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ABSTRACT

Despite the recent success of multi-task learning and transfer learning for natural
language processing (NLP), few works have systematically studied the effect of
scaling up the number of tasks during pre-training. Towards this goal, this paper
introduces EXMIX (Extreme Mixture): a massive collection of 107 supervised
NLP tasks across diverse domains and task-families. Using EXMIX, we study
the effect of multi-task pre-training at the largest scale to date, and analyze co-
training transfer amongst common families of tasks. Through this analysis, we
show that manually curating an ideal set of tasks for multi-task pre-training is
not straightforward, and that multi-task scaling can vastly improve models on its
own. Finally, we propose EXT5: a model pre-trained using a multi-task objective
of self-supervised span denoising and supervised EXMIX. Via extensive exper-
iments, we show that EXT5 outperforms strong T5 baselines on SuperGLUE,
GEM, Rainbow, Closed-Book QA tasks, and several tasks outside of EXMIX.
EXT5 also significantly improves sample efficiency while pre-training.

1 INTRODUCTION

Transfer learning (Schmidhuber, 1987; Pratt et al., 1991; Caruana et al., 1995) has been the cor-
nerstone of recent progress in natural language processing (Ruder et al., 2019; Devlin et al., 2019;
Raffel et al., 2020). While self-supervised pre-training has been shown to be highly effective at
exploiting large amounts of unlabeled data without relying on human annotation, there is still much
to explore regarding transfer learning in a multi-task co-training setup.

Prior seminal works like T5 (Raffel et al., 2020) and MT-DNN (Liu et al., 2019a) have demon-
strated a degree of promise in the paradigm of multi-task co-training (Caruana, 1997). However, the
challenge of catastrophic forgetting remains. Tasks often have to be carefully selected in order to
demonstrate positive affinity with regards to downstream transfer. In many cases, it is not unreason-
able to expect negative transfer (Rosenstein et al., 2005; Vu et al., 2020). This makes the process
of empirically curating a set of tasks to include in a transfer learning setup both computationally
prohibitive and specific to downstream tasks.

While standard pre-training typically employs a variant of the self-supervised language modeling
objective (Raffel et al., 2020), certain types of skills such as commonsense knowledge are only
acquired at a slow rate even using massive amounts of unlabeled data (Zhang et al., 2021). As
ever larger models are trained, the development of much more sample-efficient pre-training settings
becomes thus more important, and could be addressed via multi-task learning.

For the first time, we explore and propose Extreme Multi-task Scaling — a new paradigm for multi-
task pre-training. Compared to the largest prior work (Aghajanyan et al., 2021), our study doubles
the number of tasks and focuses on multi-task pre-training rather than fine-tuning, which enables a
direct comparison to standard pre-training. Our proposal is based on the insight that despite negative
transfer being common during fine-tuning, a massive and diverse collection of pre-training tasks is
generally preferable to an expensive search for the best combination of pre-training tasks.
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To this end, we introduce EXMIX: a massive collection of 107 supervised NLP tasks to be included
in a multi-task pre-training setup. We process all tasks in an encoder-decoder friendly format to
readily support the sharing of all parameters across all tasks. We postulate that an ensembling effect
across as many tasks, distributions and domains as possible results in a consistently net-positive
outcome. This echoes early multi-task learning results (Caruana, 1997; Baxter, 2000) indicating that
a bias that is learned on sufficiently many tasks is likely to generalize to unseen tasks drawn from
the same environment. Moreover, our experiments verify that our EXMIX mixture outperforms a
best-effort mixture of manually curated tasks.

Finally, we propose EXT5: a T5 model (Raffel et al., 2020) pre-trained on a mixture of supervised
EXMIX and self-supervised C4 span denoising. EXT5 outperforms state-of-the-art T5 models on
well-established benchmarks such as SuperGLUE (Wang et al., 2019a), GEM (Gehrmann et al.,
2021), and Rainbow (Lourie et al., 2021); as well as Closed-Book QA (Roberts et al., 2020) tasks.
Notably, our experimental findings also suggest that including EXMIX may reduce the number of
pre-training steps required to achieve strong performance, bringing about substantial sample effi-
ciency benefits.

To summarize, this paper contributes the following:

– We propose EXMIX (§2): a collection of 107 supervised NLP tasks for Extreme Multi-task
Scaling, formatted for encoder-decoder training. EXMIX has approximately twice as many
tasks as the largest prior study to date (Aghajanyan et al., 2021), totaling 18M labeled examples
across diverse task families.

– Given this large collection of tasks, we conduct rigorous empirical studies evaluating trans-
fer between common task families (§2.1). Our experiments show that curating a pre-training
mixture based on fine-tuning transfer is not straightforward (§2.2). Hence, efficiently search-
ing for the best subset of tasks to include in a multi-task pre-training setup is challenging and
prohibitive.

– Using EXMIX, we pre-train a model alongside the C4 span-denoising objective introduced by
Raffel et al. (2020), resulting in a new pre-trained model which we call EXT5 (§3). EXT5
outperforms state-of-the-art T5 on well-established benchmarks such as SuperGLUE, GEM,
Rainbow, Closed Book Question Answering, and several other tasks that are outside of EXMIX
(§3.2), while also being more sample-efficient (§2.6).

2 THE EXMIX TASK COLLECTION
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Figure 1: EXMIX task sizes in log scale. The
dashed line is the 3× 105 sampling rate cap.

To explore the Extreme Task Scaling paradigm, we
introduce EXMIX (Extreme Mixture), a collection
of 107 diverse English NLP tasks totaling 18M ex-
amples. Following Raffel et al. (2020), we format
all tasks as text-to-text examples to readily allow for
multi-task training. This unified format also enables
simple implementations without the need for task-
specific heads/losses, loss scaling, or explicit gra-
dient accumulation for heterogenous batches as in
prior works (Liu et al., 2019a; Aghajanyan et al.,
2021). When selecting examples from EXMIX, ex-
amples from each dataset are sampled proportionate to the individual dataset’s size, with each
dataset’s sampling rate capped at 3 × 105 maximum effective examples to ensure a balance be-
tween large and small datasets. We refer readers to Appendix A for a comprehensive breakdown of
EXMIX. Additionally, we discuss future multilingual variants of EXMIX and EXT5 in §5.

2.1 TRANSFER RELATIONS BETWEEN EXMIX TASKS

As discussed in §1, our goal is to pre-train a model on EXMIX to improve downstream performance.
One natural question to ask is which tasks have a negative impact on downstream performance?
Specifically, is there a subset of EXMIX that leads to better representations when used for multi-
task pre-training? Obviously, testing all possible 2|EXMIX| combinations is impractical since the
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pre-training process is expensive to run. Instead, we experiment with the less expensive co-training
procedure (i.e., multi-task fine-tuning), using representative subsets of similar tasks. Later, in §2.2,
we explore whether these results can be used to inform the task selection for multi-task pre-training.

Task Family Datasets

Summarization
CNN/DailyMail
XSum
Wiki Lingua

Dialogue
Schema-guided dialogue
Wizard-of-Wikipedia
Dialoglue-TOP

NLI
ANLI
MNLI
αNLI

Classification
IMDb reviews
GoEmotions
Civil Comments

Semantic Parsing
ATIS to FunQL
GEO to FunQL
COGS

Commonsense
PhysicaliQA
SocialiQA
WinoGrande

Closed-Book QA
Natural Questions
Trivia QA
Hotpot QA

Reading Comprehension
SQuAD
BoolQ
TweetQA

Table 1: Representative datasets used
for task-family transfer learning exper-
iments (§2.1).

To study transfer amongst task-families in EXMIX, we
construct subsets (Table 1) of 3 tasks each that are par-
titioned along their task family. Using these subsets,
we evaluate transfer among task families in a multi-task
learning (co-training) setup. While other types of tasks
are available in EXMIX, we did not include them because
they were not diverse enough to be representative of a task
family, and would scale the number of models needing to
be trained at a quadratic rate.

Experimental Setting We fine-tune a model on each
pair of task families (i.e., 6 datasets at a time). To ensure a
fair balance of tasks, we sample tasks proportional within
their family, but uniformly between task families. For ex-
ample, while evaluating how classification tasks and NLI
tasks transfer amongst each other, the sampling ratio of
MNLI:ANLI will be proportional (approximately 2.4:1),
but the overall ratio of NLI examples to classification ex-
amples will be 1:1. For reference, we also train a model
on each individual task family using proportional exam-
ple mixing (Sanh et al., 2019).

In total, this results in F+
(
F
2

)
models trained, where F is

the number of task families. Our experiments use F = 8
as shown in Table 1, resulting in 34 models trained in total. Each model is fine-tuned on top of the
released T5.1.1BASE checkpoint for 200k steps using a batch size of 128 and a constant learning rate
of 10−3.

Observations We summarize our results in Table 2. We observe that although there exist particu-
lar task-family pairs that show positive transfer (e.g., co-training with NLI helps most other tasks),
negative transfer is more common when training across task families compared to intra-family train-
ing. 21 out of the 56 inter-family relationships perform worse than intra-family models with the
same data budget, which grows to 38 out of 56 for a fixed compute-budget. While the abundance of
negative transfer among diverse task families is an expected result, interesting trends manifest in the
individual relationships. For example, summarization tasks generally seem to hurt performance on
most other task families; and CBQA tasks are highly sensitive to multi-task fine-tuning.

We also report correlations for intra-family datasets in Figure 2 using the same models as in Table 2.
In most cases, we see positive correlations between datasets in the same family. In a few cases,
however, we observe an opposite trend. For example, fine-tuned models that performed better on
the GEM schema-guided dialog dataset achieved lower scores on KILT Wizard-of-Wikipedia.

This initial exploratory analysis highlights both the potential of EXMIX as a tool to systematically
study task relationships, as well as the potential challenges in leveraging multi-task learning naively
on top of pre-trained representations.

2.2 CAN FINE-TUNING TASK RELATIONSHIPS HELP CURATE A PRE-TRAINING MIXTURE?

Our observations in §2.1 showed that multi-task co-training on top of existing pre-trained check-
points is not straightforward, and often results in negative transfer. However, the uncovered task
relationships might help efficiently search for an ideal subset of EXMIX for multi-task pre-training.
To this end, we select a set of the most promising task families to be included in a multi-task pre-
training setup, ranking task families by the average relative improvement they provide to other target
families (the last column in Table 2). Specifically, we include NLI, commonsense, classification,
and closed-book QA tasks from EXMIX to form a mixture of 48 tasks to include in a multi-task
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SUM DLG NLI CLS SEM CMNS CBQA RC ∆AVG

SUM 27.89
29.36 37.81 60.45 77.10 78.25 61.92 7.84 65.37 -6.9%

DLG 29.05 38.56
39.76 63.62 77.10 75.55 64.05 13.39 64.75 +0.1%

NLI 28.61 40.60 64.91
67.23 77.29 77.72 67.60 15.24 66.40 +4.3%

CLS 29.52 40.16 66.69 77.14
77.47 76.05 65.29 12.93 65.20 +1.4%

SEM 29.30 38.86 62.46 76.83 72.09
72.79 57.84 12.44 63.52 -2.5%

CMNS 29.28 39.27 65.08 77.05 76.29 68.24
68.35 16.48 66.01 +4.7%

CBQA 29.75 39.29 64.96 77.66 75.21 66.84 14.68
19.98 66.37 +1.2%

RC 29.45 38.12 63.70 77.14 76.98 66.62 10.26 62.94
65.60 -2.4%

AVG\diag 29.28 39.16 63.77 77.17 76.43 64.31 12.65 65.37

Table 2: Co-training transfer among task families. The entry at (row i, column j) indicates average
performance on family j using a model co-trained on families i and j. For intra-family models
(diagonal cells) we report results upto 100k steps (consistent data-budget) and 200k steps (consistent
compute-budget). Averages are calculated excluding the intra-family models (i.e. the diagonal
cells). The last column denotes the average gain that a source family provides to other task families.

31.832.032.232.432.632.8

CNN-DM

24.525.025.526.026.527.027.5

XS
um

25.526.026.527.027.528.0

XSum
26.5
27.0
27.5
28.0
28.5

GE
M

 W
LE

26.026.527.027.528.028.529.0

GEM WLE
31.832.032.232.432.632.833.033.2

CN
N-

DM

(a) SUM

58.0 59.0 60.0 61.0

TOP
40.040.541.041.542.042.5

GE
M

 S
GD

40.040.541.041.542.042.543.0

GEM SGD

14.915.015.115.215.315.415.5

KI
LT

 W
oW

14.814.915.015.115.215.315.415.5

KILT WoW
58.059.060.061.062.063.064.0

TO
P

(b) DLG

38.040.042.044.046.048.0

ANLI

82.083.084.085.086.0

M
NL

I

81.082.083.084.085.086.087.0

MNLI
61.062.063.064.065.066.067.068.0

Ab
dN

LI

60.0 61.0 62.0 63.0 64.0

AbdNLI

40.0
42.0
44.0
46.0
48.0

AN
LI

(c) NLI

85.085.185.285.385.485.5

CC
51.651.852.052.252.452.652.853.053.2

Go
E

51.5
51.75

52.0
52.25

52.5
52.75

53.0
53.25

GoE
93.2593.593.7594.094.2594.594.7595.0

IM
Db

93.5
93.75

94.0
94.25

IMDb
85.0
85.1
85.2
85.3
85.4

CC

(d) CLS

83.0 83.5 84.0 84.5 85.0

ATIS

50.052.054.056.058.060.062.0

CO
GS

50.052.054.056.058.060.062.0

COGS
83.0
84.0
85.0
86.0
87.0

GE
O

82.083.084.085.086.087.088.0

GEO
83.584.084.585.085.586.086.5

AT
IS

(e) SEM

60.062.064.066.068.070.0

PiQA
56.058.060.062.064.066.068.0

So
QA

56.058.060.062.064.066.068.0

SoQA
47.550.052.555.057.560.062.5

W
in

oG
r

56.058.060.062.064.066.0

WinoGr
60.062.064.066.068.070.072.074.0

Pi
QA

(f) CMNS

5.0 7.5 10.0 12.5 15.0

NQ
11.5
12.0
12.5
13.0
13.5

Ho
Po

11.512.012.513.013.514.0

HoPo
4.06.08.010.012.014.016.018.020.0

Tr
QA

6.0 8.010.012.014.016.018.0

TrQA

10.0
15.0
20.0
25.0

NQ

(g) CBQA

84.585.085.586.086.587.087.588.0

SQuAD
68.070.072.074.076.078.080.0

Bo
ol

Q

66.068.070.072.074.076.078.080.0

BoolQ

34.0
35.0
36.0
37.0
38.0

Tw
ee

tQ
A

33.034.035.036.037.038.039.0

TweetQA

85.085.586.086.587.087.5

SQ
uA

D

(h) RC

Figure 2: Within-family correlations for each dataset in a task family, using models from Table 2.
Performance on datasets from some task families are highly correlated (e.g., NLI) whereas other
task families have more erratic results across their datasets (e.g., Dialogue)

pre-training setup. We then fine-tune the resulting model on SuperGLUE, comparing it to T5.1.1
and EXT5 in Table 3.

While this model narrowly outperformed T5.1.1, it did not yield better results than including all of
EXMIX in the multi-task pre-training mixture, as we report in §3.2. Moreover, it did not outperform
a random selection of 55 tasks on average, as we report in our task scaling experiments (§2.5).

Mixture # Tasks SuperGLUE

Vanilla 0 76.1
Best-effort 48 76.4
Random-55 (§2.5) 55 77.0
EXMIX (§3.2) 107 79.9

Table 3: A best-effort mixture from fine-
tuning transfer results does not beat increas-
ing the number of tasks.

We conclude that the negative transfer during
multi-task fine-tuning does not necessarily inhibit
pre-training. While we cannot directly conclude
that an ideal subset of EXMIX does not exist to
be mixed with self-supervised pre-training for spe-
cific downstream tasks, our experiments show that
randomly including more diverse pre-training tasks
generally improves downstream performance. It
must also be noted that the end-goal is to find a mix-
ture that leads to a general pre-trained model that can
be used for a large variety of downstream tasks, and
that a setup to find a pre-training mixture tailored for
SuperGLUE would be different.
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2.3 MULTI-TASK PRE-TRAINING VS PRE-FINETUNING

Instead of pre-training on EXMIX, another way to leverage multi-task learning is as an intermediate
step between pre-training and fine-tuning. This is referred to as pre-finetuning by Aghajanyan et al.
(2021). We conduct controlled experiments to compare pre-training with pre-finetuning. We begin
with a standard T5 base checkpoint and pre-finetune it with EXMIX. After this phase, we fine-tune
on SuperGLUE.

Method Compute SuperGLUE

Vanilla 1.2M 76.1
Pre-finetuning (200k) 1.4M 78.1
Multi-task Pre-training 1.2M 79.9

Table 4: Comparison of Pre-finetuning and
Multi-task Pre-training on EXMIX.

Table 4 compares pre-finetuning and our proposed
multi-task pre-training. We also report the total com-
pute (in total number of tokens processed) by the
model in both schemes. The results show that multi-
task pre-training is significantly superior to pre-
finetuning. A potential hypothesis is that multi-task
pre-training narrows the gap between pre-training
and finetuning data distributions, as the pre-training
stage more closely resembles fine-tuning. Con-
versely, segregating pre-training and pre-finetuning
into two different stages may induce catastrophic forgetting of the pre-training task. Hence, in
EXT5, we opt for multi-task pre-training over pre-finetuning.

2.4 HOW MUCH LABELED DATA SHOULD BE MIXED?
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Figure 3: How the ratio of C4 span denois-
ing examples to EXMIX affects SuperGLUE
results on EXT5BASE. The dashed line is per-
formance without using EXMIX (R→∞)

In this section, we explore how the ratio of C4 to
EXMIX examples during massive multi-task pre-
training affects performance. As mentioned later
in §3, this is controlled by a hyperparameter R,
where a pre-training batch will have approximately
R times as many C4 examples compared to EXMIX.
From our results in Figure 3, we find that despite
EXMIX improving downstream performance when
mixed with self-supervised C4 pre-training at many
rates, a model trained with R = 0 suffers greatly in
comparison. This result is significant, as it shows
that while EXMIX improves the pre-training pro-
cess, self-supervised training over a large unstruc-
tured corpus is still crucial.

2.5 DOES ADDING MORE TASKS HELP? TASK SCALING EXPERIMENTS
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Figure 4: Scaling the number of tasks dur-
ing multi-task pre-training generally helps.
The shaded area portrays standard deviation
across three random subset selections.

In this section, we explore how model performance
changes as the number of tasks included in a mas-
sive multi-task pre-training setup is scaled up. We
choose random sets of 30, 55, and 80 tasks (each a
superset of the last), pre-train a BASE-sized model
for 524k steps, and fine-tune them on SuperGLUE.
We train our models with batch sizes of 128 and 512
and R = 2 (the ratio of C4 to EXMIX examples) as
this configuration worked best for our BASE-sized
models (§2.4). We repeat this over three random
seeds (for random subset selection), and report av-
erage scores in Figure 4.

Overall, with large batches, we can see that increas-
ing the number of tasks being mixed generally helps
downstream performance. This reinforces our intuition that task scaling indeed helps. With small
batches, there is less of an upward trend, signifying that large batches are essential for a large number
of tasks. This is intuitive, given that multi-task learning may cause gradients to be noisy (Yu et al.,
2020). Another explanation as to why this happens is that large-batch training can offer benefits
even for single-task models (Smith et al., 2018) — a trend formalized by McCandlish et al. (2018).
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2.6 IMPROVING SAMPLE EFFICIENCY WITH EXMIX
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Figure 5: SuperGLUE score of EXT5LARGE

vs T5LARGE as a function of number of pre-
training steps.

We hypothesize that extreme multi-task scaling also
improves the sample efficiency of pre-training. To
test this, we exclude SuperGLUE from EXMIX, pre-
train a large model for 200k steps, and fine-tune it
on SuperGLUE at several intervals during early pre-
training stages. We find that EXMIX pre-training is
significantly more sample-efficient than vanilla self-
supervised pre-training. Note that at only 20k pre-
training steps, our ExT5 model already achieves 75.8
SuperGLUE score, which outperforms a fully pre-
trained BERT large model by about +4% (Wang
et al., 2019a).

3 THE EXT5 MODEL

To overcome the challenges of multi-task co-training at scale, i.e. negative transfer and catastrophic
forgetting explored in §2.1, the rest of this paper revisits the multi-task pre-training paradigm in-
troduced by Raffel et al. (2020) via extreme multi-task scaling. This section introduces EXT5: a
pre-trained sequence-to-sequence Transformer encoder-decoder model (Vaswani et al., 2017) based
on the popular T5 framework.

3.1 TRAINING EXT5

Pre-training We pre-train on a mixture of C4 and EXMIX (§2), and combine them with a hyper-
parameter R that is the ratio at which C4 examples are sampled with respect to EXMIX examples.
The C4 objective we use is the same as that used by Raffel et al. (2020), and every task optimizes
the standard sequence-to-sequence cross-entropy loss. We pre-train EXT5 on the same number of
steps as T5, and EXT5 sees an identical number of tokens to the released T5 models. Concretely, we
pre-train our models for 1M total steps with a batch size of 2048 and sequence length 512, resulting
in a total of approximately 1T tokens seen by the model during pre-training (both unsupervised and
supervised inclusive). We use the T5.1.1 architecture (Shazeer, 2020) for all of our experiments —
which uses GEGLU-activated layers instead of ReLU in classic Transformer models (Vaswani et al.,
2017). For optimization, we use Adafactor with an inverse square root learning rate schedule that
kicks in after a a constant phase of 0.01 for 10k steps. EXT5 also uses the same tokenizer as T5.

Fine-tuning We follow the same fine-tuning procedure for T5 and EXT5 for fair comparison, al-
though we found that EXT5 generally benefitted from a smaller learning rate while fine-tuning (10−4
worked well for EXT5 vs 10−3 for T5 variants). Fine-grained details can be found in Appendix B.

3.2 EXPERIMENTAL SETUP

Our experiments consider both within-mixture and out-of-mixture tasks (i.e., whether a task is in-
cluded in EXMIX). Within-mixture tasks measure the amount the task benefits from multi-task
pre-training and extreme task scaling. Similar to the co-trained models in Raffel et al. (2020), we
continue to fine-tune on the target task from a pre-trained ExT5 checkpoint. For out-of-mixture
tasks, we consider possibly new unseen tasks or collections that were not included in the EXMIX
mixture to test the effect of generalizing to unseen tasks. For the sake of brevity, the fine-grained
details of these experimental setups can be found in the Appendix.

3.3 EXPERIMENTAL RESULTS

WITHIN-MIXTURE RESULTS

We report results on SuperGLUE (Table 5), GEM (Table 6), Rainbow (Table 7), MsMarco (Ta-
ble 8) and CBQA datasets (Table 9). On the whole, we observe that ExT5 consistently outperforms
strong T5 baselines across a range of model sizes. On SuperGLUE, we achieve +5%, 2.3% and
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+0.7% gain on BASE, LARGE and XL respectively. On GEM, ExT5 outperforms T5 on 6 out of
9 collections while remaining on-par on the other 3 collections. Notably, the gain on datasets such
as WebNLG are approximately +11% ROUGE for the large model and generally range from +1%
to +6% on different collections. On Rainbow, ExT5 outperforms our own run of T5 by +0.7% on
average and +4.6% improvement over the best multi-task (sequential) setup in Lourie et al. (2021).
Finally, on question answering and ranking, ExT5 substantially outperforms T5 at two different
sizes.

Model BoolQ CB Copa MultiRC ReC RTE WiC WSC AVG

T5.1.1BASE 82.3 91.7/92.9 60.0 76.9/39.6 80.9/80.2 84.5 69.3 81.7 76.1
ExT5BASE 82.6 98.7/98.2 73.0 79.5/45.4 80.8/80.0 87.0 71.3 83.7 79.9
T5.1.1LARGE 88.3 94.3/96.4 87.0 85.4/55.1 89.2/88.5 90.6 73.5 88.5 85.3
ExT5LARGE 88.4 98.7/98.2 89.0 85.5/58.0 88.6/87.9 93.1 73.4 96.2 87.3
T5.1.1XL 89.6 92.0/96.4 96.0 88.2/64.1 92.4/91.7 91.7 74.3 95.2 88.7
ExT5XL 89.4 100/100 97.0 87.5/62.7 91.4/90.9 94.2 74.6 93.3 89.4
T5.1.1XXL 90.4 100.0/100.0 99.0 88.6/63.9 91.0/90.1 92.1 78.5 95.2 90.2
ExT5XXL 91.1 94.9/96.4 98.0 89.4/66.0 93.3/92.7 95.7 77.3 96.2 90.6

Table 5: Comparisons of T5 and EXT5 on SuperGLUE validation sets.

Model Metric WebNLG DART SGD E2E CG ToTTo WiA-A WiA-T WLE

T5.1.1BASE

METEOR 0.323 0.364 0.325 0.383 0.201 0.366 0.302 0.368 0.189
ROUGE-2 39.46 45.62 36.25 47.40 17.32 49.8 38.58 51.54 19.19

BLEU 29.06 34.75 33.44 43.17 8.34 39.59 29.53 42.71 14.72

ExT5BASE

METEOR 0.349 0.367 0.330 0.382 0.206 0.368 0.306 0.367 0.192
ROUGE-2 45.07 46.87 37.46 47.32 18.13 50.17 39.10 51.35 19.41

BLEU 32.36 35.15 34.34 42.71 9.39 40.01 30.04 43.39 14.96

T5.1.1LARGE

METEOR 0.344 0.363 0.324 0.382 0.202 0.368 0.301 0.362 0.196
ROUGE-2 43.31 45.22 36.17 46.60 17.01 49.90 38.37 50.52 20.47

BLEU 31.67 34.31 33.15 42.57 8.38 39.79 29.30 42.12 15.55

ExT5LARGE

METEOR 0.365 0.376 0.330 0.381 0.214 0.369 0.300 0.358 0.204
ROUGE-2 48.17 48.14 37.77 46.70 19.04 50.33 37.98 50.38 21.16

BLEU 35.03 36.62 34.74 42.25 9.68 40.14 29.23 41.39 16.64

Table 6: Comparisons of T5 and EXT5 on GEM (English).

Model αNLI CosmosQA HellaSwag PIQA SocialIQA Winogrande AVG

T5LARGE (multitask)† 78.40 81.10 81.30 80.70 74.80 72.10 78.07
T5LARGE (sequential)† 79.50 83.20 83.00 82.20 75.50 78.70 80.35

T5.1.1LARGE 82.51 85.59 88.57 85.53 78.51 79.79 83.42
ExT5LARGE 82.25 85.86 88.99 85.04 79.73 82.53 84.07
% Gain -0.3% +0.3% +0.5% -0.6% +1.6% +3.4% +0.8%

Table 7: Results on the Rainbow Commonsense Reasoning benchmark validation sets. Results with
† are from Lourie et al. (2021).

Model MRR@10

T5LARGE (Nogueira et al., 2020) 0.393
EXT5LARGE 0.402
% Gain +2.3%

T5XL (Nogueira et al., 2020) 0.398
EXT5XL 0.403
% Gain +1.3%

Table 8: Results on MSMarco.

Model NQ WQ TQA

T5.1.1LARGE 27.3 29.5 28.5
EXT5LARGE 28.6 30.5 30.7
% Gain +4.8% +3.4% +7.7%

T5.1.1XL 29.5 32.4 36.0
EXT5XL 30.6 35.2 37.0
% Gain +3.7% +8.6% +2.8%

Table 9: Results on CBQA dev sets.
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OUT-OF-MIXTURE RESULTS

We are also interested in evaluating EXT5 on tasks outside of EXMIX, and hypothesize that the
extreme multi-task pre-training of EXT5 will lead to better performance on new unseen settings.
Concretely, we fine-tune and evaluate on Machine Translation: translating sentences from English
to other languages (Bojar et al., 2014; 2015; 2016); Reasoning: answering scientific questions on
ARC (Clark et al., 2018); and Named Entity Recognition: extracting all entities from sentences on
the CoNLL-2003 NER dataset (Tjong Kim Sang & De Meulder, 2003).

Machine Translation QA NER
Model EnDe EnFr EnRo ARC Dev Test

Raffel et al. (2020) 26.98 39.82 27.65 - - -
T5.1.1BASE 28.30 41.01 28.11 26.45 92.55 85.75
ExT5BASE 28.32 41.89 28.38 36.35 92.68 86.53
% Gain ±0% +2.1% +1.0% +37.4% +0.13% +0.91%

T5.1.1LARGE 28.68 41.34 29.01 55.80 92.80 86.56
ExT5LARGE 28.98 42.71 29.49 63.99 93.63 87.34
% Gain +1.0% +3.3% +1.7% +14.7% +0.90% +0.90%

Table 10: Experimental results on tasks that are not in EXMIX. For ARC, we report test scores on the
challenge set with retrieval. For NER, we report accuracy on a sentence level (see Appendix B.2).

Table 10 summarizes the results on the out-of-mixture tasks. Across all tasks, we see that EXT5
outperforms upon T5 baselines. The largest improvement is on the ARC scientific reasoning task,
perhaps due to the large amount of QA tasks in EXMIX. Though, the trend is consistent also with
the NER and MT tasks that do not have any similar dataset in EXMIX. This suggests that the
representations learned by EXT5 are more general adaptable to a new objective, even when the
output is in a new language.

This improved generalization of EXT5 is very encouraging from a practical stand point, since pre-
training again with EXMIX ∪ {t} for any new target task t would be very expensive. Instead, we
see that the extreme multi-task pre-training of EXT5 already provides improved results. Therefore,
it might only be worth repeating pre-training when the collection of training datasets grows by a
significant amount (see §2.5).

4 RELATED WORK

Improving NLP models with Multi-task Learning Collobert & Weston (2008) leverage multi-
task learning for relatively simple tasks like Part-of-Speech tagging. Phang et al. (2019) use an
intermediate fine-tuning stage using four tasks with large datasets for Natural Language Under-
standing. Similarly, Liu et al. (2019a) proposed MT-DNN, which uses a setup at a scale of around
30 tasks and up to 440M parameters. Most recently, Aghajanyan et al. (2021) use around 50 tasks
and models of sizes upto 440M parameters. Gururangan et al. (2020) take an alternative approach,
which is to continue pre-training a model but use domain-specific data as an intermediate step. Mc-
Cann et al. (2018) proposed a unified framework similar to that of T5. Recently, Wei et al. (2021)
also illustrated how a multi-task learning stage can greatly improve the zero-shot prompting perfor-
mance of large language models at the scale of ~137B parameters. Efforts have also been made to
tailor pre-training objectives to specific tasks, e.g., question answering (Ram et al., 2021; Jia et al.,
2021), dialogue (Li et al., 2020), and span selection tasks (Joshi et al., 2020).

Relationships amongst different tasks Bingel & Søgaard (2017) conducted a study similar to
ours in §2.1 but for more traditional NLP tasks like chunking, CCG tagging, POS tagging, etc. More
recently, Vu et al. (2020) conducted an in-depth study of relationships between various classifica-
tion/regression, question-answering, and sequence-labeling tasks, and proposed a task-embedding
framework to predict such relationships. Khashabi et al. (2020) also conducted similar experiments
but specific to question-answering datasets/formats, resulting in a strong QA model known as Uni-
fiedQA that is also based on the T5 framework. Outside of NLP, Zhang & Yeung (2010) introduced
a convex optimization objective for learning task relationships, and Li et al. (2018) explore and
exploit task relationships on a variety of diverse datasets.
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Choosing which tasks to transfer from Our experiments in §2.2 attempted to empirically select
a set of tasks to transfer from. Along these lines, Ruder & Plank (2017) use a Bayesian Optimization
method with similarity measures to automatically select relevant data from different domains. Sim-
ilarly, Guo et al. (2019) use multi-armed bandits to select tasks and a Gaussian Process to control
the mixing rates for the selected tasks. Another strand of recent work selects appropriate transfer
languages based on manually defined features (Lin et al., 2019; Sun et al., 2021). Aside from the
NLP domain, Fifty et al. (2021) proposed a method to select which tasks to transfer to based on
task gradients. All of the aforementioned works select data tailored to a downstream task of inter-
est. If a general pre-trained model was attempted to be trained in a similar fashion, computational
bottlenecks similar to those motivating §2.1 and §2.2 would arise.

Pre-trained Transformers Transformer models (Vaswani et al., 2017) such as T5 (Raffel et al.,
2020), BERT (Devlin et al., 2019) and GPT-3 (Brown et al., 2020) rely on large unlabeled corpus for
self-supervised learning. Given the wild success of the pre-train-finetune paradigm, the search for
suitable pre-training tasks has also become an active area of research (Lewis et al., 2019; Lan et al.,
2019; Chang et al., 2020; Zhang et al., 2019; Lourie et al., 2021). While there has been evidence that
supplementary pre-training tasks can help improve performance, this work is the first massive-scale
multi-task pre-trained model.

Scaling Laws Scaling laws for Transformers have attracted much attention recently, especially
pertaining to model size (Kaplan et al., 2020; Zhai et al., 2021; Tay et al., 2021a). In Kaplan et al.
(2020), the authors further investigate scaling with respect to dataset size (on the same pre-training
corpus). To this end, this work can be interpreted as an attempt of scaling up with respect to the
number of high quality, diverse labeled tasks that can be used for pre-training.

5 EPILOGUE

Limitations Despite our best efforts to evaluate on as many representative tasks as possible while
also maintaining a balance among task partitions for a given set of transfer learning experiments, any
study that explicitly abstracts datasets into “task families” is highly dependent on nuances pertaining
to the nature, domain, and expressiveness of the task family’s representative datasets. For this paper,
the subsets were constructed so as to include a diverse set of datasets to evaluate on, and we tried to
partition task-families to be as mutually exclusive as possible. However, it must be acknowledged
that no dataset is perfectly isolated, and any set of them only a proxy for a larger “task family”. On a
separate note, lexical metrics like BLEU/ROUGE are useful but do not paint the full picture of how
well a model truly performs on text-generation tasks.

Future Work We believe that a multilingual version of EXT5 would be a natural extension of
this work. Such a model will require extra care with regard to balancing not only task families, but
also task languages. A multilingual version of EXMIX could provide a more robust foundation for
the analysis of task families in existing works that analyze how multilingual NLP models transfer
amongst different languages (Kudugunta et al., 2019; Hu et al., 2020; Wang et al., 2021). For exam-
ple, it would be interesting to understand whether our results in §2.1 hold across different languages
(and language families), and to explore cross-lingual cross-task generalization. We also hypothesize
that modeling innovations that introduce inductive biases designed to exploit multi-task learning se-
tups (Ha et al., 2016; Tay et al., 2021b) can push the boundary of the strong performance displayed
by EXT5. Other solutions like gradient manipulation (Yu et al., 2020; Wang et al., 2021) might also
further improve extreme multi-task scaling, albeit at the cost of more complex implementations.

Conclusion This paper explores how supervised multi-task learning at a massive scale can be
used to improve existing self-supervised pre-training strategies for NLP models, and does so by
introducing EXMIX (§2) and EXT5 (§3). Our experiments showed that while negative transfer is
common when fine-tuning on diverse tasks (§2.1), scaling up the number of tasks to include in
a multi-task pre-training setup enables strong downstream performance (§3.2) with better sample-
efficiency (§2.6). We hope that this paper motivates future research on how existing labeled datasets
can be used to further improve NLP models within the pre-train/fine-tune paradigm.
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A DATASETS

Dataset(s) Description No. Train Datasets |D| Citation
GLUE General Language Understanding 7 949,101 Wang et al. (2019b)
SuperGLUE General Language Understanding 8 185,673 Wang et al. (2019a)
KILT Knowledge-Intensive Language Tasks 9 3,129,859 Petroni et al. (2021)
Rainbow Commonsense Reasoning 6 324,742 Lourie et al. (2021)
GEM (en) Natural Language Generation 8 1,067,955 Gehrmann et al. (2021)
DialoGLUE Dialogue Understanding 6 76,122 Mehri et al. (2020)
TweetEval Twitter Classification Benchmark 8 120,104 Barbieri et al. (2020)
CNN/Dailymail News Summarization 1 287,113 See et al. (2017)
XSum News Summarization 1 203,577 Narayan et al. (2018)
Multi-News News Summarization 1 44,972 Fabbri et al. (2019)
AESLC Email Summarization 1 14,436 Zhang & Tetreault (2019)
Gigaword Summarization 1 3,803,957 Rush et al. (2015)
SamSum Dialogue Summarization 1 14,372 Gliwa et al. (2019)
ANLI Adverserial NLI 1 162,865 Nie et al. (2020)
ESNLI Explainable NLI 1 549,367 DeYoung et al. (2020)
AgreeSum Entailment Article-Summary NLI 1 7,750 Pang et al. (2021)
DocNLI Document NLI 1 942,314 Yin et al. (2021)
Vitamin C Fact-checking NLI 1 370,653 Schuster et al. (2021)
Web Questions QA (open) 1 3778 Berant et al. (2013)
SQuAD QA (context) 1 87,599 Rajpurkar et al. (2016)
QuAC QA (context) 1 83,568 Choi et al. (2018)
DROP QA (Discrete Reasoning) 1 77,409 Dua et al. (2019)
RACE School QA (MCQ) 4 113,013 Lai et al. (2017)
Eraser MultiRC Explainable QA (MCQ) 1 24,029 DeYoung et al. (2020)
TweetQA QA (context) 1 10692 Xiong et al. (2019)
NewsQuizQA Question-Answer Generation 1 16,160 Lelkes et al. (2021)
Amazon Reviews Review Classification 1 100,000 ama
GoEmotions Emotion Classification 1 43.410 Demszky et al. (2020)
IMDb Reviews Sentiment Classification 1 25,000 Maas et al. (2011)
Sentiment140 Sentiment Classification 1 1,600,000 Go et al. (2009)
Yelp Reviews Sentiment Classification 1 560,000 Zhang et al. (2015)
AGNews News Classification 1 120,000 Zhang et al. (2015)
TreqQC Question Classification 1 5000 Hovy et al. (2001)
Civil Comments Toxicity Classification 1 1,804,874 Borkan et al. (2019)
Wiki Toxicity Toxicity Classification 1 159,571 Wulczyn et al. (2017)
Yahoo! Answers Topic Classification 1 140,000 Zhang et al. (2015)
UKP Arg. Mining Argument Classification 1 18,341 Stab et al. (2018)
Parsing to FunQL Semantic Parsing 3 5,565 Guo et al. (2020)
Parsing to interm. repr. Semantic Parsing 4 117,318 Herzig et al. (2021)
COGS Semantic Parsing (Comp. Gen.) 1 24,155 Kim & Linzen (2020)
GPT Deepfake detection Generated-text classification 8 500,000 Radford et al. (2019)
StylePTB Style Transfer 4 53,546 Lyu et al. (2021)
Shakespearizing English Style Transfer 2 36,790 Jhamtani et al. (2017)
MS-MARCO Pointwise Ranking 1 100,000 Bajaj et al. (2018)
Total EXMIX 107 18,085,040 -

Table 11: All of the training datasets used to construct ExMix.

Table 11 summarizes the 107 datasets included in EXMIX. Some of the lines in the table represent
existing benchmarks that group several tasks together. From each collection, we use the datasets
that include English training data:

– GLUE: CoLA (Warstadt et al., 2019), SST-2 (Socher et al., 2013), MRPC (Dolan & Brockett,
2005), QQP, STS-B (Cer et al., 2017), MNLI (Williams et al., 2018), QNLI (Converted from
Rajpurkar et al. (2016), RTE (Dagan et al., 2006), WNLI (Sakaguchi et al., 2020).

– SuperGLUE: BoolQ (Clark et al., 2019), CB (De Marneffe et al., 2019), COPA (Roemmele
et al., 2011), MultiRC (Khashabi et al., 2018), ReCoRD (Zhang et al., 2018), RTE (Dagan
et al., 2006), WiC (Pilehvar & Camacho-Collados, 2019), WSC (Levesque et al., 2011).

– KILT: FEVER (Thorne et al., 2018), AIDA (Yosef et al., 2011), WNED (Guo & Barbosa,
2014), T-REx (Guo & Barbosa, 2014), NQ (Kwiatkowski et al., 2019), HoPo (Yang et al.,
2018), TQA (Joshi et al., 2017), ELI5 (Fan et al., 2019), WoW (Dinan et al., 2019).

– Rainbow: αNLI (Bhagavatula et al., 2020), CosmosQA (Huang et al., 2019), HellaSWAG
(Zellers et al., 2019), PIQA (Bisk et al., 2020), SocialIQA (Sap et al., 2019), WinoGrande
(Sakaguchi et al., 2021).

– GEM (en): Wiki-Lingua (Faisal Ladhak & McKeown, 2020), WenNLG (Gardent et al., 2017;
Castro Ferreira et al., 2020), CommonGEN (Lin et al., 2020), E2E (Dušek et al., 2019), DART
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(Radev et al., 2020), ToTTo (Parikh et al., 2020), Wiki-Auto (Jiang et al., 2020), TurkCor-
pus(Xu et al., 2016)

– DialoGLUE: Banking77 (Casanueva et al., 2020), HWU64 (Liu et al., 2019b), CLINC150
(Larson et al., 2019), SGD (Rastogi et al., 2020), TOP (Gupta et al., 2018).

– TweetEval: Emotion Recognition (Mohammad et al., 2018), Emoji Prediction (Barbieri et al.,
2018), Irony Detection (Van Hee et al., 2018), Hate Speech Detection (Basile et al., 2019),
Offensive Language Identification (Zampieri et al., 2019), Sentiment Analysis (Rosenthal et al.,
2017), Stance Detection (Mohammad et al., 2016).

B EXPERIMENTAL DETAILS

This section describes the experimental details

B.1 IMPLEMENTATION DETAILS

Our models were trained using Mesh Tensorflow (Shazeer et al., 2018) using the T5 library (Raffel
et al., 2020).

B.2 DATASET EXPERIMENTAL SETUP

This section reports the dataset and experimental setup on each individual target task/dataset.

SuperGLUE We finetune on the entire SuperGLUE as a mixture with proportionate sampling in
similar fashion to (Raffel et al., 2020). We finetune for a total of 200k steps with a batch size of 128.
When selecting checkpoints on SuperGLUE, we follow the same convention as Raffel et al. (2020)
in selecting the best checkpoint for each task for a fair comparison to models that are fine-tuned on
the individual tasks instead of co-training on all of them.

GEM We report test set results on all datasets except CommonGen and ToTTo, on which we
report validation scores. We sweep over learning rates of 10−3, 5 × 10−4 and 10−4. All results
are computed using GEM-metrics3. For each dataset, we select the best model checkpoint using
average of BLEU, ROUGE-1, ROUGE-2 and ROUGE-L scores on the validation set. We use the
greedy decoding strategy to be consistent with the original GEM paper (Gehrmann et al., 2021).

CBQA We report validation set results, and sweep over learning rates of 10−3 and 10−4.

Rainbow We multi-task co-train on all datasets, and sweep over learning rates of 10−3 and 10−4.

WMT Machine Translation We finetune our models on three collections of WMT, namely EnDe,
EnFr and EnRo. We use a constant learning rate of 10−3 and dropout of 0.1. We train with a batch
size of 4096 for a maximum of 400k steps and report peak validation BLEU score. We use a beam
size of 4 and a length penalty of 0.6.

ARC We report scores on the Challenge set, and train with a batch size of 32 and sweep over
learning rates of 10−3 and 10−4.

CoNLL-03 NER We convert NER to seq2seq by writing the target as the ordered sequence of
tags and entities (for example “When Alice visited New York”→ “[PER] Alice [LOC] New York”).
Accuracy is measured on a sentence level, considering a prediction to be correct only if it exactly
matches the reference sequence.

C DETAILED EXPERIMENTAL RESULTS

Many of our experiments in §2 used the average SuperGLUE score of a model for evaluation. We
report the full results on all datasets below.

3https://github.com/GEM-benchmark/GEM-metrics
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Mixture BoolQ CB Copa MultiRC ReC RTE WiC WSC AVG

Vanilla 82.3 91.7/92.9 60.0 76.9/39.6 80.9/80.2 84.5 69.3 81.7 76.1
Best-effort 81.7 89.4/92.9 75.0 76.6/37.4 76.4/75.5 82.7 67.1 80.8 76.4
Random-55 81.3 97.3/97.0 67.7 77.0/39.7 76.5/75.6 82.7 69.5 83.3 77.0
EXT5 82.6 98.7/98.2 73.0 79.5/45.4 80.8/80.0 87.0 71.3 83.7 79.9

Table 12: Full SuperGLUE results from §2.2

Method BoolQ CB Copa MultiRC ReC RTE WiC WSC AVG

Vanilla 82.3 91.7/92.9 60.0 76.9/39.6 80.9/80.2 84.5 69.3 81.7 76.1
Pre-finetuning 82.2 85.1/89.3 74.0 79.8/45.1 79.2/78.3 87.7 69.6 82.7 78.1
Multi-task pre-training 82.6 98.7/98.2 73.0 79.5/45.4 80.8/80.0 87.0 71.3 83.7 79.9

Table 13: Full SuperGLUE results from §2.3

R BoolQ CB Copa MultiRC ReC RTE WiC WSC AVG

0 76.8 58.6/83.9 63.0 66.6/22.6 53.0/52.1 75.5 63.2 73.1 65.0
1 82.1 93.7/94.6 75.0 78.0/41.7 76.7/75.7 85.6 68.8 76.9 77.3
2 82.6 98.7/98.2 73.0 79.5/45.4 80.8/80.0 87.0 71.3 83.7 79.9
4 81.3 96.0/94.6 73.0 75.2/38.8 77.4/76.6 84.8 68.8 83.7 77.6
5 81.9 89.4/92.9 74.0 75.5/35.6 76.2/75.3 85.6 69.1 76.9 76.2
10 81.2 93.2/96.4 77.0 75.6/37.6 76.5/75.6 82.7 70.4 80.8 77.4
20 80.7 93.7/94.6 71.0 74.5/36.5 75.9/74.4 79.8 66.5 84.6 75.9

→∞ 82.3 91.7/92.9 60.0 76.9/39.6 80.9/80.2 84.5 69.3 81.7 76.1

Table 14: Full SuperGLUE results from §2.4

# Tasks BoolQ CB Copa MultiRC ReC RTE WiC WSC AVG

Batch Size = 128
0 79.3 92.4/92.9 72.0 74.2/32.8 74.9/73.9 79.8 70.2 81.7 75.4
30 (random) 78.7 95.7/95.2 66.0 72.6/30.5 72.8/72.0 77.6 68.4 82.4 74.1
55 (random) 79.4 93.2/94.6 74.3 73.6/33.8 74.1/73.2 80.7 68.8 82.1 75.8
80 (random) 80.0 92.5/94.6 70.0 74.3/34.8 73.9/72.9 80.0 68.1 82.4 75.3
107 79.3 95.0/96.4 74.0 74.0/34.8 73.5/72.5 79.4 70.7 77.9 75.6

Batch Size = 512
0 82.3 91.7/92.9 60.0 76.9/39.6 80.9/80.2 84.5 69.3 81.7 76.1
30 (random) 80.6 93.6/95.8 67.7 74.6/35.4 75.7/74.7 81.2 68.6 83.3 75.8
55 (random) 81.3 97.3/97.0 67.7 77.0/39.7 76.5/75.6 82.7 69.5 83.3 77.0
80 (random) 82.1 94.4/95.8 71.7 76.8/39.4 77.0/76.1 84.7 69.2 83.0 77.6
107 82.6 98.7/98.2 73.0 79.5/45.4 80.8/80.0 87.0 71.3 83.7 79.9

Table 15: Full SuperGLUE results from §2.5

# Pre-train steps BoolQ CB Copa MultiRC ReC RTE WiC WSC AVG

T5.1.1
20k 77.9 93.0/92.9 69.0 73.0/32.3 73.3/72.4 77.6 69.6 79.8 73.8
50k 82.3 100.0/100.0 74.0 76.8/38.0 79.9/79.1 82.3 70.4 83.7 78.7
100k 83.7 95.0/96.4 82.0 80.0/45.9 83.8/83.0 87.0 73.7 84.6 81.6
200k 85.7 100.0/100.0 85.0 81.8/49.0 85.2/84.4 87.7 73.5 88.5 83.8

ExT5
20k 80.3 95.0/96.4 70.0 74.4/35.8 72.9/72.1 82.7 68.5 81.7 75.8
50k 83.1 97.4/96.4 78.0 79.2/43.9 79.6/78.9 88.1 73.4 87.5 81.0
100k 85.3 100.0/100.0 81.0 81.6/48.9 83.7/83.0 89.2 73.2 90.4 83.5
200k 86.5 98.7/98.2 86.0 83.2/53.1 85.4/84.7 91.7 73.4 93.3 85.3

Table 16: Full SuperGLUE results from §2.6
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