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ABSTRACT

Current segmentation methods typically require many training images and precise
masks, while insufficient anomaly images hinder their application in industrial
scenarios. To address such an issue, we explore producing diverse anomalies and
accurate pixel-wise annotations. By observing the real production lines, we find
that anomalies vary randomly in shape and appearance, whereas products hold
globally consistent patterns with slight local variations. Such a characteristic in-
spires us to develop a Separation and Sharing Fine-tuning (SeaS) approach using
only a few abnormal and some normal images. Firstly, we propose the Unbalanced
Abnormal (UA) Text Prompt tailored to industrial anomaly generation, consisting
of one product token and several anomaly tokens. Then, for anomaly images, we
propose a Decoupled Anomaly Alignment (DA) loss to bind the attributes of the
anomalies to different anomaly tokens. Re-blending such attributes may produce
never-seen anomalies, achieving a high diversity of anomalies. For normal im-
ages, we propose a Normal-image Alignment (NA) loss to learn the products’ key
features that are used to synthesize products with both global consistency and local
variations. The two training processes are separated but conducted on a shared U-
Net. Finally, SeaS produces high-fidelity annotations for the generated anomalies
by fusing discriminative features of U-Net and high-resolution VAE features. The
extensive evaluations on the challenging MVTec AD and MVTec 3D AD dataset
(RGB images) demonstrate the effectiveness of our approach. For anomaly image
generation, on MVTec AD dataset, we achieve 1.88 on IS and 0.34 on IC-LPIPS,
while on the MVTec 3D AD dataset, we obtain 1.95 on IS and 0.30 on IC-LPIPS.
For the downstream task, by using our generated anomaly image-mask pairs, three
common segmentation methods achieve an average 11.17% improvement on IoU
on MVTec AD dataset, and a 15.49% enhancement in IoU on the MVTec 3D AD
dataset. The source code will be released publicly available.

1 INTRODUCTION

Existing segmentation approaches require a large number of anomaly images with mask annotations,
while the scarcity of anomaly images obstructs their application in industrial scenarios. To solve
this problem, generative methods for industrial scenarios have emerged to expand the training set of
segmentation models.

To the best of our knowledge, generation approaches (Zavrtanik et al., 2021)in industrial scenarios
can be broadly classified into two categories: Anomaly Generation (AG) and Anomaly Image
Generation (AIG). AG methods (Li et al., 2021; Zavrtanik et al., 2021; Schlüter et al., 2022; Hu
et al., 2024)generate anomalies only and merge them into the real normal images using different
strategies, e.g., CutPaste (Li et al., 2021)pastes a cropped normal region to normal images, which
simulates anomalies by misalignment. AnomalyDiffusion (Hu et al., 2024)generates anomalies by
a diffusion model, and edits anomalies onto the normal images guided by the anomaly masks, as
shown in Fig. 1(a). However, AG methods require anomaly masks as inputs, which easily suffer
from low fidelity and consistency in generation if these masks are unreasonably positioned. In
contrast to AG, as shown in Fig. 1(b), AIG approaches take a step further, generating anomalies
and the industrial products that they lie in simultaneously. Therefore, AIG faces greater challenges
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Figure 1: (a) Anomaly Generation (AG) method only generates anomaly and edits it onto normal
images guided by the anomaly masks. (b) Anomaly Image Generation (AIG) methods generate
anomalies and the industrial products that they lie in simultaneously. (i) DFMGAN trains a genera-
tion model for each anomaly type. (ii) SeaS trains a shared generation model for multiple anomaly
types.

due to the requirement of high-fidelity of both anomalies and products. Previously, AIG methods
(Duan et al., 2023; Zhang et al., 2021a; Niu et al., 2020) are mainly based on Generative Adversarial
Network (GAN). However, they are limited by insufficient generalization of GAN, lacking specific
control over products/anomalies, and inaccurate masks.

In real industrial manufacturing, the products in an individual production line are almost similar to
each other, while the anomalies are unforeseeable in shape and appearance. Such an observation
reveals a differentiated characteristic, i.e., the products satisfy global consistency with minor
variations in local details, while the anomalies hold randomness, which is rarely discussed in
existing AG or AIG approaches. Motivated by such a characteristic, we propose a Separation and
Sharing Fine-tuning method, short by SeaS, a controllable AIG method based on Stable Diffusion
(Rombach et al., 2022). The key idea is to employ Unbalanced Abnormal (UA) Text Prompts con-
taining a set of tokens that characterize products and anomalies separately, so that the anomaly
tokens align with the anomaly semantics for diverse generations, and a product token expresses a
globally consistent product surface. Specifically, to learn highly-diverse anomalies, we first pro-
pose a Decoupled Anomaly Alignment (DA) loss to bind the attributes of the anomalies to different
anomaly tokens. Recombining the decoupled attributes may produce anomalies that have never been
seen in the training dataset, therefore increasing the diversity of the generated anomalies. Secondly,
to learn globally-consistent patterns from products, we propose the Normal-image Alignment (NA)
loss. It enables the network to learn the key features of the product from normal images and fine-
tune a learnable embedding. Such an embedding ensures the preservation of global consistency
amidst local detail variations. Thirdly, according to the experimental analysis, we find that ex-
isting methods leverage the low-resolution features to predict the mask, which may introduce
a large amount of boundary uncertainty. Thus, we propose a Refined Mask Prediction (RMP)
branch to produce pixel-wise anomaly annotations for other downstream tasks. It combines the dis-
criminative U-Net features and high-resolution VAE features to generate accurate and crisp masks
in a progressive way. Extensive experiments on AIG and downstream anomaly segmentation tasks
show that SeaS outperforms the existing industrial anomaly generation methods. On MVTec AD
dataset, our model achieves 1.88 on IS metric and 0.34 on IC-LPIPS. Furthermore, training on the
image-mask pairs generated by SeaS, the downstream segmentation models achieve improvements
of average +5.53% AP and +11.17% IoU. On MVTec AD 3D dataset (RGB images), our method
attains 1.95 on IS metric and 0.30 on IC-LPIPS. Using the image-mask pairs generated by SeaS to
train the downstream segmentation models, we exhibit average improvements of +12.13% AP and
+15.49% IoU.

In summary, the key contribution of our approach lies in:
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• We reveal different characteristics of products and anomalies, which motivates us to pro-
pose SeaS, a novel AIG method. It independently learns products and anomalies on a
shared U-Net and ensures the randomness of anomalies and global consistency of prod-
ucts.

• We propose a Refined Mask Prediction branch to produce accurate and crisp pixel-wise
annotations for generated anomalies, which combines the advantages of the discriminative
U-Net features and the high-resolution VAE decoder features.

• Extensive experiments on anomaly image generation and downstream anomaly segmenta-
tion tasks show that SeaS outperforms the existing industrial anomaly generation methods.

2 RELATED WORK

Anomaly Image Generation. Early non-generative methods (DeVries & Taylor, 2017; Li et al.,
2021; Zavrtanik et al., 2021) use data augmentation techniques to create anomaly images. Data aug-
mentation techniques lack consistency in anomaly images, resulting in low fidelity. AG methods (Li
et al., 2021; Zavrtanik et al., 2021; Schlüter et al., 2022; Hu et al., 2024; Gui et al., 2024) only gener-
ate anomalies and merge them into the real normal images. NSA (Schlüter et al., 2022) uses Poisson
Image Editing (Pérez et al., 2003) to facilitate the fusion of the cropped normal region. However,
AG methods require anomaly masks as inputs. If these masks are positioned in an unreasonable
manner, the generated images will have low fidelity and consistency. Previous AIG methods (Duan
et al., 2023; Zhang et al., 2021a; Niu et al., 2020) are mainly based on GAN. Defect-GAN (Zhang
et al., 2021a) cannot generate masks. The masks produced by DFMGAN (Duan et al., 2023) often
do not align accurately with anomalies, limiting their utility in training segmentation models. We
propose a controllable AIG model based on Stable Diffusion to generate high-fidelity and diverse
anomaly images with accurate masks.

Fine-tuning Diffusion Models. Fine-tuning is a potent strategy for enhancing specific capabilities
of pre-trained diffusion models (Gal et al., 2022; Zhang et al., 2023b; Brooks et al., 2023). Person-
alized methods (Ruiz et al., 2023; Gal et al., 2022; Chen et al., 2024) utilize a small set of images
to fine-tune the diffusion model, thereby generating images of the same object. Several methods for
multi-concept image fine-tuning (Kumari et al., 2023; Xiao et al., 2023; Avrahami et al., 2023; Han
et al., 2023; Jin et al., 2024) use cross-attention maps to align embeddings with individual concepts
in the image. Nevertheless, they do not consider the diversity requirements between different con-
cepts, which is important for industrial anomaly image generation. Thus, we propose a separation
and sharing fine-tuning strategy for the different diversity needs of anomalies and products, which
independently learns products and anomalies on a shared U-Net.

Mask Prediction with Generation Method. Previous methods on mask prediction for generated
images are mainly based on GANs (Zhang et al., 2021b; Li et al., 2022). However, these approaches
do not guarantee the generation of accurate masks for exceedingly small datasets. Based on Sta-
ble Diffusion (Rombach et al., 2022), some recent methods, i.e., DiffuMask (Wu et al., 2023b),
DatasetDM (Wu et al., 2023a) and DatasetDiffusion (Nguyen et al., 2024), produce masks by ex-
ploiting the potential of the cross-attention maps. However, due to the low resolution of the cross-
attention maps, they are directly interpolated to a higher resolution to match the image size without
any auxiliary information, which leads to significant boundary uncertainty. We incorporate the high-
resolution features from the VAE decoder as auxiliary information for resolution retrieving, fusing
them with the discriminative features of U-Net decoder to generate accurate high-resolution masks.

3 METHOD

The training phase of the proposed Separation and Sharing (SeaS) Fine-tuning strategy is shown in
Fig. 2. In Sec. 3.1, we introduce the preliminaries of our approach. In Sec. 3.2, we first design
an Unbalanced Abnormal Text Prompt, which contains a set of tokens that characterize products
and anomalies separately. Subsequently, we propose the Decoupled Anomaly Alignment (DA) loss
to bind the anomaly image regions to the anomaly tokens, and leverage Normal-image Alignment
(NA) loss to empower the product token to express globally-consistent normal product surface. The
two training processes are implemented separately for abnormal and normal images but on a shared
U-Net architecture. Then, based on the well-trained U-Net, we design a Refined Mask Prediction
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Figure 2: Overall framework of SeaS. It consists of four parts: (I) the Unbalanced Abnormal
Text Prompt, (II) the Decoupled Anomaly Alignment for aligning the anomaly tokens <dfn> to the
anomaly area of abnormal images, (III) the Normal-image Alignment for maintaining authenticity
through normal images, and (IV) the Refined Mask Prediction branch for generating accurate masks.

branch to generate accurate masks corresponding to the generated anomaly images in Sec. 3.3.
Finally, we detail the generation of the abnormal image-mask pairs in Sec. 3.4.

3.1 PRELIMINARIES

Stable Diffusion. Given an input image x0, Stable Diffusion (Rombach et al., 2022) firstly trans-
forms x0 into a latent space as z = ε(x0), and then adds a randomly sampled noise ϵ ∼ N(0, I) into
z as ẑt = αtz + βtϵ, where t is the randomly sampled timestep. Then, the U-Net is employed to
predict the noise ϵ. Let cθ(P) be the CLIP text encoder that maps conditioning text prompt P into a
conditioning vector e. The training loss of Stable Diffusion can be stated as follows:

LSD = Ez=ε(x0),P,ϵ∼N(0,I),t

[
||ϵ− ϵθ(ẑt, t, e)||22

]
(1)

where ϵθ is the predicted noise.

Cross-Attention Map in U-Net. Aiming to control the generation process, the conditioning mech-
anism is implemented by calculating cross-attention between the conditioning vector e ∈ RZ×C1

and image features v ∈ Rr×r×C2 of the U-Net inner layers (Hertz et al., 2022; Chefer et al., 2023;
Xie et al., 2023). The cross-attention map Am,l ∈ Rr×r×Z can be calculated as:

Am,l = softmax(
QK⊤
√
d

), Q = ϕq(v),K = ϕk(e) (2)

where Q ∈ Rr×r×C denotes a query projected by a linear layer ϕq from v, r is the resolution of the
feature map in U-Net, and l is the index of the U-Net inner layer. K ∈ RZ×C denotes a key through
another linear layer ϕk from e, and Z is the number of text embeddings after padding.

3.2 SEPARATION AND SHARING FINE-TUNING

Unbalanced Abnormal Text Prompt. Through the experimental observation, we found that the
typical text prompt, like a photo of a bottle with defect (Jeong et al., 2023), or
damaged bottle (Zhou et al., 2024b), is suboptimal for industrial anomaly generation. The
fixed generic semantic words, e.g., damaged, defect, may fail to align with a few training im-
ages that contain specific defect types. Therefore, we design the Unbalanced Abnormal (UA) Text
Prompt for each anomaly type of each product, i.e.,

P = a <ob> with <df1>,<df2> ,..., <dfN>

where <ob> and <dfn> (n ∈ {1, 2, ..., N}) are the tokens of the industrial products (short for
Normal Token) and the defects (short for Anomaly Token) respectively. We use a set of N Anomaly
Tokens for each anomaly type, with different sets corresponding to different anomaly types. As
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Figure 3: (a) Generated images with the different number of tokens. (b) Cross-attention maps. (c)
Examples of diverse generated images.

shown in Fig. 3, in SeaS, we separately employ normal images to train the embedding corresponding
to <ob>, and abnormal images to train the embeddings corresponding to <dfn>. Experimental
observations indicate that one <ob> is sufficient to express the normal product, while multiple
<dfn> are necessary for controlling the generation of the anomalies. As shown in Fig. 3(a), when
we use the UA prompt P (the dotted green box in (a)), the cross-attention maps in (b) show that
different tokens have different responses in the abnormal regions, which indicates that they focus
on different attributes of the anomalies, and performing the average operation on the cross-attention
maps produces never-seen anomalies. When we use only one <df>, it is difficult to align it to
several different anomalies that belong to the same category. Therefore, during inference, if the
denoised anomaly feature has a larger distance to <df>, it will be assigned a smaller response by
the U-Net, which leads to the “anomaly missing” phenomenon, e.g., the generated images in the
case of (N ′ = 1, N = 1). In addition, if we utilize a large number of <dfn>, we find that each
<dfn> may focus on some local properties of an anomaly, such a case increases the diversity but
may reduce the authenticity of the anomalies, as shown in the case N ′ = 1, N = 8. Similarly, if we
use multiple learnable <ob>, e.g., N ′ = 4, N = 4, each <ob> pays attention to the local character
of the product, which may reduce the authenticity of the product.

Decoupled Anomaly Alignment. Given a few abnormal images xdf and their corresponding masks,
we aim to align the anomaly tokens <dfn> to the anomaly area of xdf by tuning the U-Net and
the learnable embedding corresponding to <dfn>. Therefore, we propose the Decoupled Anomaly
Alignment (DA) loss, i.e.,

LDA =

L∑
l=1

(|| 1
N

N∑
n=1

An,l
df −M l||2 + ||Al

ob ⊙M l||2) (3)

where An,l
df ∈ Rr×r×1 is the cross-attention map corresponding to the n-th anomaly token <dfn>,

N is the number of anomaly token in P . L is the total number of U-Net layers used in alignment.
M l is the binary mask with r × r resolution, where the abnormal area is 1 and the background is
0. Al

ob ∈ Rr×r×1 is the cross-attention map corresponding to the normal token <ob>, ⊙ is the
element-wise product. DA loss performs the mandatory decoupling of the anomaly and the product.
The first term of DA loss is to align the abnormal area to <dfn> according to the mask M l. The
second term of DA loss reduces the response value of Al

ob in the abnormal area, which prevents
<ob> from aligning to the abnormal area of xdf. Further analysis of how the DA loss ensures the
diversity of anomalies is provided in Appendix A.2. Therefore, the total loss for the anomaly image
xdf is:

Ldf = LDA + ||ϵdf − ϵθ(ẑdf, tdf, edf)||22 (4)
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In second term of Eq. 4, we use random noises ϵdf and timesteps tdf to perform forward diffusion on
abnormal images xdf, then obtain the noisy latent ẑdf. The conditioning vector edf ∈ RZ×C1 is used
to guide the U-Net in predicting noise, and then calculate the loss with the noise ϵdf.

Normal-image Alignment. As we discussed, increasing the number of the normal token <ob>
leads to a higher diversity, while may reduce the authenticity of the generated image and destruct
global consistency. However, aligning only one <ob> to a few of the training images may suffer
from the issue of overfitting. Therefore, we add a Normal-image Alignment (NA) loss to overcome
such a dilemma, which is stated as follows,

Lob = ||ϵob − ϵθ(ẑob, tob, eob)||22 (5)

Instead of aligning the normal region of xdf to <ob>, in calculating the NA loss, we use random
noises ϵob and timesteps tob to perform forward diffusion on the normal product images xob. Then
the noisy latent ẑob and the embedding eob corresponding to the normal tokens of P , i.e., “a <ob>”,
are input into the U-Net in predicting noise, and then calculate the NA loss with ϵob.

Mixed Training. Based on the separated DA loss for abnormal images and NA loss for the normal
images, the objective of Separation and Sharing Fine-tuning is expressed as:

L = Ldf + Lob (6)

In the training process, instead of training a single U-Net model for each anomaly type, we train
a unified U-Net model for each product. Specifically, given a product image set, which contains
G anomaly categories and some normal images with their corresponding masks. We group all the
abnormal images of a product into a unified set Xdf = {x1

df, x
2
df, .., x

H
df }. For each anomaly type,

we use P with different sets of anomaly tokens. In addition, we sample a fixed number of normal
images to consist of the normal training set Xob = {x1

ob, x
2
ob, .., x

P
ob}. During each step of our fine-

tuning process, we sample same number of images from both Xdf and Xob, and mixed them into
a batch. We found that such a mixed training strategy not only alleviates the overfitting caused by
the limited number of each anomaly type, but also increases the diversity of the anomaly image,
while still maintaining reasonable authenticity, as is shown in Fig. 3(c), (i) indicates that the model
with mixed training may generate new anomalies, e.g., the anomalies inside the dotted white line.
In contrast, the anomalies in (ii) overfit the training images. More ablation studies on the mixed
training strategy are shown in Tab. 23 in appendix A.8.

3.3 REFINED MASK PREDICTION

High-fidelity pixel-wise annotations of anomalies play an important role in boosting segmentation
models. However, existing methods, such as DFMGAN (Duan et al., 2023) and AnomlayDiffusion
(Hu et al., 2024), produce anomaly masks that are not tightly matched with generated anomalies,
which is insufficient for training segmentation model. To address this issue, we design a cascaded
Refined Mask Prediction (RMP) branch, which is grafted onto the U-Net trained according to SeaS
(mentioned in Sec. 3.2). As shown in Fig. 4, RMP consists of two steps, firstly capturing discrimi-
native features from U-Net and secondly combining it with high-resolution features of VAE decoder
to generate anomaly-matched masks.

Coarse Feature Extraction. The first step aims to extract a coarse but highly-discriminative feature
for anomalies from the U-Net decoder. Specifically, let F1 ∈ R32×32×1280 and F2 ∈ R64×64×640

denote the output feature of “up-2” and “up-3” layers of the decoder in U-Net, respectively. We
first leverage a 1× 1 convolution block to compress the channel of F1 and F2 to F 1 ∈ R32×32×128

and F 2 ∈ R64×64×64, respectively. Then, we upsample F 1 to 64× 64 resolution and concatenate it
with F 2. Finally, four transformer layers are employed to fuse the concatenated features and obtain
a unified coarse feature F̂ ∈ R64×64×192.

Mask Refinement Module. Directly upsampling the coarse feature F̂ to high resolution will re-
sult in a loss of anomaly details. Therefore, we design the Mask Refinement Module (MRM) to
refine the coarse feature F̂ in a progressive manner. As shown in Fig. 4, each MRM takes in two
features, i.e., the high-resolution features from VAE and the discriminative feature to be refined.
Firstly, the discriminative feature is upsampled to align with the high-resolution features of VAE. To
preserve the discriminative ability, the upsampled feature is processed through two chained convo-
lution blocks for capturing multi-scale anomaly features and a 1× 1 convolution for capturing local

6
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Figure 4: The Refined Mask Prediction (RMP) branch during inference. The Coarse Feature Ex-
traction utilizes features from the up-2 and up-3 layers of U-Net Decoder to extract coarse features.
The cascaded Mask Refinement Module (MRM) further obtains the mask accurately aligned with
the anomaly with the assistance of high-resolution features of the VAE Decoder.

features. These features are then summed, and multiplied with the VAE features element-wisely to
enhance the anomalies’ boundary. Finally, MRM employs a 3 × 3 convolution to fuse the added
features and output a refined feature.

To refine F̂ , we employ three MRMs positioned in sequence. Each MRM takes the previous MRM’s
output as the discriminant feature to be refined, while the first MRM takes F̂ as the discriminative in-
put. For another input of each MRM, we use the outputs from the 1-st, 2-nd, and 3-rd “up-blocks”
of the VAE decoder respectively. In this way, the features obtained by the last MRM have the ad-
vantages of both high resolution and high discriminability. Finally, we use a 3×3 convolution and a
softmax to generate the refined anomaly mask M̂ ′

df ∈ R512×512×2 using the output of the last MRM.

Loss Functions. During training, we use xdf and xob as inputs. For xdf we obtain the coarse mask
M̂df ∈ R64×64×2 from the Coarse Feature Extraction and M̂ ′

df after the MRMs. Similarly, for xob we
obtain the M̂ob ∈ R64×64×2 from Coarse Feature Extraction and directly upsample it to the original
resolution, denoted as M̂ ′

ob ∈ R512×512×2. Then we conduct the supervision on both low-resolution
and high-resolution predictions as,

LM = F(M̂df,Mdf) + F(M̂ob,Mob) + F(M̂ ′
df,M

′
df) + F(M̂ ′

ob,M
′
ob) (7)

where F indicates the Focal Loss (Lin et al., 2017). Mob ∈ R64×64×1 and M′
ob ∈ R512×512×1

are used to suppress noise in normal images, with each pixel value set to 0. Mdf ∈ R64×64×1 and
M′

df ∈ R512×512×1 are the ground truth masks of abnormal images. More ablation studies on the
effect of normal images in training RMP branch are shown in Tab. 27 and Fig. 16 in appendix A.8.

3.4 INFERENCE

During the generation of the abnormal image-mask pairs, aiming further to ensure the global con-
sistency of the abnormal image, we random select a normal image xob from Xob as input, and add
random noise to xob, which resulting in an initial noisy latent ẑ0. Next, ẑ0 is input into the U-Net
for noise prediction, with the process guided by the conditioning vector edf (mentioned in Eq. 4).
In the final three denoising steps, the RMP branch (Sec. 3.3) leverages the features from the U-Net
decoder and VAE decoder to generate the final anomaly mask. Specifically, we average the refined
anomaly mask from these steps to obtain the refined mask M̂ ′

df ∈ R512×512×2. Then we take the
threshold τ for the second channel of M̂ ′

df to segment the final anomaly mask Mdf ∈ R512×512×1.
The effect of τ on the downstream segmentation models is shown in Tab. 29 in appendix A.8. In the
last denoising step, the output of the generation model is used as the generated abnormal image.
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Table 1: Comparison on IS and IC-LPIPS on MVTec AD. Bold indicates the best performance,
while underlined denotes the second-best result.

Category CDC Crop&
Paste SDGAN Defect-

GAN DFMGAN Anomaly
Diffusion Ours

IS ↑ IC-L ↑ IS ↑ IC-L ↑ IS ↑ IC-L ↑ IS ↑ IC-L ↑ IS ↑ IC-L ↑ IS ↑ IC-L ↑ IS ↑ IC-L ↑
bottle 1.52 0.04 1.43 0.04 1.57 0.06 1.39 0.07 1.62 0.12 1.58 0.19 1.78 0.21
cable 1.97 0.19 1.74 0.25 1.89 0.19 1.70 0.22 1.96 0.25 2.13 0.41 2.09 0.42

capsule 1.37 0.06 1.23 0.05 1.49 0.03 1.59 0.04 1.59 0.11 1.59 0.21 1.56 0.26
carpet 1.25 0.03 1.17 0.11 1.18 0.11 1.24 0.12 1.23 0.13 1.16 0.24 1.13 0.25
grid 1.97 0.07 2.00 0.12 1.95 0.10 2.01 0.12 1.97 0.13 2.04 0.44 2.43 0.44

hazelnut 1.97 0.05 1.74 0.21 1.85 0.16 1.87 0.19 1.93 0.24 2.13 0.31 1.87 0.31
leather 1.80 0.07 1.47 0.14 2.04 0.12 2.12 0.14 2.06 0.17 1.94 0.41 2.03 0.40

metal nut 1.55 0.04 1.56 0.15 1.45 0.28 1.47 0.30 1.49 0.32 1.96 0.30 1.64 0.31
pill 1.56 0.06 1.49 0.11 1.61 0.07 1.61 0.10 1.63 0.16 1.61 0.26 1.62 0.33

screw 1.13 0.11 1.12 0.16 1.17 0.10 1.19 0.12 1.12 0.14 1.28 0.30 1.52 0.31
tile 2.10 0.12 1.83 0.20 2.53 0.21 2.35 0.22 2.39 0.22 2.54 0.55 2.60 0.50

toothbrush 1.63 0.06 1.30 0.08 1.78 0.03 1.85 0.03 1.82 0.18 1.68 0.21 1.96 0.25
transistor 1.61 0.13 1.39 0.15 1.76 0.13 1.47 0.13 1.64 0.25 1.57 0.34 1.51 0.34

wood 2.05 0.03 1.95 0.23 2.12 0.25 2.19 0.29 2.12 0.35 2.33 0.37 2.77 0.46
zipper 1.30 0.05 1.23 0.11 1.25 0.10 1.25 0.10 1.29 0.27 1.39 0.25 1.63 0.30

Average 1.65 0.07 1.51 0.14 1.71 0.13 1.69 0.15 1.72 0.20 1.80 0.32 1.88 0.34

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details. We train SeaS by fine-tuning the pre-trained Stable Diffusion v1-4 (Rom-
bach et al., 2022). In AIG experiments, we use 60 normal images and 1/3 abnormal images with their
corresponding masks per anomaly type for training. During inference, we generate 1,000 abnormal
image-mask pairs for a single anomaly type. More details are given in appendix A.3.

Datasets. We conduct experiments on MVTec AD dataset (Bergmann et al., 2019) and MVTec
3D AD dataset (only RGB images) (Bergmann. et al., 2022). MVTec AD dataset contains 15
product categories, each with up to 8 different anomalies, making it suitable for simulating real-
world industrial scenarios. MVTec 3D AD dataset includes 10 product categories, each with up to
4 different anomalies. It contains more challenges, i.e., lighting condition variations, product pose
variations. Due to the page limitation, results on MVTec 3D AD dataset are given in appendix A.4.

Evaluation Metrics. For AIG, we leverage 2 metrics: the Inception Score (IS) and the Intra-cluster
pairwise LPIPS distance (IC-LPIPS)(Ojha et al., 2021). The scarcity of abnormal images hampers
the reliability of FID (Heusel et al., 2017) and KID (Bińkowski et al., 2018), as overfitted model
(Duan et al., 2023) achieves higher scores. For pixel-level anomaly segmentation and image-level
anomaly detection, we report 3 metrics: Area Under Receiver Operator Characteristic curve (AU-
ROC), Average Precision (AP) and F1-score at optimal threshold (F1-max). In addition, we report
Intersection over Union (IoU) for segmentation.

4.2 COMPARISON IN ANOMALY IMAGE GENERATION

Comparison Methods. We compare SeaS with the current AG and AIG methods on generation
fidelity and diversity, such as CDC (Ojha et al., 2021), Crop&Paste (Lin et al., 2021), SDGAN (Niu
et al., 2020), Defect-GAN (Zhang et al., 2021a), DFMGAN (Duan et al., 2023) and AnomalyDif-
fusion (Hu et al., 2024). Then we use Crop&Paste, DRAEM (Zavrtanik et al., 2021), DFMGAN,
AnomalyDiffusion and our method to generate anomaly image-mask pairs. These pairs are used to
train BiSeNet V2 (Yu et al., 2021), UPerNet (Xiao et al., 2018) and LFD (Zhou et al., 2024a) respec-
tively. Different from AnomalyDiffusion (Hu et al., 2024), which trains one segmentation model per
product, we train a unified segmentation model for all the products. We also compare the segmenta-
tion results based on SeaS with the state-of-the-art unsupervised anomaly detection methods, such
as RealNet (Zhang et al., 2024) and HVQ-Trans (Lu et al., 2023), in appendix A.5.

Anomaly image generation quality. In Tab. 1, we compare SeaS with some state-of-the-art AG
and AIG methods on generation fidelity (IS) and diversity (IC-LPIPS). SeaS achieves 1.88 on IS
and 0.34 on IC-LPIPS, which demonstrates that our method generates anomaly images with higher
fidelity and diversity. We exhibit the generated anomaly images in Fig. 5, the anomaly images
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Figure 5: Visualization of the generation results on MVTec AD. The sub-image in the lower right
corner is the generated mask, none means that the method cannot generate masks.

Table 2: Comparison on anomaly segmentation on MVTec AD.

Model DRAEM DFMGAN AnomalyDiffusion Ours
AUROC AP F1-max IoU AUROC AP F1-max IoU AUROC AP F1-max IoU AUROC AP F1-max IoU

BiSeNet V2 81.37 38.90 42.62 39.39 94.57 60.42 60.54 45.83 96.27 64.50 62.27 42.89 97.21 69.21 66.37 55.28
UPerNet 83.21 42.78 45.97 42.03 92.33 57.01 56.91 46.64 96.87 69.92 66.95 50.80 97.87 74.42 70.70 61.24

LFD 76.41 40.99 43.91 35.61 94.91 67.06 65.09 45.49 96.30 69.77 66.99 45.77 98.09 77.15 72.52 56.47
Average 80.33 40.89 44.17 39.01 93.94 61.50 60.85 45.99 96.48 68.06 65.40 46.49 97.72 73.59 69.86 57.66

Table 3: Comparison on image-level anomaly detection on MVTec AD.

Model DRAEM DFMGAN AnomalyDiffusion Ours
AUROC AP F1-max AUROC AP F1-max AUROC AP F1-max AUROC AP F1-max

BiSeNet V2 89.87 93.51 89.97 90.90 94.43 90.33 90.08 94.84 91.84 96.00 98.14 95.43
UPerNet 89.45 93.92 89.66 90.74 94.43 90.37 96.62 98.61 96.21 98.29 99.20 97.34

LFD 87.94 93.41 88.65 91.08 95.40 90.58 95.15 97.78 94.66 95.88 97.89 95.15
Average 89.09 93.61 89.43 90.91 94.75 90.43 93.95 97.08 94.24 96.72 98.41 95.97

generated by our method have higher fidelity (e.g., hazelnut crack). Compared with other methods,
SeaS can generate images with different types, colors, and shapes of anomalies rather than overfitting
to the training images (e.g., wood color and pill crack). The masks generated by our method are
also precisely aligned with the anomaly regions (e.g., toothbrush defective). More qualitative and
quantitative anomaly image generation results are in appendix A.6.

Anomaly segmentation and detection. We generate 1,000 image-mask pairs for each anomaly
type, and use the image-mask pairs of all products along with all the training normal images to train
the unified segmentation model, rather than training separate segmentation models for each product.
We test the models on the rest images of the testing set of MVTec AD, which are not included in
the training set for generation. The results are given in Tab. 2. All the methods are trained using the
same number of images and the same training settings, detailed in appendix A.7. The segmentation
results consistently demonstrate that our method outperforms others across all the segmentation
models, with an 11.17% average improvement on IoU. We show the segmentation anomaly maps
in Fig. 6. By using our generated image-mask pairs to train BiSeNet V2, there are fewer false
positives in wood combined and fewer false negatives in bottle contamination and carpet cut. In
addition, we use the maximum value of the segmentation anomaly map as the image-level anomaly
score for anomaly detection. We report the image-level metrics in Tab. 3, and our method achieves
a 2.77% gain on image-AUROC. More qualitative comparison results on anomaly segmentation are
in appendix A.9 and appendix A.10.
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Figure 6: Qualitative anomaly segmentation results with BiSeNet V2 on MVTec AD.

4.3 ABLATION STUDY

Anomaly image generation. We train additional models to assess the effect of each component:
(a) the model with typical text prompt with fixed generic semantic words (short for with TP in Tab.
4); (b) the model without mixing the different types of anomaly images in the same product; (c) the
model without NA loss; (d) the model without the second term of DA loss in Eq. 3 (short for ST in
Tab. 4); (e) our complete model. We use these models to generate 1,000 anomaly image-mask pairs
per anomaly type and train BiSeNet V2 for anomaly segmentation. In Tab. 4, the results show that
omitting any component leads to a decrease in the fidelity and diversity of the generated images, as
well as a decrease in the segmentation results. These validate the effectiveness of the components
we proposed. More ablation studies on SeaS are shown in appendix A.8.

Refined Mask Prediction branch. To verify the validity of the components in the RMP branch,
we conduct ablation studies on MRM, the progressive manner to refine coarse feature (short for
PM in Tab. 5) and coarse mask supervision (short for CMS in Tab. 5). 1) the model without any
components, which means we do not use MRM to fuse the high-resolution features in RMP, but
directly obtain the mask from the coarse features F̂ ∈ R64×64×192 through convolution and bilinear
interpolation upsampling; 2) the model with MRM; 3) the model utilizing the MRM in a progressive
manner to refine coarse features; 4) our complete model. We report the BiSeNet V2 results in Tab.
5, which demonstrates that each component in the RMP is indispensable for downstream anomaly
segmentation. More ablation studies about RMP are in appendix A.8.

Table 4: Ablation on the generation model.

Method Metrics
IS IC-L AUROC AP F1-max IoU

(a) with TP 1.72 0.33 94.72 57.16 55.67 50.46
(b) w/o Mixed 1.79 0.32 95.82 66.07 64.50 53.11
(c) w/o NA 1.67 0.31 96.20 66.03 64.09 53.97
(d) w/o ST 1.86 0.33 96.44 67.73 65.23 54.99
(e) All (Ours) 1.88 0.34 97.21 69.21 66.37 55.28

Table 5: Ablation on the RMP branch.
Method Metrics

MRM PM CMS AUROC AP F1-max IoU
97.00 65.28 62.56 53.93

✓ 94.54 60.52 59.06 49.42
✓ ✓ 94.04 62.04 59.82 50.44
✓ ✓ ✓ 97.21 69.21 66.37 55.28

5 CONCLUSION

In this paper, we propose a novel few-shot industrial anomaly image generation method named
SeaS. We explore an implicit characteristic that the anomalies exhibit randomness in shape and
appearance, while the products maintain global consistency with minor variations in local details.
We design a Separation and Sharing Fine-tuning strategy for industrial anomaly image generation,
and a Refined Mask Prediction branch to obtain a fine-grained mask. Our method surpasses existing
methods on both AIG and downstream anomaly segmentation tasks.
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A APPENDIX

A.1 OVERVIEW

This supplementary material consists of:

• Analysis on decoupled anomaly alignment loss and multiple tokens (Sec. A.2).
• More implementation details (Sec. A.3).
• Anomaly image and mask generation results, downstream segmentation results on MVTec

3D AD dataset (RGB images) (Sec. A.4).
• More quantitative comparison with unsupervised anomaly detection methods (Sec. A.5).
• More qualitative and quantitative results of anomaly image generation (Sec. A.6).
• More details of downstream segmentation model implementation and usage (Sec. A.7).
• More ablation studies (Sec. A.8), including ablation studies on the Unbalanced Abnormal

Text Prompt design, the Separation and Sharing Fine-tuning loss, the minimum size re-
quirement for training images, the training strategy of SeaS, the cross-attention maps for
Decoupled Anomaly Alignment, the features for Coarse Feature Extraction, the features of
VAE for Refined Mask Prediction, the normal image supervision for Refined Mask Predic-
tion, the Mask Refinement Module, and the threshold for mask binarization.

• Qualitative comparison results of segmentation models trained on image-mask pairs gener-
ated by different anomaly generation methods (Sec. A.9).

• Qualitative comparison results of different segmentation models trained on image-mask
pairs generated by SeaS (Sec. A.10).

• Anomaly image and mask generation results, downstream segmentation results on VisA
dataset (Sec. A.11).

• Explanation of discriminative features in U-Net decoder (Sec. A.12).
• Comparison with the Textual Inversion (Sec. A.13).
• More experiments on lighting conditions (Sec. A.14).
• More experiments on replacing generation strategies (Sec. A.15).
• More visualization on recombining the decoupled attributes for unseen anomalies (Sec.

A.16).

A.2 ANALYSIS ON DECOUPLED ANOMALY ALIGNMENT LOSS AND MULTIPLE TOKENS

Here we give a more detailed analysis of the learning process of the DA loss. According to Eq. 3,
intuitively, the DA loss may pull the anomaly tokens similar to each other. However, the U-Net in
Stable Diffusion uses multi-head attention, which ensures different anomaly tokens cover different
attributes of the anomalies. In Eq. 3, the cross-attention map is the multiply of the feature map of
U-Net and the anomaly tokens. In the implementation of multi-head attention, both the learnable
embedding of the anomaly token and the U-Net feature are decomposed into several groups along the
channel dimension. E.g., the conditioning vector ea ∈ R1×C1 , which is corresponding to anomaly
token, is divided into {ea,i ∈ R1×C1

q |i ∈ [1, q]}, and the image feature v ∈ Rr×r×C2 is divided

into {vi ∈ R1×C2
q |i ∈ [1, q]}, where q is the number of heads in the multi-head attention. Then the

corresponding groups are multiplied, and the outputs of all the heads are averaged. The attention
map A of ea is calculated by:

A =
1

q

q∑
i=1

softmax(
QiK

⊤
a,i√
d

), Qi = ϕq(vi),Ka,i = ϕk(ea,i). (8)

Therefore, in the defect region, the DA loss only ensures the average of each head tends to 1, but
does not require the anomaly tokens to be the same with each other. In addition, each ea is different
from each other, and is combined by ea,i. The update direction of each ea,i is related to vi and
covers some features of the defect, it encompasses the attributes of anomalies from various
perspectives, thereby providing diversified information.
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A.3 MORE IMPLEMENTATION DETAILS

More training details. For the Unbalanced Abnormal Text Prompt, we set the number N of mul-
tiple <dfn> to 4 and the number N ′ of <ob> to 1, these parameters are fixed across all product
classes. For example, for the normal token <ob>, given the lookup U ∈ Rb×768, where b is the num-
ber of text embeddings stored by the pre-trained text encoder, we use a placeholder string "ob1"
as the input. Firstly, "ob1" is converted to a token ID sob1 ∈ R1×1in the tokenizer. Secondly,
sob1 ∈ R1×1is converted to a one-hot vector Sob1 ∈ R1×(b+1). Thirdly, one learnable new embed-
ding g ∈ R1×768 corresponding to sob1 is inserted to the lookup U , resulting in U ′ ∈ R(b+1)×768.
Here, g ∈ R1×768 is the learnable embedding of <ob>. These embeddings and U-Net are learn-
able during the fine-tuning process.

Training image generation model. For each product, we perform 800 × G steps for fine-tuning,
where G represents the number of anomaly categories of the product. The batch size of training
image generation model is set to 4. During each step of our fine-tuning process, we sample 2 images
from the abnormal training set Xdf, and 2 images from the normal training set Xob. We utilize the
AdamW (Loshchilov & Hutter, 2018) optimizer with a learning rate of U-Net is 4 × 10−6. The
learning rate of the text embedding is 4× 10−5.

Training Refined Mask Prediction branch. We design a cascaded Refined Mask Prediction (RMP)
branch, which is grafted onto the U-Net trained according to SeaS. For each product, we perform
800×G steps for the RMP model, where G represents the number of anomaly types for the product.
The batch size of training the RMP branch is set to 4. During each step of our fine-tuning process, we
sample 2 images with their corresponding masks from the abnormal training set Xdf, and 2 images
from the normal training set Xob. The masks used to suppress noise in normal images has each pixel
value set to 0. The learning rate of the RMP model is 5× 10−4.

Metrics. For anomaly image generation, we report 2 metrics: the Inception Score (IS) and Intra-
cluster pairwise LPIPS Distance (IC-LPIPS). The Inception Score (IS), proposed in (Barratt &
Sharma, 2018), serves as an independent metric to evaluate the fidelity and diversity of generated im-
ages, by measuring the mutual information between input samples and their predicted classes. The
IC-LPIPS (Ojha et al., 2021) is used to evaluate the diversity of generated images, which quantifies
the perceptual similarity between image patches in the same cluster. For pixel-level anomaly seg-
mentation and image-level anomaly detection, we report 3 metrics: Area Under Receiver Operator
Characteristic curve (AUROC), Average Precision (AP), and F1-score at the optimal threshold (F1-
max). All of these metric are calculated using the scikit-learn library. In addition, we calculate
the Intersection over Union (IoU) to more accurately evaluate the anomaly segmentation result.

Resource requirement and time consumption. We conduct our training on NVIDIA Tesla A100
40G GPU. Specifically, we use a single A100 to train a generation model sequentially for each
product category, with each training process occupying about 20G of GPU memory. Since each
anomaly type requires isolate training, the training time depends on the total amount of anomaly
types across all products. For example, the product metal nut contains 4 anomaly types, and each
needs around 35 minutes. The generation model for metal nut spends 2 hours and 20 minutes on
training in total. For the RMP branch, each anomaly type needs around 25 minutes. Hence, it takes 1
hour and 40 minutes to train metal nut. More details are given in Tab. 6, where K is the total number
of anomaly types across all products. The comparison on time consumption is shown in Tab. 7. For
the MVTecAD datasets with 73 anomaly types, our training takes 73 hours, which is shorter than
the 249 hours required by AnomalyDiffusion and the 414 hours required by DFMGAN. In terms of
inference time, SeaS costs 720 ms per image, which is shorter than the 3830 ms per image required
by the Diffusion-based method AnomalyDiffusion. The inference time of the GAN-based method
DFMGAN is 48ms per image.

Table 6: Computational resource and training time.

Stage Time (minutes per product) GPU(MB) Overall Time

Generation Model 35 × K 20242 42 hours and 35 minutes
RMP branch 25 × K 23280 30 hours and 25 minutes
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Table 7: Comparison on time consumption.

Model Overall Training Time(hours) Inference Time (ms)

DFMGAN (Duan et al., 2023) 414 48
AnomalyDiffusion (Hu et al., 2024) 249 3830

Ours 73 720

A.4 ADDITIONAL DATASET RESULTS

We perform experimental evaluations on the RGB images of the MVTec 3D AD Dataset (Bergmann.
et al., 2022), which includes 10 product categories, each with up to 4 different anomalies. It en-
compasses several common challenges, such as variations in lighting conditions and product poses,
which are crucial for validating the robustness of image generation methods. The experimental
settings are the same as those in Sec. 4.1 and Sec. A.3.

Table 8: Comparison on IS and IC-LPIPS on MVTec 3D AD. Bold indicates the best performance.

Category
DFMGAN

(Duan et al., 2023)
AnomalyDiffusion
(Hu et al., 2024) Ours

IS ↑ IC-L ↑ IS ↑ IC-L ↑ IS ↑ IC-L ↑
bagel 1.07 0.26 1.02 0.22 1.28 0.29

cable gland 1.59 0.25 1.79 0.19 2.21 0.19
carrot 1.94 0.29 1.66 0.17 2.07 0.22
cookie 1.80 0.31 1.77 0.29 2.07 0.38
dowel 1.96 0.37 1.60 0.20 1.95 0.26
foam 1.50 0.17 1.77 0.30 2.20 0.39
peach 2.11 0.34 1.91 0.23 2.40 0.28
potato 3.05 0.35 1.92 0.17 1.98 0.22
rope 1.46 0.29 1.28 0.25 1.53 0.41
tire 1.53 0.25 1.35 0.20 1.81 0.31

Average 1.80 0.29 1.61 0.22 1.95 0.30

MVTec3D

Cable_gland
bent

Carrot
crack

Cookie
crack

Foam
color

Peach
cut

Dowel
bent

DFMGAN

Anomaly
Diffusion

Ours

Figure 7: Visualization of the generation results on MVTec 3D AD. The sub-image in the lower
right corner is the generated mask.
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Comparison Methods

In terms of compared approaches, since existing state-of-the-art approaches, e.g., DFMGAN(Duan
et al., 2023), AnomalyDiffusion (Hu et al., 2024), conducted the experimental evaluations only
on MVTec AD dataset (Bergmann et al., 2019), we evaluate them on MVTec 3D AD dataset
(Bergmann. et al., 2022) using their official source codes.

Anomaly image generation quality

As presented in Tab. 8, SeaS achieves scores of 1.95 on IS and 0.30 on IC-LPIPS, demonstrating
our method’s ability to generate anomaly images with superior fidelity and diversity. The generated
anomaly images are shown in Fig. 7. SeaS can generate images with diverse anomalies, avoiding
overfitting to the training images (e.g., cookie crack and foam color), while ensuring the fidelity of
the generated images (e.g., cable gland bent). Additionally, the masks generated by our method are
accurately aligned with the anomalies (e.g., peach cut).

Anomaly segmentation and detection

Tab. 9 shows the comparisons on downstream supervised segmentation trained by the generated
images. It consistently demonstrates that our method outperforms others across all the segmentation
models, with a 15.49% average improvement on IoU. The segmentation anomaly maps are shown
in Fig. 8. There are fewer false positives (e.g., potato combined) and fewer false negatives (e.g.,
bagel contamination), when the BiSeNet V2 is trained on the image-mask pairs generated by our
method. In addition, we report the image-level metrics in Tab. 10, and our method achieves a 6.74%
gain on image-AUROC. Tab. 11 shows the comparisons of anomaly detection methods HVQ-Trans
(Lu et al., 2023), Shape-guided (Chu et al., 2023), and FOD (Yao et al., 2023a) on anomaly segmen-
tation tasks. Supervised segmentation models achieve better performance than most unsupervised
AD methods on small-scale networks, with an IoU of 39.00% on LFD (0.936M). The pixel-level
AUROC, which is sensitive to false negatives but less sensitive to false positives, of the Shape-
guided method is higher. However, our observation indicates that the Shape-guided method has a
high number of false positives. This significantly degrades the segmentation metrics, resulting in
low pixel-level AP, F1-max, and IoU scores. For industrial anomaly detection, an effective method
should achieve a balance between false positives and false negatives.

Table 9: Comparison on anomaly segmentation on MVTec 3D AD.

Model DFMGAN (Duan et al., 2023) AnomalyDiffusion (Hu et al., 2024) Ours
AUROC AP F1-max IoU AUROC AP F1-max IoU AUROC AP F1-max IoU

BiSeNet V2 (Yu et al., 2021) 75.89 15.02 21.73 15.68 92.39 15.15 20.09 14.70 90.41 26.04 32.61 28.55
UPerNet (Xiao et al., 2018) 75.12 19.54 26.04 18.78 88.48 28.95 35.81 25.04 91.93 38.51 43.53 38.56
LFD (Zhou et al., 2024a) 72.15 9.54 14.29 14.81 92.68 24.29 32.74 19.90 91.61 40.25 43.47 39.00

Average 74.39 14.70 20.69 16.42 91.18 22.80 29.55 19.88 91.32 34.93 39.87 35.37

Table 10: Comparison on image-level anomaly detection on MVTec 3D AD.

Model DFMGAN (Duan et al., 2023) AnomalyDiffusion (Hu et al., 2024) Ours
AUROC AP F1-max AUROC AP F1-max AUROC AP F1-max

BiSeNet V2 (Yu et al., 2021) 61.88 81.80 84.44 61.49 81.35 85.36 73.60 87.75 85.82
UPerNet (Xiao et al., 2018) 67.56 84.53 84.99 76.56 90.42 87.35 82.75 92.59 88.72
LFD (Zhou et al., 2024a) 62.23 82.17 85.38 77.06 89.44 87.20 78.96 91.22 87.28

Average 63.89 82.83 84.94 71.70 87.07 86.64 78.44 90.52 87.27

Table 11: Comparison with anomaly detection methods on MVTec 3D AD.

Model Parameters Image-level Pixel-level
AUROC AP F1-max AUROC AP F1-max IoU

SeaS + BiSeNet V2 (Yu et al., 2021) 3.341M 73.60 87.75 85.82 90.41 26.04 32.61 28.55
SeaS + UPerNet (Xiao et al., 2018) 64.042M 82.57 92.59 88.72 91.93 38.51 43.53 38.56
SeaS + LFD (Zhou et al., 2024a) 0.936M 78.96 91.22 87.28 91.61 40.25 43.47 39.00

HVQ-Trans (Lu et al., 2023) 8.45M 68.15 84.38 85.20 96.40 24.59 17.23 20.51
Shape-guided (Chu et al., 2023) 4.13M 79.07 91.05 88.72 98.45 26.69 34.16 34.12

FOD (Yao et al., 2023a) 3.58M 71.66 86.83 86.57 97.03 14.70 20.99 23.31
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Figure 8: Qualitative anomaly segmentation results with BiSeNet V2 on MVTec 3D AD.
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More qualitative anomaly image generation results

We provide further qualitative results of every category on the MVTec 3D AD dataset, from Fig. 9
to Fig. 10. We report the anomaly image generation results of SeaS for varying types of anoma-
lies. The first column represents the generated anomaly images, the second column represents the
corresponding generated masks.

Image Mask Image Mask Image Mask

Figure 9: Qualitative results of our anomaly image generation results on MVTec 3D AD. In the first
row, from left to right are the results for bagel, cable gland, and carrot categories. In the second
row, from left to right are the results for cookie, dowel, and foam categories.
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Image Mask Image Mask

Figure 10: Qualitative results of our anomaly image generation results on MVTec 3D AD. In the
first row, from left to right are the results for peach, and potato categories. In the second row, from
left to right are the results for rope, and tire categories.
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More qualitative segmentation results with different segmentation models

In this section, we provide further qualitative results with the anomaly segmentation models on
the MVTec 3D AD dataset. As shown in Fig. 11, we report the segmentation results of different
segmentation models trained on image-mask pairs generated by SeaS.
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Figure 11: Qualitative comparison results with the anomaly segmentation models on MVTec 3D
AD. In the figure, from top to bottom are the results for cable gland, carrot, dowel, foam and peach
categories.

A.5 MORE QUANTITATIVE COMPARISON WITH UNSUPERVISED ANOMALY DETECTION
METHODS

We compare our method with the state-of-the-art unsupervised anomaly detection methods, i.e., Re-
alNet (Zhang et al., 2024), HVQ-Trans (Lu et al., 2023), DiAD (He et al., 2024), and PRN (Zhang
et al., 2023a). The performance is different from the results reported in the paper, since as we men-
tioned in Sec 4.1, we use 2/3 anomaly images and all good images in the testing set of MVTec AD as
the testing set in all the experiments, while the original results are achieved on the whole testing set.
As shown in Tab. 12, Real-Net contains 591M parameters, around 177 times larger than BiSeNet
V2, and 631 times larger than LFD, while the pixel-level AP and IoU measures of Real-Net are even
worse than those of BiSeNet V2 and LFD. Although the pixel-level AUROC metric, which is more
sensitive to false negatives than to false positives, is slightly higher for Real-Net, we observe that it
generates a high number of false positives, substantially reducing pixel-level AP, F1-max, and IoU
scores. The results of UperNet outperform the DiAD method on all measures, despite having only
1/24 of the parameters. For effective industrial anomaly detection, a method must balance false pos-
itives and false negatives. The supervised anomaly segmentation models greatly outperform HVQ-
Trans (8.45M parameters) and PRN in AP, F1-max measure, and IoU, even though BiSeNet V2
and LFD are much smaller. These comparisons reveal that the small segmentation model achieves
good performance using the generated images of SeaS, which is important for practical industrial
applications.
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Table 12: Comparison with anomaly detection methods on MVTec AD.

Model Parameters Image-level Pixel-level
AUROC AP F1-max AUROC AP F1-max IoU

SeaS + BiSeNet V2 (Yu et al., 2021) 3.341M 96.00 98.14 95.43 97.21 69.21 66.37 55.28
SeaS + UPerNet (Xiao et al., 2018) 64.042M 98.29 99.20 97.34 97.87 74.42 70.70 61.24
SeaS + LFD (Zhou et al., 2024a) 0.936M 95.88 97.89 95.15 98.09 77.15 72.52 56.47

Real-Net (Zhang et al., 2024) 591M 98.19 98.99 97.88 98.84 68.09 66.46 53.99
HVQ-Trans (Lu et al., 2023) 8.45M 96.38 98.09 95.30 97.60 47.95 53.32 45.03

DiAD (He et al., 2024) 1525M 97.20 99.00 96.50 96.80 52.60 55.50 -
PRN (Zhang et al., 2023a) - 91.60 96.60 92.40 96.90 66.20 64.70 -

A.6 MORE QUALITATIVE AND QUANTITATIVE ANOMALY IMAGE GENERATION RESULTS

More qualitative generation results

We provide further qualitative results of every category on the MVTec AD dataset, from Fig. 12 to
Fig. 14. We report the anomaly image generation results of SeaS for varying types of anomalies.
The first column represents the generated anomaly images, the second column represents the corre-
sponding generated masks, and the third column represents the masks generated without using the
Mask Refinement Module.

Image Mask Mask 
w/o MRM Image Mask Mask 

w/o MRM Image Mask Mask 
w/o MRM

Figure 12: Qualitative results of our anomaly image generation results on MVTec AD. In the first
row, from left to right are the results for transistor, wood, and zipper categories.
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Image Mask Mask 
w/o MRM Image Mask Mask 

w/o MRM Image Mask Mask 
w/o MRM

Figure 13: Qualitative results of our anomaly image generation results on MVTec AD. In the first
row, from left to right are the results for bottle, cable, and capsule categories. In the second row,
from left to right are the results for carpet, grid, and hazelnut categories.
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Image Mask Mask 
w/o MRM Image Mask Mask 

w/o MRM Image Mask Mask 
w/o MRM

Figure 14: Qualitative results of our anomaly image generation results on MVTec AD. In the first
row, from left to right are the results for leather, metal nut, and pill categories. In the second row,
from left to right are the results for screw, tile, and toothbrush categories.
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More quantitative results

In this section, we report the detailed generation results of SeaS for each category on the MVTec
AD datasets, compared with DRAEM (Zavrtanik et al., 2021), DFMGAN (Duan et al., 2023) and
AnomalyDiffusion (Hu et al., 2024) which are presented from Tab. 13 to Tab. 18

Table 13: Comparison on anomaly segmentation on BiSeNet V2.

Category DRAEM DFMGAN AnomalyDiffusion Ours
AUROC AP F1-max IoU AUROC AP F1-max IoU AUROC AP F1-max IoU AUROC AP F1-max IoU

bottle 77.42 45.25 48.21 45.77 89.34 64.67 62.78 44.71 99.00 88.02 80.53 68.25 99.46 93.43 85.59 75.86
cable 65.28 14.73 23.09 19.44 93.87 67.98 64.74 44.02 92.84 69.86 66.32 46.49 89.85 72.07 71.58 53.24

capsule 63.71 13.31 20.00 37.88 74.88 16.43 23.01 29.97 92.71 38.11 40.67 19.44 86.33 24.64 30.54 39.70
carpet 97.27 69.99 68.28 54.31 94.53 42.53 47.44 39.88 98.65 73.10 65.83 43.25 99.61 82.30 72.94 55.52
grid 93.86 25.36 35.46 35.57 96.86 24.40 37.40 29.93 80.59 8.08 16.79 14.26 99.36 37.91 42.50 39.80

hazelnut 77.48 41.52 48.36 54.58 99.87 96.75 90.07 71.68 97.71 63.34 59.87 43.12 97.82 78.55 73.09 68.47
leather 99.76 67.02 64.96 52.37 97.50 51.10 52.26 50.67 99.30 57.49 59.62 43.94 98.91 59.84 58.62 45.82

metal nut 73.26 32.26 32.77 48.68 99.39 97.59 92.52 70.40 99.03 95.67 88.69 58.8 99.69 98.29 93.23 74.40
pill 60.02 9.33 17.17 11.67 97.09 83.98 79.26 36.39 99.44 93.16 86.62 41.18 98.31 76.97 68.00 55.43

screw 82.23 17.78 24.08 22.15 97.94 37.10 41.01 31.63 94.08 17.95 25.90 20.00 97.64 40.20 45.35 38.43
tile 98.09 82.9 76.43 63.48 99.65 97.08 91.16 75.94 97.79 85.58 78.28 60.46 99.67 97.29 91.48 75.75

toothbrush 92.65 36.73 45.92 23.90 97.70 51.32 54.05 23.38 98.43 49.64 54.08 26.53 97.15 46.09 49.02 28.56
transistor 62.48 14.83 20.57 21.85 84.31 45.34 46.07 30.00 98.85 85.27 77.95 49.83 96.75 69.52 66.11 57.24

wood 92.89 70.82 68.34 58.05 98.32 64.82 63.11 58.99 96.78 63.38 60.31 45.73 98.38 80.81 74.03 56.22
zipper 84.18 41.68 45.65 41.08 97.29 65.18 63.24 49.93 98.81 78.89 72.66 62.03 99.23 80.27 73.41 64.80

Average 81.37 38.90 42.62 39.39 94.57 60.42 60.54 45.83 96.27 64.5 62.27 42.89 97.21 69.21 66.37 55.28

Table 14: Comparison on image-level anomaly detection on BiSeNet V2.

Category DRAEM DFMGAN AnomalyDiffusion Ours
AUROC AP F1-max AUROC AP F1-max AUROC AP F1-max AUROC AP F1-max

bottle 95.93 98.21 93.18 96.74 98.75 95.35 98.14 99.34 97.67 100.00 100.00 100.00
cable 80.79 83.53 79.22 79.47 85.00 74.13 95.37 96.71 92.91 94.61 96.39 89.83

capsule 91.88 97.62 92.41 85.51 95.16 89.82 84.06 95.01 89.74 88.81 96.92 89.21
carpet 98.21 99.24 95.31 91.42 96.29 88.89 90.55 96.41 90.32 98.16 99.31 97.56
grid 96.43 98.50 95.00 99.64 99.82 97.56 81.19 89.92 83.95 99.17 99.63 98.73

hazelnut 97.92 98.65 94.62 100.00 100.00 100.00 93.39 95.74 90.91 100.00 100.00 100.00
leather 100.00 100.00 100.00 98.31 99.23 95.24 100.00 100.00 100.00 95.83 98.38 95.93

metal nut 96.38 99.00 96.83 97.37 99.16 94.66 99.01 99.66 97.71 100.00 100.00 100.00
pill 74.68 89.88 89.00 84.86 95.27 91.00 90.38 97.43 91.35 96.59 99.12 95.24

screw 71.15 83.52 83.15 74.95 85.50 80.72 58.18 75.32 81.25 77.24 89.55 80.60
tile 99.68 99.82 98.28 99.47 99.74 99.12 98.78 99.44 97.39 100.00 100.00 100.00

toothbrush 82.50 90.00 85.11 78.33 87.73 83.72 78.33 89.26 79.17 90.42 94.49 89.47
transistor 73.87 68.65 60.87 79.52 75.77 69.57 94.40 94.68 94.34 99.23 98.39 94.92

wood 97.24 98.99 96.30 98.87 99.46 97.67 90.48 94.12 93.33 100.00 100.00 100.00
zipper 91.31 97.01 90.24 98.97 99.64 97.56 98.89 99.62 97.56 100.00 100.00 100.00

Average 89.87 93.51 89.97 90.90 94.43 90.33 90.08 94.84 91.84 96.00 98.14 95.43

Table 15: Comparison on anomaly segmentation on UPerNet.

Category DRAEM DFMGAN AnomalyDiffusion Ours
AUROC AP F1-max IoU AUROC AP F1-max IoU AUROC AP F1-max IoU AUROC AP F1-max IoU

bottle 82.87 51.45 52.25 54.58 87.94 56.89 56.56 45.41 99.54 93.01 85.94 75.31 99.28 91.73 84.53 78.73
cable 56.64 13.59 22.42 16.29 87.52 64.30 65.61 41.02 91.00 68.12 67.49 51.84 91.08 76.25 74.63 59.00

capsule 60.95 11.12 18.34 27.18 67.92 12.31 20.32 30.47 97.64 51.90 51.66 37.00 92.09 39.60 43.89 50.18
carpet 98.83 79.57 72.53 61.50 95.85 36.05 34.52 48.10 99.45 82.13 72.55 53.17 99.67 82.01 73.53 60.60
grid 95.66 36.69 43.55 36.52 97.49 29.67 36.15 31.37 94.22 28.97 38.50 32.93 99.18 44.94 48.28 44.21

hazelnut 77.69 41.57 47.13 58.88 99.36 79.76 71.10 72.90 97.77 70.48 67.93 54.47 99.54 81.84 75.48 73.30
leather 99.70 65.49 63.01 62.20 80.97 17.60 26.21 30.17 99.48 63.46 60.54 48.70 99.42 68.26 65.52 57.01

metal nut 65.37 23.26 27.39 42.56 98.44 95.64 91.48 64.92 98.62 95.11 88.62 61.31 99.70 98.33 92.90 76.07
pill 64.46 11.33 20.28 13.10 97.58 83.74 80.02 42.33 99.33 95.04 88.77 49.18 98.59 81.16 74.26 62.62

screw 90.88 23.64 31.49 24.71 97.49 53.83 53.02 42.05 93.89 36.60 42.68 34.08 98.97 52.02 51.65 46.61
tile 96.25 79.31 74.18 66.79 99.79 97.29 91.11 77.46 94.70 73.34 67.79 58.54 99.67 95.89 90.71 77.89

toothbrush 93.86 46.93 58.92 26.76 97.42 51.09 59.23 28.33 97.52 60.67 59.46 33.98 98.50 63.62 63.07 42.09
transistor 78.20 26.52 30.34 26.07 82.07 36.31 39.48 27.44 94.26 73.68 69.50 53.64 93.88 70.37 68.12 56.98

wood 95.03 77.07 74.07 64.67 97.90 69.02 62.21 63.10 96.09 70.10 64.38 51.44 99.28 85.28 76.28 65.09
zipper 91.74 54.11 53.69 48.57 97.28 71.60 66.64 54.54 99.54 86.18 78.50 66.47 99.17 85.01 77.57 68.21

Average 83.21 42.78 45.97 42.03 92.33 57.01 56.91 46.64 96.87 69.92 66.95 50.80 97.87 74.42 70.70 61.24
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Table 16: Comparison on image-level anomaly detection on UPerNet.

Category DRAEM DFMGAN AnomalyDiffusion Ours
AUROC AP F1-max AUROC AP F1-max AUROC AP F1-max AUROC AP F1-max

bottle 98.49 99.41 97.62 94.19 97.86 93.18 100.00 100.00 100.00 100.00 100.00 100.00
cable 73.06 77.88 71.94 85.64 90.03 80.33 95.58 97.06 92.56 94.40 96.38 92.44

capsule 85.62 95.66 89.02 81.04 94.26 87.01 96.00 98.77 95.48 94.43 98.44 92.21
carpet 97.64 99.00 95.08 96.72 98.58 93.75 98.68 99.53 98.36 99.94 99.97 99.20
grid 97.62 98.99 97.44 98.33 99.13 96.30 96.67 98.73 97.44 99.76 99.88 98.73

hazelnut 97.14 97.74 92.63 99.84 99.87 97.96 99.17 99.43 97.87 100.00 100.00 100.00
leather 100.00 100.00 100.00 79.91 90.70 81.75 100.00 100.00 100.00 100.00 100.00 100.00

metal nut 86.79 96.02 87.39 98.30 99.38 97.71 98.65 99.62 98.41 99.72 99.91 99.21
pill 67.07 87.37 88.07 88.54 96.56 92.39 91.23 97.78 90.91 98.28 99.58 97.92

screw 80.04 90.95 81.03 89.01 94.54 88.24 85.06 93.87 85.33 93.47 97.07 90.45
tile 99.20 99.51 98.25 99.68 99.81 99.13 99.68 99.81 99.13 100.00 100.00 100.00

toothbrush 86.67 94.19 88.89 75.00 86.99 80.00 90.00 95.13 90.00 95.00 97.65 94.74
transistor 79.29 74.68 69.09 83.04 73.59 74.19 100.00 100.00 100.00 99.52 99.16 96.43

wood 98.25 99.29 96.47 93.36 95.60 95.45 98.62 99.49 97.62 99.87 99.94 98.82
zipper 94.86 98.13 92.02 98.48 99.51 98.14 100.00 100.00 100.00 100.00 100.00 100.00

Average 89.45 93.92 89.66 90.74 94.43 90.37 96.62 98.61 96.21 98.29 99.20 97.34

Table 17: Comparison on anomaly segmentation on LFD.

Category DRAEM DFMGAN AnomalyDiffusion Ours
AUROC AP F1-max IoU AUROC AP F1-max IoU AUROC AP F1-max IoU AUROC AP F1-max IoU

bottle 78.76 50.40 51.05 39.74 90.41 61.51 58.49 40.19 98.71 89.64 81.55 67.10 99.28 92.65 84.86 73.82
cable 67.64 19.41 25.36 19.19 96.49 79.40 75.25 53.47 97.89 79.85 72.75 53.69 94.53 75.41 72.70 55.98

capsule 88.48 34.60 39.62 31.48 91.82 56.11 58.56 32.50 95.80 38.17 48.92 32.04 91.80 49.76 53.69 41.14
carpet 83.51 37.69 41.86 41.22 89.10 48.04 49.89 39.46 94.83 53.15 51.79 42.21 99.10 82.74 74.51 57.56
grid 92.13 45.75 48.84 27.66 89.18 34.89 41.21 19.21 85.19 24.32 34.76 18.22 98.78 62.24 58.44 41.69

hazelnut 59.97 28.87 37.82 30.38 99.36 95.16 89.80 76.43 98.54 77.39 70.42 45.97 98.97 88.00 81.77 73.39
leather 97.38 66.36 63.43 53.13 97.82 51.86 52.25 48.09 98.99 65.73 62.85 42.65 99.11 76.49 69.30 56.51

metal nut 63.34 35.42 35.24 47.51 98.16 95.16 90.99 63.02 99.38 97.34 91.63 64.59 99.23 96.66 91.42 75.15
pill 36.18 8.93 12.79 13.62 95.80 75.90 70.31 31.73 98.96 92.51 85.35 50.04 98.11 79.63 72.54 56.73

screw 91.03 27.05 32.95 19.03 93.96 38.00 41.69 30.88 92.68 44.64 49.17 34.08 98.27 52.40 52.32 41.02
tile 91.77 80.02 77.19 56.27 97.37 88.79 82.05 66.30 92.98 79.59 73.52 55.08 99.38 96.24 89.90 75.50

toothbrush 55.94 24.87 35.54 12.75 95.17 55.21 53.95 28.83 98.31 68.60 66.14 29.67 96.97 54.84 53.19 27.91
transistor 55.81 19.36 24.38 32.58 97.68 89.68 84.18 46.98 98.20 83.97 75.84 44.22 98.80 84.32 77.02 55.57

wood 90.04 73.42 71.25 59.55 97.47 77.72 70.91 58.77 95.68 67.54 63.06 42.78 98.60 88.57 81.46 62.94
zipper 94.15 62.65 61.39 50.12 93.80 58.43 56.82 46.44 98.42 84.05 77.08 64.14 99.15 86.67 79.09 69.37

Average 76.41 40.99 43.91 35.61 94.91 67.06 65.09 45.49 96.30 69.77 66.99 45.77 98.01 77.77 72.81 57.62

Table 18: Comparison on image-level anomaly detection on LFD.

Category DRAEM DFMGAN AnomalyDiffusion Ours
AUROC AP F1-max AUROC AP F1-max AUROC AP F1-max AUROC AP F1-max

bottle 96.40 98.56 94.12 96.98 98.76 95.35 100.00 100.00 100.00 100.00 100.00 100.00
cable 70.91 78.06 71.52 90.98 94.21 88.14 99.52 99.55 97.71 92.05 94.95 88.70

capsule 85.80 95.77 87.80 86.32 95.99 88.46 83.25 94.62 89.44 93.80 98.19 93.42
carpet 81.28 92.34 84.67 88.02 95.33 87.60 86.00 93.42 87.22 97.98 99.22 96.67
grid 97.14 98.63 92.86 85.48 92.61 85.71 93.69 97.08 91.14 96.79 98.76 96.10

hazelnut 85.73 89.00 81.72 99.90 99.91 98.97 98.28 98.60 95.83 100.00 100.00 100.00
leather 98.81 99.28 98.44 95.93 98.15 93.65 99.90 99.95 99.20 100.00 100.00 100.00

metal nut 94.67 98.39 93.44 96.16 98.57 96.18 99.01 99.65 98.46 98.58 99.54 97.64
pill 66.39 89.29 88.07 82.85 94.40 92.00 94.15 98.42 94.47 98.16 99.50 96.84

screw 73.92 85.38 82.72 82.60 92.15 82.22 81.54 91.32 82.05 87.83 94.39 85.54
tile 95.80 97.49 93.33 98.94 99.43 96.55 98.25 99.13 95.65 99.36 99.69 99.12

toothbrush 83.33 90.29 84.44 77.08 87.68 80.95 100.00 100.00 100.00 87.92 94.08 87.80
transistor 90.06 89.06 81.48 88.04 85.06 77.78 97.38 96.57 92.86 98.10 96.90 94.55

wood 99.50 99.78 97.62 99.87 99.94 98.82 97.24 98.70 96.47 100.00 100.00 100.00
zipper 99.39 99.77 97.56 97.07 98.78 96.25 99.01 99.71 99.39 100.00 100.00 100.00

Average 87.94 93.41 88.65 91.08 95.40 90.58 95.15 97.78 94.66 96.70 98.35 95.76
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A.7 MORE DETAILS OF THE SEGMENTATION MODELS

As mentioned in the experiment part, we choose three segmentation models (BiSeNet V2 (Yu et al.,
2021), UPerNet (Xiao et al., 2018), LFD (Zhou et al., 2024a)) to verify the validity of the generated
image-mask pairs on the downstream anomaly segmentation as well as detection tasks. For BiSeNet
V2 and UPerNet, we generally follow the implementation provided by MMsegmentation. For
LFD, we also use the official implementation.

Specifically, for BiSeNet V2, we choose a backbone structure of a detail branch of three stages with
64, 64 and 128 channels and a semantic branch of four stages with 16, 32, 64 and 128 channels
respectively, with a decode head and four auxiliary heads (corresponding to the number of stages in
the semantic branch). As for UPerNet, we choose ResNet-50 as the backbone, with a decode head
and an auxiliary head.

In training segmentation models for downstream tasks, we adopt a training strategy of training
a unified segmentation model for all classes of products, rather than training separate segmen-
tation models for each class. Experimental results are shown in Tab. 19, which indicate that the
performance of the unified segmentation model surpasses that of multiple individual segmentation
models.

Table 19: Ablation on the training strategy of segmentation models.

Models Multiple Models Unified Model
AUROC AP F1-max IoU AUROC AP F1-max IoU

BiSeNet V2 96.00 67.68 65.87 54.11 97.21 69.21 66.37 55.28
UPerNet 96.77 73.88 70.49 60.37 97.87 74.42 70.70 61.24

LFD 93.02 72.97 71.56 55.88 98.09 77.15 72.52 56.47
Average 95.26 71.51 69.31 56.79 97.72 73.59 69.86 57.66

A.8 MORE ABLATION STUDIES

Ablation on the Unbalanced Abnormal Text Prompt design

In the design of the prompt for industrial anomaly image generation, we conduct experiments to
validate the effectiveness of our Unbalanced Abnormal (UA) Text Prompt for each anomaly type of
each product. We set the number of learnable <dfn> to N , and the number of learnable <obj> to
N ′. As shown in Tab. 20, by utilizing the UA Text Prompt, i.e.,

P = a <ob> with <df1>,<df2>, <df3>, <df4>

we are able to provide high-fidelity and diverse images for downstream anomaly segmentation tasks,
resulting in the best performance in segmentation metrics.

Ablation on the Separation and Sharing Fine-tuning loss

In the design of the DA loss and NA loss for the Separation and Sharing Fine-tuning, we conduct
two sets of experiments: (a) We remove the second term in the DA loss (short for w/o ST in Tab.
21); (b) We replace the second term in DA loss with another term in the NA loss (short for with AT
in Tab. 21), which aligns the background area with the token <ob> according to the mask:

Lob =

L∑
l=1

(||Al
ob − (1−M l)||2) + ||ϵob − ϵθ(ẑob, tob, eob)||22 (9)

where Al
ob ∈ Rr×r×1 is the cross-attention map corresponding to the normal token <ob>. As

shown in Tab. 21, the experimental results demonstrate that, our adopted loss design achieves the
best performance in downstream segmentation tasks.
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Table 20: Ablation on the Unbalanced Ab-
normal Text Prompt design.

Prompt AUROC AP F1-max IoU

N ′ = 1, N = 1 96.48 63.69 62.50 52.02
N ′ = 1, N = 4 (Ours) 97.21 69.21 66.37 55.28
N ′ = 4, N = 4 96.55 66.28 63.95 54.07

Table 21: Ablation on the Separation and Shar-
ing Fine-tuning loss.

Loss AUROC AP F1-max IoU

w/o ST 96.44 67.73 65.23 54.99
with AT 96.42 63.99 62.43 53.36

Ours 97.21 69.21 66.37 55.28

Ablation on the minimum size requirement for training images

In the few-shot setting, for a fair comparison, we follow the common setting in DFMGAN (Duan
et al., 2023) and AnomalyDiffusion (Hu et al., 2024), i.e., using one-third abnormal image-mask
pairs for each anomaly type in training. In this setting, the minimum number of abnormal training
images is 2. Once we adopt a 3-shot setting, we need to reorganize the test set. To ensure that the
test set is not reorganized for fair comparison, we take 1-shot and 2-shot settings for all anomaly
types during training, i.e., H = 1 and H = 2, where H is the image number. The results are shown
in Tab. 22 and Fig. 15. Observably, the models trained by 1-shot and 2-shot settings still generate
anomaly images with decent diversity and authenticity.

Table 22: Ablation on the minimum size requirement for training images.

Size IS IC-L

H = 1 1.790 0.311
H = 2 1.794 0.314
H = 1

3 ×H0 1.876 0.339

Image

Mask

1-shot 2-shot

Figure 15: Visualization of the ablation study on the minimum size requirement for training images.
In the figure, the first row is for generated images, the second row is for generated masks.

Ablation on the training strategy of SeaS

During each step of the fine-tuning process, we sample the same number of images from the abnor-
mal training set Xdf and the normal training set Xob. To investigate the efficacy of this strategy, we
conduct three distinct sets of experiments: (a) prioritizing training with abnormal images followed
by normal images (short for Abnormal-Normal in Tab. 23); (b) prioritizing training with abnormal
images followed by anomaly images (short for Normal-Abnormal in Tab. 23); (c) training with a
mix of both normal and abnormal images in each batch (short for Abnormal&Normal in Tab. 23).
As shown in Tab. 23, SeaS yields superior performance in anomaly image generation, characterized
by both high fidelity and diversity in the generated images.

Ablation on the cross-attention maps for Decoupled Anomaly Alignment

In Decoupled Anomaly Alignment (DA) loss, we leverage cross-attention maps from various layers
of the U-Net encoder. Specifically, we investigate the impact of integrating different cross-attention
maps, denoted as A1 ∈ R64×64, A2 ∈ R32×32, A3 ∈ R16×16 and A4 ∈ R8×8. These correspond
to the cross-attention maps of the “down-1”, “down-2”, “down-3”, and “down-4” layers of
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Table 23: Ablation on training strategy of SeaS.

Strategy IS IC-L

Abnormal-Normal 1.53 0.28
Normal-Abnormal 1.70 0.32
Abnormal&Normal (Ours) 1.88 0.34

the encoder in U-Net respectively. As shown in Tab. 24, the experimental results demonstrate that,
employing a combination of {A2, A3} for DA loss, achieves the best performance in downstream
segmentation tasks.

Ablation on the features for Coarse Feature Extraction

In the coarse feature extraction process, we extract coarse but highly-discriminative features for
anomalies from U-Net decoder. Specifically, we investigate the impact of integrating different fea-
tures, denoted as F1 ∈ R16×16×1280, F2 ∈ R32×32×1280, F3 ∈ R64×64×640 and F4 ∈ R64×64×320.
These correspond to the output feature “up-1”, “up-2”, “up-3”, and “up-4” layers of the en-
coder in U-Net respectively. As shown in Tab. 25, the experimental results demonstrate that, em-
ploying a combination of {F2, F3} for coarse feature extraction, achieves the best performance in
downstream segmentation task.

Table 24: Ablation on the cross-attention
maps for Decoupled Anomaly Alignment.

Al AUROC AP F1-max IoU

l = 1, 2, 3 96.42 68.92 66.24 54.52
l = 2, 3, 4 95.71 64.51 62.33 52.46
l = 2, 3 (Ours) 97.21 69.21 66.37 55.28

Table 25: Ablation on the features for Coarse
Feature Extraction.

Fy AUROC AP F1-max IoU

y = 1, 2, 3 94.35 63.58 60.54 52.36
y = 2, 3, 4 96.93 67.42 64.26 55.31
y = 2, 3 (Ours) 97.21 69.21 66.37 55.28

Ablation on the features of VAE for Refined Mask Prediction

In the Refined Mask Prediction, we combine the high-resolution features of VAE decoder features
with discriminative features from U-Net, to generate accurately aligned anomaly image-mask pairs.
In addition, we can also use the VAE encoder features as high-resolution features. As shown in Tab.
26, the experimental results show that, using VAE decoder features achieves better performance in
downstream segmentation tasks.

Table 26: Ablation on the features of VAE for Refined Mask Prediction.

F res AUROC AP F1-max IoU

VAE encoder 96.14 66.26 63.48 54.99
VAE decoder 97.21 69.21 66.37 55.28

Ablation on the normal image supervision for Refined Mask Prediction

In the Refined Mask Prediction branch, we predict masks for normal images as the supervision for
the mask prediction. We conduct two sets of experiments: (a) We remove the second and the fourth
term in the loss for RMP, i.e., the normal image supervision (short for NIA in Tab. 27); (b) We
use the complete form in RMP branch loss, i.e., we use the normal image for supervision, as in Eq.
equation 10:

LM = F(M̂df,Mdf) + F(M̂ob,Mob) + F(M̂ ′
df,M

′
df) + F(M̂ ′

ob,M
′
ob) (10)

As shown in Tab. 27, the experimental results show that, using normal images for supervision
achieves better performance in downstream segmentation tasks. We also provide further qualitative
results of the effect of normal image supervision (short for NIA in Fig. 16) on MVTec AD.
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Table 27: Ablation on the normal image supervision for Refined Mask Prediction.

F res AUROC AP F1-max IoU

w/o NIA 96.20 66.03 64.09 53.97
with NIA (Ours) 97.21 69.21 66.37 55.28
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Figure 16: Qualitative results of the effect of normal image supervision on MVTec AD.

Ablation on the Mask Refinement Module

In the Refined Mask Prediction branch, the Mask Refinement Module (MRM) is utilized to generate
refined masks. We devise different structures for MRM, as shown in Fig. 17, including Case a):
those without conv blocks, Case b): with one conv blocks, and Case c): with chained conv blocks.
As shown in Fig. 18, we find that using the conv blocks in Case b), which consists of two 1 × 1
convolutions and one 3 × 3 convolution, helps the model learn the features of the defect area more
accurately, rather than focusing on the background area for using one convolution alone in Case a).
Based on this observation, we further designed a chained conv blocks structure in Case c), and the
acquired features better reflect the defect area. This one-level-by-one level of residual learning helps
the model achieve better residual correction results for the defect area features. As shown in Tab. 28
in the Appendix, Case c) improves the performance by + 0.28% on AUROC, + 2.29% on AP and +
2.29% on F1-max, + 0.32% on IoU compared with Case b). We substantiate the superiority of the
MRM structures that we design, through the results of downstream segmentation experiments.

1×11×1 3×3

conv blocks

�𝑀𝑀

MRM MRMMRM

1×11×11×1

VAE Decoder

Refinement

Coarse Feature Extraction

�𝑀𝑀𝑀

Generated 
image

Latent

up 1×1 ·

conv blocks

MRM(b):  
with conv blocks

up 1×1 ·

MRM(a):  
w/o conv blocks

Mask Refinement Module Design

MRM

Mask Refinement Module

3×3

1×1 ·

conv blocks
conv blocks

up

MRM(c): 
with chained conv blocks

Figure 17: Different structure designs for the mask refinement module in the mask prediction branch.
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up 1×1 ·

conv blocks
conv blocks

3×3

MRM(c): with chained conv blocks

Figure 18: Visualization of the MRM module intermediate results. The top is for MRM structure
diagram, and the bottom is sequentially for input image, feature maps of MRM intermediate process
and the predicted mask.

Table 28: Ablation on the Mask Refinement Module.

Model AUROC AP F1-max IoU

with MRM (a) 96.75 68.18 64.96 55.51
with MRM (b) 96.93 66.92 64.08 54.96
with MRM (c) 97.21 69.21 66.37 55.28

Ablation on the threshold for mask binarization

In the Refined Mask Prediction branch, we take the threshold τ for the second channel of refined
anomaly masks M̂ ′

df to segment the final anomaly mask. We train segmentation models using
anomaly masks with τ settings ranging from 0.1 to 0.5. As shown in Tab. 29, results indicate
that setting τ = 0.2 yields the best model performance.

Table 29: Ablation on the threshold for mask binarization.

threshold AUROC AP F1-max IoU

τ = 0.1 97.56 65.33 63.38 52.40
τ = 0.2 (Ours) 97.21 69.21 66.37 55.28
τ = 0.3 97.20 66.92 64.35 54.68
τ = 0.4 95.31 63.55 61.97 53.03
τ = 0.5 94.11 60.85 59.92 50.87

A.9 MORE QUALITATIVE COMPARISON RESULTS OF SEGMENTATION MODELS TRAINED ON
IMAGE-MASK PAIRS GENERATED BY DIFFERENT ANOMALY GENERATION METHODS

We provide further qualitative results with different anomaly generation methods on the MVTec AD
dataset. We report the generation results of SeaS for varying types of anomalies in each category.
Results are from Fig. 19 to Fig. 22.
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Figure 19: Comparison results with the anomaly segmentation models on MVTec AD. In the figure,
from top to bottom are the results for bottle, cable, capsule and carpet categories.
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Figure 20: Comparison of the anomaly segmentation results on MVTec AD. In the figure, from top
to bottom are the results for grid, hazelnut, leather and metal nut categories.
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Figure 21: Comparison of the anomaly segmentation results on MVTec AD. In the figure, from top
to bottom are the results for pill, screw, tile and toothbrush categories.
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Figure 22: Comparison of the anomaly segmentation results on MVTec AD. In the figure, from top
to bottom are the results for transistor, wood and zipper categories.
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A.10 MORE QUALITATIVE COMPARISON RESULTS OF DIFFERENT SEGMENTATION MODELS
TRAINED ON IMAGE-MASK PAIRS GENERATED BY SEAS

In this section, we provide further qualitative results with different segmentation models on the
MVTec AD dataset. We choose three models with different parameter quantity scopes (BiSeNet
V2 (Yu et al., 2021): 3.341M, UPerNet (Xiao et al., 2018): 64.042M, LFD (Zhou et al., 2024a):
0.936M). We report the segmentation results of SeaS for varying types of anomalies in each category.
Results are from Fig. 23 to Fig. 26.
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Figure 23: Qualitative comparison results with the segmentation models on MVTec AD. In the
figure, from top to bottom are the results for transistor, wood, and zipper categories.
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Figure 24: Qualitative comparison results with the segmentation models on MVTec AD. In the
figure, from top to bottom are the results for bottle, cable, capsule and carpet categories.
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Figure 25: Qualitative comparison results with the segmentation models on MVTec AD. In the
figure, from top to bottom are the results for grid, hazelnut, leather and metal nut categories.
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Figure 26: Qualitative comparison results with the segmentation models on MVTec AD. In the
figure, from top to bottom are the results for pill, screw, tile and toothbrush categories.
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A.11 ADDITIONAL VISA DATASET RESULTS

We perform experimental evaluations on the images of the VisA Dataset (Zou et al., 2022), which
includes 12 product categories, each with up to 9 different anomalies.

As shown in Tab. 30 and Fig. 27, SeaS generates anomaly images with higher fidelity and diversity.
Tab. 31 shows the comparisons on downstream supervised segmentation trained by the generated
images. It consistently demonstrates that our method outperforms others across all the segmentation
models, with an 11.71% average improvement on IoU. We report the image-level metrics in Tab.
32 and our method achieve a 5.92% gain on image-AUROC. We show the segmentation anomaly
maps in Fig. 28, by using our generated image-mask pairs to train BiSeNet V2, there are fewer false
positives in chewinggum and fewer false negatives in pcb1 and pipe fryum.

Table 30: Comparison on IS and IC-LPIPS on VisA. Bold indicates the best performance.

Method
DFMGAN

(Duan et al., 2023)
AnomalyDiffusion
(Hu et al., 2024) Ours

IS ↑ IC-L ↑ IS ↑ IC-L ↑ IS ↑ IC-L ↑
Average 1.25 0.25 1.26 0.25 1.27 0.26

VisA

Candle Cashew Chewinggum PCB1 Pipe_fryumMacaroni1

DFMGAN

Anomaly
Diffusion

Ours

Figure 27: Visualization of the generation results on VisA. The sub-image in the lower right corner
is the generated mask.

Table 31: Comparison on anomaly segmentation on VisA.

Model DFMGAN (Duan et al., 2023) AnomalyDiffusion (Hu et al., 2024) Ours
AUROC AP F1-max PRO IoU AUROC AP F1-max PRO IoU AUROC AP F1-max PRO IoU

BiSeNet V2 (Yu et al., 2021) 75.91 9.17 15.00 21.49 9.66 89.29 34.16 37.93 28.09 15.93 96.03 42.80 45.41 61.29 25.93
UPerNet (Xiao et al., 2018) 75.09 12.42 18.52 27.38 15.47 95.00 39.92 45.37 44.90 20.53 97.01 55.46 55.99 58.90 35.91
LFD (Zhou et al., 2024a) 81.21 15.14 18.70 14.98 6.44 88.00 30.86 36.56 38.56 16.61 92.91 43.87 46.46 29.55 26.37

Average 77.40 12.24 17.41 21.28 10.52 90.76 34.98 39.95 37.18 17.69 95.32 47.38 49.29 49.91 29.40

Table 32: Comparison on image-level anomaly detection on VisA.

Model DFMGAN (Duan et al., 2023) AnomalyDiffusion (Hu et al., 2024) Ours
AUROC AP F1-max AUROC AP F1-max AUROC AP F1-max

BiSeNet V2 (Yu et al., 2021) 63.07 62.63 66.48 76.11 77.74 73.13 85.61 86.64 80.49
UPerNet (Xiao et al., 2018) 71.69 71.64 70.70 83.18 84.08 78.88 90.34 90.73 84.33
LFD (Zhou et al., 2024a) 65.38 62.25 66.59 81.97 82.36 77.35 83.07 82.88 77.24

Average 66.71 65.51 67.92 80.42 81.39 76.45 86.34 86.75 80.69
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Figure 28: Qualitative anomaly segmentation results with BiSeNet V2 on VisA.

A.12 EXPLANATION OF DISCRIMINATIVE FEATURES IN U-NET DECODER

The U-Net can learn the highly discriminative features of the defect area accurately. As shown in
Fig. 29, we use the output features of the “up-2” and “up-3” layers of the decoder in U-Net, and
apply convolution blocks and concatenation operations, then we can obtain the unified coarse feature
F̂ ∈ R64×64×192, which can be used to predict masks corresponding to anomaly images.

C

up

MRMMRM

1×1
up-3

U-Net Decoder

up-4

Coarse Mask Prediction
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Refinement

MRM

1×1 3×3

Generated

Latent

VAE Decoder

Mask

Figure 29: Visualization of the U-Net decoder features in mask prediction process.

A.13 COMPARISON WITH THE TEXTUAL INVERSION

We conduct the experiment of only using the Textual Inversion (TI) (Gal et al., 2022) method to learn
the product, and the generated images are shown in Fig. 30. The TI method struggles to generate
images similar to the real product due to the limited number of learnable parameters. In contrast, for
the AIG method, the products satisfy global consistency with minor variations in local details, while
the anomalies hold randomness, so the generated products should be globally consistent with the
real products. Therefore, unlike the AG method AnomalyDiffusion (Hu et al., 2024), where the TI
method alone is sufficient to meet the anomaly generation needs, we fine-tunes the U-Net to ensure
the global consistency of the generated products.
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Figure 30: Qualitative comparison on the generation results with Textual Inversion.

A.14 MORE EXPERIMENTS ON LIGHTING CONDITIONS

We choose one defect class from peach, a product in the MVTec3D dataset, that has significant
variations in lighting conditions and backgrounds, to conduct experiments. Images with strong
lighting conditions depict the top side of the peach, whereas those with weak lighting conditions
show the bottom side. Consequently, the background in the images, whether the top or bottom of the
peach, also differs. We selected three training sets with different lighting conditions for experiments:
1) only images from the top side with strong lighting condition, 2) only images from the bottom side
with weak lighting condition, 3) half of the images from the top side with strong lighting condition,
and a half from the bottom side with weak lighting condition. The generated images of different
settings are shown in Fig. 31. It can be seen that SeaS is robust against lighting conditions and
background variations.

Training
Images

Generated
Images

BothStrong Weak

Figure 31: Visualization of the generation results on MVTec3D AD on different lighting conditions
and backgrounds. In the figure, the first row is for the training images and the second row is for the
generated images.
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A.15 MORE EXPERIMENTS ON REPLACING GENERATION STRATEGIES.

We replace the abnormal generation strategy in DRAEM (Zavrtanik et al., 2021) and BGAD (Yao
et al., 2023b) with the proposed generation strategy, the results are given in Tab. 33. The segmenta-
tion result demonstrates that our method outperforms the exsiting anomaly detection methods.

Table 33: Comparison on replacing generation strategies with anomaly detection methods on
MVTec AD.

Model Image-level Pixel-level
AUROC AP F1-max AUROC AP F1-max IoU

DRAEM (Zavrtanik et al., 2021) 98.00 98.45 96.34 97.90 67.89 66.04 60.30
SeaS + DRAEM 99.25 99.66 98.35 97.98 77.35 73.27 63.99

BGAD (Yao et al., 2023b) 98.31 98.05 98.27 99.26 73.85 77.89 60.60
SeaS + BGAD 98.44 98.18 99.08 99.26 73.85 77.93 60.81

A.16 MORE VISUALIZATION RESULTS ON RECOMBINING THE DECOUPLED ATTRIBUTES FOR
UNSEEN ANOMALIES.

We provide more examples in Fig. 32, where new anomalies are generated that significantly
differ from the training samples in terms of color and shape. For example, we showcase
bottle contamination, hazelnut print, and tile gray stroke with a novel shape, wood color and
metal nut scratch with a novel color, and pill crack with a new shape, featuring multiple cracks
where the training samples only exhibit a single crack. These examples demonstrate the the model’s
ability to create unseen anomalies based on recombining the decoupled attributes.

Training
Images

Generated
Images

Wood_colorBottle_contamination Pill_crack

Training
Images

Generated
Images

Tile_gray_strokeHazelnut_print Metal_nut_scratch

Figure 32: Visualization of the generation results for unseen anomalies on MVTec AD.
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