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Abstract

Dermatological classification algorithms developed without sufficiently diverse
training data may generalize poorly across populations. While intentional data
collection and annotation offer the best means for improving representation, new
computational approaches for generating training data may also aid in mitigating the
effects of sampling bias. In this paper, we show that DALL·E 2, a large-scale text-
to-image diffusion model, can produce photorealistic images of skin disease across
skin types. Using the Fitzpatrick 17k dataset as a benchmark, we demonstrate that
augmenting training data with DALL·E 2-generated synthetic images improves
classification of skin disease overall and especially for underrepresented groups.

1 Introduction

Skin disease classification algorithms based on modern machine learning algorithms are now entering
clinical and commercial use [4, 8, 14]. Although these algorithms have demonstrated results on par
with those of board-certified dermatologists, many remain concerned about the limited representation
of darker skin tones in development datasets, which may negatively impact their performance across
diverse populations [1, 3].

In response, several groups have collected and released benchmark data repositories with data from
more diverse populations; these include skin tone annotations that may be used to study and improve
bias in classification models [2, 6]. However, even with intentional upsampling in data collection, it is
difficult to achieve parity in representation or performance for underrepresented groups, particularly
across the dozens or hundreds of skin conditions that may be included as possible prediction outputs.

Recent breakthroughs in large-scale diffusion models [10, 12, 13] have enabled generation of pho-
torealistic images based on either text alone or text and image inputs in combination. Synthetic
data produced by such models have the potential to improve prediction models [9], especially for
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Figure 1: A schematic overview of the study A) We selected seven skin conditions from the
Fitzpatrick 17k dataset [6]. For each skin condition, we randomly sampled eight images from the
lightest and darkest Fitzpatrick skin types (16 total images for one condition) and used these images
as seed images in the editor of OpenAI’s DALL·E 2 model to produce synthetic variations. We
selected four synthetic images per seed image for inclusion in the subsequent analysis. B) We trained
image classification models to predict skin condition labels using different train/test splits. Models
were trained on skin images from lighter skin types (FST I-II) and tested on images with darker
skin types (FST V-VI), and vice versa. We ran experiments where training data included either (1)
Fitzpatrick 17k images only, (2) Fitzpatrick 17k + seed images, and (3) Fitzpatrick 17k + seed images
+ DALL·E 2 generated synthetic images.

underrepresented disease classes and skin tones. In this paper, we describe a pipeline for producing
photorealistic images of skin disease using the transformer-based generative model DALL·E 2. We
show that targeted generation of synthetic images can be used to improve the performance of der-
matological classifiers on a diverse benchmark dataset overall and particularly for underrepresented
groups.

2 Methods

2.1 The Fitzpatrick 17k dataset

Images of skin conditions with accompanying diagnostic and skin tone labels are derived from the
Fitzpatrick 17k dataset [6]. These data sourced thousands of images from two online dermatology
atlases—DermaAmin and Atlas Dermatalogico—and assigned Fitzpatrick skin type (FST) labels
to each image using a dynamic consensus process involving 2-5 annotators from Scale AI. The
label error rate was estimated at 3.4% relative to board-certified dermatologists. An independent
set of annotations were later assigned by a separate team from Centaur Labs [7]. This produced a
final dataset comprising 16,577 clinical images. Together, these images represented 114 of the most
common dermatology conditions, with a minimum of 53 images per condition.

2.2 Selection of skin conditions for retraining models with synthetic images

We selected a subset of seven disease labels from the 114 available in the Fitzpatrick 17k dataset: basal
cell carcinoma, folliculitis, neutrophilic dermatoses, prurigo nodularis, squamous cell carcinoma,
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Table 1: Sample sizes of seven skin conditions analyzed in this study, by Fitzpatrick skin type

FST Basal Cell
Carcinoma Folliculitis Nematode

Infection
Neutrophilic
Dermatoses

Prurigo
Nodularis Psoriasis Squamous Cell

Carcinoma Total

I 85 30 15 70 7 113 100 420

II 156 97 56 115 28 232 180 864

III 112 99 79 68 39 101 122 620

IV 76 51 60 51 56 91 71 456

V 24 31 32 31 29 64 40 251

VI 7 9 12 15 9 21 23 96

Total 460 317 254 350 168 622 536 2707

nematode infection, and psoriasis. These seven conditions were selected as follows: (1) first, we
reproduced the analysis by Groh et al. [6] across all 114 conditions in the Fitzpatrick 17k dataset; (2)
second, we identified skin conditions that had both the largest sample size at the extremes of FST (I-II
or V-VI) and non-zero accuracy when tested on conditions unrepresented in model training. Table 1
lists the sample sizes of each skin condition across FST labels in the dataset.

2.3 Synthetic data augmentation using DALL·E 2

We generated photorealistic synthetic images from seed images in the Fitzpatrick 17k dataset using
OpenAI’s DALL·E 2 model with the following workflow (Figure 1A). For a given skin condition, we
randomly sampled eight images from the lightest and darkest Fitzpatrick skin types (16 total images
for one condition) to use as seed images. We cropped each seed image with square dimensions
centered around the disease pathology. We then utilized DALL·E 2 editor’s ‘inpainting’ function to
isolate the primary dermatologic pathology and surrounding skin from background artifacts. The
resulting image was used alongside a text prompt to generate synthetic images. Text prompts were
produced using the following template: “An image of [skin condition] on the [body part] of a [skin
type description] [noun].” All text prompts are listed in Supplementary Table 2. We created eight
(on average) synthetic images from each image-text pair, from which we chose four to download
and include in our DALL·E 2 training sets. The four images were chosen for photorealism and
pathophysiologic consistency. Examples of seed and selected synthetic images are shown in Figure 2.
Examples of unselected synthetic images are shown in Supplementary Figure 1.

2.4 Model training and evaluation

We trained image classification models to predict skin condition labels among the seven skin condi-
tions using different train and test splits. Following Groh et al. [6], initial models were trained on
images of the lightest skin types (FST I-II) and tested on images of darker skin types (FST III-IV
and V-VI). The model was also trained on images of the darkest skin types (FST V-VI) and tested on
images of lighter skin types (FST I-II and III-IV). These accuracy metrics were used as baselines for
comparison against alternate training procedures (Figure 3).

For three skin conditions (squamous cell carcinoma, psoriasis, and neutrophilic dermatoses) we
created training sets that included either FST I-II or FST V-VI images from Fitzpatrick 17k supple-
mented with either 8 seed images from the opposite FST group or both the 8 seed images and 32
DALL·E 2 generated images.

Seed images were not included in any test set. The model architecture and training pipeline, com-
prising a VGG16 network pre-trained on ImageNet, follows the same structure provided by Groh et
al. [6]. Training was performed using Adam optimization and with a weighted random sampler to
address class imbalance across skin conditions. Standard image transformations and normalization
was applied at the time of training.

2.5 Dose-response relationship and spillover effects on classification accuracy

To assess how adding synthetic images of one skin condition affects prediction accuracy across the
other skin conditions, we measured model accuracy broadly on all skin conditions in the dataset. For
three skin conditions, we also compared models trained on a varying number of synthetic images of
the darkest and lightest skin types (2, 8, 16, and 32) to test for a dose-response relationship.
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Figure 2: Examples of DALL·E 2-generated synthetic images We generated synthetic images for
three conditions: psoriasis, squamous cell carcinoma, and neutrophilic dermatoses. For each seed
image (left), four synthetic images are shown (right). A full table of text prompts used in these image
generations can be found in Supplementary Table 2.
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Table 2: Model performance across different real and synthetic training datasets

Neutrophilic Dermatoses: Classification Accuracy (95% CI), N

Trained on FST I-II Trained on FST V-VI

FST N Fitzpatrick +Seed +DALL·E 2 & Seed Fitzpatrick +Seed +DALL·E 2 & Seed N
I-II — — — — 0.175 (0.12-0.23) 0.310 (0.24-0.38) 0.610 (0.54-0.68) 177
III-IV 119 0.311 (0.23-0.39) 0.395 (0.31-0.48) 0.411 (0.32-0.50) 0.311 (0.23-0.39) 0.378 (0.29-0.47) 0.571 (0.48-0.66) 119
V-VI 37 0.243 (0.10-0.38) 0.594 (0.44-0.75) 0.675 (0.52-0.83) — — — —

Psoriasis: Classification Accuracy (95% CI), N

Trained on FST I-II Trained on FST V-VI

FST N Fitzpatrick +Seed +DALL·E 2 & Seed Fitzpatrick +Seed +DALL·E 2 & Seed N
I-II — — — — 0.249 (0.20-0.29) 0.359 (0.31-0.41) 0.504 (0.45-0.55) 337
III-IV 192 0.495 (0.42-0.57) 0.557 (0.48-0.63) 0.573 (0.50-0.64) 0.255 (0.19-0.31) 0.370 (0.30-0.44) 0.463 (0.39-0.53) 192
V-VI 77 0.753 (0.66-0.85) 0.857 (0.78-0.94) 0.857 (0.78-0.94) — — — x

Squamous Cell Carcinoma: Classification Accuracy (95% CI), N

Trained on FST I-II Trained on FST V-VI

FST N Fitzpatrick +Seed +DALL·E 2 & Seed Fitzpatrick +Seed +DALL·E 2 & Seed N
I-II — — — — 0.272 (0.22-0.32) 0.349 (0.29-0.41) 0.577 (0.52-0.64) 272
III-IV 193 0.492 (0.42-0.56) 0.487 (0.42-0.56) 0.461 (0.39-0.53) 0.389 (0.32-0.46) 0.430 (0.36-0.50) 0.461 (0.39-0.53) 193
V-VI 55 0.545 (0.41-0.68) 0.618 (0.49-0.75) 0.691 (0.57-0.81) — — — —

3 Results

3.1 Dermatological classifiers generalize poorly to underrepresented skin types

We observed that models trained using data from one end of the Fitzpatrick skin-type (FST) scale
may exhibit worse performance on skin-types on the opposite end of the FST scale (Table 2). An
example of this is seen for neutrophilic dermatoses, where a model trained on images with the lightest
FST labels (I-II), exhibited worse performance for the darkest skin types (prediction accuracy for
FST V-VI: 24.3%) than for the intermediate skin types (prediction accuracy for FST III-IV: 31.1%).
This trend was observed for both models trained on light and tested on dark skin types as well as
for models trained on dark and tested on light skin types. In squamous cell carcinoma, for instance,
models trained on the darkest skin types (FST V-VI) performed worse on the lightest skin types
(prediction accuracy for FST I-II: 27.2%) than on the intermediate skin types (prediction accuracy
for FST III-IV: 38.9%). In other instances, the trend was reversed, as in psoriasis, where model
performance was better in the darkest FST labels (prediction accuracy for FST V-VI: 75.3%) than in
the intermediate labels (prediction accuracy for FST III-IV: 49.5%) when the model was trained on
images from the lightest FST groups (FST I-II).

3.2 Improved performance for skin disease classification with added synthetic training images

Model performance generally improved when training was supplemented by seed images from
unrepresented FST labels and improved further when additionally supplemented by synthetic images
generated by DALL·E 2 (Figure 3), although substantial imprecision was observed for conditions
with limited test data. The most substantial improvements occurred for images of skin tones least like
those on which the model was trained. An example of this can be seen in squamous cell carcinoma
for models trained on FST V-VI (bottom right Figure 3). The difference between the performance of
the model trained on Fitzpatrick 17k images only and the model trained with Fitzpatrick 17k images
plus synthetic and seed images is 7.2% for the FST III-IV group, whereas the performance difference
is 30.5% in the FST I-II group (the group furthest from the FST V-VI images).

3.3 Secondary analyses showed positive dose-response effect overall and modest spillover
effects in non-augmented skin conditions

When we incrementally added 2, 8, 16, and 32 synthetic images to the models, we saw overall
increases in model performance in correspondence to the number of synthetic images added, lending
evidence toward a dose-response effect (Table 3). In a separate analysis, we generally observed
modest changes in classification accuracy for non-augmented skin conditions when synthetic images
from one skin condition were added to the training data. The largest difference in performance
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Figure 3: Model accuracy for different real and synthetic training datasets Results are shown
for three disease labels across models. Each bar represents the performance of a model trained on a
subset of Fitzpatrick skin types (e.g. I-II) and tested on the rest of the skin types (e.g. III-IV & V-VI).
The color labels represent which images were included in training. “fitz_only” includes only original
images from the Fitzpatrick 17K dataset. “seed” includes the original images plus the 8 seed images
that were removed from the test set and used in the image generation process. “dalle_and_seed”
includes the original images plus synthetic and seed images.

Table 3: Classification accuracy by skin type with successive addition of synthetic training images

Classification accuracy by number of added synthetic training images
FST +2 images +8 images +16 images +32 images N

Neutrophilic Dermatoses

III-IV 0.37 0.34 0.39 0.45 119
V-VI 0.29 0.29 0.58 0.68 37

Psoriasis

III-IV 0.49 0.56 0.56 0.51 192
V-VI 0.78 0.82 0.83 0.86 77

Squamous Cell Carcinoma

III-IV 0.44 0.43 0.50 0.46 193
V-VI 0.56 0.53 0.60 0.69 55

occurred in basal cell carcinoma after light-skinned (FST I-II) synthetic images of squamous cell
carcinoma were included in the training set containing only images from FST V-VI. Classification
accuracy for basal cell carcinoma in FST I-II decreased from 66.4% to 30.7% (N = 241) and from
68.1% to 50.5% (N = 188) in FST III-IV (Supplementary Table 1).

4 Discussion

Development datasets for machine learning models are limited by class imbalances that may limit
generalizability for underrepresented groups. We present a proof-of-concept that data augmentation
using photorealistic synthetic images of dermatologic pathologies may improve performance across
diverse populations in several skin conditions. The results extend upon prior work leveraging deep
generative adversarial networks (GANs) [5], style transfer [11], deep blending, or other methods for
synthetic data generation.

Performance improvements were observed to follow a dose-response relationship for several skin
conditions as synthetic images were added up to a maximum of 32 images (Table 3). Although
adding synthetic images primarily affected classification for the skin conditions used to produce
them, we observed some instances of performance degradation in non-augmented disease classes
(Supplementary Table 1).
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Limitations include the limited number of assessed skin conditions, use of a coarse photosensitivity
scale to represent skin tone, and requirement for manual involvement in the image generation process.
We also cannot rule out the possibility of data leakage from inclusion of Fitzpatrick 17k test data in
the DALL·E 2 training data, or from highly similar images in Fitzpatrick 17k. Follow-up work may
compare diffusion models head-to-head with previous approaches (e.g., GANs), directly quantify
photorealism (e.g., using a Turing test for human clinicians), or investigate the use of synthetic data
augmentation to improve robustness to other challenging domains (e.g., lighting conditions or zoom
settings).

With the DALL·E 2 application programming interface (API) now available alongside the already
open-source Stable Diffusion model, developing nearly or fully automated pipelines for prompting,
generating, and selecting synthetic images at scale may soon be feasible. The creation of large, expert-
vetted repositories of synthetic data could improve access to diverse training data while mitigating
privacy concerns. In addition, investigators could study the effect of adding synthetic images in
numbers comparable to or greater than the training data. Of note, a recent study of glaucoma detection
showed that models trained exclusively on synthetic images generated by GANs resulted in similar
performance on external test sets as models trained exclusively on real images [11].

While collection of diverse real-world data remains the most important and rate-limiting step for
improving skin classification models, we believe that the concomitant use of synthetic data, along
with traditional methods of re-weighting and upsampling, may act as a force-multiplier to continually
improve classification models for skin pathology.
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