
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PACKETLSTM: DYNAMIC LSTM FRAMEWORK FOR
STREAMING DATA WITH VARYING FEATURE SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the online learning problem characterized by the varying input feature
space of streaming data. Although LSTMs have been employed to effectively
capture the temporal nature of streaming data, they cannot handle the dimension-
varying streams in an online learning setting. Therefore, we propose a dynamic
LSTM-based novel method, called packetLSTM, to model the dimension-varying
streams. The packetLSTM’s dynamic framework consists of an evolving packet
of LSTMs, each dedicated to processing one input feature. Each LSTM retains the
local information of its corresponding feature, while a shared common memory
consolidates global information. This configuration facilitates continuous learn-
ing and mitigates the issue of forgetting, even when certain features are absent for
extended time periods. The idea of utilizing one LSTM per feature coupled with
a dimension-invariant operator for information aggregation enhances the dynamic
nature of packetLSTM. This dynamic nature is evidenced by the model’s ability
to activate, deactivate, and add new LSTMs as required, thus seamlessly accom-
modating varying input dimensions. The packetLSTM achieves state-of-the-art
results on five datasets, and its underlying principle is extended to other RNN
types, like GRU and vanilla RNN.

1 INTRODUCTION

Online learning, characterized by streaming data, where data instances arrive one by one, has been
studied extensively (Gama, 2012; Neu & Olkhovskaya, 2021; Agarwal et al., 2008). Recently, there
has been a growing focus on online learning in environments with varying input feature spaces.
Examples include movie sentiment classification and crowdedness severity prediction (He et al.,
2023; Agarwal et al., 2024). These varying input features, termed haphazard inputs (Agarwal et al.,
2023), are denoted as Xt ∈ Rdt

, where dt indicates the dimensionality of input, varying over
time t. The field of haphazard inputs is expanding, prompting the introduction of new methods,
applications, and appropriate datasets as elaborated in section A of the Appendix.

The current landscape is focused on developing new methods. Predominantly, haphazard inputs
are modeled using classical approaches like naive Bayes (Katakis et al., 2005), decision stumps
(Schreckenberger et al., 2022; 2023), and linear classifiers (Beyazit et al., 2019), favored for their
dynamic architectures. However, there is a push towards developing dynamic deep learning solu-
tions (Agarwal et al., 2022; 2023), motivated by the capabilities of neural networks. Nevertheless,
current methodologies have not adequately leveraged the streaming nature of data. To bridge this
gap, we advocate using Recurrent Neural Networks (RNNs) (Hochreiter & Schmidhuber, 1997;
Zhang et al., 2021a), which can effectively exploit the temporal dynamics of data.

We introduce a novel architecture, termed packetLSTM, designed to dynamically adapt to vary-
ing input feature space. This framework employs a unique ensemble of Long Short-Term Memory
(LSTM) units, each dedicated to a specific input feature. The packetLSTM allows for robust inter-
action among its LSTMs, fostering the integration of global information while preserving feature-
specific knowledge within each unit’s short-term memory. The packetLSTM facilitates continuous
learning without the risk of catastrophic forgetting in online learning environments (Hoi et al., 2021).
The feature-based learning, coupled with a dimension-invariant aggregation operator, allows pack-
etLSTM to dynamically activate, deactivate, and add new LSTMs as needed, leading to adeptly
managing haphazard inputs. The main contributions of our work are as follows. (1) We intro-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

duce the first RNN-based framework, packetLSTM, to effectively handle haphazard inputs in online
learning. (2) The packetLSTM exhibits learning without forgetting capabilities in an online learning
setting. We demonstrate this capability in a challenging scenario where certain features are absent
for extended time periods. (3) The principles underlying the packetLSTM framework are adapt-
able and can be extended to other types of RNNs, like Gated Recurrent Units (GRUs) and vanilla
RNNs. We substantiate this adaptability by developing packetGRU and packetRNN models. (4) We
achieve state-of-the-art results across five datasets, as shown in Figure 1. (5) We introduce a strong
baseline based on the Transformer called HapTransformer and demonstrate that HapTransformer
outperforms other baselines; however, it is still inferior to packetLSTM.

2 RELATED WORKS

Figure 1: Performance comparison of packetLSTM
with other models. The legend and outer labels are
methods and datasets, respectively. Exact balanced
accuracy values are provided in Table 1.

Haphazard Inputs The initial approach
to address haphazard inputs utilized naive
Bayes and χ2 statistics to dynamically
incorporate features, update existing fea-
ture statistics, and select a feature subset
(Katakis et al., 2005). This method was fur-
ther expanded by employing an ensemble of
naive Bayes classifiers for predictive anal-
ysis (Wenerstrom & Giraud-Carrier, 2006).
Subsequent research has focused on in-
ferring unobserved features from observed
ones using various techniques, including
graph methods (He et al., 2019; Sajedi &
Razzazi, 2024), and Gaussian copula (He
et al., 2021; Zhuo et al., 2024), followed
by the application of classifiers across the
complete feature space. Concurrently, an-
other line of research projects data into a
shared subspace to learn a linear classifier
using empirical risk minimization (Beyazit
et al., 2019) or online gradient descent (Zhou & Matsushima, 2023). Distinctly, You et al. (2024)
maintains an informativeness matrix of each feature to update a linear classifier. Another research
direction explores the use of decision trees to handle haphazard inputs. Specifically, Schrecken-
berger et al. (2022) proposed Dynamic Forest, which uses an ensemble of decision stumps, each
based on a feature from a selected subset of all seen features. However, this approach can result in
numerous decision stumps, prompting Schreckenberger et al. (2023) to introduce a refined approach
that constructs only one decision stump for each feature. Lee et al. (2023a) proposed to utilize
adaptive random forest on a fixed set of features, created through imputation assuming large buffer
storage. Despite the dynamic nature of the above classical methods in modifying their architectures,
the era of big data necessitates adopting deep learning approaches to effectively model haphazard
inputs. To date, seminal contributions in this domain include works by Agarwal et al. (2022; 2023),
which are based on neural networks. The Auxiliary Network (Agarwal et al., 2022) incorporates
parallel hidden layers to process each input feature. Conversely, Aux-Drop (Agarwal et al., 2023)
implements selective and random dropouts within its layers to handle haphazard inputs. Although
these models operate under specific assumptions, recent advancements by the same authors (Agar-
wal et al., 2024) provide simple solutions to mitigate these assumptions in haphazard inputs. While
all the methods discussed above handle haphazard inputs, none effectively exploits the temporal dy-
namics of streaming data, which we achieve using RNNs, specifically LSTMs. The comparison of
haphazard inputs with other varying feature space fields is presented in section V of Appendix.

RNNs RNNs are among the most popular models in sequential data analysis (Salehinejad et al.,
2017; Allen-Zhu & Li, 2019). Various techniques are developed to capture the temporal dynamics
of data, including stacking LSTMs to establish a hierarchical framework (Hermans & Schrauwen,
2013; Wang et al., 2017), as well as designing specialized time-modeling LSTM units (Che et al.,
2018; Kazemi et al., 2019). In this article, we utilize Time-LSTM (Zhu et al., 2017) as our LSTM
units because of its demonstrated capability in modeling both short-term and long-term interest.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

LSTMs have also been extensively used in the field of multi-modality (Xie & Wen, 2019; Liu et al.,
2018; Xu et al., 2020; Lee et al., 2023b). However, to the best of our knowledge, the RNN-based
models proposed in the multi-modal domain or any other domain are not capable of modeling data
with varying input dimensions in an online learning setting as discussed in section B of the Ap-
pendix. Therefore, we propose a new dynamic RNN framework in this article, filling a significant
gap in the research landscape of RNNs and haphazard inputs.

3 PRELIMINARIES

Notations In this article, we represent time in superscript and feature id in subscript. For example,
x3
2 represents the value of feature 2 (F2) at time t3. For ease of readability, we slightly adjust the

notation of time here. Instead of denoting by vt1j , we use v1j . When time is referenced individually,
it is denoted as t1. Moreover, t indicates a random time, and t − 1 denotes the time preceding t. A
complete list of notations is provided in section C of the Appendix.

Characteristics Haphazard inputs exhibit six characteristics which are illustrated in Figure 2(b).
These characteristics are: (1) Streaming data, which are received sequentially and processed with-
out storage. (2) Missing data, which are features present in some instances but may be absent in
subsequent ones like F1 at time t2. (3) Missing features, that are not received from the onset; how-
ever, their availability is known like F4. (4) Sudden features, that arrives unexpectedly without prior
indication of their existence like F3 at time t2. (5) Obsolete features, which can cease to exist after
any instance, such as F2. (6) Unknown number of total features, results from the combined effect of
missing data, missing features, sudden features, and obsolete features.

Feature Space The characteristics of haphazard inputs result in a varying feature space. We define
a universal feature space (F̄t) as the set of features encountered till time t. The specific set of features
present at time t is represented by Ft and is termed current feature space as shown in Figure 2(b).
The universal feature space will grow with time due to the emergence of sudden features and missing
features. For example, F̄1 = {F1, F2} at time t1, and F̄2 = {F1, F2, F3} at time t2 in Figure 2(b).
In an ideal condition, F̄t can contract with the removal of obsolete features; however, since the
cessation of obsolete features is unknown, F̄t may not decrease in practice.

Mathematical Formulation The haphazard input received at time t can be represented by Xt,
where Xt ∈ R|Ft|. Here, | · | represents the cardinality of a set. The corresponding ground truth is
denoted by yt, where yt ∈ [0, 1]C and C is the number of classes. This paper deals with the binary
classification problem but can be easily extended to multi-class scenarios. The model, denoted by
f , operates in an online learning setting with f t−1 : Xt → yt, where f0 represents the initialized
state of the model. After processing {Xt, yt}, the model’s state is represented by f t. At each time
t, the model receives Xt, and f t−1 processes Xt to yield a prediction ŷt. Upon the revelation of yt,
the loss lt = H(yt, ŷt) is computed, where H is a loss function. The model then updates from f t−1

to f t for the subsequent instances based on lt. This iterative process continues for each instance.

4 METHOD

The packetLSTM consists of a pack of LSTMs, each dedicated to a distinct feature, as illustrated
in the gray box in Figure 2(a). We utilize LSTMs due to their proven effectiveness in capturing
temporal dynamics of data (Kazemi et al., 2019; Wang et al., 2017; Zhang et al., 2021a).

Due to the varying dimensions of input feature space, a single LSTM cannot process all features,
necessitating one LSTM per feature. Each LSTM (Lj) receives inputs comprising the feature value
(xt

j), time delay (∆t
j), its previous short-term memory (ht−

j), and common long-term memory
(ct−1), as labeled Input in Figure 2(a). The ∆t

j measures the time difference between the current
time t and the last observed time t− for feature j. This temporal information is critical to the model
because feature availability varies (Zhu et al., 2017; Che et al., 2018).

At each instance, only LSTMs corresponding to available features are activated. For example, at time
t2, the absence of feature F1 results in the deactivation of LSTM L1, depicted by a sketched gray

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) packetLSTM Architecture

Memory

Time Delay

Values

Short-Term
Input

Time

Evolving packets of LSTMs

,

L1 L2

Memory
Short-Term
Long-Term

Output

Aggregation AGG

Aggregated Memory
Predictive
Short-Term

Common
Long-Term

AGG

Concatenation

FCNFully Connected Network (FCN)

Final Output

Updated Short-Term
Memories of each LSTM

,

L1 L2

AGGAGG

FCN

L3

,

L1 L2

AGGAGG

FCN

L3 L4

, , ,

Initialize

Initialize

Current Feature Space

Missing
Feature

Obsolete
Feature

Sudden
Feature

Missing
Data

(b) Data Snapshot

Common
Long-Term

Figure 2: (a) The packetLSTM architecture based on (b) the data snapshot.

box in Figure 2(a). Thus, packetLSTM dynamically handles all the characteristics of the haphazard
inputs by activating, deactivating, or adding new LSTMs as needed.

The common long-term memory (ct), which aggregates information from all long-term memories of
active LSTMs, facilitates the interaction among features, crucial for enriched knowledge acquisition
(Zhang et al., 2021b). This ct contains global information, while the short-term memory of each
LSTM retains the local information about individual features, alleviating the issue of catastrophic
forgetting in an online learning setting. The aggregation operator, being dimension-invariant, ac-
commodates the variable number of features. All active short-term memories are aggregated to
generate a predictive short-term memory (ht). These memories are subsequently concatenated and
processed through a fully connected classifier to produce the final output ŷt (see Figure 2(a)).

The model parameters are updated based on the loss lt = H(yt, ŷt) in an online learning setting.
New LSTMs are introduced with initialized memories (h0, ct−1) and a time delay (∆) set to zero
for sudden (e.g., F3 at t2) and missing features (e.g., F4 at t3), as shown in Figure 2.

Working Principle Based on the current feature space Ft at time t, the output of each LSTM is
given by ht

j , c
t
j = Lj(x

t
j ,∆

t
j , h

t−
j , ct−1) ∀ Fj ∈ Ft. Numerous LSTM variants exist in the literature

that model time delay (∆t
j), such as decay in GRU-D (Che et al., 2018), time gate in Phased LSTM

(Neil et al., 2016), and Time2Vec (Kazemi et al., 2019). In this article, we employ Time-LSTM
(Zhu et al., 2017) because of its highly demonstrated capability in modeling time information. Time-
LSTM utilizes time delay to capture the short-term interest for current instances and preserves these
delays to address long-term interest for future instances. We specifically utilize Time-LSTM 3 (T-3)
among its three versions – Time-LSTM 1, Time-LSTM 2, and T-3 – because it integrates the input

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and forget gates (Greff et al., 2016), offering a model that is both less computationally intensive and
concise. The formulation of T-3 (and other time modeling variants) for feature j at time t, within
the packetLSTM framework, represented by Lj , is discussed in the section D of the Appendix.

Our packetLSTM framework differs from T-3 in its approach to handling input feature spaces. Un-
like T-3, which utilizes a single LSTM unit for a fixed feature space, our approach employs a distinct
LSTM unit for each feature to manage a varying feature space. This necessitates a different input
configuration for each LSTM compared to the T-3. Specifically, rather than using the previous long-
term memory of each LSTM as an input, the packetLSTM framework utilizes a common long-term
memory, which facilitates interaction among features. Moreover, while T-3 accepts the short-term
memory from time t − 1 as input at time t, the packetLSTM inputs the short-term memory from
time t− at time t, where t− is not necessarily equal to t− 1 in haphazard inputs.

Next, a dimension-invariant aggregation operator (AGG) determines the common long-term mem-
ory and the predictive short-term memory as

ct = AGG(
⋃

j,∀Fj∈Ft

{ctj}), ht = AGG(
⋃

j,∀Fj∈Ft

{ht
j}). (1)

The AGG operator, defined as AGG : [R]|F
t| → R, accepts a variable number of inputs, specifi-

cally, |F t| inputs. Given that ctj and ht
j are vectors, the AGG operator performs aggregation element-

wise. Common examples of dimension-invariant aggregation operators include mean, maximum,
minimum, and summation. Finally, the prediction ŷt is generated by a fully connected neural net-
work (FCN), applied on the concatenation of ct and ht as ŷt = FCN(concat(ct, ht)).

5 EXPERIMENTS

Datasets We consider 5 datasets – magic04 (Bock et al., 2004), imdb (Maas et al., 2011), a8a
(Kohavi et al., 1996), SUSY (Baldi et al., 2014), and HIGGS (Baldi et al., 2014) – with details
provided in section E of the Appendix. The motivation to choose these datasets is three-fold. First,
they include both real (imdb) and synthetic datasets. Second, the number of instances varies from
19020 in magic04 to 1M in HIGGS. Third, the number of features ranges from 8 in SUSY to 7500
in imdb. Therefore, the diversity in the number of features and instances allows us to determine the
efficacy of packetLSTM effectively. The imdb dataset is haphazard in nature. However, the synthetic
dataset needs to be transformed into haphazard inputs. Following the baseline papers (Beyazit et al.,
2019; Agarwal et al., 2023), we transform synthetic datasets based on the probability values p, where
p = 0.25 means only 25% of features are available at each time instance. We consider p = 0.25,
0.5, and 0.75. The synthetic dataset preparation is further discussed in section E of the Appendix.

Metrics We compare all models using five metrics: number of errors, accuracy, Area Under
the Receiver Operating Characteristic curve (AUROC), Area Under the Precision-Recall Curve
(AUPRC), and balanced accuracy. Each metric is discussed in section F of the Appendix. The
balanced accuracy is the primary comparison metric in the main manuscript, while detailed compar-
isons using the other metrics are presented in section K of the Appendix. We adhere to the standard
evaluation protocol for haphazard inputs, which is detailed in section G of the Appendix.

Baseline We consider 10 baseline models, including NB3(Katakis et al., 2005), FAE (Wenerstrom
& Giraud-Carrier, 2006), DynFo (Schreckenberger et al., 2022), ORF3V (Schreckenberger et al.,
2023), OLVF (Beyazit et al., 2019), OCDS (He et al., 2019), OVFM (He et al., 2021), Aux-Net
(Agarwal et al., 2022), Aux-Drop (Agarwal et al., 2023), and OLIFL(You et al., 2024). Additionally,
there are a few other models – see section H of the Appendix – applicable to the field of haphazard
inputs. However, we could not include these models because of the lack of open-source code and
the challenges associated with implementing them.

Implementation Details We ran all the models five times, except for the deterministic models –
NB3, FAE, OLVF, and OLIFL – which consistently produce identical outcomes across runs. The re-
sults are reported as mean ± standard deviation (std). For packetLSTM, max and mean aggregation
operators were used in synthetic and real datasets, respectively. Additionally, Z-score normalization
was implemented in an online manner, as discussed in section 6. The implementation details and
hyperparameter search are discussed in the section I and J of the Appendix, respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison of models on all datasets based on balanced accuracy. The deterministic mod-
els — NB3, FAE, OLVF, and OLIFL — underwent a single execution, and the non-deterministic
models were executed 5 times, with the mean ± standard deviation reported. A ‡ symbol indicates
non-deterministic models that were run only once on specific datasets due to substantial time con-
straints, and † denotes the real datasets. % Im. denotes the % improvement in the performance of
packetLSTM compared to the previous best-performing baseline (denoted by italics) in each dataset.

Dataset p NB3 FAE OLVF OLIFL OCDS OVFM DynFo ORF3V Aux-Net Aux-Drop packetLSTM % Im.

magic04
0.25 50.01 50.01 53.18 53.06 51.89±0.10 51.94±0.00 52.75±0.30 47.94±0.22 50.09±0.07 56.04±0.53 61.33±0.07 9.44
0.50 50.02 50.00 54.60 57.28 53.40±0.45 54.13±0.08 55.12±0.06 48.56±0.11 50.09±0.03 59.29±0.48 68.31±0.15 15.21
0.75 49.99 50.00 56.19 60.75 53.76±1.07 58.79±0.04 56.75±0.02 49.32±0.04 50.05±0.07 63.18±0.61 73.64±0.11 16.56

imdb† 81.56 82.18 80.08 54.36 50.14±0.02 77.43‡ 57.98±0.29 76.47±0.11 67.41‡ 73.10±0.19 85.06±0.04 3.50

a8a
0.25 50.01 50.00 60.67 53.57 54.75±0.87 58.66±0.00 50.01±0.03 49.99±0.00 50.00±0.00 50.00±0.01 60.53±0.16 -0.23
0.50 50.01 50.00 66.46 54.63 64.04±1.01 66.02±0.00 50.11±0.01 50.01±0.00 50.00±0.00 55.33±1.99 67.73±0.21 1.91
0.75 50.01 50.00 70.60 56.56 68.81±1.10 70.95±0.00 50.13±0.01 49.99±0.00 50.00±0.00 62.87±0.93 71.11±0.16 0.23

SUSY
0.25 50.00 49.90 51.12 51.23 52.11±0.19 58.00±0.00 54.69±0.01 49.37±0.01 50.53±1.17 61.98±0.10 62.77±0.01 1.27
0.50 50.00 50.01 53.21 53.59 54.03±0.28 62.85±0.00 58.27±0.00 48.33±0.02 57.89±7.19 68.79±0.14 69.28±0.01 0.71
0.75 50.00 50.12 55.98 56.39 54.84±0.48 68.51±0.00 60.94±0.01 47.53±0.03 53.67±8.13 73.55±0.11 73.85±0.02 0.41

HIGGS
0.25 50.00 50.16 50.57 50.56 49.97±0.07 50.61±0.01 50.18‡ 49.86±0.03 49.99±0.00 51.17±0.05 52.22±0.04 2.05
0.50 50.00 50.01 51.21 51.50 50.06±0.06 51.40±0.01 50.21‡ 49.82±0.02 49.99±0.01 53.09±0.05 55.47±0.04 4.48
0.75 50.00 50.55 51.98 52.48 49.97±0.05 52.66±0.00 50.16‡ 49.75±0.03 49.98‡ 55.55±0.11 58.71±0.05 5.69

Results The balanced accuracy (b) of all the models is presented in Table 1. The packetLSTM
has a statistically significant better performance than all the models across each dataset except in
a8a with p = 0.25 and 0.75 (hypothesis supported by paired t-tests at 99% significance level). To
quantify the performance enhancement of packetLSTM over the previously best-performing base-
line (pbb), we calculate the % improvement as (bpacketLSTM −bpbb)∗100/bpbb, and these results are
shown in the last column of Table 1. Among synthetic datasets, packetLSTM surpasses the pbb by at
least 9.44% and 2.05% in magic04 and HIGGS, respectively. Moreover, packetLSTM consistently
exhibits superior performance across all p within the SUSY dataset. In a8a, packetLSTM achieves
the best result in 2 out of 3 cases, except at p = 0.25, where its performance is comparable. In the
real dataset (imdb), packetLSTM outperforms the pbb by a margin of 3.5%.

6 ABLATION STUDIES

We conduct ablation studies within packetLSTM to assess the impact of each component and iden-
tify optimal variants, adhering to the hyperparameters described in Implementation Details of section
5, unless specified otherwise. We report the mean of the balanced accuracy in the main manuscript
(Table 2), with std detailed in section L of the Appendix. We calculate the number of wins for each
component across all dataset combinations, defining a win as achieving the highest balanced accu-
racy or being within a 0.05 margin of the top value, accounting for variability indicated by the std.
For example, in the magic04 dataset at p = 0.25, the packetLSTM with the Min aggregator reports
a slightly higher balanced accuracy (61.36) than the Max (61.33) but exhibits greater std (0.14 vs.
0.07). This variability suggests that some runs using the Min aggregator achieved lower balanced
accuracy than the Max. Therefore, a 0.05 margin mitigates such discrepancies.

Which aggregation operator performs the best? The Max operator, in general, performed best
with 7 wins, as shown in the AGG component of Table 2. However, to determine the best operators,
we compare them one by one (see → in Table 2). (1) The performance difference between Min
and Max is negligible, indicating both are suitable choices. (2) Between Sum and Mean, there is
no evident superiority. However, the Sum is sensitive to the number of features, while the Mean
remains relatively stable unless the feature distribution changes substantially. We tested this by al-
ternating p (from 0.25 to 0.75) every 100 instances in the a8a dataset, which has the most features
among the synthetic datasets. The Mean operator (balanced accuracy = 62.77) substantially out-
performed the Sum operator (54.16), establishing the Mean as the superior operator. (3) Table 2
indicates that the efficacy of the Mean increases as data availability decreases from p = 0.75 to 0.25.
Further experiments at p = 0.05 and 0.95, shown in section M of the Appendix, validate this trend.
Consequently, Max is recommended for scenarios with high data availability, while the Mean is
preferable otherwise. This is further supported by the imdb dataset (p = 0.0165), where the Mean
(85.06) significantly surpassed the Max (77.90). Consequently, we utilized the Max aggregator for
all the synthetic datasets and the Mean operator for the real dataset.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Ablation study on the components (Comp.) of packetLSTM. Here, w stands for the number
of wins a variant registered out of all the 13 dataset combinations. The variants marked in bold and
italics are employed in packetLSTM. → denotes the difference between two variants.

C
o
m
p
.

Variants magic04 imdb a8a SUSY HIGGS w
25 50 75 25 50 75 25 50 75 25 50 75

A
G
G

Mean 60.98 67.06 72.30 85.06 58.52 65.15 67.50 63.16 69.59 74.07 52.01 55.27 58.04 3
Sum 61.27 67.93 73.21 83.63 58.26 65.15 68.80 63.19 69.29 74.39 52.24 55.64 59.06 5
Min 61.36 68.28 73.58 77.64 60.53 67.78 71.13 62.78 69.29 73.85 52.21 55.50 58.70 6
Max 61.33 68.31 73.64 77.90 60.53 67.73 71.11 62.77 69.28 73.85 52.22 55.47 58.71 7

→ Min - Max 0.03 -0.03 -0.06 -0.26 0.00 0.05 0.02 0.01 0.01 0.00 -0.01 0.03 -0.01
→ Sum - Mean 0.29 0.87 0.91 -1.43 0.30 0.00 1.30 0.03 -0.30 0.32 0.03 0.37 1.02
→ Mean-Max -0.35 -1.25 -1.34 7.16 -2.01 -2.58 -3.61 0.39 0.31 0.22 -0.21 -0.2 -0.67

T
i
m
e

M
o
d
e
l None 58.83 65.12 69.87 85.18 58.77 66.52 70.30 62.30 68.70 73.25 51.37 54.05 57.06 0

Decay 58.73 64.99 69.81 85.30 58.82 67.14 70.76 62.37 68.89 73.40 51.41 54.09 57.01 1
TimeLSTM-1 61.13 68.14 73.63 85.06 60.45 67.63 71.09 62.77 69.33 73.91 52.23 55.53 58.70 8
TimeLSTM-2 61.32 68.34 73.65 85.15 60.33 67.62 71.09 62.79 69.31 73.88 52.26 55.53 58.65 9
TimeLSTM-3 61.33 68.31 73.64 85.06 60.53 67.73 71.11 62.77 69.28 73.85 52.22 55.47 58.71 10

F
e
a
t Universal 61.37 68.33 73.69 85.06 60.32 67.58 71.15 62.79 69.27 73.84 52.26 55.52 58.69 11

Current 61.33 68.31 73.64 85.06 60.53 67.73 71.11 62.77 69.28 73.85 52.22 55.47 58.71 13

C
o
n
c
a
t Only LTM 60.94 67.66 73.09 85.15 59.36 66.86 70.34 62.78 69.32 73.85 52.20 52.62 57.69 5

Only STM 61.15 68.26 73.38 85.17 60.02 67.57 70.77 62.82 69.33 73.89 52.18 52.19 57.63 5
Both 61.33 68.31 73.64 85.06 60.53 67.73 71.11 62.77 69.28 73.85 52.22 55.47 58.71 12

N
o
r
m
a
l
i
z
e

None 59.14 65.44 70.53 85.61 59.97 67.89 71.22 63.12 69.65 74.19 51.46 54.33 57.39 4
Min Max 57.69 63.33 68.42 85.23 59.94 67.76 71.15 62.37 69.06 73.61 51.21 53.10 55.52 0
Decimal Scaling 55.03 60.36 65.72 85.23 49.99 50.00 50.00 50.96 58.53 63.31 50.00 50.00 50.00 0
Mean Norm 60.23 66.71 71.86 84.89 58.03 65.94 70.07 63.19 69.68 74.31 51.86 54.88 58.11 3
Unit Vector 50.01 54.23 60.02 85.32 58.12 65.67 68.97 56.52 65.43 71.44 50.75 52.86 55.53 0
Z-score 61.33 68.31 73.64 85.06 60.53 67.73 71.11 62.77 69.28 73.85 52.22 55.47 58.71 7

R
N
N

Vanilla RNN 60.70 66.76 72.14 83.55 51.16 65.24 64.50 62.84 68.06 73.98 51.96 54.26 56.77 7
GRU 60.34 66.24 71.23 81.49 50.96 60.86 73.38 62.73 69.16 73.72 51.80 54.25 56.79 3
LSTM 58.83 65.12 69.87 85.18 58.77 66.52 70.30 62.30 68.70 73.25 51.37 54.05 57.06 4

Is time modeling beneficial? We investigated 4 variants of time modeling: T-3, Time-LSTM 2,
Time-LSTM 1, and Decay (Che et al., 2018). As observed in the Time Model component, T-3
performed the best. Moreover, LSTM, without any time modeling (None), performed the worst,
affirming the beneficial impact of time modeling for haphazard inputs. Moreover, all the 4 variants
outperform the pbb in 11 out of 13 scenarios except in a8a (p = 0.25) and SUSY (p = 0.75).

Are current feature space sufficient for the predictive capability of packetLSTM? The pack-
etLSTM utilizes current feature space for the predictive short-term memory. However, it is also
possible to consider the universal feature space by aggregating the short-term memories from all
LSTMs linked to the universal features for the predictive short-term memory. The current feature
space has 13 wins compared to 11 wins of universal feature space (see the Feat component). There-
fore, the current feature space is sufficient for enhancing the predictive capability of packetLSTM.

What is the importance of common long-term and predictive short-term memory? The final
prediction in packetLSTM concatenates common long-term and predictive short-term memory. We
assessed the importance of each memory type by comparing the original packetLSTM, termed Both,
with its variants that either exclude predictive short-term memory (Only LTM) or common long-
term memory (Only STM), as shown in the Concat component. Both significantly outperformed
others, securing 12 wins, confirming that both memory types are crucial. While common long-term
memory holds global information, predictive short-term memory provides local information, and
individually, they surpass pbb in most datasets except in a8a and HIGSS (p = 0.5).

Does the data need to be normalized? We observed significant variation in the range of feature
values across datasets. For example, in magic04, the first feature ranges from 4.28 to 334.18. There-
fore, we performed streaming normalization by using five methods: Min-Max, Decimal Scaling,
Mean-Norm, Unit Vector, and Z-score, as detailed in section N of the Appendix. Table 2 shows
that Z-score performed the best, underscoring the need for streaming normalization in handling hap-
hazard inputs. Remarkably, the packetLSTM, even without any normalization (labeled as None),
surpassed pbb in all datasets except for a8a (p = 0.25), showcasing the superiority of packetLSTM.

Is the concept of packet architecture adaptable? The packetLSTM framework’s principles are
adaptable, leading us to develop packetRNN and packetGRU architectures. We outline these ar-
chitectures’ formulations and performance in section O of the Appendix and the RNN component

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of Table 2, respectively. Both packetRNN and packetGRU deliver competitive performances com-
pared to pbb. Specifically, packetRNN outperforms pbb in the magic04, imdb, SUSY, and HIGGS
datasets, while packetGRU excels in magic04, a8a (p = 0.75), SUSY, and HIGGS. These results
confirm the effectiveness of the packet architecture. We evaluate packetLSTM without any time
modeling component for a fair comparison among packet architectures. The packetRNN emerges as
the best performer, although it significantly underperforms in the a8a dataset. Consequently, we use
LSTM for the packet architecture. Furthermore, LSTM’s ability to incorporate long-term memory
allows it to encode global information, a characteristic absent in both GRU and vanilla RNN.

Complexity Analysis The time complexity of packetLSTM is
∑T

t=1 O(g(|Ft|) ∗ s2 + P), where
T is the number of instances, O(g(|Ft|) ∗ s2) denotes the complexity for processing all activated
LSTMs at time t, and O(P) encompasses constant-time operations such as aggregations and final
predictions. Here, s is the hidden size of the LSTM, and the function g(|Ft|) varies between 1 and
|Ft|, often close to 1. Thus, the packetLSTM scales well in terms of time complexity with feature
size. The space complexity at time t is O(|F̄t| ∗ L + K), where O(L) is the space complexity
of one LSTM and O(K) accounts for the final prediction network and aggregated memories. The
introduction of sudden and missing features increases the space complexity, showing potential scal-
ability limits. However, packetLSTM easily handles the 7500 features in the imdb dataset, affirming
its capability to handle high-dimensional data. Detailed calculations of time and space complexities
and a strategy to mitigate space complexity are provided in section P and Q of the Appendix.

packetLSTM vs Single LSTM The effectiveness of packetLSTM is further evidenced through its
comparison with a single LSTM model, which necessitates the availability of all features. This re-
quirement can be met through imputation, although it requires contradicting the sixth characteristic
of haphazard inputs where the total number of features is unknown. Nonetheless, for the purpose of
evaluating packetLSTM, we compare it against a single LSTM, employing three imputation tech-
niques: forward fill, mean of the last five observed values of a feature, and Gaussian copula (Zhao
et al., 2022). Table 3 demonstrates that packetLSTM significantly outperforms single LSTM with all
imputation-based techniques across all datasets, except in a8a at p = 0.75. Further details on the sin-
gle LSTM model, hyperparameter search, the Gaussian copula model, and its specific performance
issues with the a8a and imdb datasets are discussed in section R of the Appendix.

7 CHALLENGING SCENARIOS

We design three challenging experiments to explicitly elucidate the efficacy of packetLSTM to (1)
handle sudden features, (2) handle obsolete features, and (3) demonstrate the learning without for-
getting capability. We considered the HIGGS and SUSY datasets for these experiments due to their
substantial number of instances. In the main manuscript, we discuss the results corresponding to
HIGGS, while similar conclusions for SUSY are discussed in section S.2 of the Appendix. For
comparative analysis, we opted for OLVF, OLIFL, OVFM, and Aux-Drop baselines based on their
superior performance in the HIGGS dataset, as indicated in Table 1. We divided the dataset into 5
intervals, each consisting of 20% of the total instances, with successive intervals containing the next
20% of instances. For the exact values of Figure 3 and 4, refer to section S.1 of the Appendix.

Sudden Features Here, each subsequent interval includes an additional 20% of features, starting
with 20% in the first interval and increasing to 100% by the fifth interval. This progression, termed
the trapezoidal data stream (Zhang et al., 2016; Liu et al., 2022), is illustrated in Figure 3 by a pink-
shaded region. Model performance is expected to enhance with increased data volume. All models,
except OLVF, exhibit this increasing performance trend. Notably, packetLSTM outperforms other
models in each interval, demonstrating its superior capability in handling sudden features.

Obsolete features Here, all features are initially present in the first interval, then only the first 80%
remain in the second interval, decreasing sequentially as shown in Figure 3. Intuitively, the model’s
performance should deteriorate as data volume decreases, a pattern observed in all models except
Aux-Drop. The Aux-Drop’s performance drops significantly in the second interval, suggesting a
misleading impression of improvement in the third. The packetLSTM outperforms all other methods
in each interval, demonstrating its superior ability to handle obsolete features.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Model performance in the scenario of sudden and obsolete features. The mean balanced
accuracy in each data interval (e.g., 0 - 0.2 M) is shown in its middle (0.1 M). The pink-colored
y-axis represents the Features. For e.g., ‘1-4’ means features 1 to 4 are available in instances shaded
with pink color. Both y-axes are shared by the two graphs.

Figure 4: Mitigating catastrophic forgetting: Models performance in reappearing features scenario
and its capability of learning without forgetting. The mean balanced accuracy is depicted in the
middle of each data interval. Please refer to section S.1 of the Appendix for more details.

Reappearing We assess the model’s performance in a scenario where feature sets are disjoint
across consecutive intervals and reappear after a gap, as shown in Figure 4. The first 50% of fea-
tures are present in the first, third, and fifth intervals, while the remaining 50% appear in the second
and fourth intervals. Ideally, effective learning without forgetting would result in improved perfor-
mance upon the reappearance of the same features. However, apart from packetLSTM and OLIFL,
all models show declining performance as they progress from the first to the third and fifth intervals
and from the second to the fourth interval. Even OLIFL fails in the SUSY dataset as its performance
declines from the second to the fourth interval (see section S.2 of the Appendix). The packetLSTM’s
ability to retain knowledge is attributed to each feature’s local information stored in its correspond-
ing LSTM’s short-term memory. To quantify knowledge retention, we compare packetLSTM with
a version retrained (packetLSTM-retraining) at each interval using the available features (see the
rightmost graph of Figure 4). The packetLSTM’s balanced accuracy improves by 1.61 and 1.89 at
the third and fifth intervals, respectively, and by 0.93 at the fourth interval, demonstrating effective
learning without forgetting. Notably, there is also a performance increase in the second interval
despite those features not being previously observed. This increase is due to the global information
learned during the first interval, aiding subsequent predictions. Overall, packetLSTM outperforms
all other baselines in each interval. Further discussion on mitigating catastrophic forgetting is pro-
vided in section S.1 of the Appendix. It is important to distinguish that catastrophic forgetting within
an online learning setting differs from online continual learning (see section T of the Appendix).

8 TRANSFORMER ON HAPHAZARD INPUTS

Despite the lack of application of the Transformer (Vaswani et al., 2017) in the field of haphazard
inputs, its inherent ability to manage variable-size inputs makes it a natural choice. Therefore, we
also investigate Transformer-based methodologies for modeling haphazard inputs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Comparison of packetLSTM vs single LSTM with imputation, transformer with padding,
Set Transformer, and HapTransformer on all datasets based on balanced accuracy.

Dataset p
Single LSTM + Imputation Transformer + Padding Set Transformer HapTransformer packetLSTM

Ffill KNN Mean Gaussian Only Values Pairs

magic04
0.25 52.56±0.33 57.42±0.07 57.82±0.10 56.41±0.14 53.95±0.07 57.27±0.11 60.25±0.25 61.33±0.07
0.50 59.86±0.07 64.01±0.12 64.52±0.11 58.66±0.19 56.61±0.12 59.50±0.07 66.62±0.14 68.31±0.15
0.75 68.97±0.10 70.91±0.10 71.32±0.05 63.93±0.08 60.09±0.14 62.04±0.79 72.11±0.25 73.64±0.11

imdb 50.42±0.06 50.37±0.07 - 55.58±0.17 51.09±0.26 51.06±0.12 69.40±0.28 85.06±0.04

a8a
0.25 50.12±0.08 54.12±0.18 - 49.98±0.01 50.00±0.00 50.00±0.00 57.76±0.23 60.53±0.16
0.50 59.54±0.15 65.16±0.26 - 50.02±0.02 50.00±0.00 50.00±0.00 65.95±0.21 67.73±0.21
0.75 68.74±0.20 71.31±0.31 - 50.05±0.02 50.00±0.00 50.00±0.00 69.37±0.10 71.11±0.16

SUSY
0.25 57.20±0.01 59.31±0.03 59.59±0.01 58.03±0.03 58.78±0.11 58.17±0.03 62.31±0.02 62.77±0.01
0.50 64.16±0.02 66.26±0.03 66.87±0.02 62.22±0.10 63.97±0.06 62.03±0.01 69.13±0.01 69.28±0.01
0.75 71.01±0.02 72.18±0.01 72.85±0.02 67.60±0.13 69.59±0.07 65.16±0.03 73.74±0.03 73.85±0.02

HIGGS
0.25 50.54±0.01 51.42±0.02 51.77±0.22 50.43±0.01 50.29±0.01 50.12±0.01 51.82±0.05 52.22±0.04
0.50 52.92±0.02 54.54±0.03 54.84±0.02 51.07±0.02 50.58±0.01 50.28±0.01 55.18±0.04 55.47±0.04
0.75 56.76±0.02 58.27±0.03 58.39±0.02 52.58±0.03 51.13±0.02 50.38±0.01 58.44±0.04 58.71±0.05

Padding We consider padding inputs with zeros or truncating them, which necessitates specifying
a fixed input length (fl). If the number of features in an instance (|Ft|) is less than fl, the Trans-
former pads the input with zeros, and if |Ft| exceeds fl, it truncates the excess features, potentially
leading to information loss. A potential, albeit inefficient, solution is to set an excessively high fl.
Nonetheless, to assess how packetLSTM compares to Transformer, we conducted two experiments:
Only Values, padding available feature values, and Pairs, pairing each feature value with its feature
ID and padding the sequence. The packetLSTM outperforms Transformer with padding across all
dataset scenarios (see Table 3). Further details can be found in section U.1 of the Appendix.

Natural Language Given the variable size of inputs, natural language can be seen as an applica-
tion where features arrive one by one, and most are missing. We compared packetLSTM with Dis-
tilBERT (Sanh et al., 2019) and BERT (Devlin et al., 2019), detailed in section U.2 of the Appendix.
We observe that both DistilBERT and BERT are unable to perform classification on haphazard inputs
with a balanced accuracy of around 50 in all cases.

Set Transformer The Set Transformer (Lee et al., 2019), designed for variable-length inputs, has
been previously used in offline learning. We employ it for online learning to handle haphazard
inputs. Results in Table 3 indicate that packetLSTM significantly outperforms Set Transformer
across all datasets, possibly due to Set Transformer’s assumption of permutation invariance, which
does not hold for haphazard inputs. More details are provided in section U.3 of the Appendix.

HapTransformer To tackle permutation invariance, we introduce HapTransformer, which trans-
forms each feature into a distinct learnable embedding, a technique similarly utilized in prior re-
search (Huang et al., 2020; Gorishniy et al., 2021; Somepalli et al., 2021). However, these models
do not accommodate variable-sized inputs. The learnable embeddings are subsequently processed
by the Set Transformer’s decoder, allowing implicit communication of feature identities. Details
on the architecture and hyperparameters are provided in section U.4 of the Appendix. Despite its
strengths, packetLSTM surpasses HapTransformer in all dataset scenarios (see Table 3). HapTrans-
former struggles particularly with datasets having high feature counts like imdb and a8a, and requires
significant computational time. However, it remains a strong baseline, outperforming other baseline
models in the SUSY and HIGGS datasets, as detailed in Tables 1 and 3.

9 CONCLUSION

In conclusion, our work introduces packetLSTM, a dynamic framework for handling streaming data
with varying feature dimensions in real-time learning environments. Significantly, the underlying
principles of packetLSTM are extendable to other architectures, such as vanilla RNN and GRUs,
demonstrating the model’s adaptability to different neural architectures. The packetLSTM not only
outperforms existing methods across various datasets but also showcases flexibility in adapting to
changing data conditions without forgetting previously learned information. Our research opens
new avenues for further exploration of dynamic neural architectures and sets a new benchmark for
online learning with haphazard inputs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

10 ETHICS STATEMENT

The packetLSTM framework introduces a novel method for handling streaming data with variable
features, potentially impacting numerous fields such as healthcare, finance, autonomous systems, en-
vironmental monitoring, and personalized recommendation systems. In healthcare, it can improve
real-time patient monitoring by adapting to new or absent data types, enhancing patient care. Finan-
cial sectors can benefit from more stable predictive models for trading and risk management due to
their ability to process erratic market data. Autonomous systems can gain reliability by effectively
managing inconsistencies in sensory data, while environmental monitoring may achieve greater ac-
curacy in tracking ecological changes, aiding policy decisions. In digital platforms, it may refine
personalized recommendations by adjusting to user behavior changes, and in educational technol-
ogy, it may personalize content to student needs, improving engagement and learning outcomes.

Due to the potential application of packetLSTM in the above-discussed crucial and sensitive fields,
it is necessary to consider ethical concerns. The packetLSTM framework must navigate several
ethical issues to align with the European Union’s Artificial Intelligence Act (EU AI Act). Deploy-
ing packetLSTM technology requires careful consideration, including data privacy, transparency in
decision-making, and addressing data biases to prevent discrimination and ensure fairness across
diverse user groups. By addressing these challenges, packetLSTM can significantly enhance effi-
ciency and personalization across multiple domains while upholding high ethical standards.

11 REPRODUCIBILITY

All the information to reproduce the result is available in sections 4, 5, 6, 7, and 8 of the main
manuscript. Additional information is also provided in sections I, J, R, and U of the Appendix.
The code is attached to this submission in the supplementary material with sufficient instructions
to faithfully reproduce all the experimental results. The link to the datasets is provided in section
E of the Appendix. We report the resources used to conduct the experiments in section I of the
Appendix. Moreover, for the benchmark results, we also report the time taken by each individual
model in section K of the Appendix.

REFERENCES

Rohit Agarwal, Krishna Agarwal, Alexander Horsch, and Dilip K Prasad. Auxiliary network: Scal-
able and agile online learning for dynamic system with inconsistently available inputs. In Inter-
national Conference on Neural Information Processing, pp. 549–561. Springer, 2022.

Rohit Agarwal, Deepak Gupta, Alexander Horsch, and Dilip K. Prasad. Aux-drop: Handling hap-
hazard inputs in online learning using auxiliary dropouts. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=
R9CgBkeZ6Z. Reproducibility Certification.

Rohit Agarwal, Arijit Das, Alexander Horsch, Krishna Agarwal, and Dilip K Prasad. Online learn-
ing under haphazard input conditions: A comprehensive review and analysis. arXiv preprint
arXiv:2404.04903, 2024.

Sumeet Agarwal, V Vijaya Saradhi, and Harish Karnick. Kernel-based online machine learning and
support vector reduction. Neurocomputing, 71(7-9):1230–1237, 2008.

Zeyuan Allen-Zhu and Yuanzhi Li. Can sgd learn recurrent neural networks with provable general-
ization? Advances in Neural Information Processing Systems, 32, 2019.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature Communications, 5(1):4308, 2014.

Ege Beyazit, Jeevithan Alagurajah, and Xindong Wu. Online learning from data streams with vary-
ing feature spaces. In AAAI Conference on Artificial Intelligence, volume 33, pp. 3232–3239,
2019.

11

https://openreview.net/forum?id=R9CgBkeZ6Z
https://openreview.net/forum?id=R9CgBkeZ6Z

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

RK Bock, A Chilingarian, M Gaug, F Hakl, Th Hengstebeck, M Jiřina, J Klaschka, E Kotrč, P Sav-
ickỳ, S Towers, et al. Methods for multidimensional event classification: a case study using
images from a cherenkov gamma-ray telescope. Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 516(2-3):
511–528, 2004.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific Reports, 8(1):6085,
2018.

Zhong Chen, Yi He, Di Wu, Huixin Zhan, Victor Sheng, and Kun Zhang. Robust sparse online
learning for data streams with streaming features. In Proceedings of the 2024 SIAM International
Conference on Data Mining (SDM), pp. 181–189. SIAM, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Jiahua Dong, Yang Cong, Gan Sun, Tao Zhang, Xu Tang, and Xiaowei Xu. Evolving metric learning
for incremental and decremental features. IEEE Transactions on Circuits and Systems for Video
Technology, 32(4):2290–2302, 2021.

Joao Gama. A survey on learning from data streams: current and future trends. Progress in Artificial
Intelligence, 1:45–55, 2012.

Felix A Gers and Jürgen Schmidhuber. Recurrent nets that time and count. In Proceedings of
the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural
Computing: New Challenges and Perspectives for the New Millennium, volume 3, pp. 189–194.
IEEE, 2000.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Steunebrink, and Jürgen Schmidhuber. Lstm:
A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10):
2222–2232, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Yi He, Baijun Wu, Di Wu, Ege Beyazit, Sheng Chen, and Xindong Wu. Online learning from
capricious data streams: a generative approach. In International Joint Conference on Artificial
Intelligence, Main track, 2019.

Yi He, Jiaxian Dong, Bo-Jian Hou, Yu Wang, and Fei Wang. Online learning in variable feature
spaces with mixed data. In IEEE International Conference on Data Mining, pp. 181–190. IEEE,
2021.

Yi He, Christian Schreckenberger, Heiner Stuckenschmidt, and Xindong Wu. Towards utilitarian
online learning-a review of online algorithms in open feature space. In International Joint Con-
ferences on Artificial Intelligence Organization, 2023.

Michiel Hermans and Benjamin Schrauwen. Training and analysing deep recurrent neural networks.
Advances in Neural Information Processing Systems, 26, 2013.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

12

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Steven CH Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey.
Neurocomputing, 459:249–289, 2021.

Bo-Jian Hou, Lijun Zhang, and Zhi-Hua Zhou. Learning with feature evolvable streams. Advances
in Neural Information Processing Systems, 30, 2017.

Chenping Hou and Zhi-Hua Zhou. One-pass learning with incremental and decremental features.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(11):2776–2792, 2018. doi:
10.1109/TPAMI.2017.2769047.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. On the utility of incremental feature
selection for the classification of textual data streams. In Advances in Informatics: 10th Panhel-
lenic Conference on Informatics, pp. 338–348. Springer, 2005.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay
Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a
vector representation of time. arXiv preprint arXiv:1907.05321, 2019.

Cheol Ho Kim, Jung-Hoon Lee, Hawon Shin, and Ock Kee Baek. Robust and adaptive incremental
learning for varying feature space. IEEE Access, 12:64177–64192, 2024. doi: 10.1109/ACCESS.
2024.3395996.

Donald Knuth. Seminumerical algorithms. The Art of Computer Programming, 2, 1981.

Ron Kohavi et al. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In
Second International Conference on Knowledge Discovery and Data Mining, volume 96, pp.
202–207, 1996.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744–3753. PMLR, 2019.

Jung-Hoon Lee, Sungyup Lee, Cheol Ho Kim, and OK Baek. A study on imputation-based online
learning in varying feature spaces. In 14th IEEE International Conference on Information and
Communication Technology Convergence, pp. 1759–1764, 2023a.

Yi-Lun Lee, Yi-Hsuan Tsai, Wei-Chen Chiu, and Chen-Yu Lee. Multimodal prompting with missing
modalities for visual recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14943–14952, 2023b.

Diyang Li and Bin Gu. When online learning meets ode: learning without forgetting on variable
feature space. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
8545–8553, 2023.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947, 2017.

Jiaying Liu, Yanghao Li, Sijie Song, Junliang Xing, Cuiling Lan, and Wenjun Zeng. Multi-modality
multi-task recurrent neural network for online action detection. IEEE Transactions on Circuits
and Systems for Video Technology, 29(9):2667–2682, 2018.

Yanfang Liu, Xiaocong Fan, Wenbin Li, and Yang Gao. Online passive-aggressive active learning
for trapezoidal data streams. IEEE Transactions on Neural Networks and Learning Systems, 2022.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 142–150, 2011.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recurrent network
training for long or event-based sequences. Advances in Neural Information Processing Systems,
29, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approximation
and bandit feedback. Advances in Neural Information Processing Systems, 34:10407–10417,
2021.

Peijia Qin and Liyan Song. Online learning in varying feature spaces with informative variation. In
International Conference on Intelligent Information Processing, pp. 19–33. Springer, 2024.

Reza Sajedi and Mohammadreza Razzazi. Data stream classification in dynamic feature space using
feature mapping. The Journal of Supercomputing, pp. 1–19, 2024.

Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh Valaee. Recent ad-
vances in recurrent neural networks. arXiv preprint arXiv:1801.01078, 2017.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Christian Schreckenberger, Christian Bartelt, and Heiner Stuckenschmidt. Dynamic forest for learn-
ing from data streams with varying feature spaces. In 28th International Conference on Cooper-
ative Information Systems, pp. 95–111. Springer, 2022.

Christian Schreckenberger, Yi He, Stefan Lüdtke, Christian Bartelt, and Heiner Stuckenschmidt.
Online random feature forests for learning in varying feature spaces. In AAAI Conference on
Artificial Intelligence, volume 37, pp. 4587–4595, 2023.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S Yu. Predrnn: Recurrent
neural networks for predictive learning using spatiotemporal lstms. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Brent Wenerstrom and Christophe Giraud-Carrier. Temporal data mining in dynamic feature spaces.
In Sixth International Conference on Data Mining, pp. 1141–1145. IEEE, 2006.

Kai Xie and Ying Wen. Lstm-ma: A lstm method with multi-modality and adjacency constraint for
brain image segmentation. In 2019 IEEE International Conference on Image Processing (ICIP),
pp. 240–244. IEEE, 2019.

Bo Xu, Cheng Lu, Yandong Guo, and Jacob Wang. Discriminative multi-modality speech recogni-
tion. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition,
pp. 14433–14442, 2020.

Huigui Yan, Jiale Liu, Da Han, Dianlong You, Hongtao Wu, Zhen Chen, and Xindong Wu. Online
learning from incomplete data streams for multi-classification. Information Sciences, pp. 121411,
2024a.

Huigui Yan, Jiale Liu, Jiawei Xiao, Shina Niu, Siqi Dong, Dianlong You, and Limin Shen. Online
learning for data streams with bi-dynamic distributions. Information Sciences, pp. 120796, 2024b.

Dianlong You, Huigui Yan, Jiawei Xiao, Zhen Chen, Di Wu, Limin Shen, and Xindong Wu. Online
learning for data streams with incomplete features and labels. IEEE Transactions on Knowledge
and Data Engineering, 2024.

14

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Chaoyun Zhang, Marco Fiore, Iain Murray, and Paul Patras. Cloudlstm: A recurrent neural model
for spatiotemporal point-cloud stream forecasting. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 10851–10858, 2021a.

Qin Zhang, Peng Zhang, Guodong Long, Wei Ding, Chengqi Zhang, and Xindong Wu. Online
learning from trapezoidal data streams. IEEE Transactions on Knowledge and Data Engineering,
28(10):2709–2723, 2016.

Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided network
for irregularly sampled multivariate time series. In International Conference on Learning Repre-
sentations, 2021b.

Zhen-Yu Zhang, Peng Zhao, Yuan Jiang, and Zhi-Hua Zhou. Learning with feature and distribution
evolvable streams. In International Conference on Machine Learning, pp. 11317–11327. PMLR,
2020.

Yuxuan Zhao, Eric Landgrebe, Eliot Shekhtman, and Madeleine Udell. Online missing value impu-
tation and change point detection with the gaussian copula. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 36, pp. 9199–9207, 2022.

Han Zhou and Shin Matsushima. Online learning under capricious feature data streams. In 37th
Annual Conference of the Japanese Society for Artificial Intelligence, 2023.

Peng Zhou, Shuai Zhang, Lin Mu, and Yuanting Yan. Online learning from capricious data streams
via shared and new feature spaces. Applied Intelligence, pp. 1–17, 2024.

Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng Cai. What to
do next: Modeling user behaviors by time-lstm. In International Joint Conference on Artificial
Intelligence, volume 17, pp. 3602–3608, 2017.

Sheng-Da Zhuo, Jin-Jie Qiu, Chang-Dong Wang, and Shu-Qiang Huang. Online feature selection
with varying feature spaces. IEEE Transactions on Knowledge and Data Engineering, pp. 1–14,
2024. doi: 10.1109/TKDE.2024.3377243.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A PRACTICAL APPLICATIONS

With the progress of the field of haphazard inputs, more datasets are expected to become avail-
able. For instance, Schreckenberger et al. (2023) introduced the crowdsense dataset in 2023, col-
lected from environmental sensors (measuring sound pressure, eCO2 level, and eTVOC level) across
Spain’s 56 largest cities over 790 days from January 1st (2020) to February 28th (2022). The feature
space varies as the new sensing data continuously emerges while many old sensors stop to provide
data. The aim is to predict government restriction severity based on sensed regional crowdedness.
We could not include this dataset in our study because it has only 790 instances, which is very
small for a deep-learning model. Nevertheless, we anticipate the emergence of larger datasets in this
domain. Note that we demonstrate the superior performance of packetLSTM compared to article
(Schreckenberger et al., 2023) in our study in Table 1 in the main manuscript.

Another potential application is in the study of sub-cellular organisms, as discussed in (Agarwal
et al., 2024). The mitochondria undergo morphological changes during the drug discovery process,
leading to fusion, fission, and kiss-and-run events. Quantifying these events is crucial for biologists,
yet direct observation is impractical due to hundreds of mitochondria within a single cell. Fusion
and fission introduce obsolete and sudden features, while kiss-and-run events can lead to sudden,
obsolete, and missing features. The combination of haphazard input and segmentation models may
effectively model the mitochondrial dynamics.

B MULTI-MODAL LEARNING VS PACKETLSTM

The multi-modality requires handling data from different data domains, like images, audio, etc.
Some studies in the multi-model domain utilize LSTMs (more generally RNNs), as discussed below.

Brain Image Segmentation LSTM-MA (Xie & Wen, 2019) converts the multi-modal image
slices to feature sequences using pixel and superpixel constraints. These are then fed to the LSTM,
followed by a fully connected neural network to predict the final class label. Finally, the segmenta-
tion image is obtained by combining all the classified nodes of a slice.

Online Action Detection Liu et al. (2018) proposed an RNN framework for online action de-
tection and forecasting on the fly from the untrimmed stream data. The data have two modalities,
i.e., RGB video and skeleton sequence data. The paper uses deep ConvNet and motion networks
to extract embedding from RGB and skeleton data, respectively, and the embeddings are processed
individually by stacked LSTM.

Speech Recognition AE-MSR (Xu et al., 2020) works on two modalities, namely, audio and
video, to perform speech recognition. Here, both audio and video data are passed to an AE sub-
network to generate visual features and enhanced audio magnitude. The generated features are fur-
ther passed to different element-wise attention-gated recurrent units (EleAtt-GRU) encoders. This
generates visual and audio context, respectively. Both contexts are further passed to a decoder con-
sisting of EleAtt-GRU to generate outputs.

Within the multi-modal domain, to the best of our knowledge, the total number of features/modalities
always remains the same and is known at the outset (t = 0). Some recent work also considers missing
modality in the multi-modal domain (Lee et al., 2023b), but still, the total number of modalities is
known at the outset (t = 0). Therefore, the above method cannot accommodate haphazard inputs.
Whereas the packetLSTM can dynamically change its architecture to adapt to varying feature spaces
in real-time environments.

C NOTATIONS

All the notations used in this article are provided in Table 4 with their corresponding meanings.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Notations and their meaning in this article.

Notations Meaning

t A random time or the tth instance
Xt The set of input values arrived at time t
yt Ground truth at time t
C Number of output classes
R Real numbers
dt The number of input features arrived at time t
t-1 The instance preceding time t
Fj Feature j
F̄t Universal feature space
Ft Current feature space
f t The trained model after time t
ŷt Prediction at time t by model f
lt Loss of the model f at time t
H Loss function
Lj LSTM corresponding to feature j
tk The kth time or the instance
xk
j The value of feature j at time tk

∆t
j Time delay of feature j at time t

ht
j Short-term memory of Lj at time t

ctj Long-term memory of Lj at time t

h
t−
j Last observed short-term memory of Lj before time t
ht Predictive short-term memory at time t
ct Common long-term memory at time t
h0 Initialized values of short-term memory
c0 Initialized values of long-term memory
itj Input gate at time t of Lj

T1tj Time gate 1 at time t of Lj

T2tj Time gate 2 at time t of Lj

otj Output gate at time t of Lj

c̃tj Cell state at time t of Lj

W,w, b Weight parameters of LSTM
s Size of the short-term and long-term memory

σv∈{c,h} Tanh function
σv∈{t,T1,T2,∆,o} Sigmoid functions

fl fixed input length
|Ft| Number of available features at time t

D DIFFERENT TIME-MODELING VARIANTS WITHIN THE CONTEXT OF
PACKETLSTM

In this article, we present the packetLSTM framework with four different time modeling variants.
Primarily, we employ Time-LSTM 3 (Zhu et al., 2017) within the packetLSTM framework. Ad-
ditionally, we explore the use of Time-LSTM 1, Time-LSTM 2, and decay (Che et al., 2018) into
the packetLSTM architecture. The following paragraphs discuss all these time-modeling variants
within the context of packetLSTM.

Time-LSTM 3 The formulation of Time-LSTM 3 (and other time modeling variants) for fea-
ture j at time t, within the packetLSTM framework, represented by Lj , is given by ht

j , c
t
j =

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lj(x
t
j ,∆

t
j , h

t−
j , ct−1) ∀ Fj ∈ Ft. Mathematically, the computation of Lj is expressed as

itj = σi(x
t
jWj,xi + h

t−
j Wj,hi + ct−1 ⊙ wj,ci + bj,i), (2)

T1tj = σT1(x
t
jWj,xT1 + σ∆(∆

t
jWj,T1) + bj,T1), (3)

T2tj = σT2(x
t
jWj,xT2 + σ∆(∆

t
jWj,T2) + bj,T2), (4)

c̃tj = (1− itj ⊙ T1tj)⊙ ct−1 + itj ⊙ T1tj ⊙ σc(x
t
jWj,xc̃ + h

t−
j Wj,hc̃ + bj,c̃), (5)

ctj = (1− itj)⊙ ct−1 + itj ⊙ T2tj ⊙ σc(x
t
jWj,xc + h

t−
j Wj,hc + bj,c), (6)

otj = σo(x
t
jWj,xo +∆t

jWj,o + h
t−
j Wj,ho + c̃tj ⊙ wj,c̃o + bj,o), (7)

ht
j = otj ⊙ σh(c̃

t
j). (8)

where itj , T1
t
j , T2

t
j , and otj represents the input gate, time gate 1, time gate 2, and output gate of the

LSTM Lj at time t, respectively. The cell state c̃tj influences the current prediction through the output
gate and the short-term memory ht

j . The functions σi, σT1, σT2, σ∆, and σo are sigmoid functions,
while σc and σh are tanh functions. The Wj,hi denotes the weight associated with the short-term
memory within the input gate of Lj . This definition extends analogously to all W parameters.
The symbol ⊙ indicates the Hadamard product, and all the w parameters are peephole connection
weights (Gers & Schmidhuber, 2000).

Time-LSTM 2 Similar to Time-LSTM 3, Time-LSTM 2 has two gates. Therefore, equations 2, 3,
4, 7, and 8 hold true for Time-LSTM 2, along with an addition of forget gate (f t

j), an update of the
equation of cell state (c̃tj), and long-term memory (ctj).

f t
j = σf (x

t
jWj,xf + h

t−
j Wj,hf + ct−1 ⊙ wj,cf + bj,f), (9)

c̃tj = f t
j ⊙ ct−1 + itj ⊙ T1tj ⊙ σc(x

t
jWj,xc̃ + h

t−
j Wj,hc̃ + bj,c̃), (10)

ctj = f t
j ⊙ ct−1 + itj ⊙ T2tj ⊙ σc(x

t
jWj,xc + h

t−
j Wj,hc + bj,c). (11)

Time-LSTM 1 Time-LSTM 1 only contains a single time gate. Therefore, the formulation of
Time-LSTM 1 within the packetLSTM framework is given by equations 2, 9, 3, 10, 7, and 8.

Decay The decay mechanism introduced by Che et al. (2018) attenuates the short-term memory by
a learnable factor γt

j . Subsequently, the process adheres to the conventional operations of a vanilla
LSTM, which is given by

γt
j = exp{−max(0,Wj,γ∆

t
j + bj,γ)},

h̃
t−
j = γt

j ⊙ h
t−
j ,

itj = σi(x
t
jWj,xi + h̃

t−
j Wj,hi + bj,i),

f t
j = σf (x

t
jWj,xf + h̃

t−
j Wj,hf + bj,f),

c̃tj = σc(x
t
jWj,xc̃ + h̃

t−
j Wj,hc̃ + bj,c̃),

ctj = f t
jc

t−1 + itj c̃
t
j ,

otj = σo(x
t
jWj,xo + h̃

t−
j Wj,ho + bj,o),

ht
j = otjσh(c

t
j).

(12)

E DATASETS

The detailed descriptions of each dataset are provided in Table 5 and further elaborated below:

• magic04 (Bock et al., 2004): It is a Monte Carlo simulated dataset for the registration
of high-energy particles in an atmospheric Cherenkov telescope. The binary classification

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Dataset Description: # {Instances, Features} represents the number of {Instances, Fea-
tures}.

Dataset # Instances # Features Imbalance Missing Values % Type

magic04 19020 10 64.84% 25%, 50%, 75% Synthetic
imdb 25000 7500 50% 98.35% Real

a8a 32561 123 75.92% 25%, 50%, 75% Synthetic
SUSY 1M 8 45.79% 25%, 50%, 75% Synthetic

HIGGS 1M 21 52.97% 25%, 50%, 75% Synthetic

task associated with magic04 is to distinguish between a shower image caused by primary
gammas (1) and cosmic rays in the upper atmosphere (0). The magic04 dataset can be
accessed via this link1.

• imdb (Maas et al., 2011): It is a movie sentiment classification dataset with labels as
positive (1) or negative (0). The original imdb dataset consists of training and test subsets,
each containing 25000 instances. Following the previous literature in the field of haphazard
inputs (Beyazit et al., 2019; Agarwal et al., 2024), we consider the training subset of the
data provided in this link2 and the 7500 most prevalent words within this subset, which
represents the 7500 features. This approach adheres to the standard practices of previous
works, ensuring fair comparison.

• a8a (Kohavi et al., 1996): It is the income data from a census conducted in 1994. The
task is to classify where the income exceeds $50k per year. The dataset is pre-processed,
resulting in 123 features. The a8a dataset can be accessed via this link3.

• SUSY (Baldi et al., 2014): It is a Monte Carlo simulated data of kinematic properties
of particles with a binary classification task of predicting between a signal process (1)
where SUSY particles are produced and a background process (0) with the same detectable
particles. Following article (Agarwal et al., 2023), the first 8 features are considered. The
SUSY data can be accessed via this link4.

• HIGGS (Baldi et al., 2014): Similar to SUSY, it is a Monte Carlo simulation data associ-
ated with a binary classification task to differentiate between a signal process (1) where new
theoretical Higgs bosons are produced and a background process (0) with identical decay
products but distinct kinematic features. We consider the first 21 features of the HIGGS
dataset (Agarwal et al., 2023). The HIGGS data can be accessed via this link5.

Synthetic Dataset Preparation We created haphazard input datasets from synthetic datasets
based on probability values p, as defined in the baseline papers (Beyazit et al., 2019; Agarwal et al.,
2023). Specifically, 100 ×p% of features at each time instance is simulated as available indepen-
dently of each other following a uniform distribution. For example, if p = 0.25, 25% of features
at each time instance is only available. From each synthetic dataset, three subsets are generated
corresponding to p values of 0.25, 0.5, and 0.75. This approach creates a spectrum of datasets,
from highly unavailable data to those with extensive data availability, thereby facilitating the test-
ing of models under varying conditions of data accessibility. Notably, 98.35% of data values are
unavailable in the imdb dataset (see Table 5).

F METRICS

Number of Errors This is defined as the number of instances incorrectly classified by the model.
A model is deemed more effective when it exhibits a lower number of errors. However, note that the
number of errors may not be a suitable metric for imbalanced data.

1https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
2https://ai.stanford.edu/˜amaas/data/sentiment/
3https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
4https://archive.ics.uci.edu/dataset/279/susy
5https://archive.ics.uci.edu/dataset/280/higgs

19

https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
https://ai.stanford.edu/~amaas/data/sentiment/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://archive.ics.uci.edu/dataset/279/susy
https://archive.ics.uci.edu/dataset/280/higgs

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Accuracy The Model’s accuracy can be determined by calculating the total number of correct
predictions divided by the total number of instances. Similar to the number of errors, accuracy may
not serve as a reliable metric in the context of imbalanced datasets, as it can be misleadingly high
when the majority class is predicted correctly while neglecting the minority class.

AUROC The Area Under the Receiver Operating Characteristic Curve (AUROC) measures a
model’s capability to differentiate between positive and negative classes. The ROC curve plots
the true positive rates against the false positive rates. The area of this curve, the AUROC, is a value
for which higher numbers indicate superior model performance.

AUPRC AUPRC stands for Area Under the Precision-Recall Curve. It is similar to AUROC; how-
ever, it utilizes precision and recall rather than true and false positive rates. AUPRC is particularly
valuable for assessing the performance of models on imbalanced datasets, providing insight into the
model’s ability to identify positive instances.

Balanced Accuracy This is calculated as the average of specificity and sensitivity. This metric
offers a more nuanced assessment of model performance across imbalanced datasets compared to
traditional accuracy, as it equally weighs the correct identification rates of both positive and negative
classes.

G EVALUATION PROTOCOL

We adhere to the standard evaluation protocol for haphazard inputs and, more generally, online learn-
ing. As described in the Mathematical Formulation paragraph of Section 3 in the main manuscript,
the model is evaluated and then trained iteratively. There is no separate evaluation set. The model
first receives input features at time t, makes a prediction, and then the ground truth is revealed. The
model calculates the cross-entropy loss using the prediction and ground truth. Each instance is pro-
cessed once and not revisited, reflecting the online learning characteristics of batch size 1 and epoch
1. The prediction logits and the labels for each instance are stored, and upon processing all the
inputs, the balanced accuracy and other metrics are determined based on these data. This evaluation
method is consistently applied across all models in this study.

H BASELINES NOT INCLUDED FOR COMPARISON

The following models apply to the field of haphazard inputs: OLCF (Zhou & Matsushima, 2023),
OIL (Lee et al., 2023a), DCDF2M (Sajedi & Razzazi, 2024), OFSVF (Zhuo et al., 2024), DFLS
(Li & Gu, 2023), RSOL (Chen et al., 2024), OVFIV (Qin & Song, 2024), RAIL (Kim et al., 2024),
OLBD (Yan et al., 2024b), OLCDS (Zhou et al., 2024), and OLIDSPLM (Yan et al., 2024a). However,
the inclusion of these additional models in our article was not feasible due to the lack of open-source
code and the challenges associated with implementing them, which stemmed from either insufficient
detail or the complexity of the models.

I IMPLEMENTATION DETAILS

All the models were implemented using the PyTorch framework, and the experiments were con-
ducted on an NVIDIA DGX A100 machine. Since the model operates in an online learning setting,
CPUs were exclusively used to sequentially process the data.

packetLSTM The size for both the long-term and short-term memory components was set at 64.
The final fully connected network is a two-layer neural network with a ReLU non-linear activation
function. Stochastic gradient descent was employed for back-propagation. Cross-entropy loss and
AdamW optimizer were used. The learning rate for magic04, imdb, a8a, SUSY, and HIGGS is set
as 0.0006, 0.0008, 0.0009, 0.0008, and 0.0002, respectively.

Baselines In the case of Aux-Drop baseline (Agarwal et al., 2023), the online deep learning frame-
work was adopted as the foundational model. The implementation strategies for the majority of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 6: Description of all the hyperparameters used in each model and their search values. This
table is adapted from article (Agarwal et al., 2024). {} represents individual values, and [] represents
a range.

Model Hyperparameter(s) Description Search
NB3 n proportion of total features to consider as the number of top fea-

tures
{.2, .4, .6, .8, 1}

FAE

m number of instances after which learner’s output is considered 5

f threshold on the difference of youngest learner’s feature set and
current top M features 0.15

p number of consecutive instances a learner is under the threshold
before being removed 3

r minimum number of instances between the 2 consecutive learn-
ers

10

N number of instances to calculate accuracy over 50
M proportion of total features to train new feature forest on {.2, .4, .6, .8, 1}

OLVF

C loss bounding parameter for instance classifier {.0001, .01, 1}
C̄ loss bounding parameter for feature classifier {.0001, .01, 1}
B proportion of selected features for sparsity {.01, .1, .3, .5, .7, .9, 1}
λ regularization parameter {.0001, .01, 1}

OCDS

T number of instances after which ’p’ (weighing factor) is updated {8, 16}
α absorption scale parameter used in equation 10 of (He et al.,

2019)
{.0001, .001, .01, .1, 1}

β0 absorption scale introduced by us for the 1st term in eq. 9 of He
et al. (2019)

{.0001, .001, .01, .1, 1}

β1 tradeoff parameter used in equation 9 of (He et al., 2019) {.0001, .001, .01, .1, 1}
β2 tradeoff parameter used in equation 9 of (He et al., 2019) {.0001, .001, .01, .1, 1}

OVFM

decay choice (dc) decay update rules choices (see original code (He et al., 2021)) {0, 1, 2, 3, 4}
contribute error rate (ce) used in the original code implementation of classifiers in (He

et al., 2021)
{.001, .005, .01, .02, .05}

window size (ws) a (buffer-like) window to store data instances 20
decay coef change (dc) set ’True’ for learning rate decay, ’False’ otherwise {True, False}
batch size denominator (bs) used in update step in case of learning rate decay {8, 10, 20}
batch c (bc) added to the denominator for stability in learning rate decay 8

DynFo

α impact on weight update {.1, .5}
β probability to keep the weak learner in ensemble {.5, .8}
δ fraction of features to consider (bagging parameter) {.001, .01}
ϵ penalty if the split of decision stump is not in the current instance {.001, .01}
γ threshold for error rate {.5, .8}
M number of learners in the ensemble {500, 1000}
N buffer size of instances 20
θ1 lower bounds for the update strategy .05
θ2 upper bounds for the update strategy {.6, .75}

ORF3V

forestSize (fS) number of stumps for every feature {3, 5, 10}
replacementInterval (rI) instances after which stumps might get replaced {5, 10}
updateStrategy (uS) strategy to replace stumps {oldest, random}
replacementChance (rC) probability to not replace stump for ”random” update strategy .7
windowsize (ws) buffer storage size on which to determine feature statistics 20
α weight update parameter {.01, .1, .3, .5, .9}
δ pruning parameter .001

Aux-Net

n base layer (nb) number of base layers 5
n end layers (ne) number of end layers 5
n nodes layers (n) number of nodes in each layer 50
lr learning rate {.001, .005, .01, .05, .1, .3, .5}
b discount rate .99
s smoothing parameter .2

Aux-Drop

max num hidden layers (nl) number of hidden layers 6
neuron per hidden layer (n) number of nodes in each hidden layer except the AuxLayer 50
n neuron aux layer (na) total number of neurons in the AuxLayer ∼5×num feat
b discount rate .99
s smoothing parameter .2
lr learning rate {.001, .005, .01, .05, .1, .3, .5}
dropout p (d) dropout rate in the AuxLayer {.3, .5}

OLIFL option The options to determine τ , where loss* = loss/inner product(X) {loss*, min(C, 2loss*)}
C Tradeoff parameter of loss [1e-6, 10]

packetLSTM
hidden size size of short-term and long-term memory {32, 64}
lr learning rate [0.05, 0.0001]
aggregate by (agg) dimension-invariant aggregation function {Mean, Max, Min, Sum}

baseline models were in accordance with the guidelines provided by Agarwal et al. (2024), except
for the OLIFL model (You et al., 2024), for which the implementation from the OLIFL article was
utilized. The OVFM model (He et al., 2021), which typically requires buffer storage to store the in-
puts and thus contradicts the principles of online learning, was adapted by limiting the buffer storage
to two instances.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: Best hyperparameters of the models based on balanced accuracy. In synthetic datasets, we
consider p = 0.5 for hyperparameter search. Experiments marked with § employed heuristically set
hyperparameters without a search process due to the high computational demands. The best value
of λ for OLVF and hidden size for packetLSTM is always found to be .0001 and 64, respectively,
for all the datasets.

Models magic04 imdb a8a SUSY HIGGS

NB3 (n) 0.6 0.4 0.2 1.0 0.2
FAE (M) 1.0 0.8 0.2 0.6 0.4
OLVF (C, C̄, B) .0001, .0001, 1 .01, .0001, 1 1, .0001, 1 .01, .01, 1 .01, .0001, 1
OLIFL (option, C) 0, - 1, .007 1, 2 1, .3 1, .08
OCDS (T, α, β0, β1, β2) 16, .01, .01, .0001, .0001 16, 1, .0001, .01, .01§ 16, 1, 1, .0001, .0001 16, .0001, .01, .0001, .0001 8, .0001, .0001, .01, .0001
OVFM (dc, ce, dc, bs) 3, .005, F, 20 4, .001, F, 20§ 4, .001, F, 20§ 4, .001, F, 20§ 4, .001, F, 20§

DynFo (α, β, δ, ϵ, γ, M, θ2) .5, .5, .1, .001, .7, 1000, .6 .5, .8, .001, .001, .7, 1000, .6§ .5, .5, .03, .001, .7, 1000, .6 .5, .5, .4, .001, .7, 1000, .6§ .5, .5, .2, .001, .7, 1000, .6§

ORF3V (fS, rI, uS, α) 10, 5, random, .01 10, 5, oldest, .01§ 10, 10, oldest, .1 5, 10, random, .1§ 5, 10, random, .1§

Aux-Net (lr) .5 .01§ .01§ 0.05§ 0.05§

Aux-Drop (na, lr, d) 100, .01, .3 30000, .01, .3§ 500, .01, .3 100, .05, .3§ 100, .05, .3§

packetLSTM (lr, agg) .0006, max .0008, mean .0009, max .0008, max .0002, max

J HYPERPARMETER SEARCHING

We followed the strategy employed in article (Agarwal et al., 2024), where the best hyperparameters
for the synthetic dataset are found at p = 0.5 and subsequently used for p = 0.25 and 0.75. The best
hyperparameters for all baseline models, except OLIFL, are derived from article (Agarwal et al.,
2024), and the same hyperparameter search protocol is applied to both OLIFL and packetLSTM.
Details of the hyperparameter search values and the selected best values are presented in Table 6
and Table 7. The hyperparameter search process for packetLSTM and OLIFL is discussed next.

packetLSTM We determine the best values of hyperparameters sequentially. First, we fixed the
learning rate and aggregation operator to 0.0001 and mean, respectively, and varied the hidden sizes
of the short-term and long-term memory, being set at 32 and 64. We found the best hidden size to
be 64. Next, we experimented with four aggregation operators, namely, mean, max, min, and sum,
maintaining a fixed learning rate of 0.0001 and a hidden size of 64. We found max and mean as
the best operators for synthetic and real datasets, respectively. Finally, with the best hidden size
and aggregation operator established, we tested a range of learning rates (0.05, 0.01, 0.005, 0.001,
0.0005, 0.0001). We searched in the vicinity of the optimal learning rate found in the previous step.
For example, 0.0005 was found to yield good results on the magic04 dataset, prompting further
exploration of nearby values – 0.0002, 0.0003, 0.0004, 0.0006, 0.007, 0.0008, and 0.0009. Among
these, 0.0006 emerged as the most effective learning rate. The same process was followed for all the
datasets.

OLIFL We fixed the option second (min(C, 2loss/inner product(X))) to determine τ and tested a
range of C values (10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001). Similar to packetLSTM, we
searched in the vicinity of the optimal C value found in the previous step. In addition to this, we
also experimented with the first option (loss/inner product(X)) to determine τ .

K BENCHMARKING RESULTS ON OTHER METRICS

In the main manuscript, we compared the models in terms of their balanced accuracy. We also
provide the comparison of models on other metrics and time in Table 8.

L ABLATIONS STUDIES RESULTS WITH STANDARD DEVIATION

The ablation study conducted in section 6 of the main manuscript reports only the mean balanced
accuracy across five runs, as shown in Table 2. The comprehensive results, including both the mean
and the standard deviation, are presented in Table 9.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 8: Comparison of models on all the metrics and their execution time. The deterministic models
— NB3, FAE, OLVF, and OLIFL — underwent a single execution. In contrast, the non-deterministic
models were executed 5 times, with the mean ± standard deviation reported. The bAcc, Acc, ROC,
PRC, Err, and Time stand for balanced accuracy, accuracy, AUROC, AUPRC, number of errors, and
execution time, respectively. A ‡ symbol indicates non-deterministic models that were run only once
on specific datasets due to substantial time constraints.

Dataset p Metric NB3 FAE OLVF OLIFL OCDS OVFM DynFo ORF3V Aux-Net Aux-Drop packetLSTM

0.25

bAcc 50.01 50.01 53.18 53.06 51.89±0.10 51.94±0.00 52.75±0.30 47.94±0.22 50.09±0.07 56.04±0.53 61.33±0.07
Acc 64.81 64.84 59.59 57.22 62.99±0.03 65.04±0.00 59.04±0.37 37.96±0.19 63.31±0.42 67.63±0.30 70.95±0.06

ROC 49.91 48.66 44.02 46.93 48.79±0.26 57.22±0.00 50.29±0.15 48.00±0.09 50.13±0.25 57.99±0.76 67.79±0.08
PRC 64.73 62.53 59.34 68.63 62.96±0.22 70.14±0.00 65.56±0.11 63.04±0.05 64.80±0.19 68.46±0.59 77.48±0.09

Err 6694 6687 7686 8137 7039.60±5.13 6650.00±0.00 7789.40±69.64 11800.00±36.69 6978.40±79.97 6156.60±57.79 5524.60±10.63
Time 1.46 72.7 2.09 2.16 4.30±0.01 70.19±0.09 46.59±5.63 952.28±23.98 376.94±3.42 111.51±7.59 69.58±5.50

magic04 0.50

bAcc 50.02 50.00 54.6 57.28 53.40±0.45 54.13±0.08 55.12±0.06 48.56±0.11 50.09±0.03 59.29±0.48 68.31±0.15
Acc 64.81 64.83 61.06 58.83 54.26±2.00 65.02±0.04 64.12±0.06 35.06±0.12 63.38±0.60 68.91±0.37 75.25±0.13

ROC 50.51 47.97 45.38 42.71 55.43±1.54 61.15±0.06 53.24±0.04 47.27±0.07 49.90±0.34 62.39±0.34 76.65±0.12
PRC 65.21 61.36 60.29 67.54 66.40±1.20 72.72±0.06 67.65±0.02 62.24±0.09 64.61±0.22 71.25±0.31 83.01±0.15

Err 6693 6690 7407 7831 8699.00±380.40 6653.80±8.14 6824.40±10.95 12351.40±22.33 6965.60±113.62 5912.80±70.86 4707.00±23.94
Time 1.6 72.16 2.69 2.18 5.44±0.65 76.92±11.83 1110.78±38.39 1109.44±17.12 478.10±30.42 116.15±1.19 71.77±1.93

0.75

bAcc 49.99 50 56.19 60.75 53.76±1.07 58.79±0.04 56.75±0.02 49.32±0.04 50.05±0.07 63.18±0.61 73.64±0.11
Acc 64.82 64.83 62.31 62.67 54.83±2.14 61.83±0.02 66.58±0.01 34.82±0.03 63.32±0.72 70.66±0.38 78.78±0.10

ROC 49.34 46.5 46.89 39.24 55.90±1.74 60.95±0.02 53.79±0.04 44.26±0.13 50.16±0.24 68.48±0.92 82.64±0.14
PRC 64.15 59.67 61.4 64.53 67.60±1.39 77.80±0.05 67.60±0.01 59.68±0.14 64.88±0.33 75.93±0.43 87.38±0.16

Err 6691 6689 7168 7101 8591.00±406.63 7259.00±4.36 6356.60±1.52 12397.40±6.58 6977.20±136.68 5580.80±72.82 4035.2±18.94
Time 1.78 51.8 2.16 2.09 3.20±0.00 62.21±7.17 1134.59±13.96 1259.35±21.46 693.89±19.41 122.99±2.65 70.85±2.45

imdb

bAcc 81.56 82.18 80.08 54.36 50.14±0.02 77.43‡ 57.98±0.29 76.47±0.11 67.41‡ 73.10±0.19 85.06±0.04
Acc 81.56 82.18 80.08 54.36 50.14±0.02 77.43‡ 57.98±0.29 76.47±0.11 67.41‡ 73.10±0.19 85.06±0.04

ROC 88.08 46.17 48.57 45.64 50.04±0.01 83.92‡ 43.11±0.14 55.53±0.02 71.34‡ 79.67±0.29 92.66±0.01
PRC 84.93 47.95 48.29 59.91 50.13±0.02 82.50‡ 45.68±0.15 55.28±0.01 71.27‡ 77.74±0.40 92.49±0.02

Err 4609 4455 4980 11410 12464.20±6.14 5643‡ 10504.00±73.27 5882.80±27.38 8148‡ 6725.60±48.12 3734.8±11.12
Time 1257.01 4117.33 22.17 1570.06 47818.07±2783.21 109199.99‡ 4072.86±138.29 2768.24±23.26 223699.04‡ 46437.42±18114.58 4734.65±153.79

0.25

bAcc 50.01 50 60.67 53.57 54.75±0.87 58.66±0.00 50.01±0.03 49.99±0.00 50.00±0.00 50.00±0.01 60.53±0.16
Acc 75.9 75.91 72.19 75.78 73.07±0.34 78.00±0.00 75.73±0.02 75.90±0.00 75.91±0.00 75.85±0.07 77.93±0.03

ROC 51.98 49.7 63.25 46.27 61.04±1.41 77.70±0.00 50.86±0.09 47.88±0.05 54.45±0.18 55.92±3.39 75.78±0.19
PRC 77.2 75.82 85.07 66.67 82.31±0.88 91.36±0.00 76.35±0.06 74.49±0.03 77.78±0.23 81.27±2.08 90.13±0.09

Err 7847 7843 9056 7886 8768.60±109.75 7165.00±0.00 7903.00±6.71 7846.00±0.00 7843.80±0.45 7865.00±22.56 7184.6±10.91
Time 22.94 25.7 4.96 37.16 19.17±0.02 2139.21±88.33 4394.51±72.96 207.23±4.25 5484.63±54.75 421.91±119.74 240.96±4.76

a8a 0.50

bAcc 50.01 50.00 66.46 54.63 64.04±1.01 66.02±0.00 50.11±0.01 50.01±0.00 50.00±0.00 55.33±1.99 67.73±0.21
Acc 75.92 75.91 76.93 76.47 74.23±0.64 80.42±0.00 75.84±0.01 75.91±0.00 75.91±0.00 77.34±0.55 80.64±0.12

ROC 51 49.74 69.64 45.36 73.56±0.97 83.74±0.00 51.96±0.08 47.28±0.04 58.66±0.65 72.34±2.56 82.07±0.18
PRC 76.55 75.84 88.6 60.82 89.40±0.51 94.12±0.00 76.88±0.06 74.27±0.02 79.40±0.26 89.28±0.93 92.97±0.09

Err 7842 7843 7512 7661 8390.60±207.37 6377.00±0.00 7865.40±3.65 7844.00±0.00 7843.80±0.84 7377.00±178.05 6302.2±37.75
Time 23.52 26.18 6.59 42.82 51.67±3.29 2989.01±178.88 4858.85±133.63 395.44±0.80 17639.23±2014.52 235.54±8.39 243.05±4.79

0.75

bAcc 50.01 50 70.63 56.56 68.81±1.10 70.95±0.00 50.13±0.01 49.99±0.00 50.00±0.00 62.87±0.93 71.11±0.16
Acc 75.92 75.91 79.66 77.70 74.57±0.73 82.48±0.00 75.85±0.01 75.88±0.00 75.91±0.00 79.94±0.34 82.20±0.12

ROC 50.88 49.74 72.43 43.44 77.80±0.57 86.79±0.00 52.04±0.08 46.94±0.05 62.44±0.51 79.66±1.14 84.96±0.09
PRC 76.16 75.84 90 55.82 91.64±0.31 95.35±0.00 77.11±0.06 74.07±0.03 81.26±0.30 92.35±0.43 94.20±0.05

Err 7842 7843 6622 7271 8279.80±238.28 5705.00±0.00 7863.00±4.06 7852.00±0.00 7843.40±0.55 6533.00±111.55 5796.20±37.90
Time 28.16 37.84 6.37 48.37 32.28±3.32 3712.20±459.57 5263.24±92.75 569.20±11.54 28776.93±2045.19 577.31±768.95 246.70±6.71

0.25

bAcc 50 49.9 51.12 51.23 52.11±0.19 58.00±0.00 54.68±0.01 49.37±0.01 50.53±1.17 61.98±0.10 62.77±0.01
Acc 54.2 47.09 49.59 50.09 50.26±0.30 60.06±0.00 54.85±0.01 50.49±0.01 54.39±0.93 63.79±0.09 64.29±0.01

ROC 49.88 50.41 56.26 48.77 55.93±0.32 57.52±0.01 50.18±0.00 49.42±0.01 51.03±1.80 69.26±0.12 69.68±0.01
PRC 45.68 46.06 57.31 54.51 53.64±0.94 59.45±0.00 45.94±0.00 45.23±0.01 46.93±2.26 67.50±0.09 68.08±0.01

Err 457957 529137 504062 499125 497382.00±2960.08 399356.00±16.84 451496.67±76.94 495106.60±134.17 456143.60±9290.25 362096.60±871.73 357084.2±63.48
Time 68.97 12100.93 105.85 97.67 163.96±1.52 3771.36±499.81 654852.68±8956.39 24252.71±37.64 16455.42±167.84 5773.05±129.01 3538.95±32.03

SUSY 0.50

bAcc 50 50.01 53.21 53.59 54.03±0.28 62.85±0.00 58.27±0.00 48.33±0.02 57.89±7.19 68.79±0.14 69.28±0.01
Acc 54.2 46.87 51.6 52.70 51.77±0.36 64.36±0.00 58.76±0.00 48.42±0.03 60.71±6.08 69.90±0.12 70.25±0.01

ROC 50.03 50.22 61.86 46.41 57.95±0.32 64.34±0.00 50.04±0.00 49.06±0.01 60.14±8.30 76.48±0.15 76.78±0.01
PRC 45.79 45.51 62.65 53.28 54.01±0.65 66.74±0.00 45.88±0.00 44.85±0.01 57.49±10.17 75.44±0.10 76.19±0.02

Err 457957 531338 483988 472973 482305.60±3558.98 356403.2±18.85 412369.00±36.87 515823.80±285.70 392908.20±60770.38 300952.40±1155.92 297545.2±145.48
Time 75.86 10731.91 135.96 96.68 255.58±0.50 3418.06±393.33 343724.64±5176.04 23928.85±169.87 19612.72±567.55 6054.62±660.84 3722.70±81.00

0.75

bAcc 50 50.12 55.98 56.39 54.84±0.48 68.51±0.00 60.94±0.01 47.53±0.03 53.67±8.13 73.55±0.11 73.85±0.02
Acc 54.2 47.04 54.72 56.05 52.24±0.54 69.71±0.00 61.61±0.01 47.50±0.03 57.06±6.93 74.40±0.08 74.63±0.02

ROC 49.96 49.51 65.15 43.61 58.41±0.32 72.28±0.00 49.91±0.00 48.36±0.02 55.41±10.29 81.07±0.07 81.42±0.02
PRC 45.75 46.43 65.74 53.12 53.39±0.40 74.04±0.00 45.8±0.00 44.28±0.02 50.87±10.38 80.44±0.11 81.35±0.02

Err 457952 529567 452821 439520 477624.00±5394.23 302922.6±10.21 383919.4±129 524984.20±345.24 429402.00±69311.90 255994.60±801.85 253676.6±186.74
Time 83.59 12324.28 111.37 96.24 166.07±0.20 2578.27±161.13 114179.9±2433.89 25690.16±79.67 23987.22±1326.00 5787.78±123.95 4188.41±86.62

0.25

bAcc 50 50.16 50.57 50.56 49.97±0.07 50.61±0.01 50.18‡ 49.86±0.03 49.99±0.00 51.17±0.05 52.22±0.04
Acc 52.96 51.98 51.74 52.32 49.96±0.05 52.58±0.01 50.73‡ 49.68±0.03 52.72±0.02 53.57±0.02 54.15±0.03

ROC 50.03 50.09 49.99 49.44 49.96±0.07 51.13±0.00 49.99‡ 50.00±0.01 50.04±0.02 52.36±0.17 54.27±0.03
PRC 52.97 52.98 53.1 56.91 52.82±0.06 53.80±0.00 52.98‡ 53.02±0.01 53.01±0.02 54.93±0.16 56.58±0.03

Err 470403 480197 482630 476766 500440.40±475.98 474238.00±73.15 492724‡ 503204.00±312.46 472809.80±233.06 464302.00±186.18 458531.4±279.81
Time 136.12 17777.05 112.34 199.83 201.20±12.85 8122.34±230.07 1845662.94‡ 42814.64±94.35 28363.61±153.32 5784.12±159.85 4396.83±69.00

HIGGS 0.50

bAcc 50 50.01 51.21 51.50 50.06±0.06 51.40±0.01 50.21‡ 49.82±0.02 49.99±0.01 53.09±0.05 55.47±0.04
Acc 52.96 52.56 52.22 53.06 50.06±0.05 53.09±0.01 50.78‡ 48.77±0.02 52.73±0.04 54.81±0.04 56.46±0.02

ROC 49.97 50.12 50.29 48.50 50.04±0.08 52.42±0.00 50.01‡ 49.98±0.01 50.05±0.01 55.60±0.06 58.59±0.02
PRC 52.9 53 53.29 56.59 52.86±0.05 54.86±0.00 52.99‡ 52.96±0.01 53.01±0.02 57.81±0.12 60.62±0.03

Err 470388 474407 477760 469385 499377.20±487.22 469145.00±96.03 492219‡ 512329.40±189.51 472704.40±358.46 451891.40±365.32 435406.2±242.82
Time 142.97 7885.78 145.83 193.74 267.35±0.54 8241.69±231.79 1788308.41‡ 42623.97±97.07 44123.61±283.06 6039.45±565.24 4500.17±165.67

0.75

bAcc 50 50.55 51.98 52.48 49.97±0.05 52.66±0.00 50.16† 49.75±0.03 49.98‡ 55.55±0.11 58.71±0.05
Acc 52.97 49.24 52.75 53.77 49.97±0.05 53.73±0.00 50.78† 47.84±0.03 52.72‡ 56.77±0.08 59.25±0.05

ROC 49.95 50.1 50.66 47.52 49.98±0.02 54.01±0.00 49.94† 49.88±0.01 50.06‡ 58.96±0.18 62.78±0.05
PRC 52.94 53.48 53.66 56.83 52.80±0.02 56.07±0.00 52.91† 52.89±0.00 53.04‡ 60.78±0.22 64.53±0.04

Err 470336 507591 472523 462305 500300.00±475.25 462742.00±14.27 492196† 521619.00±301.39 472790‡ 432298.00±791.48 407498.6±538.70
Time 153.05 549606.27 125.45 191.47 200.58±2.95 8095.05±218.48 801655.55† 44079.06±134.05 65500.41‡ 5762.40±170.11 5186.53±50.48

M MEAN VS MAX AGGREGATION OPERATOR

Table 10 presents the comparison between the Mean and Max aggregation operators in the packetL-
STM framework. It is evident from Table 10 that the performance of the Mean operator relative to
the Max increases as data availability decreases from p = 0.95 to 0.05. The best hyperparameters
found at p = 0.5 is used for p = 0.05 and 0.95.

N STREAMING NORMALIZATION

The details of each streaming normalization technique are discussed below.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 9: Ablation study on the components (Comp.) of packetLSTM architecture. This is the copy
of Table 2 with standard deviation (std). The results are reported as mean ± std of 5 runs. This result
corresponds to the HIGGS dataset.

C
o
m
p
.

Variants magic04 imdb a8a SUSY HIGGS

25 50 75 25 50 75 25 50 75 25 50 75

A
g
g

Mean 60.98±0.08 67.06±0.10 72.30±0.07 85.06±0.04 58.52±0.21 65.15±0.14 67.50±0.19 63.16±0.02 69.59±0.01 74.07±0.05 52.01±0.01 55.27±0.04 58.04±0.02
Sum 61.27±0.07 67.93±0.14 73.21±0.20 83.63±0.13 58.26±0.56 65.15±0.14 68.80±1.21 63.19±0.01 69.29±0.01 74.39±0.00 52.24±0.02 55.64±0.01 59.06±0.02
Min 61.36±0.14 68.28±0.08 73.58±0.10 77.64±0.21 60.53±0.27 67.78±0.31 71.13±0.12 62.78±0.01 69.29±0.01 73.85±0.00 52.21±0.02 55.50±0.03 58.70±0.07
Max 61.33±0.07 68.31±0.15 73.64±0.10 77.90±0.23 60.53±0.16 67.73±0.20 71.11±0.15 62.77±0.01 69.28±0.01 73.85±0.02 52.22±0.04 55.47±0.04 58.71±0.05

T
i
m
e
M
o
d
e
l None 58.83±0.12 65.12±0.14 69.87±0.12 85.18±0.08 58.77±0.33 66.52±0.22 70.30±0.25 62.30±0.01 68.70±0.00 73.25±0.02 51.37±0.02 54.05±0.07 57.06±0.09

Decay 58.73±0.20 64.99±0.27 69.81±0.09 85.30±0.06 58.82±0.49 67.14±0.14 70.76±0.20 62.37±0.03 68.89±0.06 73.40±0.18 51.41±0.03 54.09±0.06 57.01±0.06
TimeLSTM-1 61.13±0.09 68.14±0.07 73.63±0.14 85.06±0.06 60.45±0.14 67.63±0.13 71.09±0.17 62.77±0.01 69.33±0.01 73.91±0.01 52.23±0.04 55.53±0.06 58.70±0.06
TimeLSTM-2 61.32±0.07 68.34±0.19 73.65±0.19 85.15±0.06 60.33±0.28 67.62±0.22 71.09±0.26 62.79±0.12 69.31±0.01 73.88±0.01 52.26±0.02 55.53±0.03 58.65±0.06
TimeLSTM-3 61.33±0.07 68.31±0.15 73.64±0.10 85.06±0.04 60.53±0.16 67.73±0.20 71.11±0.15 62.77±0.01 69.28±0.01 73.85±0.02 52.22±0.04 55.47±0.04 58.71±0.05

F
e
a
t Universal 61.37±0.07 68.33±0.17 73.69±0.12 85.06±0.11 60.32±0.33 67.58±0.23 71.15±0.26 62.79±0.01 69.27±0.01 73.84±0.01 52.26±0.02 55.52±0.03 58.69±0.05

Current 61.33±0.07 68.31±0.15 73.64±0.10 85.06±0.04 60.53±0.16 67.73±0.20 71.11±0.15 62.77±0.01 69.28±0.01 73.85±0.02 52.22±0.04 55.47±0.04 58.71±0.05

C
o
n
c
a
t Only LTM 60.94±0.07 67.66±0.07 73.09±0.21 85.15±0.06 59.36±0.34 66.86±0.29 70.34±0.31 62.78±0.02 69.32±0.01 73.85±0.01 52.20±0.04 52.62±0.86 57.69±0.10

Only STM 61.15±0.09 68.26±0.09 73.38±0.11 85.17±0.10 60.02±0.47 67.57±0.14 70.77±0.10 62.82±0.01 69.33±0.01 73.89±0.02 52.18±0.08 52.19±0.02 57.63±0.15
Both 61.33±0.07 68.31±0.15 73.64±0.10 85.06±0.04 60.53±0.16 67.73±0.20 71.11±0.15 62.77±0.01 69.28±0.01 73.85±0.02 52.22±0.04 55.47±0.04 58.71±0.05

N
o
r
m
a
l
i
z
e

None 59.14±0.08 65.44±0.16 70.53±0.10 85.61±0.04 59.97±0.11 67.89±0.25 71.22±0.21 63.12±0.02 69.65±0.01 74.19±0.02 51.46±0.01 54.33±0.08 57.39±0.08
Min Max 57.69±0.26 63.33±0.20 68.42±0.16 85.23±0.05 59.94±0.25 67.76±0.15 71.15±0.19 62.37±0.05 69.06±0.03 73.61±0.06 51.21±0.02 53.10±0.04 55.52±0.10
Decimal Scaling 55.03±0.19 60.36±0.62 65.72±0.35 85.23±0.05 49.99±0.01 50.00±0.01 50.00±0.00 50.96±1.20 58.53±0.87 63.31±0.49 50.00±0.00 50.00±0.00 50.00±0.00
Mean Norm 60.23±0.13 66.71±0.17 71.86±0.08 84.89±0.12 58.03±0.57 65.94±0.68 70.07±0.14 63.19±0.01 69.68±0.02 74.31±0.02 51.86±0.01 54.88±0.05 58.11±0.02
Unit Vector 50.01±0.04 54.23±0.24 60.02±0.48 85.32±0.12 58.12±0.25 65.67±0.25 68.97±0.17 56.52±0.01 65.43±0.02 71.44±0.03 50.75±0.02 52.86±0.04 55.53±0.11
Z-score 61.33±0.07 68.31±0.15 73.64±0.10 85.06±0.04 60.53±0.16 67.73±0.20 71.11±0.15 62.77±0.01 69.28±0.01 73.85±0.02 52.22±0.04 55.47±0.04 58.71±0.05

R
N
N

Vanilla RNN 60.70±0.13 66.76±0.25 72.14±0.21 83.55±0.13 51.16±2.32 65.24±0.40 64.50±6.30 62.84±0.02 68.06±2.61 73.98±0.01 51.96±0.05 54.26±0.13 56.77±0.13
GRU 60.34±0.19 66.24±0.13 71.23±0.21 81.49±0.17 50.96±1.44 60.86±0.95 73.38±0.11 62.73±0.01 69.16±0.01 73.72±0.01 51.80±0.04 54.25±0.03 56.79±0.06
LSTM 58.83±0.12 65.12±0.14 69.87±0.12 85.18±0.08 58.77±0.33 66.52±0.22 70.30±0.25 62.30±0.01 68.70±0.00 73.25±0.02 51.37±0.02 54.05±0.07 57.06±0.09

Table 10: Comparison between Mean vs. Max aggregation operator in the packetLSTM. The mean
balanced accuracy of 5 runs is reported here. We consider the synthetic datasets here and the models
are run for five p values, namely, 0.05, 0.25, 0.5, 0.75, and 0.95. All the results corresponding to
p =0.25, 0.5, and 0.75 are taken from Table 2 of the main manuscript. All the values of other
parameters of packetLSTM are exactly the same, and only the aggregation operator is varied here.

Characteristics magic04 a8a SUSY HIGGS

0.05 25 50 75 0.95 0.05 25 50 75 0.95 0.05 25 50 75 0.95 0.05 25 50 75 0.95

Mean 56.78 60.98 67.06 72.30 76.85 50.14 58.52 65.15 67.50 66.48 58.01 63.16 69.59 74.07 76.60 50.39 52.01 55.27 58.04 76.24
Max 56.74 61.33 68.31 73.64 78.13 50.01 60.53 67.73 71.11 73.33 57.57 62.77 69.28 73.85 76.57 50.43 52.22 55.47 58.71 77.07

Mean-Max 0.04 -0.35 -1.25 -1.34 -1.28 0.13 -2.01 -2.58 -3.61 -6.85 0.44 0.39 0.31 0.22 0.03 -0.04 -0.21 -0.2 -0.67 -0.83

• Min-Max Normalization: Here, we utilize two placeholders, namely, Mxt
j and Mnt

j ,
which represents the maximum and minimum value of feature j till time t. The min-max

normalization is then defined as
xt
j−Mnt

j

Mxt
j−Mnt

j
.

• Decimal Scaling: Here, all the values are scaled down by a predefined threshold as
xt
j

10m .
For all the datasets, we set m = 3.

• Z-score Normalization: Here, the values of each feature are normalized based on their

running means (µ) and standard deviation (σ) as
xt
j−µt

j

σt
j

, where µt
j = µ

t−
j +

xt
j−µ

t−
j

kt
j

and

(σt
j)

2 =
vt
j

kt
j−1

. The notation ktj denotes the count of the feature j till time t and vtj =

v
t−
j + (xt

j − µ
t−
j)(xt

j − µt
j). We utilize the above way of computing running mean and

variance because of its superior numerical stability (Knuth, 1981).

• Mean Normalization: Here, the values of each feature are subtracted by their running means
as xt

j − µt
j .

• Unit Vector Normalization: Here, we consider the whole input feature as a vector and

normalize the vector as
xt
j

||Xt||2 , where || · ||2 represents the L2 norm.

O PACKETRNN AND PACKETGRU

packetRNN The packetRNN framework is illustrated in Figure 5(a). Unlike the LSTM, which
incorporates both short-term and long-term memory, the RNN possesses only a single memory ele-
ment, known as the hidden state (ht

j). Consequently, the packetRNN lacks a mechanism for integrat-
ing global information and instead maintains local information within its hidden state. These hidden
states are combined using a dimension-invariant aggregation operator to generate a common hidden
state for final predictions. The mathematical working of a Vanilla RNN unit within the packetRNN

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) packetRNN Architecture

Memory

Time Delay

Values

Hidden
State

Input

Time

Evolving packets of RNNs

,

R1 R2

MemoryOutput

Aggregation AGG

Aggregated Memory

FCNFully Connected Network (FCN)

Final Output

Updated hidden state
of each RNN

,

R1 R2

AGG

FCN

R3

,

R1 R2

AGG

R3 R4

, , ,

Initialize

Current Feature Space

Missing
Feature

Obsolete
Feature

Sudden
Feature

Missing
Data

(b) Data Snapshot

FCN

Hidden
State

Common
Hidden State

Figure 5: (a) The packetRNN architecture based on (b) the data snapshot. In this framework, the
Vanilla RNN may be substituted with a GRU to establish the packetGRU framework.

framework is given by

ht
j = tanh(xt

jWj,xh + h
t−
j Wj,hh + bj,h), (13)

and the final output is given by

ŷt = FCN(AGG(
⋃

j,∀Fj∈Ft

{ht
j})). (14)

packetGRU The vanilla RNN in Figure 5(a) can be substituted with GRU to establish the packet-
GRU framework. Similar to the vanilla RNN, the GRU contains only one memory component but is
enhanced with two gates: the update gate (ut

j) and the reset gate (rtj). The operations of GRU within
the packetGRU framework are defined by the following equations:

ut
j = σ(xt

jWj,xu + h
t−
j Wj,hu + bj,u),

rtj = σ(xt
jWj,xr + h

t−
j Wj,hr + bj,r),

h̃t
j = tanh(xt

jWj,xh + rtj ⊙ h
t−
j Wj,hh + bj,h),

ht
j = ut

j ⊙ ht− + (1− ut
j)⊙ h̃t

j ,

(15)

and the final output of packetGRU is given by the equation 14.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

P COMPLEXITY ANALYSIS

Time Complexity The time complexity of packetLSTM is
∑T

t=1 O(g(|Ft|) ∗ s2 + P), where T is
the number of instances, O(g(|Ft|) ∗ s2) is the time complexity to process all the activated LSTMs
at time t corresponding to Ft features, and O(P) broadly denotes the constant time required to
perform other fixed operations like aggregations and final prediction. We utilize the torch.matmul()
function for matrix multiplication of LSTMs. The time required for each LSTM is dependent on
its hidden size (s) and performs 3 matrix multiplication of size (3s, s + 1) and (s + 1, 1) requiring
a time complexity of O(s2). However, we vectorize the operation of |Ft| LSTMs by single matrix
multiplication of (|Ft|, 3s, s+1) and (|Ft|, s+1, 1). Note that the time required by torch.matmul()
does not scale linearly with |Ft|; rather, it just takes a small overhead depending on the type of
hardware and other dependencies. Here, we denote this overhead as a function of |Ft| as g(|Ft|)
where 1 ≤ g(|Ft|) ≤ |Ft|. This is further corroborated by the time required by packetLSTMs on
each synthetic dataset with different p values (see Table 8). For example, the time required to process
the whole HIGGS dataset takes 4396.83 and 4500.17 seconds for p = 0.25 and 0.5, respectively.
Even though the value of |Ft| doubles from p = 0.25 to 0.5, the time required doesn’t increase by
the same factor. Therefore, the time required by the |Ft| LSTMs at time t would be O(g(|Ft|) ∗ s2).
Finally, since it is an online learning task and each instance is processed sequentially, the total
time complexity of T instances would be

∑T
t=1 O(g(|Ft|) ∗ s2 + P). It is difficult to find the exact

form of the function g. However, based on the time required by packetLSTM on each dataset with
increasing p, it can be safely assumed that the value of g(|Ft|) is closer to 1 than |Ft|. Therefore,
the packetLSTM model demonstrates scalability in terms of time complexity corresponding to the
number of features.

Space Complexity The space complexity of packetLSTM is directly dependent on the space com-
plexity of an LSTM. Let us denote the space complexity of an LSTM by O(L). At each time t, we
have a universal feature space of |F̄t| cardinality, therefore, corresponding |F̄t| LSTMs are present
in the packetLSTMs. The space complexity of the final prediction network and aggregation function
are fixed and denoted by O(K). Therefore, the total space complexity of packetLSTM at time t
can be given by O(|F̄t| ∗ L + K). Note that the space complexity of packetLSTM increases with
the arrival of sudden and missing features. Therefore, the limitation of packetLSTM is that it is not
scalable in terms of space complexity corresponding to the feature size. However, it is noteworthy
that packetLSTM effectively manages up to 7500 features, as demonstrated with the imdb dataset.
Additionally, we present a strategy to further mitigate space complexity limitation in section Q of
the Appendix.

Number of Parameters Here, we provide the number of learnable parameters in the packetLSTM
framework with Time-LSTM 3 as the time modeling unit. The mathematical formulation is given
by equations 2-8. The input gate (i), time gate 1 (T1), time gate 2 (T2), cell state (c̃), long-term
memory (c), and output gate (o) requires s2 + 3s, 3s, 3s, s2 + 2s, s2 + 2s, and s2 + 4s learnable
parameters, respectively. Therefore, the total number of learnable parameters in an LSTM unit is
4s2 + 17s. The fully connected layer accounts for 2s2 + 4s + 2 parameters. Therefore, the total
number of learnable parameters at each instance is |Ft| ∗ (4s2 + 17s) + 2s2 + 4s+ 2. For all
the experiments, the value of s is 64. In this article, the maximum number of parameters for each
dataset would correspond to the worst-case scenario where all the features are present, resulting in a
maximum of ∼183K, ∼131M, ∼2M, ∼148K, and ∼375K learnable parameters for magic04, imdb,
a8a, SUSY, and HIGGS, respectively. Consequently, packetLSTM requires 1.40 MB, 999.45 MB,
15.26 MB, 1.13 MB, and 2.85 MB memory with 64-bit precision for magic04, imdb, a8a, SUSY,
and HIGGS, respectively. Considering that a small large language model of 1 billion parameters is
common nowadays, packetLSTM can handle ∼57K features with 1 billion parameters. We believe
that a practical application would have a number of features way less than ∼57K.

Q DROPPING FEATURES TO RESOLVE SPACE COMPLEXITY

The space complexity increases with the number of features, as discussed above. However, pack-
etLSTM easily handles even the 7500 features in the imdb dataset. The total number of learnable
parameters of packetLSTM for the imdb dataset is ∼131M. Therefore, packetLSTM with 1B param-

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

eters and a hidden size of 64 can handle around ∼57K features. Hence, we argue that packetLSTM
can deal with high-dimensional data. However, we also propose a solution to curb the space com-
plexity by defining a maximum limit (say lf) on the number of LSTMs. When the number of
features in the universal feature space |F̄t| > lf , we drop |F̄t| − lf features. Here, dropping the
feature means that the corresponding LSTM is reinitialized and assigned to some new features that
arrived at time t. The dropped feature can come in future instances (> t). However, this feature will
then be considered as a sudden feature. We employ KL-Divergence to determine the dropped fea-
tures. After processing instance t− 1, packetLSTM has the short-term memory of each LSTM and
the common long-term memory. The KL divergence between each short-term and common long-
term memory is determined. The feature corresponding to the short-term memory, which has the
lowest KL-Divergence, is dropped. This is because the common long-term memory already holds
the dropped feature’s short-term memory information and is used for final prediction. We also put
a limit on the number of times a feature is seen (il) by packetLSTM before it can be considered for
dropping. We experimented with the imdb dataset since it has the highest number of features (7500).
The best hyperparameters found for packetLSTM on the imdb dataset in Table 7 are used here. The
lf and il are set to 100 and achieved a balanced accuracy of 78.92, which still performs better than
7 out of 10 baseline models (see Table 1 in main manuscript). The 78.92 balanced accuracy is lower
than the packetLSTM without any limits (85.06). So, there is a tradeoff between performance and
the space complexity.

R SINGLE LSTM

The three employed imputation techniques are:

• Forward fill: The missing value of a feature is imputed with its last observed value.

• Mean: The missing value of a feature is imputed with its forward mean determined in a
rolling manner. That is, the last K observed values of a feature are considered to calculate
its mean. Here K = 5.

• Gaussian Copula: (Zhao et al., 2022) proposed using Gaussian copula for online streaming
data with a known N , where N is the total number of features. This method argues that data
points are generated from a latent Gaussian vector, which is then transformed to match the
marginal distributions of observed features. However, Gaussian Copula requires storing a
matrix of K instances to perform imputation. The method fails if the matrix’s determinant
is 0 or if a feature’s values within the matrix are identical. The magic04 and SUSY require
K = 5, and HIGGS needs K = 30. The method does not work for a8a and imdb for even
K = 300, excluding its application to these datasets.

The hyperparameter search of a single LSTM is performed similarly to packetLSTM. The hyper-
parameters of the single LSTM model are hidden size, number of layers, and learning rate. We
searched for the best hidden size among 32, 64, 128, and 256. We determined the optimal num-
ber of layers between 1, 2, 3, and 4. Similar to packetLSTM, we tested a range of learning rates
(0.001, 0.0005, 0.0001, 0.00005). We further searched in the vicinity of the optimal learning rate
found in the previous step. The optimal hidden size and number of layers for each dataset are found
to be 32 and 1, respectively. The best learning rate is 0.001, 0.0006, 0.0001, 0.0002, and 0.0008
for magic04, a8a, SUSY, HIGGS, and imdb, respectively. Similar to packetLSTM, we employed
Z-score streaming normalization.

S CHALLENGING SCENARIOS ON HIGGS AND SUSY

S.1 HIGGS

Here, we provide the exact value of the balanced accuracy used in Figure 3 and 4 from section 7 of
the main manuscript. Table 11 provides the results associated with the experiments on sudden, obso-
lete, and reappearing features on the HIGGS dataset. Additionally, Table 12 details the comparative
results of packetLSTM versus packetLSTM retrained across five data intervals.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 11: The mean±standard deviation of the balanced accuracy of sudden, obsolete, and reap-
pearing experiments conducted in section 7 of the main manuscript. This table reflects the values of
the results presented in Figure 3 and 4 and corresponds to the HIGGS dataset.

Data Interval OLVF OLIFL OVFM Aux-Drop packetLSTM
Sudden

First 51.09 51.07 52.96±0.00 53.51±0.05 54.30±0.04
Second 54.45 53.10 54.49±0.00 55.77±0.04 56.98±0.03
Third 54.14 54.68 54.53±0.00 57.98±0.10 60.20±0.13
Fourth 54.08 54.93 54.82±0.00 60.09±0.16 62.37±0.12
Fifth 53.86 55.15 55.31±0.00 61.24±0.20 63.28±0.06

Obsolete
First 53.56 52.32 54.62±0.01 57.64±0.18 59.90±0.08
Second 51.80 52.27 52.21±0.01 55.48±0.16 58.15±0.09
Third 51.70 51.94 52.16±0.01 55.69±0.11 57.01±0.03
Fourth 51.48 51.80 51.41±0.01 52.38±0.09 53.77±0.05
Fifth 50.59 50.40 50.73±0.00 50.93±0.07 51.32±0.02

Reappearing
First 51.42 53.34 53.03±0.00 53.52±0.04 58.74±0.08
Second 52.07 51.39 52.58±0.01 53.20±0.02 53.27±0.07
Third 50.60 54.78 50.79±0.00 52.98±0.19 60.42±0.11
Fourth 51.30 51.88 51.28±0.01 51.65±0.05 53.94±0.08
Fifth 50.63 55.27 50.78±0.01 50.79±0.09 60.54±0.13

Table 12: The exact values represented in the experiment ‘Learning Without Forgetting’ in Figure 4
from section 7 of the main manuscript. This result corresponds to the HIGGS dataset.

Model First Second Third Fourth Fifth

packetLSTM 58.74±0.08 53.27±0.07 60.42±0.11 53.94±0.08 60.54±0.13
packetLSTM-Retraining 58.74±0.08 53.22±0.06 58.81±0.05 53.01±0.06 58.65±0.07

The reappearing experiment in the main manuscript and Figure 4 shows that packetLSTM mitigates
catastrophic forgetting. We further justify this by comparing packetLSTM with Aux-Drop (the best
baseline method as shown in Table 1).

Aux-Drop: The performance of Aux-Drop decreases from 53.52 in the first interval to 52.98 in the
third interval. The performance further decreases to 50.93 in the fifth interval. Aux-Drop also shows
a performance decline from 55.48 in the second interval to 52.38 in the fourth interval. Therefore,
Aux-Drop suffers from catastrophic forgetting.

packetLSTM: The performance of packetLSTM increases from 58.74 in the first interval to 60.42
in the third interval. The performance further increases to 60.54 in the fifth interval. The packetL-
STM also shows a performance increase from 53.27 in the second interval to 53.94 in the fourth
interval. Thus, packetLSTM mitigates catastrophic forgetting.

It can be argued that the performance increase of packetLSTM in the third interval is not due to
the mitigation of catastrophic forgetting; it is instead due to a likely situation of better predictive
capability of the features present in the third interval compared to the first interval.

To refute the above argument, we retrained the packetLSTM in each interval – a new initialized
packetLSTM was considered for each interval – and referred to it as packetLSTM-Retraining (see
Figure 4 and Table 12). The performance of the packetLSTM (60.42) outperforms packetLSTM-
Retraining (58.81) in the third interval, which shows that packetLSTM can retain its learning from
the first interval. Similar performance increase is observed in the fourth and fifth intervals.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 6: Model performance in the scenario of sudden and obsolete features. The mean balanced
accuracy in each data interval (e.g., 0 - 0.2 M) is shown in its middle (0.1 M). The pink-colored y-
axis represents the Feature(s). For e.g., ‘1-2’ means features 1 to 2 are available in instances shaded
with pink color. Both y-axes are shared by the two graphs. This graph corresponds to the SUSY
dataset.

Figure 7: Model performance in the scenario of reappearing features. The mean balanced accuracy
in each data interval (e.g., 0 - 0.2 M) is shown in its middle (0.1 M). The pink-colored y-axis
represents the Features. For e.g., ‘1-4’ means features 1 to 4 are available in instances shaded with
pink color. Both y-axes are shared by the two graphs. This graph corresponds to the SUSY dataset.

S.2 SUSY

We perform three challenging experiments – sudden features, obsolete features, and reappearing
features – on the SUSY dataset, replicating the experiments conducted on the HIGGS dataset. The
data creation settings for the SUSY dataset are identical to those employed for the HIGGS dataset.
We considered the OLVF, OLIFL, OVFM, and Aux-Drop baselines for comparative analysis. The
performance of each method is illustrated in Figures 6 and 7, with precise values detailed in Tables
13 and 14.

Sudden Features Similar to the approach used for the HIGGS dataset, 20% of the features are
sequentially added at each interval in the SUSY dataset, with values rounded to the nearest integer.
Given that SUSY comprises 8 features, the initial data interval includes features 1 and 2, the subse-
quent interval contains features 1 through 3, and this incremental addition continues as depicted in
the leftmost graph of Figure 6. All models exhibit a pattern of performance improvement as sudden
features are introduced at each interval, as evident in Figure 6. Notably, the packetLSTM consis-
tently outperforms all baselines in each data interval, followed by Aux-Drop, as detailed in Table
13. This underscores the efficacy of packetLSTM in handling sudden features.

Obsolete Features The data arrival pattern in this experiment is the inverse of that observed in the
sudden feature experiment, as illustrated in the middle graph of Figure 6. Generally, the performance

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 13: The mean±standard deviation of the balanced accuracy of sudden, obsolete, and reap-
pearing experiments presented in Figure 6 and 7 and corresponds to the SUSY dataset.

Data Interval OLVF OLIFL OVFM Aux-Drop packetLSTM

First 51.85 55.06 68.86±0.00 70.53±0.04 70.60±0.03
Second 52.44 55.20 68.88±0.00 70.72±0.07 70.83±0.02
Third 61.42 59.99 69.18±0.00 71.59±0.03 71.73±0.02
Fourth 61.46 60.20 69.12±0.00 71.64±0.05 71.83±0.03
Fifth 63.30 63.51 75.45±0.00 77.37±0.08 77.37±0.05

Obsolete
First 62.87 63.03 75.75±0.00 76.62±0.06 76.99±0.03
Second 61.55 61.09 69.17±0.00 71.61±0.11 71.80±0.06
Third 61.67 61.20 69.27±0.00 71.79±0.06 71.78±0.01
Fourth 52.37 54.89 68.56±0.00 70.64±0.06 70.80±0.02
Fifth 51.80 54.30 69.00±0.00 71.08±0.04 71.09±0.02

Reappearing
First 61.91 59.99 69.43±0.00 70.67±0.02 70.78±0.03
Second 53.20 55.59 70.68±0.00 70.64±0.78 71.68±0.03
Third 62.08 62.23 64.29±0.03 71.01±0.04 71.09±0.02
Fourth 53.39 54.93 56.87±0.62 71.98±0.04 71.76±0.03
Fifth 62.28 62.42 54.96±1.36 71.26±0.05 71.26±0.01

Table 14: The exact values represented in the experiment ‘Learning Without Forgetting’ in the
rightmost graph of Figure 7. This result corresponds to the SUSY dataset.

Model First Second Third Fourth Fifth

packetLSTM 70.78±0.03 71.68±0.03 71.09±0.02 71.76±0.03 71.26±0.01
packetLSTM-Retraining 70.78±0.03 71.68±0.03 71.00±0.02 71.71±0.02 71.18±0.03

of all models declines as features become obsolete in each subsequent interval. Interestingly, an
increase in performance from the fourth to the fifth interval is observed in models such as OVFM,
Aux-Drop, and packetLSTM. A plausible explanation for this phenomenon may relate to the nature
of the SUSY data, where the exclusion of feature 6 notably impacts performance more severely in
the fourth interval. The packetLSTM consistently outperforms other models throughout each data
interval, followed by Aux-Drop, demonstrating its robust capability in handling obsolete features
effectively.

Reappearing The performance of packetLSTM, Aux-Drop, and OLVF improves when previously
encountered sets of features reappear, as depicted in Figure 7. Furthermore, packetLSTM exhibits
performance gains of 0.09, 0.05, and 0.08 in the third, fourth, and fifth intervals, respectively, com-
pared to its retrained counterpart, as shown in the rightmost graph of Figure 7 and Table 14. This
enhancement reaffirms the ‘learning without forgetting’ capability of packetLSTM. Notably, pack-
etLSTM is the sole method that consistently demonstrates the ’learning without forgetting’ capabil-
ity across both the HIGGS and SUSY datasets. Moreover, packetLSTM consistently gives the best
result in four out of five data intervals, followed by Aux-Drop, as detailed in Table 13, underscoring
its superior performance.

T CATASTROPHIC FORGETTING IN ONLINE LEARNING VERSUS ONLINE
CONTINUAL LEARNING

In this article, we present the ‘learning without forgetting’ capability of packetLSTM. The ‘learning
without forgetting’ capability is also referred to as mitigating catastrophic forgetting in the existing
literature (Hoi et al., 2021). We explore this capability in an online learning setting, where the model
receives and processes instances sequentially without any buffer storage.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

The problem of catastrophic forgetting is extensively studied in a parallel and widely recognized
field of online continual learning (Li & Hoiem, 2017; Wang et al., 2024). Online continual learning
is the field of machine learning where a model continually learns new tasks. In this scenario, tasks
are delivered sequentially, yet all the instances for each task are presented at once. Consequently,
the learning for each task is conducted in an offline setting, utilizing all data related to a task before
transitioning to the subsequent one. For example, a model may initially learn from data related to
task 1 in an offline batch mode. Subsequently, it proceeds to learn from data pertaining to task 2 in
a similar batch mode, and this pattern continues. The introduction of new tasks may result in the
addition of new classes, a shift in data distribution, or the arrival of an entirely new task domain. In
the context of online continual learning, catastrophic forgetting refers to the challenge a model faces
in retaining its ability to perform previously learned tasks.

Although online continual learning shares similarities with online learning regarding sequential task
learning, it differs significantly in its execution within individual tasks. In online continual learn-
ing, the model adheres to a batch training paradigm, which diverges from the principles of online
learning algorithms. Consequently, the phenomenon of catastrophic forgetting, as observed in on-
line learning, distinctly differs from that in online continual learning. It is worth noting that the
packetLSTM framework, with certain modifications, may potentially be adapted for use in online
continual learning to address catastrophic forgetting. However, this application extends beyond the
scope of our article.

U TRANSFORMER

U.1 PADDING

The two input padding methods are:

• Only Values: For each dataset, zeros are added to the sequence following the available
feature values until fl, where fl = N , where N is the total number of features. Note
that this contradicts the sixth characteristic of haphazard inputs. However, to compare
packetLSTM with Transformer, we assume that N is known. The specific N for each
dataset is defined in the column labeled ‘#Features’ in Table 5 of the Appendix. An example
of an input instance at time t where feature 1 and j is available is [xt

1, xt
j , 0, ..., 0].

• Pairs: Each available feature value is paired with its corresponding feature ID, and the
sequence of these pairs is padded with zeros till fl. The feature ID ranges from 1 to N , and
fl = 2N . An Example is [xt

1, 1, xt
j , j, 0, ..., 0]

Padded inputs are initially processed through a linear embedding layer, which outputs embedding of
dimension d. The input dimension for this layer is N and 2N for Only Values and Pairs, respectively.
The embedding is then passed to an encoder. The encoder consists of nl encoder layers. Each
encoder layer comprises nh heads and maintains dimensions of size d for both input and output.
The encoder’s output feeds into the same fully connected neural network utilized in packetLSTM,
consisting of a linear layer of dimensions (d, d), a ReLU activation, and another linear layer leading
to the output classes, culminating in a softmax layer for predictions.

The hyperparameters search is performed sequentially, as in the packetLSTM. We searched the
optimal value of d among 32, 64, 128, 256, and 512, nh among 1, 2, 4, 8, and 16, nl among 1,
2, 3, and 4. Similar to packetLSTM, we tested a range of learning rates (0.001, 0.0005, 0.0001,
0.00005). We further searched in the vicinity of the optimal learning rate found in the previous
step. Optimal hyperparameters include a d of 128 for magic04 and 32 for other datasets, nh of 4 for
SUSY and imdb, 8 for magic04, and 16 for a8a and HIGGS. The nl is 1 for all the datasets, with the
learning rate of 0.0002 for magic04 and a8a and 0.0001 for SUSY, HIGGS, and imdb. The Z-score
is employed for streaming normalization.

U.2 NATURAL LANGUAGE

We experimented with two models, DistilBERT (Sanh et al., 2019) and BERT (Devlin et al., 2019),
to process haphazard inputs. The inputs to the model are created in two ways:

• Values: Sequences of available feature values, formatted as a string (example “xt
1 x

t
j”).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 15: Performance of DistilBERT and BERT on haphazard inputs. The synthetic dataset is
considered for p = 0.5, and the performance of 3 runs is reported here. Since the mean balanced
accuracy is around 50 in all cases, we did not conduct further experiments.

Model Data Type Metric magic04 imdb a8a SUSY HIGGS

DistilBERT

Values

bAcc 50.89±1.27 50.48±0.06 50.0±0.00 50.02±0.04 50.0±0.00
Acc 65.21±0.57 50.48±0.06 75.92±0.0 54.21±0.02 52.95±0.0

ROC 50.69±2.02 50.08±0.03 49.64±0.03 50.13±0.08 50.05±0.01
PRC 65.17±1.26 50.09±0.08 83.01±0.19 45.94±0.14 52.98±0.01

Err 6616.67±107.95 12379.0±15.75 7841.67±0.47 457861.67±236.68 470490.67±22.9
Time 487.88±0.65 705.84±3.61 866.5±3.32 19767.84±648.36 20385.68±2652.15

Input Pairs

bAcc 50.01±0.02 50.35±0.06 50.0±0.00 - -
Acc 55.41±13.31 50.35±0.06 75.92±0.0

ROC 50.01±0.07 50.12±0.03 49.62±0.01
PRC 75.83±7.69 50.06±0.02 83.01±0.06

Err 8481.67±2530.97 12412.33±14.38 7841.67±0.47
Time 496.47±3.26 846.39±8.61 938.85±2.88

BERT

Values

bAcc 50.0±0.01 50.26±0.02 50.0±0.00 - -
Acc 64.83±0.0 50.26±0.22 75.92±0.0

ROC 50.0±0.05 50.04±0.02 49.67±0.06
PRC 80.71±1.03 50.02±0.01 82.87±0.02

Err 6689.0±0.82 12434.0±55.37 7842.0±0.0
Time 619.53±10.21 1137.5±3.14 1470.69±6.11

Input Pairs

bAcc 50.0±0.00 50.44±0.02 50.0±0.00 - -
Acc 64.82±0.01 50.44±0.02 75.92±0.0

ROC 49.93±0.03 50.02±0.06 49.62±0.01
PRC 80.91±1.15 50.07±0.04 82.95±0.11

Err 6691.33±1.25 12390.33±4.64 7842.0±0.0
Time 631.61±2.44 1006.53±5.06 1205.76±4.31

• Input Pairs: Sequences where each feature value is paired with its feature ID (example
“[xt

1, 1] [xt
j , j]”).

We utilize the default hidden size of both DistilBERT and BERT models, and learning rates are
determined by hyperparameter search among 0.001, 0.0005, 0.0001, and 0.00005. The balanced
accuracy on the imdb and synthetic datasets (with p = 0.5) is around 50 for both models (see Table
15), with the highest being 50.89 for DistilBERT using Values on the magic04 dataset. Given that
the models did not learn to classify haphazard inputs and considering the extensive computation
time required for the BERT models, we did not conduct further experiments.

U.3 SET TRANSFORMER

We utilize the encoder and decoder provided in the Set Transformer article (Lee et al., 2019), which
is permutation invariant and handles variable length inputs. The hyperparameters are hidden size,
number of heads, number of induction (inducing points), and learning rate. Please refer to Set
Transformer (Lee et al., 2019) for more details about the architecture.

We conduct a hyperparameter search similar to packetLSTM. We searched the optimal value of
hidden size and the number of induction points among 32, 64, 128, 256, and 512, and the number
of heads among 1, 2, 4, and 8. Similar to packetLSTM, we tested a range of learning rates (0.001,
0.0005, 0.0001, 0.00005). We further searched in the vicinity of the optimal learning rate found in
the previous step. The optimal hidden sizes are 64 for magic04 and 32 for the rest of the dataset.
The best value of the number of induction points is 64 for magic04 and HIGGS, 32 for imdb and
a8a, and 256 for SUSY. The optimal number of layers is 1 for magic04 and HIGGS, 2 for imdb and
a8a, and 8 for SUSY. The best learning rate is 0.0001, 0.00007, 0.0002, 0.00008, and 0.00006 for
magic04, imdb, a8a, SUSY, and HIGGS, respectively.

U.4 HAPTRANSFORMER

We create embeddings of dimension (d) for each feature, initialized with He initialization (He et al.,
2015), and designed to be learnable to capture feature representations effectively. At each time
instance, only embeddings for available features are utilized and are collectively denoted as Et.
Given that the shape of Et would be (1, |Ft|, d), it varies in length due to the changing number of
features at time t (|Ft|). Therefore, the decoder of the Set Transformer (Lee et al., 2019), which
handles variable length inputs, is utilized to process Et. The decoder accepts an input of size d for

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 16: Performance of packetLSTM with complete features
(p = 1) on synthetic datasets. All the metrics are reported
as mean ± standard deviation of five runs. The bAcc, Acc,
ROC, PRC, Err, and Time stand for balanced accuracy, accu-
racy, AUROC, AUPRC, number of errors, and execution time,
respectively.

Metric magic04 a8a SUSY HIGGS

bAcc 79.65±0.13 73.57±0.15 77.42±0.05 62.66±0.18
Acc 83.68±0.12 83.37±0.08 78.11±0.05 62.98±0.19
ROC 87.79±0.06 87.54±0.11 84.92±0.05 67.95±0.28
PRC 90.49±0.11 95.49±0.06 85.17±0.06 69.60±0.24
Err 3103.2±21.93 5415.4±26.19 218943.6±492.38 370198±1863.46
Time 79.02±8.97 261.74±14.66 4146.19±98.9 5589.51±94.65

Figure 8: Performance of packetL-
STM on various probability of fea-
tures availability.

each feature and includes nh number of heads. The output from the decoder is then passed through
a softmax layer to generate predictions.

We conduct a hyperparameter search for d, nh, and learning rate following the methodology used
for packetLSTM. We determined the optimal d among 32, 64, 128, 256, and 512, and nh among
1, 2, 4, and 8. The best learning rate was determined among 0.001, 0.0005, 0.0001, and 0.00005.
We further searched in the vicinity of the optimal learning rate found in the previous step. Optimal
values identified include a d of 64, 512, 256, 32, and 64, nh of 2, 1, 2, 2, and 4 for magic04, imdb,
a8a, SUSY, and HIGGS, respectively. The learning rate is found to be 0.0005, 0.00007, 0.00009,
0.00009, and 0.00008 for magic04, imdb, a8a, SUSY, and HIGGS, respectively.

V HAPHAZARD INPUTS VS OTHER FIELDS OF VARYING FEATURE SPACE

The field of varying feature space is also studied as feature evolvable streams (Hou et al., 2017;
Zhang et al., 2020) and incremental and decremental features (Hou & Zhou, 2018; Dong et al.,
2021). However, both these fields assume some form of structure in their data stream, which con-
tradicts the characteristics of haphazard inputs. Specifically, the feature evolvable streams work in
batches and assume that there is an overlap period between the transition where old features vanish
and new features occur. Similarly, incremental and decremental features assume that the data arrives
in batches, where the initial batch consists of both vanishing and surviving features and subsequent
batches encompass surviving and newly augmented features. The assumption of the batch and the
structure of the data within the batch limits the applicability of both fields in haphazard inputs.

W PACKETLSTM WITH COMPLETE FEATURES

We set p = 1 in the synthetic datasets to determine the upper bound performance of packetLSTM
when all the features are present at each time instance. The corresponding results are provided in
Table 16. We present a comparison of packetLSTM’s performance across varying p values (0.25, 0.5,
0.75, and 1) in Figure 8. Unsurprisingly, the performance of packetLSTM increases with decreasing
haphazardness (i.e., increasing p value) in the data. The most significant decline in performance
occurs at p = 0.25, which is expected due to the increased haphazardness.

33

	Introduction
	Related Works
	Preliminaries
	Method
	Experiments
	Ablation Studies
	Challenging Scenarios
	Transformer on Haphazard Inputs
	Conclusion
	Ethics Statement
	Reproducibility
	Practical Applications
	Multi-Modal Learning vs packetLSTM
	Notations
	Different Time-Modeling Variants Within the Context of packetLSTM
	Datasets
	Metrics
	Evaluation Protocol
	Baselines Not Included For Comparison
	Implementation Details
	Hyperparmeter Searching
	Benchmarking Results on Other Metrics
	Ablations Studies Results with Standard Deviation
	Mean vs Max Aggregation Operator
	Streaming Normalization
	packetRNN and packetGRU
	Complexity Analysis
	Dropping Features to Resolve Space Complexity
	Single LSTM
	Challenging Scenarios on HIGGS and SUSY
	HIGGS
	SUSY

	Catastrophic Forgetting in Online Learning versus Online Continual Learning
	Transformer
	Padding
	Natural Language
	Set Transformer
	HapTransformer

	Haphazard Inputs vs Other Fields of Varying Feature Space
	packetLSTM with Complete Features

