MOVi-F dataset [9]. We initialize the
image encoder with CoTracker3’s pre-trained weights [19]. We train on 8 L40S GPUs with a batch
size of 1 for 200K iterations, which takes roughly 4.2 days and consumes only 20GB VRAM with
BF16 mixed precision. We train and test with a window length of T = 16. We train with videos of
length 24 (making two windows per batch), and 384 trajectories per sample. We scale the coordinates
in the point maps to unit variance before processing each window to simplify learning. We optimize
using AdamW [28] with the learning rate and weight decay both set to 5e-4. We use a learning
rate schedule with 10k warmup steps followed by cosine annealing. During inference, under BF16
mixed precision, our model achieves a speed of 10 FPS and consumes around 2.6GB of VRAM when
tracking 1024 query points across 32 frames on an L40S GPU.

4 Experiments

We evaluate TAPIP3D on both 3D and 2D point tracking benchmarks, on videos from simulated
and real-world scenes with various depth modalities, including sensor depth, estimated depth, and
simulator depth. Our 2D estimates are obtained by projecting the inferred 3D point tracks onto
the image plane. Our experiments aim to answer the following questions: (1) How does TAPIP3D
compare with the state of the art in 3D and 2D tracking? (2) How does depth quality (estimated versus
GT) affect performance of TAPIP3D? (3) How does camera vs. world space affect performance?
(4) How does 3D neighborhood-to-neighborhood attention compare against other contextualization
strategies?

Evaluation metrics We adopt the 3D point tracking metrics from TAPVid-3D [21]: APD3D

(<δavg) quantifies the average percentage of visible points whose 3D positional errors fall within
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depth-adaptive thresholds that scale with the ground-truth depth. Occlusion Accuracy (OA) measures
the correctness of visibility predictions, while Average Jaccard (AJ) jointly evaluates position and
visibility accuracy through the intersection-over-union between correctly predicted visible points and
ground truth.

Table 1: Comparison of long-term 3D point tracking methods on the large-scale real-world TAPVid-
3D [21] benchmark. We take the estimated depth from MegaSAM [25]. For TAPIP3D-world, we
also leverage the camera pose estimation from MegaSAM [25]. Note that ADT [32] has significant
camera motions while PStudio [17] has a static camera. M-SaM: depth and camera poses estimated
by MegaSaM [25].

Methods ADT DriveTrack PStudio Average
AJ3D ↑ APD3D ↑ OA↑ AJ3D ↑ APD3D ↑ OA↑ AJ3D ↑ APD3D ↑ OA↑ AJ3D ↑ APD3D ↑ OA↑

CoTracker3 [19] + M-SaM 20.4 30.1 89.8 14.1 20.3 88.5 17.4 27.2 85.0 17.3 25.9 87.8
SpatialTracker [48] + M-SaM 15.9 23.8 90.1 7.7 13.5 85.2 15.3 25.2 78.1 13.0 20.8 84.5
DELTA [30] + M-SaM 21.0 29.3 89.7 14.6 22.2 88.1 17.7 27.3 81.4 17.8 26.3 86.4

TAPIP3D-camera + M-SaM 21.6 31.0 90.4 14.6 21.3 82.2 18.1 27.7 85.5 18.1 26.7 86.0
TAPIP3D-world + M-SaM 23.5 32.8 91.2 14.9 21.8 82.6 18.1 27.7 85.5 18.8 27.4 86.4

Datasets We evaluate the performance of our model and baselines in the following synthetic and
real world datasets: 1) TAPVid3D [21] integrates videos from three distinct real-world datasets
covering diverse scenarios: DriveTrack [1], Panoptic Studio [17], and Aria Digital Twin [32].
Together, these datasets provide a total of 4,569 evaluation videos, with video lengths ranging from
25 to 300 frames. 2) DexYCB-Pt: a dataset we introduce by leveraging ground-truth object and
hand poses from manipulation scenes in DexYCB [4] to generate accurate 3D point tracks on 8,000
real-world RGB-D videos. 3) LSFOdyssey [40]: a synthetic dataset that contains 90 videos with
complex but realistic long-range motion using humanoids, robots, and animals. Each video is 40
frames long and has 3D point trajectories and occlusion labels, sourced from PointOdyssey [51]. 4)
DynamicReplica [18]: a synthetic 3D dataset that contains 500 videos of articulated human and
animal models. Each video is 300 frames long.

Baselines We compare TAPIP3D against the following 2D and 3D point trackers: 1) DELTA [30]:
a very recent state-of-the-art 3D point tracker that uses depth as an additional input for computing
cross-correlations, essentially extending CoTracker [20] to a UVD space. 2) SpatialTracker [48]:
a 3D point tracker that builds upon CoTracker’s architecture and uses a tri-plane representation to
featurize (u, v, d) coordinates. 3) CoTracker3 [19], which operates in 2D, but we lift its trajectories
to 3D using the depth at the trajectory coordinates.

We consider the following versions of our model:

1) TAPIP3D-world: This is TAPIP3D tracking in world coordinates, by using the camera pose
trajectory to cancel camera motion in the 3D coordinates.

2) TAPIP3D-camera: This is TAPIP3D tracking in camera coordinates, where information of camera
pose is not used, and thus the observed 3D motion reflects the combination of camera motion and
scene motion.

In all the evaluations, our model is trained on the Kubric MOVi-F dataset [9]. TAPIP3D-world and
TAPIP3D-camera adopt the same trained checkpoint but conduct inference in the two different 3D
coordinate systems.

4.1 Point Tracking Evaluation

We first evaluate TAPIP3D against strong baseline methods [19, 48, 30] on the challenging real-world
TAPVid-3D [21] benchmark. Table 1 summarizes the comparative 3D tracking performance, utilizing
depth and camera poses obtained from state-of-the-art 3D reconstruction models [25] for each frame.
TAPIP3D consistently outperforms recent state-of-the-art methods, including SpatialTracker [30]
and DELTA [48], across all three subsets in terms of AJ3D. We also visualize the 3D point tracking
results in Figure 4; 3D point tracks from TAPIP3D are noticeably more accurate than those of
the baselines. Notably, on the ADT dataset [32], characterized by particularly challenging camera
motions, TAPIP3D-world significantly surpasses DELTA [30], achieving improvements of 2.5 points
in AJ3D and 3.5 points in APD3D. Furthermore, TAPIP3D-world demonstrates a clear advantage
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Figure 4: Visual results comparison. We qualitatively compare the 3D point tracking results between
TAPIP3D with state-of-the-art approaches SpaTracker [48] and DELTA [30] under the same 3D point
cloud produced by MegaSaM [25], where we observe serious point drifting issues of SpaTracker and
DELTA under large 3D object motion. Zoom in for better view.

over TAPIP3D-camera, highlighting the benefits of conducting tracking in a persistent 3D world
space rather than in camera-centric coordinates.

Next, we present results for 3D point tracking on the real-world manipulation dataset DexYCB [4],
as shown in Table 3. TAPIP3D notably boosts performance over the previous best method [30],
improving AJ3D from 26.4 to 30.3. Additionally, we observe that SpaTracker [48] achieves limited
performance, even falling below the depth-lifted CoTracker3 [19]. This suggests that SpaTracker’s tri-
plane representation struggles to leverage the accurate sensor depth provided by DexYCB effectively.

Table 2: Comparison of long-term 3D and 2D point tracking results in LSFOdyssey [40] and Dynamic
Replica [18] benchmarks with improved input depth quality ( MegaSAM [25] → GT Depth). The
best results per column are highlighted in bold. GT denotes using GT depth and camera poses
provided by the dataset. M-SaM: depth and camera poses estimated by MegaSaM [25].

Methods LSFOdyssey Dynamic Replica
AJ3D ↑ APD3D ↑ AJ2D ↑ APD2D ↑ OA↑ AJ3D ↑ APD3D ↑ AJ2D ↑ APD2D ↑ OA↑

CoTracker3 [19] + M-SaM 19.0 28.1 75.0 88.0 88.5 20.0 30.2 61.4 80.0 86.2
SpatialTracker [48] + M-SaM 14.8 22.8 73.8 88.5 85.7 6.6 12.0 54.1 72.8 81.7
DELTA [30] + M-SaM 18.9 28.0 75.2 90.2 83.7 18.0 27.2 61.3 77.3 81.0
TAPIP3D-camera + M-SaM 20.2 28.6 70.4 86.2 83.8 20.6 30.3 55.3 77.1 80.2
TAPIP3D-world + M-SaM 20.5 29.2 72.3 87.5 83.6 20.6 30.2 56.1 77.7 78.6

CoTracker3 [19] + GT 28.4 35.0 75.0 88.0 88.5 27.4 38.0 61.4 80.0 86.2
SpatialTracker [48] + GT 8.2 13.3 70.6 85.9 84.9 7.6 13.6 56.4 74.7 83.8
DELTA [30] + GT 37.7 50.1 72.4 88.4 82.3 27.4 37.7 65.6 80.5 83.8
TAPIP3D-camera + GT 68.3 83.2 76.0 91.2 86.2 53.7 70.8 64.6 84.7 84.7
TAPIP3D-world + GT 72.2 85.8 78.5 92.8 86.9 55.5 72.8 66.2 85.7 85.3

Lastly, we evaluate our model’s 3D point tracking performance on the synthetic LSFOdyssey [40]
and DynamicReplica [18] benchmarks, as shown in Table 2. Comparisons are conducted between our
method and baselines under different depth sources: ground-truth depth from simulation, and esti-
mated depth from MegaSaM [25]. We report two notable findings: 1) TAPIP3D-world outperforms all
competing 3D point trackers in AJ3D when provided with depth estimation from either MegaSaM [25]
or ground-truth depth. Moreover, utilizing ground-truth depth, our approach even outperforms the
2D tracking accuracy of CoTracker3 [19]. 2) As the depth quality improves (MegaSaM [25] →
GT Depth), the performance enhancement of our method in APD3D is substantially greater com-
pared to DELTA [30] and SpaTracker [48], underscoring the effectiveness of our 3D point feature
representation in world coordinates.
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Table 3: 3D point tracking comparison on
DexYCB-Pt using Sensor Depth (SD).

Methods DexYCB-Pt
AJ3D ↑ APD3D ↑ OA↑

CoTracker3 + SD [19] 14.9 26.1 70.9
SpatialTracker [48] 5.5 11.4 66.8
DELTA [30] 26.4 43.3 72.8

TAPIP3D (Ours) 30.3 52.4 71.3

Table 4: Ablation on the searching neighbors meth-
ods when performing correlation. We compare 3D
k-NN vs. Fixed 2D Neighbors in DexYCB-Pt bench-
mark using Sensor Depth (SD).

Methods AJ3D ↑ APD3D ↑ OA↑

Fixed Neighbors in 2D 27.7 50.0 67.7
k-NN in 3D 29.8 51.6 70.9

Table 5: Ablation experiments of TAPIP3D. To isolate the influence of depth and camera pose, we use
the annotations provided by the LSFOdyssey dataset [40]. N2N Att.: Neighborhood-to-Neighborhood
Attention. Cam: 3D camera space. World: 3D world space. Note that the DexYCB-Pt video dataset
is with static camera such that the result number for Cam and World is the same.

Coord.
Systems

LSFOdyssey
AJ3D ↑ APD3D ↑ OA↑

UV + D 63.4 77.0 87.0
UV + log(D) 62.9 77.9 84.1
XYZ (Cam) 67.1 81.6 85.8
XYZ (World) 70.7 84.1 86.6

(a) 3D Coordinates Systems

Methods LSFOdyssey DexYCB-Pt
AJ3D ↑ APD3D ↑ OA↑ AJ3D ↑ APD3D ↑ OA↑

Cam w/o N2N Att. 59.4 72.7 88.0 26.3 46.6 68.8
Cam w N2N Att. 67.1 81.6 85.8 29.8 51.6 70.9

World w/o N2N Att. 62.1 75.1 88.2 26.3 46.6 68.8
World w N2N Att. 70.7 84.1 86.6 29.8 51.6 70.9

(b) Ablation on N2N Attention

4.2 Ablations

In Tables 4 and 5 we ablate our model’s design choices regarding the selection of nearest neighbors
in 3D vs. 2D space, UVD vs. XYZ space for point tracking and neighborhood-to-neighborhood
attention vs. conventional point-to-neighborhood cross attention for feature extraction. We draw
following conclusions:

Computing nearest neighbors in 3D space is better than fixed 2D. In Table 4, we see that our
3D k-NN design improves the AJ3D metric from 27.7 to 29.8. This indicates that our 3D k-NN
mechanism leverages 3D geometric information to effectively filter out irrelevant 2D neighbors
during correlation, as illustrated in Figure 2.

Tracking in world space helps. In Table 5a, TAPIP3D that tracks in XYZ (world) and XYZ
(Cam) space outperform versions that track in UV+D and UV+log(D) space, the latter two commonly
adopted in existing state-of-the-art methods [20, 30]. Specifically, tracking in world XYZ coordinates
performs best (AJ3D metric). Tracking in world coordinates generalizes effectively to scenarios with
significant camera motion, such as those in LSFOdyssey [40].

Considering support points during attentions helps. In Table 5b, we compare the proposed
Neighborhood-to-Neighborhood Attention mechanism against conventional point-to-neighborhood
cross attention. Specifically, we replace the Neighborhood-to-Neighborhood Attention, which groups
each query point with its neighboring context points in both spatial dimensions, with standard 2D
attention that considers only the individual query points. Our experiments show that Neighborhood-
to-Neighborhood Attention significantly improves the APD3D metric from 75.1 to 84.1. This region-
to-region cross-attention approach notably mitigates matching ambiguities by incorporating richer
context compared to the simpler point-to-neighborhood matching baseline. Similar conclusion was
reached in LocoTrack [5] but for 2D image plane using CNNs, which we extend to 3D feature clouds
using cross-attention.

5 Limitations

Despite achieving state-of-the-art results, TAPIP3D’s performance can be affected by the fidelity
of the input depth maps. As a model that works in XYZ space, it expects the input geometry to
remain stable and consistent across frames to ensure well-defined 3D trajectories. While MegaSaM
generally provides reliable geometry, failures may occur in scenes with extreme depth variations
or small, distant elements that appear blurred. In such cases, depth flickering or incorrect surface
connections may arise, leading to degraded tracking quality. Furthermore, when high-quality depth
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(e.g., from sensors) is not available, TAPIP3D may perform worse on 2D metrics than UVD-space or
purely 2D tracking methods, since its 2D trajectories are projected from 3D estimates and rely on
geometrically consistent data. This limitation can be mitigated via depth map pre-processing methods
such as completion and noise filtering. With ongoing advancements in 3D vision reconstruction
models offering increasingly accurate priors, we anticipate continued improvements in the robustness
of our method.

6 Conclusion

We introduced TAPIP3D, a novel approach for multi-frame 3D point tracking that represents videos
as spatio-temporal 3D feature clouds in either a camera-centric or world-centric coordinate frame,
and employs neighborhood-to-neighborhood attention to contextualize the estimated tracks in the
feature clouds, and iteratively updates the trajectories. By lifting 2D video features into a structured
3D space using depth and camera motion information, TAPIP3D addresses fundamental limitations
of previous 2D and 3D tracking methods, particularly in handling large camera motion. We validated
TAPIP3D on established synthetic and real world tracking benchmarks demonstrating state-of-the-art
performance in 3D point tracking when ground-truth depth is available and competitive performance
with estimated depth. By leveraging advances in depth estimation and camera pose prediction,
TAPIP3D paves the way for more robust and accurate multi-frame tracking in both RGB and RGB-D
videos.

Acknowledgements

This material is based on work supported by an NSF Career award, an Amazon faculty award, and
AFOSR Grant FA9550-23-1-0257.

References
[1] Arjun Balasingam, Joseph Chandler, Chenning Li, Zhoutong Zhang, and Hari Balakrishnan. Drivetrack: A

benchmark for long-range point tracking in real-world videos. In CVPR, 2024.

[2] Weikang Bian, Zhaoyang Huang, Xiaoyu Shi, Yitong Dong, Yijin Li, and Hongsheng Li. Context-pips:
persistent independent particles demands spatial context features. NeurIPS, 36, 2023.

[3] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d generative
adversarial networks. In CVPR, 2022.

[4] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay, Yashraj S Narang,
Karl Van Wyk, Umar Iqbal, Stan Birchfield, et al. Dexycb: A benchmark for capturing hand grasping of
objects. In CVPR, pages 9044–9053, 2021.

[5] Seokju Cho, Jiahui Huang, Jisu Nam, Honggyu An, Seungryong Kim, and Joon-Young Lee. Local all-pair
correspondence for point tracking. In ECCV, 2024.

[6] Wen-Hsuan Chu, Lei Ke, and Katerina Fragkiadaki. Dreamscene4d: Dynamic multi-object scene generation
from monocular videos. In NeurIPS, 2024.

[7] Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Recasens, Lucas Smaira, Yusuf Aytar, Joao Carreira,
Andrew Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking any point in a video. In NeurIPS,
2022.

[8] Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira, and Andrew
Zisserman. Tapir: Tracking any point with per-frame initialization and temporal refinement. In ICCV,
2023.

[9] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J. Fleet,
Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu, Dmitry Lagun,
Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek Nowrouzezahrai, Cengiz
Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour, Mehdi S. M. Sajjadi, Matan Sela,
Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang, Tianhao Wu, Kwang Moo Yi,
Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: A scalable dataset generator. In CVPR, 2022.

10



[10] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and Panqu Wang. Hplflownet: Hierarchical
permutohedral lattice flownet for scene flow estimation on large-scale point clouds. In CVPR, pages
3254–3263, 2019.

[11] Simon Hadfield and Richard Bowden. Kinecting the dots: Particle based scene flow from depth sensors. In
ICCV, 2011.

[12] Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. Particle video revisited: Tracking through
occlusions using point trajectories. In ECCV, 2022.

[13] Michael Hornacek, Andrew Fitzgibbon, and Carsten Rother. Sphereflow: 6 dof scene flow from rgb-d
pairs. In CVPR, 2014.

[14] Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav
Chaudhary, and Katerina Fragkiadaki. Odin: a single model for 2d and 3d segmentation. In CVPR, 2024.

[15] Ayush Jain, Alexander Swerdlow, Yuzhou Wang, Sergio Arnaud, Ada Martin, Alexander Sax, Franziska
Meier, and Katerina Fragkiadaki. Unifying 2d and 3d vision-language understanding. arXiv preprint
arXiv:2503.10745, 2025.

[16] Linyi Jin, Richard Tucker, Zhengqi Li, David Fouhey, Noah Snavely, and Aleksander Holynski. Stereo4d:
Learning how things move in 3d from internet stereo videos. arXiv preprint, 2024.

[17] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara, and
Yaser Sheikh. Panoptic studio: A massively multiview system for social motion capture. In ICCV, 2015.

[18] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Dynamicstereo: Consistent dynamic depth from stereo videos. In CVPR, 2023.

[19] Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian Rup-
precht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. arXiv preprint
arXiv:2410.11831, 2024.

[20] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. In ECCV, 2024.

[21] Skanda Koppula, Ignacio Rocco, Yi Yang, joseph heyward, Joao Carreira, Andrew Zisserman, Gabriel
Brostow, and Carl Doersch. Tapvid-3d: A benchmark for tracking any point in 3d. In NeurIPS, 2024.

[22] Guillaume Le Moing, Jean Ponce, and Cordelia Schmid. Dense optical tracking: Connecting the dots. In
CVPR, 2024.

[23] Hongyang Li, Hao Zhang, Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, and Lei Zhang. Taptr:
Tracking any point with transformers as detection. In ECCV, 2024.

[24] Hongyang Li, Hao Zhang, Shilong Liu, Zhaoyang Zeng, Feng Li, Bohan Li, Tianhe Ren, and Lei Zhang.
Taptrv2: Attention-based position update improves tracking any point. In Advances in Neural Information
Processing Systems, 2025.

[25] Zhengqi Li, Richard Tucker, Forrester Cole, Qianqian Wang, Linyi Jin, Vickie Ye, Angjoo Kanazawa,
Aleksander Holynski, and Noah Snavely. MegaSaM: Accurate, fast and robust structure and motion from
casual dynamic videos. arXiv preprint, 2024.

[26] Jiuming Liu, Guangming Wang, Weicai Ye, Chaokang Jiang, Jinru Han, Zhe Liu, Guofeng Zhang, Dalong
Du, and Hesheng Wang. Difflow3d: Toward robust uncertainty-aware scene flow estimation with iterative
diffusion-based refinement. In CVPR, 2024.

[27] Xingyu Liu, Charles R Qi, and Leonidas J Guibas. Flownet3d: Learning scene flow in 3d point clouds. In
CVPR, 2019.

[28] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[29] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians: Tracking
by persistent dynamic view synthesis. In 3DV, 2024.

[30] Tuan Duc Ngo, Peiye Zhuang, Chuang Gan, Evangelos Kalogerakis, Sergey Tulyakov, Hsin-Ying Lee, and
Chaoyang Wang. Delta: Dense efficient long-range 3d tracking for any video. In ICLR, 2025.

11



[31] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Occupancy flow: 4d recon-
struction by learning particle dynamics. In ICCV, 2019.

[32] Xiaqing Pan, Nicholas Charron, Yongqian Yang, Scott Peters, Thomas Whelan, Chen Kong, Omkar Parkhi,
Richard Newcombe, and Yuheng Carl Ren. Aria digital twin: A new benchmark dataset for egocentric 3d
machine perception. In ICCV, 2023.

[33] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M Seitz, and
Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In ICCV, 2021.

[34] Julian Quiroga, Thomas Brox, Frédéric Devernay, and James Crowley. Dense semi-rigid scene flow
estimation from rgbd images. In ECCV, 2014.

[35] Peter Sand and Seth Teller. Particle video: Long-range motion estimation using point trajectories. IJCV,
80:72–91, 2008.

[36] Jenny Seidenschwarz, Qunjie Zhou, Bardienus Duisterhof, Deva Ramanan, and Laura Leal-Taixé.
Dynomo: Online point tracking by dynamic online monocular gaussian reconstruction. arXiv preprint
arXiv:2409.02104, 2024.

[37] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurélien Chouard, Vijaysai Patnaik, Paul Tsui, James
Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao,
Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens,
Zhifeng Chen, and Dragomir Anguelov. Scalability in perception for autonomous driving: Waymo open
dataset. In CVPR, 2020.

[38] Zachary Teed and Jia Deng. DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D
Cameras. In NeurIPS, 2021.

[39] Zachary Teed and Jia Deng. Raft-3d: Scene flow using rigid-motion embeddings. In CVPR, 2021.

[40] Bo Wang, Jian Li, Yang Yu, Li Liu, Zhenping Sun, and Dewen Hu. Scenetracker: Long-term scene flow
estimation network. arXiv preprint arXiv:2403.19924, 2024.

[41] Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander Holynski, and
Noah Snavely. Tracking everything everywhere all at once. In ICCV, 2023.

[42] Qianqian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi Li, and Angjoo Kanazawa. Shape of motion:
4d reconstruction from a single video. arXiv preprint arXiv:2407.13764, 2024.

[43] Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A. Efros, and Angjoo Kanazawa. Continuous
3d perception model with persistent state. In CVPR, 2025.

[44] Ruicheng Wang, Sicheng Xu, Cassie Dai, Jianfeng Xiang, Yu Deng, Xin Tong, and Jiaolong Yang.
Moge: Unlocking accurate monocular geometry estimation for open-domain images with optimal training
supervision. arXiv preprint arXiv:2410.19115, 2024.

[45] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Geometric
3d vision made easy. In CVPR, 2024.

[46] Zirui Wang, Shuda Li, Henry Howard-Jenkins, Victor Prisacariu, and Min Chen. Flownet3d++: Geometric
losses for deep scene flow estimation. In WACV, 2020.

[47] Bowen Wen, Matthew Trepte, Joseph Aribido, Jan Kautz, Orazio Gallo, and Stan Birchfield. Foundation-
stereo: Zero-shot stereo matching, 2025.

[48] Yuxi Xiao, Qianqian Wang, Shangzhan Zhang, Nan Xue, Sida Peng, Yujun Shen, and Xiaowei Zhou.
Spatialtracker: Tracking any 2d pixels in 3d space. In CVPR, 2024.

[49] Gengshan Yang and Deva Ramanan. Learning to segment rigid motions from two frames. In CVPR, 2021.

[50] Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, Deqing Sun,
and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the presence of motion.
In ICLR, 2025.

[51] Yang Zheng, Adam W. Harley, Bokui Shen, Gordon Wetzstein, and Leonidas J. Guibas. Pointodyssey: A
large-scale synthetic dataset for long-term point tracking. In ICCV, 2023.

12



Supplementary Material

In this supplementary material, Section A provides further training details of our model, including
a memory design that significantly helps reduce VRAM usage. Section B explains the details of
our evaluation setup. In Section C, we provide details regarding the inference speed of our model.
In Section D, we present additional visualization of our method using stereo depth, enabled by
FoundationStereo [47], a powerful stereo matching method. Section E provides further ablation
results to offer insights into model behavior. Additionally, we report the evaluation results of our
model on TAPVid-DAVIS [7] in Section G. For extensive visual comparisons of our results in
Section H, please refer to our project page.

A Additional Training Details

Table 6 lists the hyperparameters used during training. We adopt all the data augmentations from
PIPs [12] (also used in CoTracker3 [19]), including random Gaussian blur, random occlusion, random
cropping, and color jittering, along with a smoothly varying sequence of random rigid transformations
applied on the input point clouds to improve camera-centric performance. During training, we perform
Mtrain = 4 iterative refinements per window. The loss at the m-th iteration is weighted by γMtrain−m,
where γ is the discount factor. The total loss for each sample is computed as the sum of these
discounted losses across all iterations and windows. To mitigate unstable gradients in the early
training stage, we additionally scale the total loss by 0.005.

Table 6: Training hyperparameters

Hyperparameter Value

Learning rate 0.0005
Weight decay 0.0005
Iteration refinements (Mtrain) 4
LR schedule OneCycleLR
Training steps 200,000
Batch size 8
Optimizer AdamW
Max grad norm 10.0
Visibility loss weight (αvis) 3.0
Loss discount factor (γ) 0.8
Total loss multiplier 0.005

During training, we observed that the neighborhood-to-neighborhood attention module consumes
a large amount of GPU memory, as memory usage accumulates over the course of iterative predic-
tions. To reduce this VRAM overhead, we introduced a memory-saving strategy that significantly
helps reduce VRAM usage. Specifically, we detach the gradients of the predicted coordinates and
visibilities after each iteration, allowing the loss for each window and iteration to be computed and
backpropagated independently. We immediately backpropogate the loss of each window as soon as it
is ready, and release the part of the computation graph that is no longer needed. The only component
that needs to retain a shared computation graph across iterations is the image encoder. To avoid
repeated backpropagation through it, we truncate the gradient at the image features and accumulate
gradients there. These accumulated gradients are then backpropagated once, after the final iteration
of each batch.
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This strategy ensures that VRAM usage remains constant regardless of the number of iterations
and windows. Despite its simplicity, it has minimal impact on training speed and does not sacrifice
model performance, while significantly reducing memory usage—from over 48GB (which previously
caused GPU memory overflow) to approximately 20GB.

B Evaluation Details

For evaluation, we use the metrics defined in TAPVid [7] and TAPVid-3D [21] throughout the paper.
All baselines, as well as our method, operate in a window-by-window manner, so they can only
predict trajectories after the query frame (i.e., in the forward direction). However, the TAPVid-3D
metric also requires evaluating trajectories before the query frame (i.e., in the backward direction).
Therefore, to obtain these backward trajectories, we reverse the video in time and run inference again.

Following previous 2D tracking methods [19, 8], we augment the provided query points with
additional support queries sampled from a 2D grid in the first frame. These points are lifted into 3D
and inferred jointly with the original queries. The grid resolution is set to 16× 16 for all models. For
datasets with known camera intrinsics, we use the ground-truth intrinsics both to lift image features
into 3D feature clouds and to convert the outputs of UVD-space models into XYZ coordinates. We
do not apply the trick of treating low-confidence point as occluded, as done in CoTracker3 [19].

Our model additionally requires a scale factor to normalize the coordinates when constructing spatio-
temporal feature clouds. During training, we use the standard deviation of all 3D points in the feature
clouds as the normalization factor. To reduce the influence of extreme values from depth estimates
during evaluation, we assume a rough upper bound for the depths of interest, which is computed as
twice the maximum depth of ground truth tracks. We then compute the scale factor as the standard
deviation of 3D points whose depths fall within the upper bound. We note that points lying out of the
depth upper bound are not excluded from the feature clouds and can still be tracked by the model.

C Inference Speed

To assess the efficiency of our model, we measure its inference speed on a single L40S GPU using
BF16 mixed precision. We evaluate the model on 32-frame video sequences, where 1,024 query
points are provided in the first frame. Our model achieves an inference speed of 11.3 FPS. It is
approximately 1.3× slower than SpaTracker [48] on the same videos. It is of course substantially
faster than optimization-based methods such as Shape-of-Motion [42], which require several hours of
inference-time optimization for a 300-frame sequence.

For monocular videos, we find that generating depth maps and estimating camera poses are the most
time-consuming components in our pipeline. For instance, processing a sequence from DexYCB
takes 121.1s for geometry estimation with MegaSaM, yet our model only requires 6.4s for point
tracking. Among this, feature extraction accounts for 0.11s, encoding trajectory tokens for 6.04s,
and the updating transformer for 0.25s. We also observe that our model is more robust to degraded
camera pose quality than to degraded depth estimation. Consequently, one potential way to accelerate
the pipeline is to use a more efficient depth estimator, such as CUT3R [43], especially in scenarios
where sensor depth is available. We expect that future improvements in depth estimation models will
help reduce this bottleneck.

D Inference with Stereo Videos

While our method requires reasonably accurate unprojected point clouds as input, obtaining high-
quality depth maps remains challenging in many real-world scenarios. To mitigate the limitation, we
demonstrate how our method can be combined with FoundationStereo [47], a recent advancement in
stereo matching, to produce metric-scaled point tracks from in-the-wild stereo videos.

Specifically, we follow the pipeline proposed in Stereo4D [16] to download stereo videos in the
VR180 format from YouTube and rectify them. We then estimate disparity maps frame by frame
using FoundationStereo [47], using them to unproject the image features into camera-centric spatio-
temporal feature clouds. Figure 5 shows two examples produced by this process. Comparison
videos are provided in the supplementary material (TAPIP3D-supp.mp4). While the examples are
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T0 T1 T2… …Queried Frame …

Figure 5: Examples of running our model with depth maps estimated by FoundationStereo [47].
Tracking is performed in the camera-centric frame, so the trajectories above include both camera and
object motion. Refer to our videos on the project page for better visual comparison.

camera-centric tracking results, one can also combine the estimated disparity with camera poses from
methods such as MegaSaM [25] to track in world-centric coordinates.

E Additional Ablations and Analyses

E.1 Ablation on Neighborhood Size

We train our model with K = 32, where K denotes the number of neighbors used in the N2N attention
module, and evaluate its inference performance under different K values on both LSFOdyssey and
Dynamic Replica. As shown in Table 7, the performance of TAPIP3D improves as K increases,
though the gain saturates when K increases from 32 to 48 on LSFOdyssey. The computational
complexity of the N2N attention module, given by O(TNK2D + TNKD2), makes it a major
bottleneck in our model, where T is the number of frames, N is the number of tracked points, and D
is the feature dimension. We set K = 32 as a trade-off between performance and efficiency.

Table 7: Ablation on Neighborhood Size K

Neighborhood Size K
LSFOdyssey Dynamic Replica

AJ3D ↑ APD3D ↑ OA3D ↑ AJ3D ↑ APD3D ↑ OA3D ↑

K = 16 67.9 84.5 83.6 52.3 68.8 83.2
K = 24 71.1 85.8 85.9 55.5 73.0 84.8
K = 48 72.6 85.3 88.6 57.3 74.3 85.8

K = 32 72.2 85.8 86.9 55.5 72.8 85.3

E.2 Robustness to Image Blur

Real-world images of dynamic objects often exhibit blurriness, especially under low resolution and
fast motion. To assess our model’s robustness to such degradation, we evaluate TAPIP3D-world
+ MegaSaM on the LSFOdyssey dataset using synthetic Gaussian blur of varying strength. For
each frame, the input image is convolved with a Gaussian kernel of standard deviation σ ∈
{0.0, 0.5, 1.0, 2.0}. Since image blur affects the reliability of depth estimation, we re-estimate
the depth maps of blurred images using MegaSaM.

As shown in Table 8, our model consistently achieves higher 3D accuracy than the baseline DELTA
across all blur levels. We observe that even under heavy blur, the predicted 3D points remain well
aligned with scene geometry, although the depth estimated by MegaSaM becomes less consistent
across frames.
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Table 8: Effect of Gaussian blur on LSFOdyssey. Blurred images are used for both TAPIP3D and
DELTA, and corresponding depths are re-estimated using MegaSaM.

β (px) TAPIP3D (ours) DELTA

APD3D APD2D APD3D APD2D

0.0 29.2 87.5 28.0 90.2
0.5 21.2 87.4 20.3 90.3
1.0 20.6 86.6 19.8 90.3
2.0 18.1 86.0 17.5 90.2

E.3 Robustness to Camera Pose Errors

To evaluate our model’s robustness against inaccurate camera poses, we synthetically perturb the
ground-truth camera orientations. For each frame, we apply a rotation around a random axis, where
the rotation angle is sampled from a zero-mean Gaussian distribution with a standard deviation of
σ ∈ {0.5◦, 1.0◦, 2.0◦}.

As reported in Table 9, our model, TAPIP3D-world, demonstrates considerable resilience to these
perturbations. The performance degrades gracefully as the noise level increases, and our model
consistently outperforms the DELTA baseline even under the perturbation of σ = 2.0◦.

Table 9: Impact of camera pose perturbations. We add Gaussian angular noise with standard deviation
σ to the ground-truth camera orientations and report results on the LSFOdyssey dataset.

σ (deg) Method AJ3D APD3D OA

N/A DELTA 37.1 50.1 82.3
N/A TAPIP3D-camera 68.3 83.2 86.2

0.0 TAPIP3D-world 72.2 85.8 86.9
0.5 TAPIP3D-world 70.4 84.6 86.8
1.0 TAPIP3D-world 67.8 82.7 86.4
2.0 TAPIP3D-world 64.9 80.3 85.7

F Evaluation with Sparse Depth

In some real-world scenarios, we only have access to sparse depth measurements (e.g., from LiDAR
sensors) instead of dense depth maps. To assess the usefulness of our approach under such conditions,
we construct a benchmark consisting of 50 sequences from the Waymo Open Dataset [37] (a subset of
TAPVid-3D), paired with depth map annotations obtained by densifying sparse LiDAR measurements
using a simple nearest-neighbor interpolation, following the approach in DriveTrack [1].

We report the performance of TAPIP3D-camera, DELTA, and CoTracker3 on this benchmark in
Table 10. TAPIP3D-camera achieves the best 3D accuracy among the compared methods. These
results demonstrate that our method is highly usable and competitive when only sparse depths are
available.

Table 10: Evaluation with sparse depth on a subset of the Waymo Open Dataset [37]. Depth maps are
obtained by densifying sparse LiDAR signals via nearest-neighbor interpolation.

Method AJ3D APD3D AJ2D APD2D

CoTracker3 16.5 24.1 63.7 78.8
DELTA 21.0 30.8 71.4 85.0
TAPIP3D-camera 21.8 31.6 67.7 82.2
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G TAP-Vid Evaluation

For reference, we also evaluated TAPIP3D-world on TAP-Vid-DAVIS [7], a 2D point tracking
benchmark. TAPIP3D-world achieves an AJ of 58.9, an APD of 71.2, and an OA of 89.6, which are
lower than those of recent state-of-the-art 2D trackers.

We note that TAPIP3D is not designed to achieve state-of-the-art 2D tracking performance, and the
2D tracks obtained by projecting 3D trajectories to 2D cannot reach sub-pixel accuracy in monocular
settings. The performance is further affected by MegaSaM’s failures on some of sequences, which
lead to severely noisy depth estimates and unstable point clouds.

H 3D Track Visualization

For extensive 3D visualizations of our results, please refer to the accompanying project page, where
we compare our method with the baselines SpaTracker [48], CoTracker3 [19] and DELTA [30].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provided extensive experiments to support the paper’s claims.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please check Sec 4.2 of the paper.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theoretical results, and the assumptions have been made explicit in the
paper.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided experiment descriptions in the main paper and appendix, and
code is available online.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will make both our code implementation and data public upon paper’s
acceptance.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided detailed experiment settings and details in the Sec 4 of the main
paper and our appendix.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conduct experiments on diverse datasets and follow the protocol used by
previous works for fair comparisons.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: This information is included in our implementation details at the end of Sec 3.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper follows the NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We studied a foundational 3D computer vision topic with no directly asso-
ciated negative social impact. We illustrate the importance of our studied problem in the
introduction of the paper.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not pose such misuse risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly cited papers and resources used in our experiment.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include code with readme and comments.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We don’t have experiments involving crowdsourcing or research with human
subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: We do not involve LLMs as any important, original, or non-standard compo-
nents.
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