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Abstract

Large diffusion models have been successful in
text-to-audio (T2A) synthesis tasks, but they of-
ten suffer from common issues such as seman-
tic misalignment and poor temporal consistency
due to limited natural language understanding
and data scarcity. Additionally, 2D spatial struc-
tures widely used in T2A works lead to unsatis-
factory audio quality when generating variable-
length audio samples since they ignore the time-
frequency structure in the mel-spectrogram. To
address these challenges, we propose TETA,
a latent diffusion-based T2A method. Our ap-
proach includes several techniques to improve
semantic alignment and temporal consistency:
Firstly, we use pre-trained large language mod-
els (LLMs) to parse the text into structured
<event & order> pairs for better temporal in-
formation capture. We also introduce another
structured-text encoder to aid in learning se-
mantic alignment during the diffusion denois-
ing process. To improve the performance of
variable length generation and enhance the tem-
poral information extraction, we design a feed-
forward Transformer-based diffusion denoiser.
Finally, we use LLMs to augment and trans-
form a large amount of audio-label data into
audio-text datasets to alleviate the problem of
scarcity of temporal data. Extensive experi-
ments show that our method outperforms base-
line models in both objective and subjective
metrics, and achieves significant gains in tem-
poral information understanding, semantic con-
sistency, and sound quality. Our demos are
available at https://teta2023.github.io.

1 Introduction

Deep generative learning models (Goodfellow
et al., 2020; Kingma and Dhariwal, 2018; Ho et al.,
2020) have revolutionized the creation of digital
content, enabling creators with no professional
training to produce high-quality images (Rom-
bach et al., 2022; Saharia et al., 2022), vivid
videos (Hong et al., 2022; Singer et al., 2022),

diverse styles of voice (Huang et al., 2022), and
meaningful long textual spans (Zhang et al., 2022;
OpenAl, 2023). Text-to-audio synthesis (T2A)
is a subcategory of generative tasks that aims to
generate natural and accurate audio by taking text
prompts as input. T2A can be useful in generating
desired sound effects, music and speech, and can
be applied to various applications like movie sound
effects making, virtual reality, game development,
and audio editing.

Thanks to the development of text-to-image syn-
thesis (T2I) methods, researchers have successfully
extended similar approaches to the text-to-audio
synthesis domain (Huang et al., 2023; Liu et al.,
2023; Yang et al., 2023; Kreuk et al., 2023). The
success of these methods has opened up numer-
ous opportunities for generating high-quality audio
content from text. T2A systems typically use a
text encoder to encode the audio’s text input as
condition embedding, then employ diffusion mod-
els (Huang et al., 2023; Liu et al., 2023; Yang
et al., 2023) to synthesis mel-spectrograms, or uti-
lize auto-regressive models (Kreuk et al., 2023) to
synthesis raw waveform data based on the condi-
tion embedding. However, previous T2A methods
have some common issues: 1) Temporal disor-
der: when the text input is complex, with multiple
objects and temporal relationships between them,
the generated audios often suffer from semantic
misalignment and temporal disorder. For instance,
audio captions such as "The sound of A, followed
by the sound of B" may result in audios where A
and B overlap throughout, or B comes before A,
or even only one sound is synthesized. 2) Poor
variable-length results: previous diffusion-based
works (Huang et al., 2023; Liu et al., 2023) adopt
the U-Net structure of 2D convolution and spa-
tial transformer stacking as the backbone of diffu-
sion denoiser, which is typically trained with fixed-
length audios. Consequently, they generate subop-
timal results when synthesizing audio sequences
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of varying lengths compared to those of the train-
ing data. 2D spatial structures are not good at
extracting temporal information since they treat
the time axis and frequency axis equally, ignor-
ing the time-frequency mel-spectrogram structure.
3) Insufficient temporal paired data: previous
works use simple rule-based augmentation meth-
ods (Elizalde et al., 2022; Kreuk et al., 2023) to
create temporally aligned text-audio paired data
from audio-label datasets. However, these patterns
are overly simplistic and can hinder the model’s
ability to generalize to real-world sentences.

In this paper, we propose a novel temporal-
enhanced text-to-audio generation framework. The
temporal information can be better handled by our
method in the following ways: 1) To address the
semantic misalignment and temporal disorder, we
use a pre-trained LLM to extract the audio cap-
tion’s temporal information and parse the origin
caption into structured <event & order> pairs with
proper prompts. To encode the structured pairs bet-
ter, we introduce another structured-text encoder
that takes the structured pairs as its input to aid
in learning semantic alignment during the diffu-
sion denoising process. In this way, we relieve the
text encoder’s burden of recognizing events with
the corresponding temporal information and en-
able the T2A system to model the timing informa-
tion of the events more effectively. 2) To improve
the generation quality of variable-length audio and
enhance the temporal information understanding,
we replace the 2D spatial structures with temporal
feed-forward Transformer (Ren et al., 2019) and
1D-convolution stacks for the diffusion denoiser
and support variable-length audio input in training.
3) To address the issue of insufficient temporally
aligned audio-text paired dataset, we use single-
labeled audio samples and their labels to compose
complex audio and structured captions. We then
use LLM to augment the structured caption into
natural language captions.

We conduct extensive experiments on Audio-
Caps and Clotho datasets, which reveals that our
method surpasses baseline models in both objec-
tive and subjective metrics, and achieves significant
gains in understanding temporal information, main-
taining semantic consistency, and enhancing sound
quality. Our ablation studies further demonstrate
the effectiveness of each of our techniques.

2 Related works

2.1 Text-to-image generative models

Text-to-Image Synthesis (T2I) has garnered sig-
nificant attention in recent years. One pioneer-
ing work in this realm is DALL-E (Ramesh et al.,
2021), which treats T2I generation as a sequence-
to-sequence translation task. DALL-E employs a
pre-trained VQ-VAE (Van Den Oord et al., 2017)
to encode image patches to discrete codes, which
are then combined with the text codes. During
inference, the model generates image codes au-
toregressively based on the text codes. DALLE-
2 (Ramesh et al., 2022) uses the CLIP (Radford
et al., 2021) text encoder and two diffusion mod-
els. The first diffusion model predicts CLIP visual
features based on the CLIP text feature, while the
second synthesizes the image from the predicted
CLIP visual features. Another famous T2I work
is Imagen (Saharia et al., 2022), which utilizes the
TS5 encoder (Raffel et al., 2020) to extract text fea-
tures, It employs a diffusion model to synthesize
a low-resolution image and then applies a cascade
of diffusion models for super-resolution. Latent
Diffusion (Rombach et al., 2022) enhances com-
putational efficiency by using a continuous VAE
trained with a discriminator to map images from
pixel space to compressed latent space. This is
followed by diffusion on the latent space, which
synthesizes images’ latent.

2.2 Text-to-audio synthesis

Text-to-Audio Synthesis is a rising task that has
seen great advances recently. Diffsound (Yang
et al., 2023) uses a pre-trained VQ-VAE (Van
Den Oord et al., 2017) trained on mel-spectrograms
to convert audio into discrete codes, which are
then used by a diffusion model to generate the au-
dio codes. To improve its generalization ability,
the authors pre-trained Diffsound on the AudioSet
dataset, which contains audio files labeled with
tags. And they introduce a random input mask-
ing technique to make use of these tags. Audio-
Gen (Kreuk et al., 2023) uses a similar VQ-VAE-
based approach. It encodes raw waveform data
into discrete codes and employs an autoregressive
model to predict audio tokens based on text fea-
tures. For data augmentation, AudioGen mixes au-
dio files and concatenates their text captions. Make-
An-Audio (Huang et al., 2023), AudioLDM (Liu
et al., 2023), and TANGO (Ghosal et al., 2023) are
all based on the Latent Diffusion Model (LDM).



With the assumption that CLAP can map the au-
dio and its caption to the same latent space and
approximate the text features based on the audio
feature, AudioLDM uses audio features extracted
by the CLAP model as the condition during training
and uses text features during inference. Make-An-
Audio and TANGO employ text features both in
the training and inference stages. To overcome
data scarcity, Make-An-Audio proposes a pseudo
prompt enhancement method, using pre-trained au-
dio captioning and audio-text retrieval models to
generate natural language sentences to describe the
content of audio clips and then concatenate the au-
dio clips and the generated captions by predefined
templates. Due to the limited capabilities of the
audio captioning model and the manual setting of
text templates, the naturalness and diversity of the
resulting text descriptions are limited. TANGO
introduces an audio mixture method based on hu-
man auditory perception and simply concatenates
captions.

3 Method

In this section, we first provide an overview of the
framework of our method. We then introduce our
temporal enhancement method and dual text en-
coder structure, which aims to capture temporal
information more effectively and improve the se-
mantic alignment between the text and audio. We
then present our LLM-based augmentation method,
which further enhances the generalization ability
and performance of our model in terms of generat-
ing audio with high semantic correspondence. In
the end, we illustrate the structure of our diffusion
denoiser, which is designed to enhance the genera-
tion of variable-length audio.

3.1 Overview

Our framework overview is shown in Figure 1. De-
note an audio-text pair as (a,y) where a € R'e
and Ty, is the waveform length. To mitigate the
complexity of modeling long continuous waveform
data, we first convert a to mel-spectrogram (akin
to the 1-channel 2D image) 2 € R*T, where
C,., T < T, denote the mel-channels and the num-
ber of frames respectively. The training process
includes two stages:

Training variational autoencoder The audio en-
coder E takes mel-spectrogram x as input and out-
puts compressed latent z = F(x). The audio de-
coder D reconstructs the mel-spectrogram signals

x' = D(z) from the compressed representation z.
VAE solves the problem of excessive smoothing
in mel-spectrogram reconstruction through adver-
sarial training with a discriminator. The training
objective is to minimize the weighted sum of re-
construction loss L., GAN loss L4y and KL-
penalty loss Lk,

Training latent diffusion model Diffusion mod-
els (Ho et al., 2020; Rombach et al., 2022) con-
sists of two processes. In forward process, given
the latent z encoded by the VAE, diffusion model
transforms z into standard Gaussian distribution by
T steps, the data distribution of z; at step ¢ can be
formulated as:

q (2t | ze—1) = V1= Brzg—1 + / Brer (1)

Where 3; € [0, 1] is a predefined noise schedule
hyper-parameter, ¢, ~ N (0, I) denotes the injected
noise.

In the backward process, the latent diffusion
model learns to reconstruct the data distribution of
z with the conditional embedding ¢ = f,nq(y) of
conditional encoder f.,,4. The training objective
of the diffusion module is to minimize the mean
squared error in the noise space:

Ly = ||€9(Ztvta C) - EH%a ()

e ~ N(0,I) denotes the noise, € is the denois-
ing network, ¢ is random time step. The diffusion
model can be trained by optimizing ELBO (Ho
et al., 2020), ensuring faithful reconstructions that
match the ground-truth distribution.

To further improve the conditional generation
performance, we adopt the classifier-free guid-
ance (Ho and Salimans, 2021) technique. By
jointly training a conditional and an unconditional
diffusion model it can control the extent to which
the condition information affects the generation
at each sampling step and attain a trade-off be-
tween sample quality and diversity. At the train-
ing step, we randomly replace the audio caption
with an empty string to get the empty string con-
ditional embedding ¢y to train the unconditional
model. During sampling, the output of the model
is extrapolated further in the direction of €y (z, ¢, ¢)
and away from €y(z, t, cy) with the guidance scale
s>1:

59(2% t, C) = 66’(2757 t C@) +s- (EQ(Zt, t, C)—
Ee(zhta C@)) (3)
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Figure 1: A high-level overview of our method. Note that modules printed with a lock are frozen when training the

T2A model.
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Figure 2: Overview of LLM-based data augmentation. We use single-labeled audios and their labels as a database.
Composing complex audios and structured captions with these data. We then use LLM to generate diverse natural
language captions by the constructed captions and appropriate prompt.

3.2 Temporal enhancement

In comparison to image data, audio data includes
temporal information. A sound event can occur
at any time within the audio, making audio syn-
thesis a challenge when attempting to maintain
temporal consistency. Previous approaches have
encountered difficulties in dealing with captions
that contain multiple sounds and complex tempo-
ral information, leading to semantic misalignment
and poor temporal consistency. This can cause
the generated audio to omit some sounds and pro-
duce an inaccurate temporal sequence. To address
these issues, we propose the temporal enhance-
ment method by parsing the original caption into
structured pairs of <event & order>.

Specifically, we utilize the robust language un-
derstanding capabilities of LLMs to provide tem-
poral knowledge. LLMs are utilized to parse the
input text (the natural language audio caption) and
extract structured <event & order> pairs. As il-
lustrated in Figure 1, we use LLMs to simplify
the original natural language caption and link each
sound event to its corresponding order. Benefit-
ing from enhanced temporal knowledge, the T2A
model is empowered to identify sound events and
corresponding temporal order. Appendix E con-

tains further details on prompt design and addi-
tional examples of temporal enhancement.

3.3 Dual text encoders

To enhance the utilization of caption information,
we propose a dual text encoder architecture consist-
ing of a main text encoder CLAP (Elizalde et al.,
2022) that takes the original natural language cap-
tion y as input, and a temporal encoder FLAN-
TS5 (Chung et al., 2022) which takes the structured
caption y, passed by LLM as input. The final con-
ditional representation is expressed as:

¢ = Linear(Concat( freat(y), fremp(¥s))), (4)

Where ficz¢ is the main text encoder and fiemyp
is the temporal encoder. With contrastive multi-
modal pre-training, the CLAP has achieved excel-
lent zero-shot performance in several downstream
tasks. We freeze the weights of the main text en-
coder and fine-tune the temporal encoder to capture
information about the temporal order of various
events. As we use LLM to parse the original natu-
ral language input, some adjectives or quantifiers
may be lost in this procedure, and sometimes the
structured inputs’ format is incorrect. Dual text
encoders can avoid information loss and are more



robust in these situations. Additionally, with the
frozen main text encoder, the model can maintain
its generalization ability.

3.4 LLM-based data augmentation

A major challenge faced by the current T2A mis-
sion is the scarcity of data. While the T2I task
benefits from billions of text-image pairs (Schuh-
mann et al., 2022), there are currently only around
one million open-source text-audio pairs avail-
able (Huang et al., 2023). Additionally, there is
a lack of data with detailed temporal annotation;
many of these audios are only loosely labeled with
tags instead of natural language captions. Inspired
by the success of AugGPT (Dai et al., 2023) and
Wavcaps (Mei et al., 2023) using LLM model to
augment data, to make the most effective use of
the available data, we propose an LLM-based data
augmentation technique. As depicted in Figure 2,
we augment audio data and its corresponding text
caption as follows:

* We begin by collecting data labeled with single
tags to create our event database D. This type of
data is typically cleaner and less likely to contain
unwanted noise or other sounds. We can then use
this data to construct more complex data based
on their durations.

* Then we randomly select N € {2,3} samples
from D, mix and concatenate them at random.
Concatenating at random intervals or overlaps
ensures that the resulting audio contains tempo-
ral information. Mixing improves the models’
ability to recognize and separate different sorts
of audio for creating complex compositions.

* As the resulting audio is created, we synthesize
structured captions based on the occurrence time
and duration of each sound event by rules. For
those events that appear almost throughout the
audio, we bind them with "all". While for events
that only partly occur in the audio, we bind them
with "start", "mid" or "end" depending on the
proportion of their occurrence time points.

* Finally, we feed the structured captions into LLM
with prompts to generate diverse natural language
captions. The prompt to transform structured
captions to natural language captions and some
examples are displayed in Appendix E.
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the 2d-VAE+spatial transformer’s self-attention and
1d-VAE+temporal transformer’s self-attention step in
processing mel-spectrograms. We ignore the condi-
tion embedding here for simplicity. W9, Wk W
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3.5 Transformer-based diffusion denoiser
backbone

Previous diffusion-based work on T2A synthe-
sis (Huang et al., 2023; Liu et al., 2023; Ghosal
et al., 2023) treated the mel-spectrogram as a one-
channel image similar to T2I synthesis. How-
ever, unlike images, the mel-spectrogram is not
spatially translation invariant. The height of the
mel-spectrogram represents the frequency domain,
meaning that mel-spectrogram patches at different
heights carry different meanings and should not be
treated equally. The temporal translation invariant
priori of 1D-convolution is more suitable as the
width of mel-spectrogram represents the time do-
main. Furthermore, preceding approaches employ
a 2D-convolution layer and spatial transformer-
stacked U-Net architecture, thereby limiting the
model’s ability to generate variable-length audio.
Illustrated in Figure 3, the spatial transformer
layer, employed after the convolution layer, flat-
tens the pixels of the 2D feature into pixel se-
quences. While this technique performs well with
fixed-size images, it disrupts the positional informa-
tion encoded by the 2D-convolution layer when the
length of mel-spectrograms changes and damages
the frequency-time structure constraint. Inspired
by (Peebles and Xie, 2023) and (Bao et al., 2022)



that have shown U-Net is not necessary for dif-
fusion network (Ho et al., 2020; Rombach et al.,
2022) and found transformer-based (Vaswani et al.,
2017) architecture can achieve better performance,
we propose a modified audio VAE that uses a
1D-convolution-based model and a feed-forward
Transformer-based diffusion denoiser backbone
which adopts 1D-convolution and temporal trans-
former to improve the model’s ability to generate
variable-length audio.

Regarding the computational complexity of the
self-attention step, while the latent of 2D-VAE au-
dio encoder is z = E(x) € RE*Ca/I*T/J where
C' is the embedding dim of latent, f is the down-
sampling rate, C, and 1" denote the mel-channels
and the number of frames of mel-spectrogram re-
spectively, which is processed as images’ height
and width, f is downsampling rate. Our 1D-
convolution-based audio encoder’s latent is z =
E(z) € RC/N*T/fz2 where C, is taken as chan-
nel dimension rather than height when employing
2D-convolution, fi, fo are downsampling rates of
mel-channels and frames, respectively. Compared
to the original spatial transformer, the computa-
tion complexity of the attention step in the trans-
former reduces from O((C,/f x T/f)? x D) to
O((T/f2)?* x D), where D is the embedding di-
mension of the transformer layer.

4 [Experiments

4.1 Experimental setup

Dataset. We use a combination of several
datasets to train our model, including AudioCaps
training set, WavCaps, AudioSet, Adobe Audi-
tion Sound Effects, Audiostock, ESC-50, FSD50K,
MACS, Epidemic Sound, UrbanSound8K, Wav-
Text5Ks, TUT acoustic scene. This results in a
dataset composed of 0.92 million audio text pairs,
with a total duration of approximately 3.7K hours.
More details of data filtering and preprocessing are
put in Appendix A. To evaluate the performance
of our models, we use the AudioCaps test set and
Clotho evaluation set which contain multiple event
audio samples and detailed audio captions that con-
tain temporal information. The latter serves as a
more challenging zero-shot scenario test for us, as
its train set is not included in our train data.

Evaluation methods. We evaluate our models
using objective and subjective metrics to assess the
audio quality and text-audio alignment faithfulness.

For objective evaluation, we include Frechet dis-
tance (FD), inception score (IS), Kullback-Leibler
(KL) divergence, Frechet audio distance (FAD),
and CLAP score. For subjective evaluation, we con-
duct crowd-sourced human evaluations with MOS
(mean opinion score) to assess the audio quality,
text-audio alignment faithfulness, and text-audio
temporal alignment, scoring MOS-Q, MOS-F, and
MOS-T respectively. More information about eval-
uation metrics and processes can be found in Ap-
pendix C.

Baseline models. To establish a standard for com-
parison, our study employs four baseline models,
including Make-An-Audio (Huang et al., 2023) (ab-
breviated as MAA in Table), AudioLDM (Liu et al.,
2023), TANGO (Ghosal et al., 2023) and Audio-
Gen (Kreuk et al., 2023). We use the released ver-
sion of AudioLDM-L and TANGO in Huggingface.
And the released version of Make-An-Audio and
AudioGen-m in Github. More model architecture
and training details of our model can be found in
Appendix B.

4.2 Main results

Automatic objective evaluation. The objective
evaluation comparison with baseline is presented in
Table 1, and we have the following observations: 1)
In terms of audio quality, our model achieves better
scores in FD, IS, and FAD; 2) On text-audio similar-
ity, our model presents the comparable CLAP score
with TANGO; 3) Our model achieves the lowest
KL, which means the audio generated by our model
has a more similar distribution of categorical labels
to the ground truth audio. 4) We further compare
our models’ diffusion module running speed and
parameter quantity with other models. Our model
uses a relatively small diffusion module. Through
the design of the feed-forward-transformer stacking
structure, we can achieve a noteworthy acceleration
while keeping the same number of parameters with
Make-An-Audio. Although our model has a rela-
tively small and faster diffusion model, we need
to call ChatGPT API to parse the captions which
incurs extra overhead and also influences perfor-
mance. More details about the model’s parameters
of each component and architecture hyperparame-
ters are attached to Appendix B.

Subjective human evaluation. The human eval-
uation results show significant gains of TETA with
MOS-Q of 80.1, MOS-F of 78.0, and MOS-T of



Model FD| IS KL, FAD|/ CLAPt MOS-Qf MOS-Ft  MOS-Tt Params Speed
GroundTruth - - - - 0.671 8434141 83.8+1.66 81.6+1.61 - -
AudioGen-m 1242  11.65 143 185 0604 74.6+1.77 71.5£1.91 70.6+1.45 - 1.12

MAA 1343 1143 148 229 0636 7394174 72.0+1.68 714+177 160M  1.94
AudioLDM-L 2331 813 159 196  0.605 712+1.63 69.841.76 67.142.09 739M  0.65

TANGO 2613 823 137 187 0650 73.7+1.69 71.6+1.81 70.8+1.80 866M  0.34
Ours 1145 11.62 1.25 1.10 0641 80.1+1.60 78.0-1.49 78.7+1.43 160M  2.97

Table 1: Performance comparison on the AudioCaps dataset. All the diffusion-based models run with 100
DDIM (Song et al., 2020) steps for a fair comparison. Our model is tested with a classifier-free guidance scale of 5.
We borrowed all the results from (Liu et al., 2023; Ghosal et al., 2023) and used the model released on Huggingface
to test the CLAP Score. We use the released model on GitHub of Make-An-Audio (abbreviated as MAA) and
AudioGen to test all the scores. Noted that Params is the diffusion module parameters, speed marks the generation
speed of 10s audios per second. The experiment is conducted on one A100 GPU and the batch size (8 for diffusion
networks and 32 for AudioGen) is set to make the utilization rate of GPU reach 100% when generating 10-second

audio.

78.7, outperforming the current baselines. It indi-
cates that raters prefer our model synthesis against
baselines in terms of audio naturalness, text-audio
semantics and temporal faithfulness.

Zero-shot evaluation. To further investigate the
generalization performance of the models, we test
the performance of the models on the Clotho-
evaluation dataset in the zero-shot scenario. Con-
sidering audios in the Clotho-evaluation dataset
have different durations, we conduct two evalua-
tions. One is generating fixed-length audios of 10
seconds, denoted as Clotho-eval-fix. The other is
to generate audio that is the same length as each
piece of audio in the dataset, denoted as Clotho-
eval-variable. The audio’s duration in Clotho-eval-
variable varies from 15s to 30s, with an average
duration of 22.4 seconds. As illustrated in Table 2,
our model has significantly better results than base-
line models, attributed to the scalability of data
usage and variable length data training.

Variable-length generation. To investigate our
models’ performance on variable-length audio gen-
eration, we test to generate 5-second audios and
8-second audios on AudioCaps dataset, the results
are shown in Table 3. To investigate the relation-
ship between models’ performance with the dura-
tion of generated audio, we add additional exper-
iments in Appendix D.1. We also test generating
variable-length audios on the Clotho-eval dataset,
as discussed in the former paragraph. It can be seen
that preceding diffusion-based works, TANGO, Au-
dioLDM and Make-An-Audio, exhibit significant
performance degradation when generating audio
with different lengths than the training data, while
the autoregressive model AudioGen’s performance

remains stable in generating variable-length audio.
Preceding diffusion-based works pad or truncate
all the training audio data to 10 seconds, and their
models are based on 2D-convolution and spatial
transformer to process mel-spectrogram as images.
Our model maintains high performance even when
generating variable-length audio samples since it
is trained on audio samples of varying lengths and
utilizes 1D-convolution and temporal transformers
to emphasize temporal axis information.

4.3 Ablation study

To assess the effectiveness of various designs in
TETA, we conduct ablation studies on AudioCaps-
test and Clotho-evaluation set. The results are pre-
sented in Table 4. The key findings are discussed
below:

1D-VAE and FFT-diffusion Although 2d-
convolution VAE and Unet diffusion backbone per-
form well trained with fixed-length data. When we
tried to train them with variable-length data. They
don’t converge to a good result. With 1d VAE and
feed-forward-transformer diffusion backbone, our
model converges well when trained with variable-
length data, and exhibits significant advantages in
generating variable-length data.

Temporal Enhancement The results in Table 4
highlights the effectiveness of temporal enhance-
ment. We use LLLM to extract event and temporal
information and create structured input as <event
& order> pairs. It reduces the difficulty for the
model to extract audio events and establish tim-
ing relationships from captions, which significantly
improves both objective scores and sound timing
modeling.



Clotho-eval-fix

Clotho-eval-variale

Model FDJ, ISt KL| FAD] | FD| ISt KL| FADJ
TANGO 32,1 677 259 361 | 3654 665 275 523
AudioLDM-L | 28.15 6.55 2.60 493 | 2425 7.06 244 442
MAA 2291 847 266 321 | 2651 812 268 503
AudioGen-m | 23.69 7.18 2.64 2.62 | 2486 693 260 2.64
Ours 1843 873 249 159 | 2077 843 255 229

Table 2: Comparison of our model and baselines on Clotho-eval datasets.

Model Audiocaps-5s Audiocaps-8s
FD| ISt KL| FAD| | FDJ ISt KL] FADJ
TANGO 3176 550 2.04 1053 | 1832 839 150 2.04
AudioLDM-L | 3197 566 239 679 | 3095 8.65 191 491
MAA 1930 7.83 213 5.6l 1425 985 164 227
AudioGen-m | 11.02 1143 1.67 1.63 | 12.11 11.65 152 1.63
Ours 1240 11.10 148 1.28 | 13.20 11.15 132 1.04

Table 3: Comparison of our model and baselines on Audio-caps dataset. The result of generating 5-second audios
and 8-second audios are denoted as Audiocaps-5s and Audiocaps-8s respectively.

Audiocaps Clotho-eval-fix
Setting FDJ] ISt KL] FAD| MOS-T? FDJ ISt KL| FADJ]
Ours 1145 1162 125 1.10 787+£155 | 1843 873 249 1.59
w/o 1d VAE + FFT diffusion | 22.69 5.93 2.17 382  635+£221 | 2659 692 267 6.02
w/o Temporal Enhancement 12.66 10.60 1.35 1.72 739+ 157 | 2124 882 250 2.56
w/o LLM Data Augmentation | 10.45 11.03 1.22 1.25 76.1+£1.87 | 19.75 863 239 2.01
w/o CLAP TextEncoder 11.91 11.07 1.29 1.59  769+1.69 | 18.38 9.56 243 1.94

Table 4: The ablation study of TETA. All the models are trained on variable-length data.

LLM Data Augementation We use LLM Data
Augmentation to further improve the model’s gen-
eralization ability and alleviate the problem of
data with temporal information scarcity. The ab-
sence of LLM data augmentation results in insignif-
icant changes in performance on the Audiocaps
dataset. This can be attributed to we assigned
higher data weights to the Audiocaps dataset, caus-
ing the model to become somewhat overfitted to
this specific dataset. Conversely, LLM data aug-
mentation leads to a notable improvement in per-
formance in Clotho dataset. The MOS-T score also
improves with augmentation, as the constructed
data strictly follows the temporal relationships de-
scribed in the captions, which helps the model learn
temporal information more effectively.

Dual Text Encoder We use the frozen CLAP
encoder to extract information from the original
natural language caption and trainable text en-
coder to extract information from the parsed in-
put. The frozen encoder provides fault-tolerance
mechanisms when there are information losses and
errors in the parsed input while retaining general-
ization capabilities. We compare the performance

of the model with and without CLAP Encoder us-
ing wrongly parsed captions on the Clotho-eval
dataset, the results are attached to Appendix D.2.
We also compare our results when the parsed input
has errors on our demo page.

5 Conclusions

In this work, we present TETA, a temporal-
enhanced T2A synthesis model. With a capable
LLM to extract temporal information from the nat-
ural language caption, TETA can better understand
the event order in the caption and generate semanti-
cally aligned audios. Leveraging 1D-convolutional
VAE and feed-forward Transformer diffusion back-
bone, TETA can generate variable-length audios
without performance degeneration. With complex
audio reconstruction and LLM-based data augmen-
tation, TETA is endowed with the ability to under-
stand complex temporal relationships and combi-
nations of multiple concepts. TETA achieves the
SOTA audio generation quality in both objective
and subjective metrics.



6 Limitations

TETA incorporates an additional LLM for parsing
the original caption, which affects both the genera-
tion performance and running speed. In temporal
enhancement, we use start, mid, end, and all, it’s
a rough time resolution, but it works well in our
experiment as the audios in our training data are
not very complicated. If supplied with more com-
plicated audio data, using the time format of order
1,2,3... can be considered. We left it as future work.
Furthermore, our model lacks the capability of gen-
erating meaningful speech, the speech generated
by our model is intelligible.

In terms of model evaluation, the Audiocaps and
Clotho datasets pose a challenge due to their noisy
nature, rendering objective metrics inadequate for
assessing the model’s capacity to generate pure,
high-quality sound. Additionally, the performance
of CLAP is limited when dealing with complex
audio involving multiple sources and temporal or-
dering.

7 Ethics Statement

TETA improves the quality and efficiency of the au-
dio generation, this may lead to unintended conse-
quences such as increased unemployment for indi-
viduals in related fields such as sound engineering
and radio hosting. Furthermore, there are potential
concerns regarding the ethics of non-consensual
voice cloning or the creation of fake media to pro-
vide misleading information.
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A Data details

As shown in Table 5, we collect a large-scale audio-
text dataset consisting of 0.92 million audio sam-
ples with a total duration of approximately 3.7k
hours. The dataset has a wide variety of sounds
including music and musical instruments, sound
effects, human voices, nature and living sounds,
etc. For Clotho dataset, we only use its evaluation
set for zero-shot testing and do not use it for train-
ing. As speech and music are the dominant classes
in AudioSet, we randomly filter 95% of the sam-
ples that contain speech and music to build a more
balanced dataset.

We conduct preprocessing on both text and audio
data as follows:

1) We convert the sampling rate of audio to 16kHz.
Prior works (Yang et al., 2023; Huang et al.,
2023; Liu et al., 2023) pad or truncate the au-
dio to a fixed length (10s), while we group au-
dio files with similar durations to form batches
to avoid excessive padding which could poten-
tially impair model performance and slow down
the training speed. This approach also allows
for improved variable-length generation perfor-
mance. We truncate any audio file that exceeds
20 seconds, to speed up the training process.

2) We adopt the LLLM-based data augmentation
method in section 3.4 to construct approxi-
mately 61k additional audio-text pairs as auxil-
iary data.

11

3) For audios without natural language annota-
tion, we apply the pseudo prompt enhancement
method from Make-An-Audio (Huang et al.,
2023) to construct captions aligned with the au-
dio.

4) We assign a lower weight to the data that is
not annotated with temporal information but
is abundant in quantity and diversity, such as
AudioSet and WavCaps data. Specifically, we
traverse the AudioCaps training set and the
LLM augmented data with a probability of 50%,
while randomly selecting data from all other
sources with a probability of 50%. For the latter
dataset, we use "<text & all>" as their structured
caption.

B Experimental details

Variational autoencoder. We employed a sim-
ilar VAE architecture to that of Make-An-Audio,
replacing all the 2D-convolution layers with 1D-
convolution layers and the spatial transformer
with a temporal transformer. As detailed in Sec-
tion 4.5, the output latent of VAE is z = E(x) €
RCa/fixT/f2 where we choose the downsample
rate of f{ = 4 and fo = 2. We additionally in-
volve R1 regularization (Mescheder et al., 2018)
to better stabilize the adversarial training process.
We train our VAE on 8 NVIDIA A100 GPUs
with a batch size of 32 and 800k training steps
on AudioSet dataset. We use the Adamw opti-
mizer (Loshchilov and Hutter, 2018) with a learn-
ing rate of 1.44 x 10~%. For specific differences
in hyperparameters between our VAE and that of
Make-An-Audio, please see Table 6.

Latent diffusion. We train our Latent Diffusion
Model with on 8 NVIDIA A100 GPU with a batch
size of 32 and 1.8M training steps. We use the
Adam optimizer with a learning rate of 9.6 x 107>,
For the specific hyperparameter for our latent dif-
fusion model, please refer to Table 7.

Model parameters of each component. The
params of each component in TETA are displayed
in Table 8. The params comparison between our
model and baselines are displayed in Table 9.

C Evaluation

C1

To assess the generation quality, we conduct MOS
(Mean Opinion Score) tests regarding audio qual-

subjective evaluation



Dataset Hours Type Source

Audiocaps 10%hrs  caption (Kim et al., 2019)

WavCaps 2056hrs  caption (Mei et al., 2023)

WavText5K 25hrs caption (Deshmukh et al., 2022)

MACS 48hrs caption (Martin-Morat6 and Mesaros, 2021)

Clothv2 152hrs  caption (Drossos et al., 2020)

Audiostock 44hrs caption https://audiostock.net

epidemic sound 220hrs  caption https://www.epidemicsound.com

Adobe Audition Sound Effects 26hrs caption https://www.adobe.com/products/
audition/offers/AdobeAuditionDLCSFX.
html

FSD50K 108hrs  label https://annotator.freesound.org/fsd

ODEON_Sound_Effects 20hrs label https://www.paramountmotion.com/
odeon-sound-effects

UrbanSound8K 9hrs label (Salamon et al., 2014)

ESC-50 3hrs label (Piczak, 2015)

filteraudioset 945hrs  multi label (Gemmeke et al., 2017)

TUT 13hrs label (Mesaros et al., 2016)

Table 5: Statistics for the Datasets used in the paper.

| Make-An-Audio VAE | TETA VAE
Assume input tensor shape (for 10s audio) (1,80,624) (80,624)
Embed_dim 4 20
Convolution layer Conv2D Conv1D
Channels 128 224
Channel multiplier 1,2,2,4 1,24

Downsample layer position
Attention layer
Attention layer position
Output tensor shape

after block 1,2
spatial attention
after block 3,4
(4,10,78)

after block 1
temporal attention
after block 3
(20,312)

Table 6: Difference between Make-An-Audio VAE and our VAE

ity, text-audio faithfulness and text-audio temporal
alignment, respectively scoring MOS-Q, MOS-F,
and MOS-T.

For audio quality, the raters were explicitly in-
structed to “focus on examining the audio quality
and naturalness.” The testers were presented with
audio samples and their caption and asked to rate
their subjective score on a 20-100 Likert scale.

For text-audio faithfulness, human raters were
shown the audio and its caption and asked to re-
spond to the question, "Does the natural language
description align with the audio faithfully?" They
had to choose one of the options - "completely,"
"mostly," or "somewhat" on a 20-100 Likert scale.

For text-audio temporal alignment, human raters
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were shown the audio and its caption and asked to
respond to the question, "Whether the text descrip-
tion contains sounds time or order information. If
not then select no, if yes then score based on how
the audio’s sound order aligns with its caption."
They had to choose one of the options - "com-
pletely,” "mostly," or "somewhat" on a 20-100 Lik-
ert scale. We will filter out the audio that has been
selected "no" and compute MOS-T based on the
remaining audio.

Our subjective evaluation tests are crowd-
sourced and conducted via Amazon Mechanical
Turk. These ratings are obtained independently
for model samples and reference audio, and both
are reported. We paid $8 to participants hourly


https://audiostock.net
https://www.epidemicsound.com
https://www.adobe.com/products/audition/offers/AdobeAuditionDLCSFX.html
https://www.adobe.com/products/audition/offers/AdobeAuditionDLCSFX.html
https://www.adobe.com/products/audition/offers/AdobeAuditionDLCSFX.html
https://annotator.freesound.org/fsd
https://www.paramountmotion.com/odeon-sound-effects
https://www.paramountmotion.com/odeon-sound-effects

| TETA LDM

Input shape

Condition_embedding dim
Feed-forward Transformer hidden_size
Feed-forward Transformer’s Conv1d kernel size
Feed-forward Transformer’s Conv1d padding
Number of Transformer heads
Number of Feed-forward Transformer block

Diffusion steps

(20,T)
1024
576
7
3
8
8
1000

Table 7: TETA Diffusion model backbone configurations

Component Params Model Total params  Diffusion params
VAE 213M AudioLDM-S 454M 185M
Diffusion Model Backbone =~ 160M AudioLDM-L 1.01B 739M
Text Encoder 452M Tango 1.21B 866M
Vocoder 112M Make-An-Audio 453M 160M
AudioGen-m 1.5B -
Total 3™ Ours 937M 160M

Table 8: The params of each component

and totally spent about $400 on participant com-
pensation. A small subset of the generated audio
samples used in the test can be found at https:
//teta2023.github.io/.

C.2 Objective evaluation

Fréchet Audio Distance (FAD) (Kilgour et al.,
2018) is adapted from the Fréchet Inception Dis-
tance (FID) to the audio domain, it is a reference-
free perceptual metric that measures the distance
between the generated and ground truth audio dis-
tributions. FAD is used to evaluate the quality
of generated audio. The inception Score (IS) is
an effective metric that evaluates both the quality
and diversity of generated audio. KL divergence
is measured at a paired sample level between the
generated audio and the ground truth audio, it is
computed using the label distribution and is av-
eraged as the final result. Fréchet Distance (FD)
evaluates the similarity between the generated and
ground truth audio distributions. FD, KL and IS
are built upon an audio classifier, PANNs (Kong
et al., 2020), which takes the mel-spectrogram as
model input. Differently, FAD uses VGGish (Her-
shey et al., 2017) as an audio classifier that takes
raw audio waveform as model input. CLAP score:
adapted from the CLIP score (Hessel et al., 2021;
Radford et al., 2021) to the audio domain and is a

Table 9: Params comparison between models.
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—— TETA
—— AudioGen
—— MAA
—— AudioLDM
Tango

10 1

T
12 14
Duration(seconds)

Figure 4: Fad versus duration curve of models.

reference-free evaluation metric to measure audio-
text alignment for this work that closely correlates
with human perception.

D Additional Results

D.1 Variable length generation

We investigate the performance of various models
in audio generation as the duration of the audio
changes in Figure4. Make-An-Audio, Tango, and
AudioLDM exhibit a significant variation in their
generation performance across different audio dura-
tions. Specifically, as the duration of the generated


https://teta2023.github.io/
https://teta2023.github.io/
https://teta2023.github.io/

Model FD, ISt KL| FAD| CLAP}

TETA 72770 633 282 6.47 0.285
w/o CLAP TextEncoder 73.64 5.02 3.01 6.54 0.189

Table 10: Performance comparison on the wrongly parsed subset.

audio deviates from the training duration of 10
seconds, the performance decreases. In contrast,
TETA and AudioGen demonstrate less variation in
performance across different durations, exhibiting
relatively flat curves.

D.2 Performance of error parsing

We evaluate the generation performance of wrongly
parsed captions (not in the format we define) on
the Clotho-eval dataset. Among the 1045 captions,
a subset comprising 37 structured captions was ob-
tained after performing LLM parsing, but not cor-
rectly formatted. We generated 5 audios for each
incorrectly parsed caption and tested the generation
performance as shown in Table 10. For wrongly
parsed captions, without CLAP text encoder leads
to performance decline, particularly in clap score,
which means the CLAP text encoder is helpful in
information retention and fault tolerance.

E ChatGPT prompts

The prompt templates utilized for temporal en-
hancement to construct structure caption from the
original natural language caption and for caption
data augmentation are displayed in Figure 5.

Table 11 presents some instances of the original
caption and ChatGPT’s outcome. For text data aug-
mentation, we construct structured caption inputs,
and Table 12 exhibits examples of such inputs and
ChatGPT’s corresponding outputs.

F Future works

We leave the T2A system which supports speech
synthesis for future work. As we have seen great
potential in our LLM-based data augmentation,
with elaborate prompts and merge rules, it can be
used to merge speech, singing, sound events, and
music to create a more universal audio scenario.
Enabling the training of a model that can generate
universal audios with meaningful speech and music
with ideal melody. In addition, we aim to imple-
ment T2A systems that could take structured inputs
as optional auxiliary inputs instead of required in-
puts.
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Prompt Template for Temporal Enhancement

Prompt Template for Data Augmentation

(Our prompt: | want to know what sound might be in the given scene and you\
need to give me the results in the following format:

/Our prompt: | want you to generate the text describing the sound scene

~

based on the structured input:

Question: A bird sings on the river in the morning, a cow passes by and
scares away the bird.

Question: <running water & all>{@kbirds chriping & start>[@kcow footsteps

& mid>{@}<birds flying away & end> J

& mid@)<birds flying away & end>

scares away the bird.

Question:cellphone ringing a variety of tones followed by a loud explosion

[ Answer: <running water & all>@birds chriping & starty@J<cow footsteps
[ and fire crackling as a truck engine runs idle.

[ Answer: A bird sings on the river in the morning, a cow passes by and
[Question: <variety cellphone ringing tones & start{@J<loud explosion &

end>{@Jkfire crackling & end>{@)<truck engine idle & end>

Answer: <variety cellphone ringing tones & start<|oud explosion &
end>@Kkfire crackling & end>(@ktruck engine idle & end>

Answer:

and fire crackling as a truck engine runs idle.

[Question: Train passing followed by short honks three times.

slide guitar & mid>

]
)
)
)
l
]

[Answer: <train passing & aIIshort honks three times & end>

[Question: <Applause Clapping & aII<Gong & start>{@ksteel guitar and
[Answer: Gong sounds start followed by steel guitar and slide guitar with

cellphone ringing a variety of tones followed by a loud explosion ]

applause and clapping in the background

All indicates the sound exists in the whole scene, Start, mid, end
indicates the time period the sound appear.

<metal clank & start>@<motor vibrating & mid>@<motor rumbling & end>

All indicates that sound exists in the whole scene. Start, mid, end
indicates the time period the sound appear. Please answer the
following questions, each answer should be start from a newline:

>

The sound of accelerating starts followed by the heavy engine's low
frequency in the middle.

The sound of a hammer and clatter can be heard throughout, accompanied
by the hum of an air conditioner starting up.

Figure 5: The prompt templates we used for temporal enhancement and data augmentation. We use the symbol " &’
to split the sound event and the time order. We use the symbol * @’ to split <event & order> pairs.

Natural language input

ChatGPT’s output

A woman talks nearby as water pours

<woman talking& all>@<water pouring& all>

Two men exchange words, then a car
engine revs followed by a siren and
fade in music

<two men talking& all>@<car engine revving&
start>@<siren& mid>@<music fading in& end>

A crowd is cheering and shouting,
thumping occurs, an adult female
speaks, and an adult male speaks

<crowd cheering and shouting& all>@<thumping&
start>@<adult female speaking& mid>@<adult male
speaking& end>

Table 11: Examples of using ChatGPT for temporal enhancement from AudioCaps trainset

Structured input

ChatGPT’s output

<bark howl dog& start>@<typing
Typewriter&  mid>@<breathing&
end>

A dog barks and howls while someone types on a type-
writer, then the sound of breathing takes over

<crowing& all>@<car&
all>@<female singing& end>

A rooster crows as a car passes by, and the scene ends
with the sound of a female singing

<sneezing& all>@<bicycle bell ring&
start>@ <typewriter & end>

The sound of sneezing is heard throughout, with a bicycle
bell ringing at the start and the sound of a typewriter at
the end

Table 12: Examples of using ChatGPT for data augmentation
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