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Abstract

Large diffusion models have been successful in001
text-to-audio (T2A) synthesis tasks, but they of-002
ten suffer from common issues such as seman-003
tic misalignment and poor temporal consistency004
due to limited natural language understanding005
and data scarcity. Additionally, 2D spatial struc-006
tures widely used in T2A works lead to unsatis-007
factory audio quality when generating variable-008
length audio samples since they ignore the time-009
frequency structure in the mel-spectrogram. To010
address these challenges, we propose TETA,011
a latent diffusion-based T2A method. Our ap-012
proach includes several techniques to improve013
semantic alignment and temporal consistency:014
Firstly, we use pre-trained large language mod-015
els (LLMs) to parse the text into structured016
<event & order> pairs for better temporal in-017
formation capture. We also introduce another018
structured-text encoder to aid in learning se-019
mantic alignment during the diffusion denois-020
ing process. To improve the performance of021
variable length generation and enhance the tem-022
poral information extraction, we design a feed-023
forward Transformer-based diffusion denoiser.024
Finally, we use LLMs to augment and trans-025
form a large amount of audio-label data into026
audio-text datasets to alleviate the problem of027
scarcity of temporal data. Extensive experi-028
ments show that our method outperforms base-029
line models in both objective and subjective030
metrics, and achieves significant gains in tem-031
poral information understanding, semantic con-032
sistency, and sound quality. Our demos are033
available at https://teta2023.github.io.034

1 Introduction035

Deep generative learning models (Goodfellow036

et al., 2020; Kingma and Dhariwal, 2018; Ho et al.,037

2020) have revolutionized the creation of digital038

content, enabling creators with no professional039

training to produce high-quality images (Rom-040

bach et al., 2022; Saharia et al., 2022), vivid041

videos (Hong et al., 2022; Singer et al., 2022),042

diverse styles of voice (Huang et al., 2022), and 043

meaningful long textual spans (Zhang et al., 2022; 044

OpenAI, 2023). Text-to-audio synthesis (T2A) 045

is a subcategory of generative tasks that aims to 046

generate natural and accurate audio by taking text 047

prompts as input. T2A can be useful in generating 048

desired sound effects, music and speech, and can 049

be applied to various applications like movie sound 050

effects making, virtual reality, game development, 051

and audio editing. 052

Thanks to the development of text-to-image syn- 053

thesis (T2I) methods, researchers have successfully 054

extended similar approaches to the text-to-audio 055

synthesis domain (Huang et al., 2023; Liu et al., 056

2023; Yang et al., 2023; Kreuk et al., 2023). The 057

success of these methods has opened up numer- 058

ous opportunities for generating high-quality audio 059

content from text. T2A systems typically use a 060

text encoder to encode the audio’s text input as 061

condition embedding, then employ diffusion mod- 062

els (Huang et al., 2023; Liu et al., 2023; Yang 063

et al., 2023) to synthesis mel-spectrograms, or uti- 064

lize auto-regressive models (Kreuk et al., 2023) to 065

synthesis raw waveform data based on the condi- 066

tion embedding. However, previous T2A methods 067

have some common issues: 1) Temporal disor- 068

der: when the text input is complex, with multiple 069

objects and temporal relationships between them, 070

the generated audios often suffer from semantic 071

misalignment and temporal disorder. For instance, 072

audio captions such as "The sound of A, followed 073

by the sound of B" may result in audios where A 074

and B overlap throughout, or B comes before A, 075

or even only one sound is synthesized. 2) Poor 076

variable-length results: previous diffusion-based 077

works (Huang et al., 2023; Liu et al., 2023) adopt 078

the U-Net structure of 2D convolution and spa- 079

tial transformer stacking as the backbone of diffu- 080

sion denoiser, which is typically trained with fixed- 081

length audios. Consequently, they generate subop- 082

timal results when synthesizing audio sequences 083
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of varying lengths compared to those of the train-084

ing data. 2D spatial structures are not good at085

extracting temporal information since they treat086

the time axis and frequency axis equally, ignor-087

ing the time-frequency mel-spectrogram structure.088

3) Insufficient temporal paired data: previous089

works use simple rule-based augmentation meth-090

ods (Elizalde et al., 2022; Kreuk et al., 2023) to091

create temporally aligned text-audio paired data092

from audio-label datasets. However, these patterns093

are overly simplistic and can hinder the model’s094

ability to generalize to real-world sentences.095

In this paper, we propose a novel temporal-096

enhanced text-to-audio generation framework. The097

temporal information can be better handled by our098

method in the following ways: 1) To address the099

semantic misalignment and temporal disorder, we100

use a pre-trained LLM to extract the audio cap-101

tion’s temporal information and parse the origin102

caption into structured <event & order> pairs with103

proper prompts. To encode the structured pairs bet-104

ter, we introduce another structured-text encoder105

that takes the structured pairs as its input to aid106

in learning semantic alignment during the diffu-107

sion denoising process. In this way, we relieve the108

text encoder’s burden of recognizing events with109

the corresponding temporal information and en-110

able the T2A system to model the timing informa-111

tion of the events more effectively. 2) To improve112

the generation quality of variable-length audio and113

enhance the temporal information understanding,114

we replace the 2D spatial structures with temporal115

feed-forward Transformer (Ren et al., 2019) and116

1D-convolution stacks for the diffusion denoiser117

and support variable-length audio input in training.118

3) To address the issue of insufficient temporally119

aligned audio-text paired dataset, we use single-120

labeled audio samples and their labels to compose121

complex audio and structured captions. We then122

use LLM to augment the structured caption into123

natural language captions.124

We conduct extensive experiments on Audio-125

Caps and Clotho datasets, which reveals that our126

method surpasses baseline models in both objec-127

tive and subjective metrics, and achieves significant128

gains in understanding temporal information, main-129

taining semantic consistency, and enhancing sound130

quality. Our ablation studies further demonstrate131

the effectiveness of each of our techniques.132

2 Related works 133

2.1 Text-to-image generative models 134

Text-to-Image Synthesis (T2I) has garnered sig- 135

nificant attention in recent years. One pioneer- 136

ing work in this realm is DALL-E (Ramesh et al., 137

2021), which treats T2I generation as a sequence- 138

to-sequence translation task. DALL-E employs a 139

pre-trained VQ-VAE (Van Den Oord et al., 2017) 140

to encode image patches to discrete codes, which 141

are then combined with the text codes. During 142

inference, the model generates image codes au- 143

toregressively based on the text codes. DALLE- 144

2 (Ramesh et al., 2022) uses the CLIP (Radford 145

et al., 2021) text encoder and two diffusion mod- 146

els. The first diffusion model predicts CLIP visual 147

features based on the CLIP text feature, while the 148

second synthesizes the image from the predicted 149

CLIP visual features. Another famous T2I work 150

is Imagen (Saharia et al., 2022), which utilizes the 151

T5 encoder (Raffel et al., 2020) to extract text fea- 152

tures, It employs a diffusion model to synthesize 153

a low-resolution image and then applies a cascade 154

of diffusion models for super-resolution. Latent 155

Diffusion (Rombach et al., 2022) enhances com- 156

putational efficiency by using a continuous VAE 157

trained with a discriminator to map images from 158

pixel space to compressed latent space. This is 159

followed by diffusion on the latent space, which 160

synthesizes images’ latent. 161

2.2 Text-to-audio synthesis 162

Text-to-Audio Synthesis is a rising task that has 163

seen great advances recently. Diffsound (Yang 164

et al., 2023) uses a pre-trained VQ-VAE (Van 165

Den Oord et al., 2017) trained on mel-spectrograms 166

to convert audio into discrete codes, which are 167

then used by a diffusion model to generate the au- 168

dio codes. To improve its generalization ability, 169

the authors pre-trained Diffsound on the AudioSet 170

dataset, which contains audio files labeled with 171

tags. And they introduce a random input mask- 172

ing technique to make use of these tags. Audio- 173

Gen (Kreuk et al., 2023) uses a similar VQ-VAE- 174

based approach. It encodes raw waveform data 175

into discrete codes and employs an autoregressive 176

model to predict audio tokens based on text fea- 177

tures. For data augmentation, AudioGen mixes au- 178

dio files and concatenates their text captions. Make- 179

An-Audio (Huang et al., 2023), AudioLDM (Liu 180

et al., 2023), and TANGO (Ghosal et al., 2023) are 181

all based on the Latent Diffusion Model (LDM). 182
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With the assumption that CLAP can map the au-183

dio and its caption to the same latent space and184

approximate the text features based on the audio185

feature, AudioLDM uses audio features extracted186

by the CLAP model as the condition during training187

and uses text features during inference. Make-An-188

Audio and TANGO employ text features both in189

the training and inference stages. To overcome190

data scarcity, Make-An-Audio proposes a pseudo191

prompt enhancement method, using pre-trained au-192

dio captioning and audio-text retrieval models to193

generate natural language sentences to describe the194

content of audio clips and then concatenate the au-195

dio clips and the generated captions by predefined196

templates. Due to the limited capabilities of the197

audio captioning model and the manual setting of198

text templates, the naturalness and diversity of the199

resulting text descriptions are limited. TANGO200

introduces an audio mixture method based on hu-201

man auditory perception and simply concatenates202

captions.203

3 Method204

In this section, we first provide an overview of the205

framework of our method. We then introduce our206

temporal enhancement method and dual text en-207

coder structure, which aims to capture temporal208

information more effectively and improve the se-209

mantic alignment between the text and audio. We210

then present our LLM-based augmentation method,211

which further enhances the generalization ability212

and performance of our model in terms of generat-213

ing audio with high semantic correspondence. In214

the end, we illustrate the structure of our diffusion215

denoiser, which is designed to enhance the genera-216

tion of variable-length audio.217

3.1 Overview218

Our framework overview is shown in Figure 1. De-219

note an audio-text pair as (a, y) where a ∈ RTa220

and Ta is the waveform length. To mitigate the221

complexity of modeling long continuous waveform222

data, we first convert a to mel-spectrogram (akin223

to the 1-channel 2D image) x ∈ RCa×T , where224

Ca, T ≪ Ta denote the mel-channels and the num-225

ber of frames respectively. The training process226

includes two stages:227

Training variational autoencoder The audio en-228

coder E takes mel-spectrogram x as input and out-229

puts compressed latent z = E(x). The audio de-230

coder D reconstructs the mel-spectrogram signals231

x′ = D(z) from the compressed representation z. 232

VAE solves the problem of excessive smoothing 233

in mel-spectrogram reconstruction through adver- 234

sarial training with a discriminator. The training 235

objective is to minimize the weighted sum of re- 236

construction loss Lre, GAN loss LGAN and KL- 237

penalty loss LKL. 238

Training latent diffusion model Diffusion mod- 239

els (Ho et al., 2020; Rombach et al., 2022) con- 240

sists of two processes. In forward process, given 241

the latent z encoded by the VAE, diffusion model 242

transforms z into standard Gaussian distribution by 243

T steps, the data distribution of zt at step t can be 244

formulated as: 245

q (zt | zt−1) =
√

1− βtzt−1 +
√
βtϵt (1) 246

Where βt ∈ [0, 1] is a predefined noise schedule 247

hyper-parameter, ϵt ∼ N(0, I) denotes the injected 248

noise. 249

In the backward process, the latent diffusion 250

model learns to reconstruct the data distribution of 251

z with the conditional embedding c = fcond(y) of 252

conditional encoder fcond. The training objective 253

of the diffusion module is to minimize the mean 254

squared error in the noise space: 255

Lθ = ∥ϵθ(zt, t, c)− ϵ∥22, (2) 256

ϵ ∼ N (0, I) denotes the noise, ϵθ is the denois- 257

ing network, t is random time step. The diffusion 258

model can be trained by optimizing ELBO (Ho 259

et al., 2020), ensuring faithful reconstructions that 260

match the ground-truth distribution. 261

To further improve the conditional generation 262

performance, we adopt the classifier-free guid- 263

ance (Ho and Salimans, 2021) technique. By 264

jointly training a conditional and an unconditional 265

diffusion model it can control the extent to which 266

the condition information affects the generation 267

at each sampling step and attain a trade-off be- 268

tween sample quality and diversity. At the train- 269

ing step, we randomly replace the audio caption 270

with an empty string to get the empty string con- 271

ditional embedding c∅ to train the unconditional 272

model. During sampling, the output of the model 273

is extrapolated further in the direction of ϵθ(zt, t, c) 274

and away from ϵθ(zt, t, c∅) with the guidance scale 275

s ≥ 1 : 276
277

ϵ̃θ(zt, t, c) = ϵθ(zt, t, c∅) + s · (ϵθ(zt, t, c)− 278

ϵθ(zt, t, c∅)) (3) 279
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Figure 1: A high-level overview of our method. Note that modules printed with a lock are frozen when training the
T2A model.

Figure 2: Overview of LLM-based data augmentation. We use single-labeled audios and their labels as a database.
Composing complex audios and structured captions with these data. We then use LLM to generate diverse natural
language captions by the constructed captions and appropriate prompt.

3.2 Temporal enhancement280

In comparison to image data, audio data includes281

temporal information. A sound event can occur282

at any time within the audio, making audio syn-283

thesis a challenge when attempting to maintain284

temporal consistency. Previous approaches have285

encountered difficulties in dealing with captions286

that contain multiple sounds and complex tempo-287

ral information, leading to semantic misalignment288

and poor temporal consistency. This can cause289

the generated audio to omit some sounds and pro-290

duce an inaccurate temporal sequence. To address291

these issues, we propose the temporal enhance-292

ment method by parsing the original caption into293

structured pairs of <event & order>.294

Specifically, we utilize the robust language un-295

derstanding capabilities of LLMs to provide tem-296

poral knowledge. LLMs are utilized to parse the297

input text (the natural language audio caption) and298

extract structured <event & order> pairs. As il-299

lustrated in Figure 1, we use LLMs to simplify300

the original natural language caption and link each301

sound event to its corresponding order. Benefit-302

ing from enhanced temporal knowledge, the T2A303

model is empowered to identify sound events and304

corresponding temporal order. Appendix E con-305

tains further details on prompt design and addi- 306

tional examples of temporal enhancement. 307

3.3 Dual text encoders 308

To enhance the utilization of caption information, 309

we propose a dual text encoder architecture consist- 310

ing of a main text encoder CLAP (Elizalde et al., 311

2022) that takes the original natural language cap- 312

tion y as input, and a temporal encoder FLAN- 313

T5 (Chung et al., 2022) which takes the structured 314

caption ys passed by LLM as input. The final con- 315

ditional representation is expressed as: 316

c = Linear(Concat(ftext(y), ftemp(ys))), (4) 317

Where ftext is the main text encoder and ftemp 318

is the temporal encoder. With contrastive multi- 319

modal pre-training, the CLAP has achieved excel- 320

lent zero-shot performance in several downstream 321

tasks. We freeze the weights of the main text en- 322

coder and fine-tune the temporal encoder to capture 323

information about the temporal order of various 324

events. As we use LLM to parse the original natu- 325

ral language input, some adjectives or quantifiers 326

may be lost in this procedure, and sometimes the 327

structured inputs’ format is incorrect. Dual text 328

encoders can avoid information loss and are more 329
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robust in these situations. Additionally, with the330

frozen main text encoder, the model can maintain331

its generalization ability.332

3.4 LLM-based data augmentation333

A major challenge faced by the current T2A mis-334

sion is the scarcity of data. While the T2I task335

benefits from billions of text-image pairs (Schuh-336

mann et al., 2022), there are currently only around337

one million open-source text-audio pairs avail-338

able (Huang et al., 2023). Additionally, there is339

a lack of data with detailed temporal annotation;340

many of these audios are only loosely labeled with341

tags instead of natural language captions. Inspired342

by the success of AugGPT (Dai et al., 2023) and343

Wavcaps (Mei et al., 2023) using LLM model to344

augment data, to make the most effective use of345

the available data, we propose an LLM-based data346

augmentation technique. As depicted in Figure 2,347

we augment audio data and its corresponding text348

caption as follows:349

• We begin by collecting data labeled with single350

tags to create our event database D. This type of351

data is typically cleaner and less likely to contain352

unwanted noise or other sounds. We can then use353

this data to construct more complex data based354

on their durations.355

• Then we randomly select N ∈ {2, 3} samples356

from D, mix and concatenate them at random.357

Concatenating at random intervals or overlaps358

ensures that the resulting audio contains tempo-359

ral information. Mixing improves the models’360

ability to recognize and separate different sorts361

of audio for creating complex compositions.362

• As the resulting audio is created, we synthesize363

structured captions based on the occurrence time364

and duration of each sound event by rules. For365

those events that appear almost throughout the366

audio, we bind them with "all". While for events367

that only partly occur in the audio, we bind them368

with "start", "mid" or "end" depending on the369

proportion of their occurrence time points.370

• Finally, we feed the structured captions into LLM371

with prompts to generate diverse natural language372

captions. The prompt to transform structured373

captions to natural language captions and some374

examples are displayed in Appendix E.375

Figure 3: The illustration of differences between
the 2d-VAE+spatial transformer’s self-attention and
1d-VAE+temporal transformer’s self-attention step in
processing mel-spectrograms. We ignore the condi-
tion embedding here for simplicity. W q,W k,W v

are learnable projection matrices. For 2d-VAE,
W q,W k,W v ∈ RD×C . For 1d-VAE, W q,W k,W v ∈
RD×Ca/f , D is the embedding dimension of the trans-
former layer. Q,K, V are used to calculate attention
Attention(Q,K, V ) = softmax(QKT /

√
D)V .

3.5 Transformer-based diffusion denoiser 376

backbone 377

Previous diffusion-based work on T2A synthe- 378

sis (Huang et al., 2023; Liu et al., 2023; Ghosal 379

et al., 2023) treated the mel-spectrogram as a one- 380

channel image similar to T2I synthesis. How- 381

ever, unlike images, the mel-spectrogram is not 382

spatially translation invariant. The height of the 383

mel-spectrogram represents the frequency domain, 384

meaning that mel-spectrogram patches at different 385

heights carry different meanings and should not be 386

treated equally. The temporal translation invariant 387

priori of 1D-convolution is more suitable as the 388

width of mel-spectrogram represents the time do- 389

main. Furthermore, preceding approaches employ 390

a 2D-convolution layer and spatial transformer- 391

stacked U-Net architecture, thereby limiting the 392

model’s ability to generate variable-length audio. 393

Illustrated in Figure 3, the spatial transformer 394

layer, employed after the convolution layer, flat- 395

tens the pixels of the 2D feature into pixel se- 396

quences. While this technique performs well with 397

fixed-size images, it disrupts the positional informa- 398

tion encoded by the 2D-convolution layer when the 399

length of mel-spectrograms changes and damages 400

the frequency-time structure constraint. Inspired 401

by (Peebles and Xie, 2023) and (Bao et al., 2022) 402
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that have shown U-Net is not necessary for dif-403

fusion network (Ho et al., 2020; Rombach et al.,404

2022) and found transformer-based (Vaswani et al.,405

2017) architecture can achieve better performance,406

we propose a modified audio VAE that uses a407

1D-convolution-based model and a feed-forward408

Transformer-based diffusion denoiser backbone409

which adopts 1D-convolution and temporal trans-410

former to improve the model’s ability to generate411

variable-length audio.412

Regarding the computational complexity of the413

self-attention step, while the latent of 2D-VAE au-414

dio encoder is z = E(x) ∈ RC×Ca/f×T/f , where415

C is the embedding dim of latent, f is the down-416

sampling rate, Ca and T denote the mel-channels417

and the number of frames of mel-spectrogram re-418

spectively, which is processed as images’ height419

and width, f is downsampling rate. Our 1D-420

convolution-based audio encoder’s latent is z =421

E(x) ∈ RCa/f1×T/f2 , where Ca is taken as chan-422

nel dimension rather than height when employing423

2D-convolution, f1, f2 are downsampling rates of424

mel-channels and frames, respectively. Compared425

to the original spatial transformer, the computa-426

tion complexity of the attention step in the trans-427

former reduces from O((Ca/f × T/f)2 ×D) to428

O((T/f2)
2 × D), where D is the embedding di-429

mension of the transformer layer.430

4 Experiments431

4.1 Experimental setup432

Dataset. We use a combination of several433

datasets to train our model, including AudioCaps434

training set, WavCaps, AudioSet, Adobe Audi-435

tion Sound Effects, Audiostock, ESC-50, FSD50K,436

MACS, Epidemic Sound, UrbanSound8K, Wav-437

Text5Ks, TUT acoustic scene. This results in a438

dataset composed of 0.92 million audio text pairs,439

with a total duration of approximately 3.7K hours.440

More details of data filtering and preprocessing are441

put in Appendix A. To evaluate the performance442

of our models, we use the AudioCaps test set and443

Clotho evaluation set which contain multiple event444

audio samples and detailed audio captions that con-445

tain temporal information. The latter serves as a446

more challenging zero-shot scenario test for us, as447

its train set is not included in our train data.448

Evaluation methods. We evaluate our models449

using objective and subjective metrics to assess the450

audio quality and text-audio alignment faithfulness.451

For objective evaluation, we include Frechet dis- 452

tance (FD), inception score (IS), Kullback–Leibler 453

(KL) divergence, Frechet audio distance (FAD), 454

and CLAP score. For subjective evaluation, we con- 455

duct crowd-sourced human evaluations with MOS 456

(mean opinion score) to assess the audio quality, 457

text-audio alignment faithfulness, and text-audio 458

temporal alignment, scoring MOS-Q, MOS-F, and 459

MOS-T respectively. More information about eval- 460

uation metrics and processes can be found in Ap- 461

pendix C. 462

Baseline models. To establish a standard for com- 463

parison, our study employs four baseline models, 464

including Make-An-Audio (Huang et al., 2023) (ab- 465

breviated as MAA in Table), AudioLDM (Liu et al., 466

2023), TANGO (Ghosal et al., 2023) and Audio- 467

Gen (Kreuk et al., 2023). We use the released ver- 468

sion of AudioLDM-L and TANGO in Huggingface. 469

And the released version of Make-An-Audio and 470

AudioGen-m in Github. More model architecture 471

and training details of our model can be found in 472

Appendix B. 473

4.2 Main results 474

Automatic objective evaluation. The objective 475

evaluation comparison with baseline is presented in 476

Table 1, and we have the following observations: 1) 477

In terms of audio quality, our model achieves better 478

scores in FD, IS, and FAD; 2) On text-audio similar- 479

ity, our model presents the comparable CLAP score 480

with TANGO; 3) Our model achieves the lowest 481

KL, which means the audio generated by our model 482

has a more similar distribution of categorical labels 483

to the ground truth audio. 4) We further compare 484

our models’ diffusion module running speed and 485

parameter quantity with other models. Our model 486

uses a relatively small diffusion module. Through 487

the design of the feed-forward-transformer stacking 488

structure, we can achieve a noteworthy acceleration 489

while keeping the same number of parameters with 490

Make-An-Audio. Although our model has a rela- 491

tively small and faster diffusion model, we need 492

to call ChatGPT API to parse the captions which 493

incurs extra overhead and also influences perfor- 494

mance. More details about the model’s parameters 495

of each component and architecture hyperparame- 496

ters are attached to Appendix B. 497

Subjective human evaluation. The human eval- 498

uation results show significant gains of TETA with 499

MOS-Q of 80.1, MOS-F of 78.0, and MOS-T of 500

6



Model FD↓ IS↑ KL↓ FAD↓ CLAP↑ MOS-Q↑ MOS-F↑ MOS-T↑ Params Speed

GroundTruth - - - - 0.671 84.3±1.41 83.8±1.66 81.6±1.61 - -
AudioGen-m 12.42 11.65 1.43 1.85 0.604 74.6±1.77 71.5±1.91 70.6±1.45 - 1.12

MAA 13.43 11.43 1.48 2.29 0.636 73.9±1.74 72.0±1.68 71.4±1.77 160M 1.94
AudioLDM-L 23.31 8.13 1.59 1.96 0.605 71.2±1.63 69.8±1.76 67.1±2.09 739M 0.65

TANGO 26.13 8.23 1.37 1.87 0.650 73.7±1.69 71.6±1.81 70.8±1.80 866M 0.34

Ours 11.45 11.62 1.25 1.10 0.641 80.1±1.60 78.0±1.49 78.7± 1.43 160M 2.97

Table 1: Performance comparison on the AudioCaps dataset. All the diffusion-based models run with 100
DDIM (Song et al., 2020) steps for a fair comparison. Our model is tested with a classifier-free guidance scale of 5.
We borrowed all the results from (Liu et al., 2023; Ghosal et al., 2023) and used the model released on Huggingface
to test the CLAP Score. We use the released model on GitHub of Make-An-Audio (abbreviated as MAA) and
AudioGen to test all the scores. Noted that Params is the diffusion module parameters, speed marks the generation
speed of 10s audios per second. The experiment is conducted on one A100 GPU and the batch size (8 for diffusion
networks and 32 for AudioGen) is set to make the utilization rate of GPU reach 100% when generating 10-second
audio.

78.7, outperforming the current baselines. It indi-501

cates that raters prefer our model synthesis against502

baselines in terms of audio naturalness, text-audio503

semantics and temporal faithfulness.504

Zero-shot evaluation. To further investigate the505

generalization performance of the models, we test506

the performance of the models on the Clotho-507

evaluation dataset in the zero-shot scenario. Con-508

sidering audios in the Clotho-evaluation dataset509

have different durations, we conduct two evalua-510

tions. One is generating fixed-length audios of 10511

seconds, denoted as Clotho-eval-fix. The other is512

to generate audio that is the same length as each513

piece of audio in the dataset, denoted as Clotho-514

eval-variable. The audio’s duration in Clotho-eval-515

variable varies from 15s to 30s, with an average516

duration of 22.4 seconds. As illustrated in Table 2,517

our model has significantly better results than base-518

line models, attributed to the scalability of data519

usage and variable length data training.520

Variable-length generation. To investigate our521

models’ performance on variable-length audio gen-522

eration, we test to generate 5-second audios and523

8-second audios on AudioCaps dataset, the results524

are shown in Table 3. To investigate the relation-525

ship between models’ performance with the dura-526

tion of generated audio, we add additional exper-527

iments in Appendix D.1. We also test generating528

variable-length audios on the Clotho-eval dataset,529

as discussed in the former paragraph. It can be seen530

that preceding diffusion-based works, TANGO, Au-531

dioLDM and Make-An-Audio, exhibit significant532

performance degradation when generating audio533

with different lengths than the training data, while534

the autoregressive model AudioGen’s performance535

remains stable in generating variable-length audio. 536

Preceding diffusion-based works pad or truncate 537

all the training audio data to 10 seconds, and their 538

models are based on 2D-convolution and spatial 539

transformer to process mel-spectrogram as images. 540

Our model maintains high performance even when 541

generating variable-length audio samples since it 542

is trained on audio samples of varying lengths and 543

utilizes 1D-convolution and temporal transformers 544

to emphasize temporal axis information. 545

4.3 Ablation study 546

To assess the effectiveness of various designs in 547

TETA, we conduct ablation studies on AudioCaps- 548

test and Clotho-evaluation set. The results are pre- 549

sented in Table 4. The key findings are discussed 550

below: 551

1D-VAE and FFT-diffusion Although 2d- 552

convolution VAE and Unet diffusion backbone per- 553

form well trained with fixed-length data. When we 554

tried to train them with variable-length data. They 555

don’t converge to a good result. With 1d VAE and 556

feed-forward-transformer diffusion backbone, our 557

model converges well when trained with variable- 558

length data, and exhibits significant advantages in 559

generating variable-length data. 560

Temporal Enhancement The results in Table 4 561

highlights the effectiveness of temporal enhance- 562

ment. We use LLM to extract event and temporal 563

information and create structured input as <event 564

& order> pairs. It reduces the difficulty for the 565

model to extract audio events and establish tim- 566

ing relationships from captions, which significantly 567

improves both objective scores and sound timing 568

modeling. 569
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Model Clotho-eval-fix Clotho-eval-variale
FD↓ IS↑ KL↓ FAD↓ FD↓ IS↑ KL↓ FAD↓

TANGO 32.1 6.77 2.59 3.61 36.54 6.65 2.75 5.23
AudioLDM-L 28.15 6.55 2.60 4.93 24.25 7.06 2.44 4.42

MAA 22.91 8.47 2.66 3.21 26.51 8.12 2.68 5.03
AudioGen-m 23.69 7.18 2.64 2.62 24.86 6.93 2.60 2.64

Ours 18.43 8.73 2.49 1.59 20.77 8.43 2.55 2.29

Table 2: Comparison of our model and baselines on Clotho-eval datasets.

Model Audiocaps-5s Audiocaps-8s
FD↓ IS↑ KL↓ FAD↓ FD↓ IS↑ KL↓ FAD↓

TANGO 31.76 5.50 2.04 10.53 18.32 8.39 1.50 2.04
AudioLDM-L 31.97 5.66 2.39 6.79 30.95 8.65 1.91 4.91

MAA 19.30 7.83 2.13 5.61 14.25 9.85 1.64 2.27
AudioGen-m 11.02 11.43 1.67 1.63 12.11 11.65 1.52 1.63

Ours 12.40 11.10 1.48 1.28 13.20 11.15 1.32 1.04

Table 3: Comparison of our model and baselines on Audio-caps dataset. The result of generating 5-second audios
and 8-second audios are denoted as Audiocaps-5s and Audiocaps-8s respectively.

Audiocaps Clotho-eval-fix
Setting FD↓ IS↑ KL↓ FAD↓ MOS-T↑ FD↓ IS↑ KL↓ FAD↓

Ours 11.45 11.62 1.25 1.10 78.7± 1.55 18.43 8.73 2.49 1.59
w/o 1d VAE + FFT diffusion 22.69 5.93 2.17 3.82 63.5± 2.21 26.59 6.92 2.67 6.02
w/o Temporal Enhancement 12.66 10.60 1.35 1.72 73.9± 1.57 21.24 8.82 2.50 2.56

w/o LLM Data Augmentation 10.45 11.03 1.22 1.25 76.1±1.87 19.75 8.63 2.39 2.01
w/o CLAP TextEncoder 11.91 11.07 1.29 1.59 76.9±1.69 18.38 9.56 2.43 1.94

Table 4: The ablation study of TETA. All the models are trained on variable-length data.

LLM Data Augementation We use LLM Data570

Augmentation to further improve the model’s gen-571

eralization ability and alleviate the problem of572

data with temporal information scarcity. The ab-573

sence of LLM data augmentation results in insignif-574

icant changes in performance on the Audiocaps575

dataset. This can be attributed to we assigned576

higher data weights to the Audiocaps dataset, caus-577

ing the model to become somewhat overfitted to578

this specific dataset. Conversely, LLM data aug-579

mentation leads to a notable improvement in per-580

formance in Clotho dataset. The MOS-T score also581

improves with augmentation, as the constructed582

data strictly follows the temporal relationships de-583

scribed in the captions, which helps the model learn584

temporal information more effectively.585

Dual Text Encoder We use the frozen CLAP586

encoder to extract information from the original587

natural language caption and trainable text en-588

coder to extract information from the parsed in-589

put. The frozen encoder provides fault-tolerance590

mechanisms when there are information losses and591

errors in the parsed input while retaining general-592

ization capabilities. We compare the performance593

of the model with and without CLAP Encoder us- 594

ing wrongly parsed captions on the Clotho-eval 595

dataset, the results are attached to Appendix D.2. 596

We also compare our results when the parsed input 597

has errors on our demo page. 598

5 Conclusions 599

In this work, we present TETA, a temporal- 600

enhanced T2A synthesis model. With a capable 601

LLM to extract temporal information from the nat- 602

ural language caption, TETA can better understand 603

the event order in the caption and generate semanti- 604

cally aligned audios. Leveraging 1D-convolutional 605

VAE and feed-forward Transformer diffusion back- 606

bone, TETA can generate variable-length audios 607

without performance degeneration. With complex 608

audio reconstruction and LLM-based data augmen- 609

tation, TETA is endowed with the ability to under- 610

stand complex temporal relationships and combi- 611

nations of multiple concepts. TETA achieves the 612

SOTA audio generation quality in both objective 613

and subjective metrics. 614
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6 Limitations615

TETA incorporates an additional LLM for parsing616

the original caption, which affects both the genera-617

tion performance and running speed. In temporal618

enhancement, we use start, mid, end, and all, it’s619

a rough time resolution, but it works well in our620

experiment as the audios in our training data are621

not very complicated. If supplied with more com-622

plicated audio data, using the time format of order623

1,2,3... can be considered. We left it as future work.624

Furthermore, our model lacks the capability of gen-625

erating meaningful speech, the speech generated626

by our model is intelligible.627

In terms of model evaluation, the Audiocaps and628

Clotho datasets pose a challenge due to their noisy629

nature, rendering objective metrics inadequate for630

assessing the model’s capacity to generate pure,631

high-quality sound. Additionally, the performance632

of CLAP is limited when dealing with complex633

audio involving multiple sources and temporal or-634

dering.635

7 Ethics Statement636

TETA improves the quality and efficiency of the au-637

dio generation, this may lead to unintended conse-638

quences such as increased unemployment for indi-639

viduals in related fields such as sound engineering640

and radio hosting. Furthermore, there are potential641

concerns regarding the ethics of non-consensual642

voice cloning or the creation of fake media to pro-643

vide misleading information.644
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A Data details849

As shown in Table 5, we collect a large-scale audio-850

text dataset consisting of 0.92 million audio sam-851

ples with a total duration of approximately 3.7k852

hours. The dataset has a wide variety of sounds853

including music and musical instruments, sound854

effects, human voices, nature and living sounds,855

etc. For Clotho dataset, we only use its evaluation856

set for zero-shot testing and do not use it for train-857

ing. As speech and music are the dominant classes858

in AudioSet, we randomly filter 95% of the sam-859

ples that contain speech and music to build a more860

balanced dataset.861

We conduct preprocessing on both text and audio862

data as follows:863

1) We convert the sampling rate of audio to 16kHz.864

Prior works (Yang et al., 2023; Huang et al.,865

2023; Liu et al., 2023) pad or truncate the au-866

dio to a fixed length (10s), while we group au-867

dio files with similar durations to form batches868

to avoid excessive padding which could poten-869

tially impair model performance and slow down870

the training speed. This approach also allows871

for improved variable-length generation perfor-872

mance. We truncate any audio file that exceeds873

20 seconds, to speed up the training process.874

2) We adopt the LLM-based data augmentation875

method in section 3.4 to construct approxi-876

mately 61k additional audio-text pairs as auxil-877

iary data.878

3) For audios without natural language annota- 879

tion, we apply the pseudo prompt enhancement 880

method from Make-An-Audio (Huang et al., 881

2023) to construct captions aligned with the au- 882

dio. 883

4) We assign a lower weight to the data that is 884

not annotated with temporal information but 885

is abundant in quantity and diversity, such as 886

AudioSet and WavCaps data. Specifically, we 887

traverse the AudioCaps training set and the 888

LLM augmented data with a probability of 50%, 889

while randomly selecting data from all other 890

sources with a probability of 50%. For the latter 891

dataset, we use "<text & all>" as their structured 892

caption. 893

B Experimental details 894

Variational autoencoder. We employed a sim- 895

ilar VAE architecture to that of Make-An-Audio, 896

replacing all the 2D-convolution layers with 1D- 897

convolution layers and the spatial transformer 898

with a temporal transformer. As detailed in Sec- 899

tion 4.5, the output latent of VAE is z = E(x) ∈ 900

RCa/f1×T/f2 , where we choose the downsample 901

rate of f1 = 4 and f2 = 2. We additionally in- 902

volve R1 regularization (Mescheder et al., 2018) 903

to better stabilize the adversarial training process. 904

We train our VAE on 8 NVIDIA A100 GPUs 905

with a batch size of 32 and 800k training steps 906

on AudioSet dataset. We use the Adamw opti- 907

mizer (Loshchilov and Hutter, 2018) with a learn- 908

ing rate of 1.44 × 10−4. For specific differences 909

in hyperparameters between our VAE and that of 910

Make-An-Audio, please see Table 6. 911

Latent diffusion. We train our Latent Diffusion 912

Model with on 8 NVIDIA A100 GPU with a batch 913

size of 32 and 1.8M training steps. We use the 914

Adam optimizer with a learning rate of 9.6× 10−5. 915

For the specific hyperparameter for our latent dif- 916

fusion model, please refer to Table 7. 917

Model parameters of each component. The 918

params of each component in TETA are displayed 919

in Table 8. The params comparison between our 920

model and baselines are displayed in Table 9. 921

C Evaluation 922

C.1 subjective evaluation 923

To assess the generation quality, we conduct MOS 924

(Mean Opinion Score) tests regarding audio qual- 925
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Dataset Hours Type Source

Audiocaps 109hrs caption (Kim et al., 2019)
WavCaps 2056hrs caption (Mei et al., 2023)
WavText5K 25hrs caption (Deshmukh et al., 2022)
MACS 48hrs caption (Martín-Morató and Mesaros, 2021)
Clothv2 152hrs caption (Drossos et al., 2020)
Audiostock 44hrs caption https://audiostock.net
epidemic sound 220hrs caption https://www.epidemicsound.com
Adobe Audition Sound Effects 26hrs caption https://www.adobe.com/products/

audition/offers/AdobeAuditionDLCSFX.
html

FSD50K 108hrs label https://annotator.freesound.org/fsd
ODEON_Sound_Effects 20hrs label https://www.paramountmotion.com/

odeon-sound-effects
UrbanSound8K 9hrs label (Salamon et al., 2014)
ESC-50 3hrs label (Piczak, 2015)
filteraudioset 945hrs multi label (Gemmeke et al., 2017)
TUT 13hrs label (Mesaros et al., 2016)

Table 5: Statistics for the Datasets used in the paper.

Make-An-Audio VAE TETA VAE

Assume input tensor shape (for 10s audio) (1,80,624) (80,624)
Embed_dim 4 20

Convolution layer Conv2D Conv1D
Channels 128 224

Channel multiplier 1,2,2,4 1,2,4
Downsample layer position after block 1,2 after block 1

Attention layer spatial attention temporal attention
Attention layer position after block 3,4 after block 3

Output tensor shape (4,10,78) (20,312)

Table 6: Difference between Make-An-Audio VAE and our VAE

ity, text-audio faithfulness and text-audio temporal926

alignment, respectively scoring MOS-Q, MOS-F,927

and MOS-T.928

For audio quality, the raters were explicitly in-929

structed to “focus on examining the audio quality930

and naturalness.” The testers were presented with931

audio samples and their caption and asked to rate932

their subjective score on a 20-100 Likert scale.933

For text-audio faithfulness, human raters were934

shown the audio and its caption and asked to re-935

spond to the question, "Does the natural language936

description align with the audio faithfully?" They937

had to choose one of the options - "completely,"938

"mostly," or "somewhat" on a 20-100 Likert scale.939

For text-audio temporal alignment, human raters940

were shown the audio and its caption and asked to 941

respond to the question, "Whether the text descrip- 942

tion contains sounds time or order information. If 943

not then select no, if yes then score based on how 944

the audio’s sound order aligns with its caption." 945

They had to choose one of the options - "com- 946

pletely," "mostly," or "somewhat" on a 20-100 Lik- 947

ert scale. We will filter out the audio that has been 948

selected "no" and compute MOS-T based on the 949

remaining audio. 950

Our subjective evaluation tests are crowd- 951

sourced and conducted via Amazon Mechanical 952

Turk. These ratings are obtained independently 953

for model samples and reference audio, and both 954

are reported. We paid $8 to participants hourly 955
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TETA LDM

Input shape (20,T)
Condition_embedding dim 1024

Feed-forward Transformer hidden_size 576
Feed-forward Transformer’s Conv1d kernel size 7

Feed-forward Transformer’s Conv1d padding 3
Number of Transformer heads 8

Number of Feed-forward Transformer block 8
Diffusion steps 1000

Table 7: TETA Diffusion model backbone configurations

Component Params

VAE 213M
Diffusion Model Backbone 160M

Text Encoder 452M
Vocoder 112M

Total 937M

Table 8: The params of each component

Model Total params Diffusion params

AudioLDM-S 454M 185M
AudioLDM-L 1.01B 739M

Tango 1.21B 866M
Make-An-Audio 453M 160M

AudioGen-m 1.5B -
Ours 937M 160M

Table 9: Params comparison between models.

and totally spent about $400 on participant com-956

pensation. A small subset of the generated audio957

samples used in the test can be found at https:958

//teta2023.github.io/.959

C.2 Objective evaluation960

Fréchet Audio Distance (FAD) (Kilgour et al.,961

2018) is adapted from the Fréchet Inception Dis-962

tance (FID) to the audio domain, it is a reference-963

free perceptual metric that measures the distance964

between the generated and ground truth audio dis-965

tributions. FAD is used to evaluate the quality966

of generated audio. The inception Score (IS) is967

an effective metric that evaluates both the quality968

and diversity of generated audio. KL divergence969

is measured at a paired sample level between the970

generated audio and the ground truth audio, it is971

computed using the label distribution and is av-972

eraged as the final result. Fréchet Distance (FD)973

evaluates the similarity between the generated and974

ground truth audio distributions. FD, KL and IS975

are built upon an audio classifier, PANNs (Kong976

et al., 2020), which takes the mel-spectrogram as977

model input. Differently, FAD uses VGGish (Her-978

shey et al., 2017) as an audio classifier that takes979

raw audio waveform as model input. CLAP score:980

adapted from the CLIP score (Hessel et al., 2021;981

Radford et al., 2021) to the audio domain and is a982

Figure 4: Fad versus duration curve of models.

reference-free evaluation metric to measure audio- 983

text alignment for this work that closely correlates 984

with human perception. 985

D Additional Results 986

D.1 Variable length generation 987

We investigate the performance of various models 988

in audio generation as the duration of the audio 989

changes in Figure4. Make-An-Audio, Tango, and 990

AudioLDM exhibit a significant variation in their 991

generation performance across different audio dura- 992

tions. Specifically, as the duration of the generated 993
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Model FD↓ IS↑ KL↓ FAD↓ CLAP↑

TETA 72.70 6.33 2.82 6.47 0.285
w/o CLAP TextEncoder 73.64 5.02 3.01 6.54 0.189

Table 10: Performance comparison on the wrongly parsed subset.

audio deviates from the training duration of 10994

seconds, the performance decreases. In contrast,995

TETA and AudioGen demonstrate less variation in996

performance across different durations, exhibiting997

relatively flat curves.998

D.2 Performance of error parsing999

We evaluate the generation performance of wrongly1000

parsed captions (not in the format we define) on1001

the Clotho-eval dataset. Among the 1045 captions,1002

a subset comprising 37 structured captions was ob-1003

tained after performing LLM parsing, but not cor-1004

rectly formatted. We generated 5 audios for each1005

incorrectly parsed caption and tested the generation1006

performance as shown in Table 10. For wrongly1007

parsed captions, without CLAP text encoder leads1008

to performance decline, particularly in clap score,1009

which means the CLAP text encoder is helpful in1010

information retention and fault tolerance.1011

E ChatGPT prompts1012

The prompt templates utilized for temporal en-1013

hancement to construct structure caption from the1014

original natural language caption and for caption1015

data augmentation are displayed in Figure 5.1016

Table 11 presents some instances of the original1017

caption and ChatGPT’s outcome. For text data aug-1018

mentation, we construct structured caption inputs,1019

and Table 12 exhibits examples of such inputs and1020

ChatGPT’s corresponding outputs.1021

F Future works1022

We leave the T2A system which supports speech1023

synthesis for future work. As we have seen great1024

potential in our LLM-based data augmentation,1025

with elaborate prompts and merge rules, it can be1026

used to merge speech, singing, sound events, and1027

music to create a more universal audio scenario.1028

Enabling the training of a model that can generate1029

universal audios with meaningful speech and music1030

with ideal melody. In addition, we aim to imple-1031

ment T2A systems that could take structured inputs1032

as optional auxiliary inputs instead of required in-1033

puts.1034
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Figure 5: The prompt templates we used for temporal enhancement and data augmentation. We use the symbol ’&’
to split the sound event and the time order. We use the symbol ’@’ to split <event & order> pairs.

Natural language input ChatGPT’s output
A woman talks nearby as water pours <woman talking& all>@<water pouring& all>
Two men exchange words, then a car
engine revs followed by a siren and
fade in music

<two men talking& all>@<car engine revving&
start>@<siren& mid>@<music fading in& end>

A crowd is cheering and shouting,
thumping occurs, an adult female
speaks, and an adult male speaks

<crowd cheering and shouting& all>@<thumping&
start>@<adult female speaking& mid>@<adult male
speaking& end>

Table 11: Examples of using ChatGPT for temporal enhancement from AudioCaps trainset

Structured input ChatGPT’s output
<bark howl dog& start>@<typing
Typewriter& mid>@<breathing&
end>

A dog barks and howls while someone types on a type-
writer, then the sound of breathing takes over

<crowing& all>@<car&
all>@<female singing& end>

A rooster crows as a car passes by, and the scene ends
with the sound of a female singing

<sneezing& all>@<bicycle bell ring&
start>@<typewriter & end>

The sound of sneezing is heard throughout, with a bicycle
bell ringing at the start and the sound of a typewriter at
the end

Table 12: Examples of using ChatGPT for data augmentation
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