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ABSTRACT
Multiple-instance learning (MIL) is an important weakly supervised

binary classification problem, where training instances are arranged

in bags, and each bag is assigned a positive or negative label. Most

of the previous studies for MIL assume that training bags are fully

labeled. However, in some real-world scenarios, it could be difficult

to collect fully labeled bags, due to the expensive time and labor

consumption of the labeling task. Fortunately, it could be much eas-

ier for us to collect similar and dissimilar bags (indicating whether

two bags share the same label or not), because we do not need to

figure out the underlying label of each bag in this case. Therefore,

in this paper, we for the first time investigate MIL from only similar
and dissimilar bags. To solve this new MIL problem, we propose a

convex formulation to train a bag-level classifier based on empirical

risk minimization and theoretically derive a generalization error

bound. In addition, we also propose a strong baseline for this new

MIL problem, which aims to train an instance-level classifier by min-

imizing the instance-level empirical risk. Extensive experimental

results clearly demonstrate that our proposed baseline works well,

while our proposed convex formulation is even better.
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1 INTRODUCTION
Weakly supervised learning [52] covers a variety of studies [9, 17,

22, 28, 29, 32, 35, 39, 43, 54] that attempt to construct predictive

models by learning with weak supervision. Due to the difficulty

of collecting large-scale fully labeled datasets in many real-world

scenarios, weakly supervised learning has attracted increasing at-

tention from machine learning and data mining communities.

Multiple-instance learning (MIL) [1, 10, 13, 19] is an important

weakly supervised learning problem, which aims to deal with the

binary classification task where training instances are arranged in

bags, and each bag is assigned a binary label (indicating whether

the bag is positive or not). A training bag is labeled as a positive bag

if at least one instance in the bag is positive, and a training bag is

labeled as a negative bag if all the instances in the bag are negative.

The goal of MIL is to predict the label of any unseen test bag. MIL

is more difficult than ordinary binary classification because the

labels of the instances in each bag are unavailable. MIL has been

successfully applied to various real-world problems such as drug

activity prediction [13], image retrieval [27, 33, 46], visual tracking

[4], object detection [24, 37], text categorization [3], face detection

[48], and medical diagnosis [16, 42].

In the past decades, a large number of methods have been devel-

oped to improve the performance of MIL, such as: citation 𝑘NN [44],

EM-DD [49], MI-SVM [3], MIBoosting [47], MILES [11], miGraph

[53], MIForests [26], and MI-ODM [50]. Although these methods

have achieved satisfactory performance, all of them are demanding

for fully labeled bags, in order to train an effective bag-level clas-

sifier. However, it may be difficult for us to collect a MIL dataset

composed of fully labeled bags in some situations, due to the signif-

icant labeling costs. For example, a molecule (bag) can have many

low-energy shapes (instances), a bag label that indicates whether

the molecule can be used to make the drug depends on whether the

molecule has some special shapes. It could be difficult for human

experts to accurately figure out all the correct bag labels of all the

molecules, due to high (time or money) costs. Fortunately, it would

be much easier to judge whether two molecules share the same bag

label, instead of knowing the correct bag label of each molecule. In

this case, we refer to two bags that share the same bag label as a

similar bag and two bags that do not share the same bag label as

a dissimilar bag. Therefore, a natural question arises: Can we still
successfully learn an effective bag-level binary classifier from only
similar and dissimilar bags when there are no labeled bags provided?
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In this paper, we provide an affirmative answer to the above

question. Our main contributions can be summarized as follows:

• We for the first time investigate MIL from only similar and
dissimilar bags. To solve this new MIL problem, we propose

a convex formulation to train a bag-level classifier based
on empirical risk minimization and theoretically derive a

generalization error bound.

• We also propose a strong baseline for this new MIL problem,

which aims to train an instance-level classifier by minimizing

the instance-level empirical risk.

• Extensive experimental results clearly demonstrate that our

proposed baseline works well, while our proposed convex

formulation is even better.

2 RELATED STUDIES AND PRELIMINARIES
In this section, we briefly review related studies and introduce

preliminary knowledge.

In fully supervised binary classification, we normally require a

vast amount of fully labeled data to train an effective binary clas-

sifier. However, it could be difficult to collect such fully labeled

data, due to high labeling costs [54], privacy considerations [45],

and social bias [36]. Therefore, many researchers have paid much

attention to various weakly supervised binary classification prob-

lems [5, 12, 14, 15, 18, 21, 23, 25, 30, 31, 40, 41]. Because our goal

in this paper is to learn a bag-level binary classifier (i.e., multiple-

instance learning) from similar and dissimilar bags, two of the ex-

isting weakly supervised binary classification problems are highly

related to our work, i.e., multiple-instance learning [10, 51] and

similar-dissimilar classification [40], where similar-dissimilar classi-

fication aims to learn an instance-level binary classifier from only

similar and dissimilar data.

In what follows, we will introduce ordinary binary classification,

similar-dissimilar classification, and multi-instance learning.

2.1 Ordinary Binary Classification
In ordinary binary classification, let the feature space be X ∈ R𝑑
(with 𝑑 dimensions) and the label space be Y = {−1, +1}. Let us
clearly define that 𝒙 denotes an instance and and (𝒙, 𝑦) denotes
an example including an instance 𝒙 and a label 𝑦 (assigned to the

instance 𝒙). It is conventionally assumed that each training example

(𝒙, 𝑦) is independently sampled from an unknown data distribu-

tion with probability density 𝑝 (𝒙, 𝑦). The goal of ordinary binary

classification is to construct an instance-level binary classifier 𝑓 by

minimizing the (expected) classification risk, which is defined as

𝑅(𝑓 ) := E𝑝 (𝒙,𝑦)
[
ℓ (𝑓 (𝒙), 𝑦)

]
, (1)

where E𝑝 (𝒙,𝑦) [·] denotes the expected value over the joint prob-

ability density 𝑝 (𝒙, 𝑦) and ℓ : R × Y ↦→ R+ denotes a binary loss

function. Because the joint probability density 𝑝 (𝒙, 𝑦) is unknown
and we usually have training examples {𝒙𝑖 , 𝑦𝑖 }𝑛𝑖=1 that are indepen-
dently drawn from 𝑝 (𝒙, 𝑦), a common strategy is to minimize the

empirical risk 𝑅(𝑓 ) := 1

𝑛

∑𝑛
𝑖=1 ℓ (𝑓 (𝒙𝑖 ), 𝑦𝑖 ), which is called empirical

risk minimization. As can be easily verified, E𝑝 (𝒙,𝑦) [𝑅(𝑓 )] = 𝑅(𝑓 ).
In this case, we refer to 𝑅(𝑓 ) as an unbiased estimator of the classi-

fication risk 𝑅(𝑓 ) (also known as unbiased risk estimator).

2.2 Similar-Dissimilar Classification
Recently, an interesting weakly supervised binary classification

problem called similar-dissimilar classification [40] has been in-

vestigated, which aims to train an instance-level binary classifier

from only similar and dissimilar data pairs that indicate whether

two instances belong to the same class (similar) or not (dissimilar).

Obviously, compared with fully labeled data, similar and dissimilar

data could be easier to collect [5, 7, 40]. Here, we introduce the

seminal work [40], which formally defines the generation process

of similar and dissimilar data pairs and derive an unbiased risk

estimator based on the data generation process.

Specifically, the densities of similar data and dissimilar data are

formulated as

𝑝S (𝒙, 𝒙 ′) =
𝜋2𝑝+ (𝒙)𝑝+ (𝒙 ′) + (1 − 𝜋)2𝑝− (𝒙)𝑝− (𝒙 ′)

𝜋2 + (1 − 𝜋)2
,

𝑝D (𝒙, 𝒙 ′) =
1

2

𝑝+ (𝒙)𝑝− (𝒙 ′) +
1

2

𝑝+ (𝒙 ′)𝑝− (𝒙),

where 𝜋 = 𝑝 (𝑦 = +1) denote the (positive) class prior, 𝜋S = 𝜋2+(1−
𝜋)2 denotes the prior of similar data pairs, 𝜋D = 2𝜋 (1 − 𝜋) denotes
the prior of dissimilar data pairs (hence 𝜋S +𝜋D = 1), 𝑝+ (𝒙) = 𝑝 (𝒙 |
𝑦 = +1) and 𝑝− (𝒙) = 𝑝 (𝒙 | 𝑦 = −1) denote the probability densities
of positive and negative data respectively. Given the above data

generation process of similar-dissimilar classification, Shimada et al.

[40] showed that the following proposition holds.

Proposition 1 (Theorem 2 in Shimada et al. [40]). The classi-
fication risk 𝑅(𝑓 ) in Eq. (1) can be equivalently represented as

𝑅(𝑓 ) = 𝑅SD (𝑓 ) = 𝜋SE𝑝S (𝒙,𝒙′)
[L(𝑓 (𝒙), +1) + L(𝑓 (𝒙 ′), +1)

2

]
+ 𝜋DE𝑝D (𝒙,𝒙′)

[L(𝑓 (𝒙),−1) + L(𝑓 (𝒙 ′),−1)
2

]
,

where L(𝑓 (𝒙), 𝑡) (𝑡 ∈ {+1,−1}) is a composite loss function defined
as

L(𝑓 (𝒙), 𝑡) := 𝜋

2𝜋 − 1

ℓ (𝑓 (𝒙), 𝑡) − 1 − 𝜋

2𝜋 − 1

ℓ (𝑓 (𝒙),−𝑡).

As this proposition indicates, we can exactly recover the classi-

fication risk 𝑅(𝑓 ) using only similar data independently sampled

from 𝑝S (𝒙, 𝒙 ′) and dissimilar data independently sampled from

𝑝D (𝒙, 𝒙 ′). This implies that we can learn an instance-level binary

classifier from given similar and dissimilar data, by minimizing

the empirical approximation of 𝑅SD (𝑓 ) since it is an unbiased risk

estimator of 𝑅(𝑓 ).

2.3 Multiple-Instance Learning
In MIL, suppose the learner is given a training set with 𝑛 bags,

i.e., D = {(𝑋𝑖 , 𝑌𝑖 )}𝑛𝑖=1 where 𝑋𝑖 = {𝒙𝑖1, . . . , 𝒙𝑖 𝑗 , . . . , 𝒙𝑖𝑏𝑖 } is a bag
with 𝒙𝑖 𝑗 ∈ X representing the 𝑗-th instance in the 𝑖-th bag and

𝑏𝑖 denotes the number of instances in the bag 𝑋𝑖 . If there exits

at least one positive instance in 𝑋𝑖 , then 𝑋𝑖 is a positive bag (i.e.,

𝑌𝑖 = +1), otherwise 𝑋𝑖 is a negative bag (i.e., 𝑌𝑖 = −1). It is worth
noting that only bag labels are available, while the specific labels of

the instances in the bag are unknown. The goal of multi-instance

learning is to learn a bag-level binary classifier, so that the label of

any test bag could be correctly predicted.

For learning a bag-level binary classifier, the key issue is how to

design a function that takes a bag (a set of instances) as the input
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and outputs a real value. In this work, we focus on constructing a

bag-level linear-in-parameter classifier with a specially designed

kernel for multi-instance learning. Specifically, the bag-level linear-

in-parameter classifier
1
is formulated as follows:

𝑔(𝑋 ) = 𝒘⊤𝝓 (𝑋 ), (2)

where 𝒘 ∈ R𝑛 denotes the vector of learning parameters, and

𝝓 (·) ∈ R𝑛 is a vector of basis functions defined as

𝝓 (𝑋 ) =


K̃ (𝑋,𝑋1)

.

.

.

K̃ (𝑋,𝑋𝑛)

 . (3)

Here, the problem becomes how to properly design a special kernel

K̃ for bags in MIL. Gärtner et al. [20] proposed multiple-instance

kernels, which map a bag to a feature space. A representative

multiple-instance kernel called statistical kernel is defined as

K̃ (𝑋,𝑋 ′) := K(𝒔 (𝑋 ), 𝒔 (𝑋 ′)),

where K is an ordinary kernel function (e.g., Gaussian kernel or

polynomial kernel) and 𝒔 (𝑋 ) is a statistic with respect to the bag

𝑋 . For example, the minimax statistic is a common choice:

𝒔minimax (𝑋 ) := [min

𝒙∈𝑋
𝑥 (1) , . . . ,min

𝒙∈𝑋
𝑥 (𝑑) ,max

𝒙∈𝑋
𝑥 (1) , . . . ,max

𝒙∈𝑋
𝑥 (𝑑) ]⊤,

where 𝑥 (𝑖) denotes the 𝑖-th element of the instance 𝒙 in the bag

𝑋 . As shown in the experimental results from Gärtner et al. [20], the

statistical kernel K̃ associatedwith theminimax statistic 𝒔minimax (𝑋 )
and the polynomial kernel K achieves satisfactory performance:

K̃minimax (𝑋,𝑋 ′) :=
(
𝒔minimax (𝑋 )⊤𝒔minimax (𝑋 ′) + 1

)𝑝
, (4)

where 𝑝 denotes the degree of the polynomial kernel.

In summary, we aim to learn a bag-level classifier 𝑔(𝑋 ) (defined
by Eqs. (2), (3), and (4)) for MIL from similar and dissimilar bags.

3 MULTIPLE-INSTANCE LEARNING FROM
SIMILAR AND DISSIMILAR BAGS

In this section, we propose a convex formulation for MIL from

similar and dissimilar bags. We first define the generation process

of similar and dissimilar bags and then derive an empirical risk

estimator based on the data generation process.

3.1 Generation Process of Similar and
Dissimilar Bags

Following Shimada et al. [40], we adopt an analogous generation

process of similar and dissimilar bags. Let us denote the collected

training set comprised of similar and dissimilar bags as DSD =

{(𝑋𝑖 , 𝑋 ′
𝑖
, 𝑍𝑖 )}𝑁SD

𝑖=1
where 𝑍𝑖 = +1 if 𝑌𝑖 = 𝑌 ′

𝑖
, otherwise 𝑍𝑖 = −1.

Here, 𝑁SD bag pairs inDSD can be decomposed into 𝑁S similar bag

pairs and 𝑁D dissimilar bag pairs:

DS := {(𝑋S.𝑖 , 𝑋
′
S.𝑖 )}

𝑁S

𝑖=1
= {(𝑋,𝑋 ′) | (𝑋,𝑋 ′, 𝑍 = +1) ∈ DSD},

DD := {(𝑋D. 𝑗 , 𝑋
′
D. 𝑗 )}

𝑁D

𝑗=1
= {(𝑋,𝑋 ′) | (𝑋,𝑋 ′, 𝑍 = −1) ∈ DSD}.

1
It is worth noting that for the formulation 𝑔 (𝑋 ) = 𝒘⊤𝝓 (𝑋 ) , if we set 𝑤 := [𝒘 𝑏 ]⊤
and 𝝓 (𝑋 ) := [𝝓 (𝑋 ) 1]⊤ , then we can recover 𝑔 (𝑋 ) = 𝒘⊤𝝓 (𝑋 ) + 𝑏.

Then, we can consider the generation process of similar and dis-

similar pairs as: DS

i.i.d.∼ 𝑝S (𝑋,𝑋 ′) and DD

i.i.d.∼ 𝑝D (𝑋,𝑋 ′). For
convenience, we introduce the following notations representing

the similar and dissimilar priors and conditional densities:

𝜃S := 𝑝 (𝑌 = 𝑌 ′), 𝑝S (𝑋,𝑋 ′) := 𝑝 (𝑋,𝑋 ′ | 𝑌 = 𝑌 ′),
𝜃D := 𝑝 (𝑌 ≠ 𝑌 ′), 𝑝D (𝑋,𝑋 ′) := 𝑝 (𝑋,𝑋 ′ | 𝑌 ≠ 𝑌 ′) .

It is noteworthy that we assume each data point in a data pair is in-

dependently generated. By further denoting the bag-level (positive)

class priors as 𝑝 (𝑌 = 1) = 𝜃 , we have

𝜃S = 𝑝 (𝑌 = +1)𝑝 (𝑌 ′ = +1) + 𝑝 (𝑌 = −1)𝑝 (𝑌 ′ = −1) = 𝜃2 + (1 − 𝜃 )2,
𝜃D = 𝑝 (𝑌 = +1)𝑝 (𝑌 ′ = −1) + 𝑝 (𝑌 = −1)𝑝 (𝑌 ′ = +1) = 2𝜃 (1 − 𝜃 ),

𝑝S (𝑋,𝑋 ′) = 𝜃2

𝜃S
𝑝+ (𝑋 )𝑝+ (𝑋 ′) + (1 − 𝜃 )2

𝜃S
𝑝− (𝑋 )𝑝− (𝑋 ′),

𝑝D (𝑋,𝑋 ′) = 1

2

𝑝+ (𝑋 )𝑝− (𝑋 ′) + 1

2

𝑝+ (𝑋 ′)𝑝− (𝑋 ).

Given the above generation process of similar and dissimilar bags,

we can derive a convex formulation.

3.2 Convex Formulation for Multiple-Instance
Learning from Similar and Dissimilar Bags

When collected similar and dissimilar bags satisfy the above data

generation process, motivated by Proposition 1, we propose to train

a bag-level classifier by minimizing the following empirical risk:

𝑅
SDbag

(𝑔) = 𝜃S

2𝑁S

∑𝑁S

𝑖=1

(
L(𝑔(𝑋𝑖 ), +1) + L(𝑔(𝑋 ′

𝑖 ), +1)
)

+ 𝜃D

2𝑁D

∑𝑁D

𝑗=1

(
L(𝑔(𝑋 𝑗 ),−1) + L(𝑔(𝑋 ′

𝑗 ),−1)
)
, (5)

It is worth noting that Eq. (5) may not be convex even if a convex

loss function ℓ (e.g., the hinge loss) is used. Fortunately, as verified

by previous studies [5, 40], if the used binary loss function ℓ in the

composition loss function L satisfies the condition: ℓ (𝑔(𝑋 ), +1) −
ℓ (𝑔(𝑋 ),−1) = −𝑔(𝑋 ), then the objective function Eq. (5) is convex.

When we choose ℓ that satisfies the above condition, L(𝑔(𝑋 ), 𝑡)
can be equivalently expressed as

L(𝑔(𝑋 ), 𝑡) = ℓ (𝑔(𝑋 ), 𝑡) − 1 − 𝜃

2𝜃 − 1

𝑡 · 𝑔(𝑋 ) . (6)

It is also worth noting that in Eq. (5), the two bags 𝑋 and 𝑋 ′
in

the same similar or dissimilar pair are symmetric and interchange-

able, hence they play the same role. Therefore, we can arrange

them together. Specifically, we can equivalently denote the sets by

DS = {𝑋S.𝑖 }2𝑁S

𝑖=1
= {𝑋S.𝑖 }𝑁S

𝑖=1
∪ {𝑋 ′

S.𝑖
}𝑁S

𝑖=1
and DD = {𝑋D. 𝑗 }2𝑁D

𝑗=1
=

{𝑋D. 𝑗 }𝑁D

𝑗=1
∪ {𝑋 ′

D. 𝑗
}𝑁D

𝑗=1
. In this way, by further substituting Eq. (6)

into Eq. (5), we can rewrite Eq. (5) as

𝑅
SDbag

(𝑔) = 𝜃S

2𝑁S

∑
2𝑁S

𝑖=1

(
ℓ (𝑔(𝑋S.𝑖 ), +1) −

1 − 𝜃

2𝜃 − 1

𝑔(𝑋S.𝑖 ))
)

+ 𝜃D

2𝑁D

∑
2𝑁D

𝑗=1

(
ℓ (𝑔(𝑋D. 𝑗 ),−1) +

1 − 𝜃

2𝜃 − 1

𝑔(𝑋D. 𝑗 )
)
. (7)

Here, because only similar and dissimilar bags are available, the

vector of basis function 𝝓 (from 𝑔(𝑋 ) = 𝒘⊤𝝓 (𝑋 )) becomes the
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following form:

𝝓 (𝑋 ) =



K̃minimax (𝑋,𝑋S,1)
.
.
.

K̃minimax (𝑋,𝑋S,2𝑁S
)

K̃minimax (𝑋,𝑋D,1)
.
.
.

K̃minimax (𝑋,𝑋D,2𝑁D
)


, (8)

where K̃minimax is defined in Eq. (4).

Now we need to consider a convex loss ℓ in Eq. (7) that satisfies

the condition ℓ (𝑔(𝑋 ), +1) − ℓ (𝑔(𝑋 ),−1) = −𝑔(𝑋 ) for practical im-

plementation. In this paper, we consider the squared loss and the

double hinge loss [15].

3.3 Practical Implementation
Let us introduce the following symbols for notational convenience:

𝑿S = [𝝓 (𝑋S,1), . . . , 𝝓 (𝑋S,𝑖 ), . . . , 𝝓 (𝑋S,2𝑁S
)]⊤ ∈ R2𝑁S×(2𝑁S+2𝑁D) ,

𝑿D = [𝝓 (𝑋D,1), . . . , 𝝓 (𝑋D, 𝑗 ), . . . , 𝝓 (𝑋D,2𝑁D
)]⊤ ∈ R2𝑁D×(2𝑁S+2𝑁D) .

Then, we can insert the squared loss and the double hinge loss

into Eq. (7) for practical implementation. Given the empirical risk

in Eq. (7), we adopt the widely used 𝐿2 regularization to restore

stability and ensure generalization. Next, we present the technical

details when we use the squared loss and the double hinge loss.

3.3.1 Squared Loss. We use the squared loss defined as ℓSQ (𝑧, 𝑡) =
1

4
(𝑡𝑧 − 1)2. By inserting it into Eq. (7), we have the following objec-

tive function:

𝐽SQ (𝒘)

=
𝜃S

2𝑁S

2𝑁S∑
𝑖=1

(
1

4

(𝒙⊤
S,𝑖𝒘 − 1)2 − 1 − 𝜃

2𝜃 − 1

𝒙⊤
S,𝑖𝒘

)
+ 𝜃D

2𝑁D

2𝑁D∑
𝑗=1

(
1

4

(−𝒙⊤
D, 𝑗𝒘 − 1)2 + 1 − 𝜃

2𝜃 − 1

𝒙⊤
D, 𝑗𝒘

)
+ 𝜆

2

∥𝒘 ∥2
2

=
𝜃S

2𝑁S

2𝑁S∑
𝑖=1

(
1

4

𝒘⊤𝒙S,𝑖𝒙
⊤
S,𝑖𝒘 + 1

4

− ( 1
2

+ 1 − 𝜃

2𝜃 − 1

)𝒙⊤
S,𝑖𝒘

)
+ 𝜃D

2𝑁D

2𝑁D∑
𝑗=1

(
1

4

𝒘⊤𝒙D, 𝑗𝒙
⊤
D, 𝑗𝒘 + 1

4

+ ( 1
2

+ 1 − 𝜃

2𝜃 − 1

)𝒙⊤
D, 𝑗𝒘

)
+ 𝜆

2

∥𝒘 ∥2
2

= 𝒘⊤
( 𝜃S

8𝑁S

𝑿⊤
S
𝑿S +

𝜃D

8𝑁D

𝑿⊤
D
𝑿D + 𝜆

2

𝑰𝑑×𝑑
)
𝒘 + 𝜃S + 𝜃D

4

+ ( 1
2

+ 1 − 𝜃

2𝜃 − 1

)
(
− 𝜃S

2𝑁S

1⊤𝑁S

𝑿S +
𝜃D

2𝑁D

1⊤𝑁D

𝑿D

)
𝒘,

where 𝑰𝑑×𝑑 denotes the 𝑑 × 𝑑 identity matrix, 𝑑 denotes 2𝑁𝑆 +
2𝑁𝐷 (i.e., 𝑑 = 2𝑁𝑆 + 2𝑁𝐷 ), and 𝒙S,𝑖 denotes 𝝓 (𝑋S,𝑖 ). By taking the

derivative with respect to𝒘 and set to zero, we obtain an analytical

solution:

𝒘 = ( 1
2

+ 1 − 𝜃

2𝜃 − 1

)
( 𝜃S

4𝑁S

𝑿⊤
S
𝑿S (9)

+ 𝜃D

4𝑁D

𝑿⊤
D
𝑿D + 𝜆𝑰𝑑×𝑑

)−1 ( 𝜃S

2𝑁S

𝑿⊤
S
1𝑁S

− 𝜃D

2𝑁D

𝑿⊤
D
1𝑁D

)
,

where 1𝑁S
denotes the 𝑁S × 1 vector whose elements are all ones.

3.3.2 Double-Hinge Loss. We use the double-hinge loss [15] de-

fined as ℓDH (𝑧, 𝑡) = max(−𝑡𝑧,max(0, 1
2
− 1

2
𝑡𝑧)). By inserting it into

Eq. (7), we have the following objective function:

𝐽DH (𝒘) =
𝜃S

2𝑁S

(
1⊤
2𝑁S

𝝃 − 1 − 𝜃

2𝜃 − 1

1⊤
2𝑁S

𝑿S𝒘
)

+ 𝜃D

2𝑁D

(
1⊤
2𝑁D

𝜼 + 1 − 𝜃

2𝜃 − 1

1⊤
2𝑁D

𝑿D𝒘
)
+ 𝜆

2

∥𝒘 ∥2
2

s.t. 𝝃 ≥ 02𝑁S
, 𝝃 ≥ 1

2

(12𝑁S
− 𝑿S𝒘), 𝝃 ≥ −𝑿S𝒘,

𝜼 ≥ 02𝑁D
, 𝜼 ≥ 1

2

(12𝑁D
+ 𝑿D𝒘), 𝜼 ≥ 𝑿D𝒘,

where ≥ for vectors denotes the element-wise inequality.

Below, we rewrite the optimization problem into the standard

quadratic programming form. Let 𝜸 = [𝒘⊤𝝃⊤𝜼⊤]⊤ ∈ R𝑑+2𝑁S+2𝑁D

be a objective variable and we introduce the following notations:

𝑷 =


𝜆𝑰𝑑×𝑑 0𝑑×2𝑁S

0𝑑×2𝑁D

0
2𝑁S×𝑑 02𝑁S×2𝑁S

02𝑁S×2𝑁D

0
2𝑁D×𝑑 02𝑁D×2𝑁S

02𝑁D×2𝑁D

 ,
𝒒 =


1−𝜃
2𝜃−1

(
− 𝜃S

2𝑁S

𝑿⊤
S
12𝑁S

+ 𝜃D
2𝑁D

𝑿⊤
D
12𝑁D

)
𝜃S
2𝑁S

12𝑁S

𝜃D
2𝑁D

12𝑁D

 ,

𝑮 =



0
2𝑁S×𝑑 −𝑰 2𝑁S×2𝑁S

02𝑁S×2𝑁D

− 1

2
𝑿S −𝑰 2𝑁S×2𝑁S

02𝑁S×2𝑁D

−𝑿S −𝑰 2𝑁S×2𝑁S
02𝑁S×2𝑁D

0
2𝑁D×𝑑 02𝑁D×2𝑁S

−𝑰 2𝑁D×2𝑁D

1

2
𝑿D 02𝑁D×2𝑁S

−𝑰 2𝑁D×2𝑁S

𝑿D 02𝑁D×2𝑁S
−𝑰 2𝑁D×2𝑁D


, 𝒉 =



02𝑁S

− 1

2
12𝑁S

02𝑁S

02𝑁D

− 1

2
12𝑁D

02𝑁D


.

Then, the optimization objective becomes:

min

𝜸

1

2

𝜸⊤𝑷𝜸 + 𝒒⊤𝜸 s.t. 𝑮𝜸 ≤ 𝒉, (10)

which is the standard quadratic programming problem, which can

be solved by any off-the-shelf quadratic programming tools.

3.4 Analysis of Generalization Error Bound
Here, we analyze the generalization error for our proposed convex

formulation. Let 𝒳 be the bag-level domain set and

G := {𝑔(𝑋 ) = 𝒘⊤𝝓 (𝑋 ) | ∥𝒘 ∥ ≤ 𝐶𝒘 , sup𝑋 ∈𝒳 ∥𝝓 (𝑋 )∥ ≤ 𝐶𝝓 }
be a given function class, where 𝝓 is a vector of basis functions

defined in Eq. (8). Throughout this section, we simply adopt the

double hinge loss as the used loss function ℓ for the analysis be-

cause it is 1-Lipschitz, and this loss function is also used in our

experiments. In contrast to the empirical risk 𝑅
SDbag

(𝑔) in Eq. (5),

we denote the expected risk of a bag-level classifier 𝑔 (in terms of

similar and dissimilar bags) as

𝑅
SDbag

(𝑔) = 𝜃SE𝑝
S(𝑋,𝑋 ′)

[L(𝑔(𝑋, +1) + L(𝑔(𝑋 ′), +1)
2

]
+ 𝜃DE𝑝

D(𝑋,𝑋 ′)

[L(𝑔(𝑋 ),−1) + L(𝑔(𝑋 ′),−1)
2

]
. (11)

Then, we analyze the generalization error bound based on the

widely used Rademacher complexity [8].
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Definition 1. Let 𝑛 be a positive integer, 𝑋1, . . . , 𝑋𝑛 be inde-
pendent and identically distributed random variables drawn from a
probability distribution with density 𝜇, G = 𝑔 : 𝒳 ↦→ R be a class of
measurable functions, and 𝝈 = (𝜎1, . . . , 𝜎𝑛) be Rademacher variables
that take value only from {+1,−1} with even probabilities. Then, the
(expected) Rademacher complexity of G is defined as

ℜ𝑛 (G) := E
𝑋1,...,𝑋𝑛

i.i.d.∼ 𝜇
E𝝈

[
sup𝑔∈G

1

𝑛

∑𝑛

𝑖=1
𝜎𝑖ℎ(𝑋𝑖 )

]
.

For the function class G and any probability density 𝜇, ℜ𝑛 (G)
can be normally bounded by ℜ𝑛 (G) ≤ 𝐶G/

√
𝑛, where 𝐶G is a

positive constant. This condition holds for many model classes

including the used model class G = {𝑔(𝑋 ) = 𝒘⊤𝝓 (𝑋 )}.

Theorem 1. With the introduced definitions and conditions above,
for any 𝛿 > 0, with probability at least 1 − 𝛿 , we have the following
generalization error bound:

sup𝑔∈G
���𝑅SDbag (𝑔) − 𝑅

SDbag
(𝑔)

��� ≤ 𝜃
2𝜃−1

𝐶G√
2𝑁S

+ 𝜃S𝐶𝒘𝐶𝝓

2𝜃−1

√
log

4

𝛿

4𝑁S

+ 𝜃
2𝜃−1

𝐶G√
2𝑁D

+ 𝜃D𝐶𝒘𝐶𝝓

2𝜃−1

√
log

4

𝛿

4𝑁D

.

This theorem shows that the generalization error decreases with

order 1/
√
𝑁S and 1/

√
𝑁D. Therefore, it is clear that increasing the

number of similar and dissimilar bags can decrease the general-

ization error. It is also noteworthy that this order is the optimal

parametric rate for empirical risk minimization without additional

assumptions [34].

4 A STRONG BASELINE: LEARNING AN
INSTANCE-LEVEL BINARY CLASSIFIER

The proposed convex formulation in the previous section is a bag-

level learning method, which is able to directly classify test bags,

instead of aggregating instance-level classification results. In this

section, we propose a strong baseline that trains an instance-level

binary classifier for MIL from similar and dissimilar bags.

Our motivation stems from unlabeled-unlabeled learning [30, 31],
which aims to train an instance-level binary classifier from two sets

of unlabeled data with different class priors. In our problem setting,

we can consider all the instances in similar bags as an unlabeled

set and all the instances in dissimilar bags as another unlabeled set.

Thus, we can find that the (instance-level) class priors of the two

unlabeled sets are different. In this way, we can learn an instance-

level binary classifier for MIL from similar and dissimilar bags by

employing the unlabeled-unlabeled learning method.

Therefore, the key issue is how to figure out the class priors

of the two unlabeled sets. Firstly, we can easily know that the

proportion of positive bags in similar bag pairs is 𝜃2/𝜃S and the

proportion of positive bags in dissimilar bag pairs is 1/2. Secondly,
following Bao et al. [6], we assume that instances in positive bags

are drawn from the instance-level marginal distribution 𝑝 (𝒙) for
every instance 𝒙 in positive bags, where 𝑝 (𝒙) is defined as 𝑝 (𝒙) =
𝜋𝑝 (𝒙 | 𝑦 = +1) + (1 − 𝜋)𝑝 (𝒙 | 𝑦 = −1) and 𝜋 = 𝑝 (𝑦 = +1)
is the instance-level positive class prior. Besides, we also assume

that instances in negative bags are drawn from the instance-level

negative class-conditional distribution 𝑝 (𝒙 | 𝑦 = −1), for every
instance 𝒙 in negative bags. In this way, we can calculate the class

prior in the unlabeled set of similar bags as 𝜋𝜃2/𝜃S and the class

prior in the unlabeled set of dissimilar bags as 𝜋/2. Since there

are two unlabeled sets with different class priors, we can train a

binary classifier by minizing the empirical approaximation of the

risk estimator provided in the following proposition.

Proposition 2 (Theorem 4 in Lu et al. [30]). Let 𝜂 and 𝜂 ′ be
different class priors of two unlabeled datasets (with 𝜂 > 𝜂 ′), and
𝑝tr (𝒙) and 𝑝tr′ (𝒙 ′) be the densities of two datasets of unlabeled data,
respectively. The classification risk 𝑅(𝑓 ) in Eq. (1) can be equivalently
represented as

𝑅(𝑓 ) = 𝑅UU (𝑓 ) = E𝑝tr (𝒙)
[ (1 − 𝜂 ′)𝜋

𝜂 − 𝜂 ′
ℓ (𝑓 (𝒙), +1)

− 𝜂 ′(1 − 𝜋)
𝜂 − 𝜂 ′

ℓ (𝑓 (𝒙),−1)
]

+ E𝑝
tr
′ (𝒙′)

[𝜂 (1 − 𝜋)
𝜂 − 𝜂 ′

ℓ (𝑓 (𝒙 ′),−1)

− (1 − 𝜂)𝜋
𝜂 − 𝜂 ′

ℓ (𝑓 (𝒙 ′), +1)
]
. (12)

As we have analyzed, in our problem of training an instance-

level binary classifier for MIL from similar and dissimilar bags, we

can obtain 𝜂 = 𝜋𝜃2/𝜃S and 𝜂 ′ = 𝜋/2. Let us denote all the instances
in similar bags as {𝒙𝑖 }𝑛tr

𝑖=1
and all the instances in dissimilar bags as

{𝒙 ′
𝑗
}𝑛tr

′
𝑗=1

. In this way, we can minimizing the following empirical

risk for training an instance-level classifier:

𝑅UU (𝑓 ) =
𝑛tr∑
𝑖=1

( (2 − 𝜋)𝜃S
2𝜃 − 1

ℓ (𝑓 (𝒙𝑖 ), +1) −
(1 − 𝜋)𝜃S
2𝜃 − 1

ℓ (𝑓 (𝒙),−1)
)

+
𝑛
tr
′∑

𝑖=1

(
2(1 − 𝜋)𝜃2
2𝜃 − 1

ℓ (𝑓 (𝒙 ′),−1) − 2(𝜃S − 𝜃2𝜋)
2𝜃 − 1

ℓ (𝑓 (𝒙 ′), +1)
)
. (13)

After training the instance-level binary classifier, we can predict

the labels of all the instances in the test bag, so that we can predict

the bag label of the test bag. By inserting different binary loss

functions into Eq. (13), we can obtain various compared methods

(each method could be considered as a strong baseline) for MIL

from similar and dissimilar bags.

It is worth noting that our goal in this paper is to predict only

bag-level labels and we do not need to know instance-level labels.

Therefore, learning an instance-level classifier could be considered

as a more complex solution to our problem than our proposed con-

vex formulation that directly trains a bag-level classifier. According

to Ockham’s Razor that the simplest is usually the right one, we

can expect that our proposed convex formulation in the previous

section is superior to the baseline proposed in this section.

5 EXPERIMENTS
In this section, we conduct extensive experiments on both bench-

mark datasets and text categorization datasets. We compare our

proposed convex formulation (in Eq. (7)) including two bag-level

methods: CVX-SQ (using the squared loss) and CVX-DH (using

the double hinge loss) with the proposed baseline (in Eq. (13))

including six instance-level methods: BL-SQ (using the squared

loss), BL-DH (using the double hinge loss), BL-HG (using the

hinge loss ℓ (𝑧, 𝑡) = max(0, 1 − 𝑡𝑧)), BL-LG (using the logistic
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Table 1: The characteristics of the used benchmark datasets.

Dataset # Features # Positive bags # Negative bags # Avg. Pos. Ins. per bag # Avg. Neg. Ins. per bag

Musk1 166 475 445 2.2±2.5 2.9±7.0
Musk2 166 413 607 8.9±22.7 49.9±169.7
Elephat 230 504 496 3.9±4.2 3.2±3.6
Fox 230 498 502 3.2±3.6 3.4±3.8
Tiger 230 506 494 2.8±3.1 3.4±3.9

Table 2: Classification accuracy of each method on the benchmark datasets. The best performance is highlighted in bold.

Datasets 𝜃
Convex Formulation Baseline

CVX-SQ CVX-DH BL-SQ BL-DH BL-RP BL-LG BL-HG BL-SG

Musk1

0.6

0.802 0.779 0.663 0.726 0.769 0.726 0.743 0.761

(0.032) (0.071) (0.090) (0.056) (0.058) (0.056) (0.060) (0.053)

0.7

0.894 0.854 0.678 0.798 0.840 0.800 0.815 0.846

(0.021) (0.052) (0.043) (0.061) (0.049) (0.056) (0.044) (0.047)

0.8

0.940 0.922 0.649 0.875 0.888 0.878 0.887 0.892

(0.024) (0.026) (0.061) (0.035) (0.021) (0.034) (0.029) (0.021)

Musk2

0.6

0.822 0.790 0.560 0.657 0.687 0.662 0.659 0.670

(0.052) (0.076) (0.103) (0.104) (0.086) (0.104) (0.111) (0.089)

0.7

0.887 0.876 0.639 0.750 0.763 0.754 0.750 0.751

(0.030) (0.028) (0.134) (0.068) (0.057) (0.068) (0.067) (0.049)

0.8

0.930 0.896 0.746 0.828 0.822 0.829 0.828 0.822

(0.025) (0.025) (0.064) (0.028) (0.024) (0.030) (0.029) (0.030)

Fox

0.6

0.625 0.607 0.613 0.627 0.630 0.623 0.632 0.625

(0.038) (0.011) (0.030) (0.044) (0.033) (0.042) (0.031) (0.027)

0.7

0.745 0.708 0.702 0.721 0.725 0.715 0.729 0.723

(0.044) (0.021) (0.021) (0.025) (0.033) (0.031) (0.026) (0.030)

0.8

0.832 0.809 0.802 0.814 0.820 0.810 0.815 0.816

(0.056) (0.008) (0.030) (0.015) (0.016) (0.014) (0.016) (0.021)

Elephant

0.6

0.747 0.736 0.646 0.698 0.722 0.710 0.711 0.719

(0.059) (0.077) (0.050) (0.034) (0.030) (0.027) (0.025) (0.029)

0.7

0.829 0.821 0.751 0.792 0.793 0.788 0.795 0.784

(0.052) (0.056) (0.025) (0.035) (0.028) (0.034) (0.028) (0.029)

0.8

0.886 0.868 0.834 0.873 0.855 0.872 0.872 0.850

(0.050) (0.017) (0.028) (0.018) (0.020) (0.019) (0.024) (0.016)

Tiger

0.6

0.697 0.682 0.578 0.698 0.705 0.694 0.698 0.719
(0.050) (0.073) (0.054) (0.021) (0.032) (0.023) (0.023) (0.031)

0.7

0.814 0.744 0.710 0.792 0.800 0.799 0.800 0.791

(0.028) (0.041) (0.044) (0.028) (0.021) (0.028) (0.028) (0.022)

0.8

0.869 0.825 0.767 0.861 0.856 0.860 0.859 0.855

(0.021) (0.029) (0.065) (0.029) (0.025) (0.025) (0.026) (0.019)

loss ℓ (𝑧, 𝑡) = log(1 + exp(−𝑡𝑧))), BL-RP (using the ramp loss

ℓ (𝑧, 𝑡) = 1

2
max(0,min(2, 1 − 𝑡𝑧))), and BL-SG (using the sigmoid

loss ℓ (𝑧, 𝑡) = 1/1 + exp(𝑡𝑧)). For CVX-SQ, we directly derive the

analytical solution in Eq. (9). For CVX-DH, we solve the standard

quadratic programming problem in Eq. (10) using CVXOPT [2].

For other compared baselines, we implement them using PyTorch

[38]. For CVX-SQ and CVX-DH, the degree of the polynomial ker-

nel is simply fixed at 1, and the regularization parameter 𝜆 is se-

lected from {10−5, 10−4, . . . , 105}. For other compared methods, the

number of training epochs is set to 1,000 with full batch size, the

learning rate is set to 10
−3
, and the weight decay is selected from

{10−3, 10−2, 10−1}.
We evaluate the performance of our proposed methods under

different bag-level class priors (𝜃 ∈ {0.6, 0.7, 0.8}). It is noteworthy
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Table 3: The characteristics of the used datasets for the biocreative text categorization task.

Dataset #Features #Positive bags #Negative bags #Avg. Pos. Ins. per bag #Avg. Neg. Ins. per bag

Component 200 423 2707 2.9±8.7 8.9±7.6
Function 200 443 4799 1.8±6.8 8.8±7.0
Process 200 757 10961 1.4±6.0 8.7±6.9

Table 4: Classification accuracy of each method on text categorization datasets. The best performance is highlighted in bold.

Datasets 𝜃
Convex Formulation Baseline

CVX-SQ CVX-DH BL-SQ BL-DH BL-RP BL-LG BL-HG BL-SG

Component

0.6

0.830 0.833 0.415 0.497 0.728 0.539 0.580 0.742

(0.039) (0.033) (0.052) (0.032) (0.055) (0.061) (0.074) (0.063)

0.7

0.835 0.835 0.462 0.630 0.800 0.695 0.744 0.803

(0.031) (0.029) (0.085) (0.134) (0.036) (0.108) (0.059) (0.020)

0.8

0.861 0.867 0.666 0.840 0.838 0.845 0.849 0.828

(0.020) (0.021) (0.088) (0.058) (0.012) (0.029) (0.036) (0.013)

Function

0.6

0.869 0.868 0.455 0.519 0.764 0.535 0.584 0.775

(0.028) (0.026) (0.024) (0.045) (0.068) (0.045) (0.062) (0.060)

0.7

0.871 0.867 0.416 0.645 0.795 0.695 0.773 0.812

(0.026) (0.027) (0.089) (0.093) (0.027) (0.084) (0.054) (0.033)

0.8

0.890 0.893 0.764 0.851 0.862 0.869 0.864 0.848

(0.032) (0.029) (0.124) (0.070) (0.027) (0.031) (0.033) (0.024)

Process

0.6

0.881 0.881 0.454 0.542 0.788 0.644 0.553 0.800

(0.012) (0.015) (0.014) (0.041) (0.065) (0.051) (0.065) (0.058)

0.7

0.885 0.886 0.516 0.717 0.839 0.772 0.810 0.845

(0.019) (0.015) (0.111) (0.063) (0.036) (0.085) (0.041) (0.031)

0.8

0.899 0.901 0.810 0.880 0.871 0.873 0.878 0.847

(0.013) (0.013) (0.067) (0.035) (0.022) (0.024) (0.031) (0.015)

that it seems that we need to know the value of the bag-level class

prior𝜃 in advance. However, we show that we are able to empirically

estimate 𝜃 according to our introduced data generation process of

similar and dissimilar bags. Specifically, we can exactly estimate

𝜃S by counting the proportion of the collected similar bag pairs

in all the bag pairs. Since 𝜃S = 𝜃2 + (1 − 𝜃 )2, we have 2𝜃S − 1 =

𝜃S − 𝜃D = (2𝜃 − 1)2 ≥ 0, thus we obtain 𝜃 = (
√
2𝜃S − 1 + 1)/2.

Since

√
𝜃S − 1 ≥ 0, we obtain 𝜃 ≥ 0.5. This implies that our only

assumption of 𝜃 is that 𝜃 should be larger than 0.5. This is also why

we select 𝜃 from {0.6, 0.7, 0.8} for performance evaluation. For all

the used datasets, we sample 600 similar and dissimilar bag pairs

for 𝜃 = 0.6, 500 bag pairs for 𝜃 = 0.7, and 400 bag pairs for 𝜃 = 0.8,

following the data generation process introduced in Section 3.1.

We repeat the sampling-and-training process 10 times and record

mean classification accuracy with standard deviation.

5.1 Experiments on Benchmark Datasets
We use five commonly used benchmark datasets in MIL studies

[3, 13], including Musk1, Musk2, Elephant, Fox, and Tiger. For
these datasets, Musk1 has 47 positive bags and 45 negative bags.

Musk2 consists of 39 positive bags and 63 negative bags. The other

three datasets contain 100 positive bags and 100 negative bags. It is

worth noting that these datasets are too small to evaluate the task

of MIL from similar and dissimilar bags, we follow Bao et al. [6] to

augment them for increasing the number of bags. Specifically, bags

chosen randomly from the original datasets were duplicated and

then Gaussian noise with mean zero and variance 0.01 was added to

each dimension. In this way, we increased the number of samples

in the Musk datasets (Musk1 and Musk2) 10 times and the Corel

datasets (Elephant, Fox, and Tiger) 5 times. Table 1 reports the

characteristics of these datasets
2
after preprocessing. Table 2 reports

the classification accuracy with standard deviation of each learning

method on the five benchmark datasets. As can be seen from Table

2, the baseline (including various instance-level methods) achieves

decent performance, while our proposed bag-level methods CVX-

SQ and CVX-DH are even better. Besides, CVX-SQ achieves the

best performance in most cases.

5.2 Experiments on Text Categorization
We use three datasets

3
for the task of biocreative text categorization.

In this task, we aim to decide whether a given <protein, document>

pair should be annotated with some Gene Ontology (GO) code. We

2
http://www.cs.columbia.edu/~andrews/mil/datasets.html

3
https://veronikach.com/research/data-code/
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Figure 1: Classification accuracy of each method when the number of bag pairs increases.

have some documents (bags) comprised of paragraphs (instances),

and each paragraph is represented by a feature vector. The used

features are word occurrence frequencies and some statistics about

the nature of the protein-GO code interaction for each paragraph.

The GO consists of three hierarchical domains of standardized bio-

logical terms referring to cellular components, biological processes,

and molecular functions. A <protein, document> pair is labeled

with a GO code if the document contains some paragraphs that link

the protein to the component, process, or function described by

the GO code. Thus, we have three datasets in this biocreative text

categorization task: Component, Function, and Process. Table 3 re-
ports the detailed information of the three datasets. Table 4 reports

the classification accuracy of each method on these three datasets.

We can also observe that our proposed bag-level methods CVX-SQ

and CVX-DH are clearly superior to other compared instance-level

methods, and CVX-SQ achieves similar performance as CVX-DH.

5.3 Further Analysis
5.3.1 Performance of Increasing Bag Pairs. As shown by Theorem

1, the performance of our proposed convex formulation is expected

to be improved if more similar and dissimilar bags are provided. To

empirically validate such a theoretical finding, we further conduct

experiments on the above datasets with 𝜃 = 0.7, by changing the

number of total bag pairs (100% means that we use all the gener-

ated similar and dissimilar bag pairs in the training process). As

shown in Figure 1, the classification accuracy of our bag-level meth-

ods generally increases given more bag pairs. This observation is

clearly in accordance with our derived generalization error bound

in Theorem 1, because the generalization error decreases as the

number of bag pairs increases. However, such a trend is not very

clear for our proposed baseline (e.g., BL-SQ) since its performance

is not theoretically guaranteed given more training data. In ad-

dition, the bag-level methods (CVX-SQ and CVX-DH) generally

outperform the instance-level methods (BL-SQ and BL-DH) given

different number of bag pairs.
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Figure 2: Average training time of eachmethod on the bench-
mark datasets Musk1 and Musk2.

5.3.2 Training Efficiency Analysis. To show the advantage of our

bag-level methods (convex formulation) over instance-level meth-

ods (baseline) in terms in terms of training efficiency, we perform

MIL from similar and dissimilar bags using each method on Musk1
and Musk2 with 𝜃 = 0.7. We show the average training time in

Figure 2. As can be seen from Figure 2, the average training time of

our bag-level methods is significantly smaller that of instance-level

methods. Therefore, our experimental results clearly demonstrate

that our proposed bag-level methods are not only more effective

but also more efficient than the instance-level methods.

6 CONCLUSION
In this paper, we investigated a novel weakly supervised binary

classification called multiple-instance learning from similar and

dissimilar bags, where we aim to train a bag-level binary classifier

from only similar and dissimilar bags (indicating whether two bags

share the same label or not). To the best of our knowledge, this

paper provided the first attempt to study this problem. To solve

this new MIL problem, we proposed a convex formulation to train

a bag-level classifier based on empirical risk minimization and the-

oretically derived a generalization error bound. In addition, we also

proposed a strong baseline for this new MIL problem, which aims

to train an instance-level classifier by minimizing the instance-level

empirical risk. Extensive experimental results clearly demonstrated
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that our proposed baseline works well, while our proposed con-

vex formulation is even better. In future work, we will investigate

multiple-instance learning with other types of weak supervision.
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