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Abstract

The domain of joint vision-language understanding, especially in the context of
reasoning in Visual Question Answering (VQA) models, has garnered significant
attention in the recent past. While most of the existing VQA models focus on
improving the accuracy of VQA, the way models arrive at an answer is oftentimes
a black box. As a step towards making the VQA task more explainable and inter-
pretable, our method is built upon the SOTA VQA framework [1] by augmenting
it with an end-to-end explanation generation module. In this paper, we inves-
tigate two network architectures, including Long Short-Term Memory (LSTM)
and Transformer decoder, as the explanation generator. Our method generates
human-readable textual explanations while maintaining SOTA VQA accuracy on
the GQA-REX (77.49%) and VQA-E (71.48%) datasets. Approximately 65.16%
of the generated explanations are approved by humans as valid. Roughly 60.5% of
the generated explanations are valid and lead to the correct answers.

1 Introduction

Q: Is the stovelight on? GT Ans: Yes
M1, M2, M3: Yes
C: There is a stove and a bunch of knives
E: The space under the hood is brighter 
than the surrounding area.

Figure 1: A VQA example shows
the importance of an explanation
that leads to the correct answer.

Problems involving joint vision-language understanding are
gaining more attention in both Computer Vision (CV) and
Natural Language Processing (NLP) communities. In recent
years, complex reasoning problems in the vision-language do-
main have been in the spotlight. In the classic Visual Ques-
tion Answering (VQA) problem, reasoning has been highly
involved. In [2, 3, 4], a model needs to reason over spatial and
quantificational relationships within an image-question pair.
[5] incorporates spatial-temporal reasoning as well as domain-
specific knowledge. A more challenging setting, such as [6, 7],
requires the capability to make use of external knowledge to
perform reasoning in the vision-language domain.

We see impressive improvements in VQA accuracy in [8, 9,
10, 11] in both the stock setting and its variants, thanks to
the large-scale pre-trained models in both single modality and
multi-modality. However, we barely pay attention to how a
model reaches an answer given an image-question pair. Let’s
take a look at Figure 1 as an illustrative example. The ground-
truth answer to the question is straightforward, and information from the image is sufficient to answer
the question. There are three different types of VQA models: Model type 1 predicts the correct
answer without providing any evidence as to how it was achieved. Model type 2 answers the question
correctly and provides a caption that summarizes the image. Unfortunately, the caption fails to unveil
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the reasoning chain behind predicting the correct answer to the question. Model type 3 successfully
generates a logically self-contained explanation which corresponds to the correct answer. Both Model
type 1 and Model type 2 cover most of the SOTA VQA models. Surprisingly, very few models
exist that are similar to Model type 3. Motivated by examples like in Figure 1, we investigate the
following two open topics in this paper: (i) whether a VQA model can generate a human-readable
explanation while maintaining VQA accuracy; (ii) how good are the generated explanations and how
should they be evaluated? Our contribution is two-fold:

• We present easy-to-implement methods on top of a SOTA VQA framework which maintains
VQA accuracy while generating human-readable textual explanations.

• We show both quantitative experimental results and human-studies of the proposed explain-
able VQA method. Our experiments illustrate the urgency of proposing new metrics to
evaluate the predicted explanations in vision-language reasoning problems such as VQA.

2 Related Work

Reasoning in VQA As an end-to-end task, VQA [4] and its variants have been well explored, and
various models have kept achieving better performance along the way. Built on top of the original
setting, complex reasoning tasks are heavily involved. [4, 12] introduce quantificational reasoning
into the setting. [3, 13, 2] highlight the importance of fine spatial and compositional reasoning in the
VQA problem. While the above datasets limit the reasoning domain within the image, [6, 14] propose
a visual language task that requires external knowledge, sometimes even domain-specific knowledge,
to answer the question. In [15], the emphasis is on the logical entailment problem. Recent methods
such as [8, 9, 10] take advantage of the unprecedented amount of vision-language data and large size
of models, achieving SOTA performances on the above VQA datasets. As the reasoning problem in
VQA is becoming more and more complicated, it is urgent to have an interpretable way to analyze
and diagnose the model and measure its reliability.

Explainable VQA and Metrics Very few SOTA VQA works investigate model explainability,
especially in the age of big data and big models. [16] is one of the standard datasets that focuses
on explainability. A similarity score between the question and the image caption is computed to
check for question-relevant captions. The caption is then used to generate an explanation that is
relevant to the question-answer pair. [17, 18] use image attributes and captions to provide a naive
version of the explanation to the answer. Some works [19, 11] make use of textual knowledge from
external sources to improve the interpretability of the model. However, such external knowledge is
not always able to provide direct evidence to the answer. The neural-symbolic framework [20] is
also applied in the VQA domain since it is naturally more interpretable than the pure deep learning
based methods. More works [21, 22] have recently been proposed for enhancing the explainability
of the VQA problem using either natural or synthetic data. Another topic that is not well-studied in
explainable VQA is the evaluation of explanations. In [16, 22], conventional NLP metrics such as
ROUGE, BLEU scores are used to measure the quality of the generated explanation. In contrast to
[16], [21] doesn’t use a caption as the explanation, instead it uses tokens representing a bounding box
in the image to replace key parts in the scene graph.

3 Methodology

In this section, we describe our method in detail. Please refer to Figure 2 for an overview of the model
flow and architecture. The proposed method consists of two major components: (i) coarse-to-fine
visual language reasoning for VQA and (ii) explanation generation module.

3.1 Extracting Features and Predicates

A pre-trained Faster-RCNN model[23] is used to extract features for each Region of Interest (RoI) in
the image I . The image features are denoted as fI . Similarly, a Faster-RCNN model is also used to
extract objects and attributes that form the image predicates. We generate the Glove embedding[24]
for each word in the set of image predicates, denoted as pI . The words in the question Q are also
encoded using Glove embeddings. The question embeddings are then passed through a GRU to
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Figure 2: An overview of coarse-to-fine VQA with explanation generation.

extract sequential features fQ. Together with this, question predicates are extracted by passing the
question through a stop word filter. The stop words not only consist of words from NLTK[25],
but also include those words in questions that occur less frequently (threshold=10). Each question
predicate is then encoded with Glove embedding. Question predicates are denoted as pQ.

3.2 Coarse-to-Fine Reasoning for VQA

VQA can be generally formulated as (I,Q)→ a, where a ∈ A and A is the set of answers. Usually,
the answer set A is filtered by a frequency threshold from the annotated answers. The coarse-to-fine
reasoning framework can be formalized as:

a∗ = argmax
a

CFRθ(a|fI , pI , fQ, pQ)

= argmax
a

SR(a|IF(fI , pI , fQ, pQ),MM(fI , pI , fQ, pQ))
(1)

where CFRθ is an end-to-end module with learnable parameter θ. It consists of three different
modules, including an information filtering module IF, a multimodal learning module MM, followed
by a semantic reasoning module SR.

Information Filtering The extracted features may be noisy and contain incorrect information as
they are extracted from pre-trained models. This module helps remove unnecessary information and
aids in understanding the importance of RoIs in images for each question.

Multimodal Learning Bilinear Attention Networks are used to learn features at both coarse-
grained and fine-grained levels. The coarse-grained module works with image and question features
and predicates and produces a joint representation at the coarse-grained level. The fine-grained
module learns the correlation between the filtered image and the question information and learns a
joint representation at the fine-grained level.

Semantic Reasoning This module learns selective information from both the coarse-grained and
fine-grained module outputs. The joint embedding from this module is then fed into a multi-layer
perceptron to perform answer prediction and to the explanation module for explanation generation.

3.3 Explanation Generation

The joint embedding from the semantic reasoning module is used to train an explanation generator
with ground-truth explanations as supervision. The VQA backbone is augmented with the explanation
generation module. Two architectures are evaluated for explanation generation: (i) Long Short-Term
Memory (LSTM), (ii) Transformer Decoder. The LSTM architecture used consists of 2 layers, with
an input dimension of 768. The Transformer Decoder architecture has an input dimension of 768,
and consists of 8 attention heads. In both cases, the input is a joint embedding and is trained using
ground-truth explanations from the dataset (discussed in the following section) using cross-entropy
loss for each word. Suppose we have an explanation E = (w1, ..., wi, .., wl), where wi ∈ V, the
vocabulary and l is the length of the explanation. The explanation can therefore be represented as a
sequence of one-hot encoded vectors. The loss function is therefore given by:
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Lexpl = −
1

l · |V|
·

l∑
i=1

|V|∑
k=1

yi,k · log(p(wi,k)) (2)

where yi,k is the one-hot vector for the ith word in the ground-truth explanation and p(wi,k) is the
probability of the kth word in V at the ith time step. We also make use of teacher enforcing to train
the explanation module with autoregressive cross-entropy loss.

4 Experiments

4.1 Datasets and Evaluation

Q:What is this bird called?

A: parrot

E: (obj:329774) is parrot

parrot

Q:What is the woman in front of ?

A: statue

E: (obj:521700) that (obj:521697) 
is in front of is statue

statue woman

Q:What type of plant is this?

A: broccoli

E: a broccoli plant in the 
ground near other plant life

Q: Is the horse walking on a trail?

A: no

E: a man is riding a horse on the 
beach

(a) (b)

Figure 3: Examples from (a) GQA-REX dataset, (b) VQA-E dataset.
As discussed in section 2, there are a limited number of datasets that come with annotated explanations
along with answers. Owing to the large dataset size, we perform our experiments on the GQA-REX
and VQA-E datasets, although they have their own set of limitations. In this section, we measure
the accuracy of the predicted answer and the quality of the generated explanation. To evaluate the
predicted answer, we use the VQA score as the metric. Unfortunately, we don’t have accurate metrics
for explanation evaluation. Therefore, we report qualitative results from a human-study as well as
quantitative results using conventional NLP metrics such as ROUGE and BLEU.

GQA-REX contains explanations for almost 98% of the samples in the GQA-balanced dataset. It
contains around 1.04M question-answer (QA) pairs spanning across 82K images, with annotated
explanations (1 explanation per QA pair). However, the explanations are consistent with the reason-
ing framework proposed in [21] and are therefore not completely in human-readable form (Refer
Figure 3(a)). Although the explanations can be converted to human readable form using information
from scene graphs, there exist instances of grammatical inaccuracy.

VQA-E contains explanations for around 40% of the QA pairs in the VQA2.0 dataset (1 explanation
per QA pair). The explanations are generated by comparing the similarity scores between the
caption candidates and the ground-truth question-answer pair. It is, therefore, not surprising that the
explanations seem more like captions of the image that contains the answer. Figure 3(b) illustrates a
couple of examples from the VQA-E dataset.

4.2 VQA Experimental Results

Dataset Expl. Model α VQA score
VQA-E[16] N/A N/A 71.48

LSTM 0.25 71.36
LSTM 0.50 71.55
LSTM 0.75 71.53
LSTM 1.0 71.32

Transformer 0.50 71.46
GQA-REX[21] N/A N/A 77.49

LSTM 0.25 75.08
LSTM 0.50 77.16
LSTM 1.0 77.33

Transformer 0.50 77.06

Table 1: VQA scores of the predicted answers from our
method on VQA-E and GQA-REX validation datasets.

We use the CFRF[1] model as the
backbone and augment it with an ex-
planation generation module based on
(i) LSTM and (ii) Transformer De-
coder. The baseline model is trained
without any explanations as supervi-
sion. Since our goal is to generate
explanations while maintaining the
VQA performance, we incorporate
both the loss for VQA answer and
the supervision from the ground-truth
explanation. In order to investigate
the impact of two different training
signals, we design the loss function
for the end-to-end training as follows:
L = αLans + (1 − α)Lexpl, where

4



Lans is the cross-entropy loss between the predicted answer and the ground truth answer, Lexpl is
the loss function of the explanation generation module, as represented by Equation 2, and α ∈ [0, 1]
is the balance factor. As shown in Table 1, our methods successfully maintain the VQA scores while
generating textual explanations.

4.3 Results of Generated Explanations

Quantitative Results We use the explanations generated by the CFRF+LSTM model, correspond-
ing to α = 0.75 (Refer Table 1). The results of BLEU-1 and ROUGE scores are presented. Note that
ROUGE scores are F1 scores. As shown in Table 2, although our method outperforms the baseline,
the absolute scores are only satisfactory.

Dataset Model BLEU-1 ROUGE-1 ROUGE-2 ROUGE-L
VQA-E val Baseline[16] 0.268 - - 0.249

CFRF+LSTM 0.33 0.364 0.117 0.325
Table 2: Quantitative evaluation of the generated explanations on VQA-E validation set.

As mentioned in section 2, in the VQA domain, there is no standard common practice to quantitatively
evaluate generated explanations. Although both VQA-E and GQA-REX suggest using conventional
NLP metrics such as ROUGE and BLEU scores to evaluate generated explanations, it is not ideal.
These metrics are particularly designed for string matching in the form of overlapping n-grams.
Figure 4 illustrates why such metrics are practically unreliable.

Q: Is the lady going for a walk in the rain?
GT Ans.: Yes

Predicted Ans.: Yes

GT Expl: A woman holding an umbrella
facing a row of shops that are closed for
the night.

Predicted Expl.: a woman is walking in
the rain with an umbrella.

Q: What are all of the people doing?
GT Ans.: flying kites

Predicted Ans.: flying kites

GT Expl.: A group of people are
flying kites in the sky.

Predicted Expl.: A group of people
flying kites in the sky.

(a) (b)
BLEU-1: 0.27. Rouge-1-F1: 0.39. BLEU-1: 0.89. Rouge-1-F1: 0.94.

Q: What color are his shorts?
GT Ans.: black

Predicted Ans.: black

GT Expl.: A man in red shirt and 
black shorts playing a game of tennis.

Predicted Expl.: A man in blue shirt 
and white shorts playing a game of 
tennis

(c)
BLEU-1: 0.84. Rouge-1-F1: 0.83.

Figure 4: Problem with using string matching metrics to evaluate generated explanations in VQA.

In Figure 4(a), our model predicts the correct answer. However, according to the string matching
metrics, the quality of the explanation is poor. In fact, interestingly, both the generated explanation
and the ground-truth explanation in Figure 4(a) are annotated as valid by human annotators. On the
other hand, the generated explanation in Figure 4(b) is almost identical to the ground truth, and both
of them are approved by human subjects as valid explanations for the answer. In Figure 4(c), even
though the predicted explanation is wrong, the string matching score is very high. These examples
lead to the following conclusion: we need to find a more reliable metric to evaluate generated
explanations for the VQA problem.

Human Study Setup Since no mature quantitative metrics are available, we introduce humans into
the loop. We conducted a human subject study using Amazon Mechanical Turk (AMT). The goal of
our subject study is to evaluate the quality of the explanation from human annotation. One example
of the human intelligence task (HIT) is shown in Figure 5:

Figure 5: An example of a HIT in the human study.

Given an image-question pair from the VQA-E validation set, we designed two questions for the
annotators. Both questions are the same, asking whether an explanation leads to the answer. But the
contexts are different. In the first question, both the explanation and the answer are generated by our

5



Context Yes No, but contains the Ans. No Not determined
predicted [total] 56.46% 9.02% 34.12% 0.4%

predicted [unique] 65.16 % 2.01% 32.8% 0.03%

ground-truth [total] 83.90% 5.12% 10.98% 0%
ground-truth [unique] 93.12% 0.57% 6.31% 0%

Table 3: Statistics of the raw human annotation data. It contains 4735 unique examples from the
VQA-E validation set. Each job is distributed to 3 different annotators to eliminate potential bias.

model. In the second question, we provide the ground-truth explanation and answer. The subjects
have the same set of four options to choose from in both cases. They are as follows: (i) Yes; (ii) No,
but contains the answer; (iii) No; (iv) Not determined. Annotators have no idea which context is the
ground truth. Specifically, option (ii) "No, but contains the answer" means the explanation contains
a sub-string that matches the predicted answer but it does not lead to the answer. Option (iv) "Not
determined" means the explanation leads to the answer, but the reasoning chain may be contradictory.

Human Approved Results We randomly selected 4735 unique image-question pairs from the
VQA-E validation set for the human study. Each image-question pair makes up one HIT with the
same setting as in Figure 5. In order to eliminate individual bias, we assigned each HIT to three
different workers. Therefore, in total, we received 4735× 3 = 14205 responses from 111 subjects.
The raw distribution of subject annotations for all the 14205 responses (predicted [total] and ground-
truth [total]) is shown in Table 3. From the total set of responses, questions for which there is no
consensus among the three annotators (all three responses are different) are discarded (869 out of
4735). Following this, we calculate the vote using mode, i.e., a majority vote for the unique HITs.
Among the 3866 unique HITs, 65.16% of the generated explanations lead to the predicted answers,
while 2.01% of them contain the answers but make no sense. 32.8% of the generated explanations
fail to make connections with the predicted answers. On the other hand, 93.12% of the ground-truth
explanations lead to ground-truth answers. According to [16], because the ground-truth explanations
are selected by comparing the similarity between the question-ground-truth-answer pair and the
caption candidates, most of them are valid.

Predicted Ground-truth
Valid Expl. Invalid Expl. Valid Expl. Invalid Expl.

Correct Ans. 56.39% 23.77% 93.11% 6.88%
Wrong Ans. 8.77% 11.05% - -

Table 4: Ratio of valid/invalid explanation based on the correctness of the predicted answer.

Besides raw annotations, we also provide a more straightforward result, as shown in Table 4. Among
the 3866 unique HITs, we find that in 56.39% of the cases, our model can predict both the correct
answer as well as generate valid explanations. 23.77% of the explanations are not valid, although the
predicted answers are correct. It may either make no sense or contain the answer in it, albeit with
little significance. Only in 8.77% of the cases, our model generates a good explanation but leads to a
wrong answer. On the other hand, we also observe that 6.88% of the ground-truth explanations are
not reasonable. Therefore, our model is able to answer questions correctly and also generate valid
explanations approximately 60.5% of the time.

5 Conclusion and Future Work

We explore the task of Explainable Visual Question Answering (Explainable-VQA). We leverage
the Coarse-to-Fine reasoning framework as the VQA backbone and augment it with an explanation
generation module using two architectures: LSTM and Transformer Decoder. Our model generates
an explanation along with an answer while also maintaining close to SOTA VQA performance. We
conduct both objective experiments and a human study to evaluate the generated explanation, pointing
out the urgency of proposing new metrics for explainable VQA.

Future Work We plan to improve the quality of generated explanations as well as leverage them to
increase VQA accuracy. We urge proper metrics to evaluate explanations for the VQA problem.

Acknowledgement We thank Nguyen et al., the authors of [1] for providing us with the features
and predicates for the VQA 2.0 dataset and helping with answering all queries in a timely manner.
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Appendix A Examples for Predicted Answers and Explanations

Q: What letters are on the surfboard?
GT Ans: nsp
GT Expl: a person holding a
surfboard under his right arm
and walking on he beach with
water in the background.
Pred Ans: lifeguard
Pred Expl: a man is holding a
surfboard on the beach

Q: Is the fridge almost empty?
GT Ans: no
GT Expl:a fridge is open
with some food inside of it
Pred Ans: yes
Pred Expl: a fridge is
open with food in it

Q:Are these bananas ripe?

GT Ans: no
GT Expl: a pile of bananas
that are piled up on the
table.
Pred Ans: yes
Pred Expl:a bunch of bananas
that are sitting on a table

Q: How many chairs are in 
the stack?
GT Ans: 3
GT Expl: a dog is laying in
three chairs stacked together.

Pred Ans: 2
Pred Expl: a dog is sitting on 
a couch in front of a laptop

Q: Is the kitty on the umbrella?

GT Answer: yes
GT Expl: a brown black and 
white cat is sitting on a black 
and white umbrella

Pred Ans: no
Pred Expl: a woman is sitting 
on a bench in the park

Q: Where is the teddy bear placed?
GT Ans: in bananas
GT Expl: a stuffed teddy bear is 
sitting with the bananas

Pred Ans: tree
Pred Expl: a large bear is 
standing in the grass near rocks

(a)

(b)

Figure 6: (a) 3 examples for incorrectly predicted answer but correct explanation. (b) 3 examples for
incorrectly predicted answer and incorrect explanation.
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Q: What type of plant is this?
GT Ans: broccoli
GT Expl: a broccoli plant
in the ground near other
plant life
Pred Ans: broccoli
Pred Expl: a close up of a
broccoli plant with leaves

Q: What sport is being performed?
GT Ans: skateboarding
GT Expl: a person that is
doing a skateboarding trick

Pred Ans: skateboarding
Pred Expl: a man is doing
a trick on a skateboard

Q: Is the horse walking on a trail?
GT Ans: no
GT Expl: a man is riding a
horse on the beach

Pred Ans: no
Pred Expl: a man is riding
a horse on the beach

Q: Is this in the forest?
GT Ans: yes
GT Expl: a blue bird is
sitting in the branch of a
tree
Pred Ans: yes
Pred Expl: a bird is perched
on the branch of a tree

Q: Who is in the car?
GT Ans: cat
GT Expl: a cat is sitting in
a car near the dash

Pred Ans: cat
Pred Expl: a cat is sitting
in the driver 's seat of a car

Q: Is this building really tall?
GT Ans: yes
GT Expl: there is a very
tall tower that has a clock
on it
Pred Ans: yes
Pred Expl: a tall tower
with a clock on the top of it

Q: What color is the bed sheet?
GT Ans: white
GT Expl: there is a bed
with white sheets and
pillows layer on it
Pred Ans: white
Pred Expl: a bed with a white
comforter and pillows on it

Q: Is the bird sitting?
GT Ans: yes
GT Expl: a blue bird is
sitting on a tree branch

Pred Ans: yes
Pred Expl: a bird is sitting
on the branch of a tree

Q: Is it cold?
GT Ans: yes
GT Expl: a man in skis is
standing in a snowy area

Pred Ans: yes
Pred Expl: a man is standing in
the snow with skis and ski poles

Figure 7: 9 examples for correctly predicted answer and correct explanation.
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Q: Is this stop sign red?
GT Ans: yes
GT Expl: a red stop sign
sitting on top of a wooden
post.
Pred Ans: yes
Pred Expl: a red stop sign
sitting in the middle of a road

Q:What color is the animal?
GT Ans: black
GT Expl: a black bear is
standing outdoors in the
wild.
Pred Ans: black
Pred Expl: a black bear is
walking around in the woods

Q: Where is the kite?
GT Ans: sky
GT Expl: a man sitting in
a field flying a kite in the
blue sky.
Pred Ans: sky
Pred Expl: a man is flying
a kite in the sky high

Q: What type of numbers are used?
GT Ans: roman numerals
GT Expl: a clock tower
with roman numerals and a
sun dial.
Pred Ans: roman numerals

Q: How many trains are there?
GT Ans: 2
GT Expl: two trains are on
tracks in a commuter strain
station with people standing
on the platform between them.
Pred Ans: 2
Pred Expl: two trains are
parked on the tracks at a station

Q: What color is the bus?
GT Ans: red
GT Expl: a red bus parked
in front of a building near a
street.
Pred Ans: red
Pred Expl: a red and white bus
parked in front of a building

Q: What game is he playing?
GT Ans: baseball
GT Expl: a baseball player
is swinging a bat and some
grass
Pred Ans: baseball
Pred Expl: a baseball
player is swinging his bat

Pred Expl: a clock on a building
with roman numerals and a clock

Q: Is the kite lifting in the wind?
GT Ans: yes
GT Expl: folks flying a kite in 
the water of a nice beach.
Pred Ans: yes
Pred Expl: a kite flying in the 
sky over a body of water

Q: How many sinks are there?
GT Ans: 2
GT Expl: modern bathroom 
with two sinks a toilet and a 
shower.

Pred Expl: a bathroom with 
two sinks and a mirror above it

Pred Ans: 2

Figure 8: 9 examples for correctly predicted answer and correct explanation.
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Q: What is the bottom cat doing?
GT Ans: sitting
GT Expl: a cat that is
sitting on some steps.
Pred Ans: sitting
Pred Expl: a black and white
cat is sitting in a black and
white photo

Q: Which room  is this?
GT Ans: bathroom
GT Expl: a bathroom
which has a telephone, sink
and mirror.
Pred Ans: bathroom
Pred Expl: a cat is sitting in a
bathroom sink and is looking
out into the distance

Q: What color is the bench?
GT Ans: green
GT Expl: an old green
wood bench on a porch
with a white railing.
Pred Ans: green
Pred Expl: a man sitting on a
park bench next to a green
field

Q: What sport is being played?
GT Ans: tennis
GT Expl: a tennis player
with a racket on a court
Pred Ans: tennis

Q: What type of meat appears 
on the sandwich?
GT Ans: chicken
GT Expl: a chicken sandwich
and fries on a table.
Pred Ans: chicken
Pred Expl: a chicken
sandwich with onions and
onions on a plate

Q: What color are the boats?
GT Ans: blue
GT Expl: several small
blue boats side by side out
in the open.
Pred Ans: blue
Pred Expl: a couple of small
boats are on the blue water

Q: What mode of transportation is 
this?
GT Ans: bus
GT Expl: a bus is riding
down the street with
passengers.
Pred Ans: bus
Pred Expl: a bus is parked in
the parking lot while a
passenger boards

Q: What colors are the dining 
plates?
GT Ans: blue and white
GT Expl: two slices of pizza
are on a blue and white plate
on a coffee table.
Pred Ans: blue and white
Pred Expl: a pizza sitting on top of
a white plate covered in cheese and
veggies

Pred Expl: a tennis player
is swinging his racket on
the court

Q: What kind of animal is pictured?
GT Ans: giraffe
GT Expl: a very large giraffe
that is standing in the woods

Pred Ans: giraffe
Pred Expl: a giraffe is
standing in the grass near a
fence

Figure 9: 9 examples for correctly predicted answer but incorrect explanation.
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