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ABSTRACT

Data heterogeneity is one of the major challenges in federated learning, which
results in substantial client variance and slow convergence. In this study, we
demonstrate both theoretically and empirically that data heterogeneity in feder-
ated learning (FL) can be effectively handled by simply decomposing a convolu-
tional filter into a linear combination of filter subspace elements, i.e., filter atoms.
This simple technique transforms global filter aggregation in federated learning
into multiplying aggregated (weighted sum of) filter atoms with aggregated atom
coefficients. Mathematically expanding the product of two weighted sums nat-
urally leads to numerous additional filter atom-coefficient product terms, which
can be interpreted as implicitly constructing many local model variants as vir-
tual clients. We prove that those introduced virtual clients substantially reduce
variance within the aggregated model. Furthermore, our method permits different
training schemes for filter atoms and atom coefficients for highly adaptive model
personalization and communication reduction. Our proposed approach outper-
forms current state-of-the-art federated learning methods regarding task accuracy,
as evidenced by extensive evaluations conducted on benchmark datasets.

1 INTRODUCTION

Federated learning (FL) is a collaborative learning technique that aggregates models from local
clients while ensuring data privacy (McMahan et al., 2017). This approach has demonstrated re-
markable success in various application domains, such as autonomous driving (Samarakoon et al.,
2019), wearable devices (Nguyen et al., 2019), medical diagnosis (Dong et al., 2020; Yang et al.,
2021), and mobile phones (Li et al., 2020a). The typical FL procedure consists of the following
steps: (i) Clients download a globally shared model from a central server. (ii) Clients update their
local models using their own data. (iii) The selected clients upload their locally updated models
back to the server without disclosing their data. (iv) The server aggregates the updated models to
produce a global model.

The heterogeneity of data distribution across different clients poses a significant challenge to
FL (McMahan et al., 2017). In many real-world applications, the data can be non-independent
and identically distributed (non-IID) among clients, which adversely impacts the performance of
federated learning. Variations in user behavior can result in heterogeneous data distributions. For
instance, in face recognition tasks using user photos (Adjabi et al., 2020), it is common to encounter
significant disparities in facial appearances among different individuals captured in their respective
pictures. The variations in local data give rise to divergent local optima in contrast to the global
optimum. This phenomenon results in a notable variance during the aggregation of local models and
introduces potential challenges in attaining global convergence via local training procedures (McMa-
han et al., 2017; Li et al., 2020a).

In this study, we explore a simple yet effective scheme to address data heterogeneity in FL by de-
composing filters in a convolutional neural network (CNN) as a linear combination of filter subspace
elements, i.e., filter atoms. As depicted in Figure 1, with this scheme, the global aggregated filters
can be constructed by multiplying the weighted sums of local filter atoms and local atom coeffi-
cients. As mathematically expanding the product of two weighted sums leads to many additional
filter atom-coefficient product terms, thus, the proposed approach implicitly reconstructs numer-
ous additional local model variants as virtual clients, which significantly reduces the variance of
the global model and enhances the convergence rate during the training process. This formulation
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Figure 1: (a) We decompose the convolutional filters as filter atoms D and atom coefficients α. Dur-
ing each communication round, we separately average the filter atoms D and atom coefficients α,
and subsequently reconstruct the global model by multiplying the aggregated atoms and aggregated
coefficients. In contrast to conventional FL aggregation methods like FedAvg, this mathematical
operation naturally leads to additional local model variants (see Section 4.1 for more details), sig-
nificantly reducing the variance of local updates. (b) The loss landscape of aggregated models with
different numbers of local clients. Additional clients result in reduced variance and enhanced train-
ing stability, resulting in faster convergence.

aligns with the principles of task subspace modeling, a concept discussed in existing literature (Ev-
geniou & Pontil, 2007; Kumar & Daume III, 2012; Maurer et al., 2013; Romera-Paredes et al., 2013;
Zhang & Yang, 2021). Task subspace modeling typically assumes that task parameters lie in a low
dimensional subspace so that tasks can be modeled as a set of latent basis tasks and their linear
combinations.

The above filter decomposition permits different training schemes for filter atoms and atom coeffi-
cients, which enables various opportunities to be explored in FL. For example, for model person-
alization, we can have filter atoms potentially focus more on personalized local knowledge, while
the decomposed atom coefficients capture more shared knowledge as combination rules of filter
atoms. With this concept, our method becomes highly adaptable to personalized federated learning.
Recent works in FL have adapted a similar idea of parameter decoupling, which enables a model
to learn customized and global knowledge separately to account for the statistical heterogeneity in
data (Collins et al., 2021; Jian Xu & Huang, 2023; Tan et al., 2022). For communication reduction,
we can further adopt different update frequencies for filter atoms and atom coefficients, as explained
in detail in Appendix A.2.

We evaluate the effectiveness of our approach on standard classification benchmark datasets for
both IID and non-IID settings, and demonstrate that it surpasses previous FL baselines in terms of
accuracy. Additionally, we provide convergence analyses of our proposed approach and investigate
the training trajectory in the loss landscape to visualize the advantages of our method.

We summarize our contributions as follows,

• We propose a highly simple yet effective scheme to handle data heterogeneity in FL by
decomposing convolutional filters into filter atoms and atom coefficients.

• The mathematical formulation of the proposed approach naturally results in numerous ad-
ditional local model variants as virtual clients.

• We show both theoretically and empirically that those implicitly introduced local model
variants result in a reduction in the variance of the global model, which leads to faster
convergence.

• Our approach enables various opportunities to be explored in FL, such as model personal-
ization and communication reduction.

2 RELATED WORKS

Data Heterogeneity. Various strategies have been proposed to enhance the global model accuracy
of federated learning (FL) in the presence of heterogeneous data. One approach is data-based,
which aims to address the issue of client drift by reducing the statistical heterogeneity among the
data stored on clients (Yoon et al., 2021; Zhao et al., 2018). Alternatively, model-based methods aim
to preserve valuable information related to the inherent diversity of client behaviors. Such methods
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aim to learn a robust global FL model that can be personalized for each individual client in the future
or to improve the adaptation performance of the local model (Acar et al., 2021a; Karimireddy et al.,
2020; Li et al., 2021a; 2020b; Mu et al., 2023). Reducing aggregation variance can effectively lead to
improved convergence, resulting in an enhanced global model (Jhunjhunwala et al., 2022; Li et al.,
2023; Malinovsky et al., 2022). In contrast to the strategy of personalizing a well-trained global
model, recent research has explored the use of personalized federated learning (pFL) approaches,
in which personalized models are trained for each client (Achituve et al., 2021; Duan et al., 2021;
Ghosh et al., 2020; Huang et al., 2021; Sattler et al., 2020; Zhang et al., 2021). Various methods have
been proposed for pFL, such as meta-learning (Acar et al., 2021b; Fallah et al., 2020; Khodak et al.,
2019), multi-task learning (Li et al., 2021b; Smith et al., 2017; T Dinh et al., 2020), and parameter
decoupling (Arivazhagan et al., 2019; Collins et al., 2021; Hyeon-Woo et al., 2022; Jian Xu &
Huang, 2023; Liang et al., 2020).

Parameter Decoupling. Among pFL methods, parameter decoupling seeks to achieve personal-
ization by separating the local parameters from the global FL model parameters, such that private
parameters are only trained on local client data and are not shared with the FL server. This al-
lows for the learning of task-specific representations, resulting in improved personalization. Fed-
Per (Arivazhagan et al., 2019), FedRep (Collins et al., 2021), and FedPAC (Jian Xu & Huang, 2023)
introduce algorithms for training local heads and a global network body, with their primary distinc-
tion lying in their respective approaches to leveraging global knowledge. LG-FedAvg (Liang et al.,
2020) proposed a representation learning method that attempts to learn many local representations
and a single global head. FedPara(Hyeon-Woo et al., 2022) re-parameterizes weight parameters of
layers using low-rank weights followed by the Hadamard product and achieves personalization by
separating the roles of each sub-matrix into global and local inner matrices.

3 FEDERATED LEARNING FORMULATION

Federated learning aims to solve the learning task without explicitly sharing local data. During the
training time, a central server coordinates the global learning across a network, where each node
is a device with local data and performs a local learning task. The client k contains its own data
distribution P

(k)
XY on X × Y , where X is the input space and Y is the label space. The objective of

FL (McMahan et al., 2017) is to minimize:

min
w

F (w) =

m∑
k=1

pk · Fk(wk), (1)

where w is the parameters of the global model, Fk(wk) is the local objective at client k which is
typically the loss function with model parameters wk; and m = C ·M is the number of devices
selected at any given communication round, where C is the proportion of selected devices and M
is the total number of devices. Given nk as the number of samples available at the device k and
n =

∑m
k=1 nk as the total number of samples on selected devices, we have

∑m
k=1 pk = 1, pk = nk

n .
The local objective Fk(wk) at client is further defined by:

Fk(wk) =
1

nk

nk∑
j=1

L
(x,y)∼P

(k)
XY

(wk;xj , yj), (2)

where L(·; ·) is a client-specific loss function, e.g., cross-entropy loss; and xj ∈ X is the input data,
yj ∈ Y is the corresponding label.

Parameter Decoupling Method. One approach to mitigate the data heterogeneity challenge is to
learn personalized models by decoupling the deep neural network as shared feature representation
and customized classifier heads (Collins et al., 2021; Jian Xu & Huang, 2023; Tan et al., 2022).
By decoupling the model F (w), we have the feature extractor ϕ : Rh×w×c → Rd, which is a
learnable network parameterized by θϕ and maps data to a d-dimensional feature space, and heads
h : Rd → Y , which are parameterized by θh and maps features to the label space. We can rewrite
the local objective as

Fk(wk) = Fk(θk,ϕ,θk,h) =
1

nk

nk∑
j=1

L(θk,ϕ,θk,h;xj , yj), (3)
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where wk = {θk,ϕ,θk,h}. The local model is updated with its own data:[
θt+1
k,ϕ

θt+1
k,h

]
←−

[
θt
k,ϕ − ηt∇θt

k,ϕ
Fk(θ

t
k,ϕ,θ

t
k,h)

θt
k,h − ηt∇θt

k,h
Fk(θ

t
k,ϕ,θ

t
k,h)

]
, (4)

where ηt is the learning rate, ∇θk,ϕ
Fk(θk,ϕ,θk,h) is the gradient of Fk(θk,ϕ,θk,h) with respect to

θk,ϕ; the global model is then formed by averaging the parameters of selected m clients, i.e.,[
θt+1
ϕ

θt+1
h

]
←−
[∑m

k=1
nk

n θt+1
k,ϕ∑m

k=1
nk

n θt+1
k,h

]
. (5)

4 PROPOSED APPROACH

Prior research has explored various techniques to decrease variance during model aggregation. In
our approach, we achieve reduced variance by introducing additional filter atom layers to explicitly
model convolutional filter subspace. Multiplying aggregated filter atoms with aggregated coeffi-
cients implicitly leads to extra local model variants, which significantly reduce the variance of the
global model and enhance the convergence rate. Our approach is depicted in Figure 1.

In essence, our approach, inspired by (Qiu et al., 2018), involves decomposing each convolutional
layer of the feature extractor ϕ into two standard convolutional layers: a filter atom layer that models
filter subspace, and an atom coefficient layer with 1 × 1 filters that models combination rules of
filter atoms. Specifically, the convolutional filter F ∈ Rc′×c×ka×ka is decomposed over ma filter
subspace elements, i.e., filter atoms D ∈ Rka×ka×ma , linearly combined by atom coefficients α ∈
Rma×c′×c, where c′ and c are the numbers of input and output channels, ka is the kernel size.
Convolutional filters are the dominant subset of parameters of the feature extractor, F ⊆ θϕ and
F = α ×D. The feature extractor ϕ comprises multiple convolutional layers in practice, but we
simplify the notations by setting θϕ = F = α×D.

With the above formulation, the local objective becomes,

Fk(wk) = Fk(αk,Dk,θk,h) =
1

nk

nk∑
j=1

L(αk,Dk,θk,h;xj , yj), (6)

where wk = {αk,Dk,θk,h}. The majority of the training process remains consistent with FL while
the sole distinction lies in the aggregation and reconstruction step.

Local Training. The local training is the same as (4). We perform parameter updates using the
gradients of the loss function. Here, we write the update of each part explicitly,αt+1

k

Dt+1
k

θt+1
k,h

←−
 αt

k − ηt∇αt
k
Fk

Dt
k − ηt∇Dt

k
Fk

θt
k,h − ηt∇θt

k,h
Fk

 , (7)

Global Aggregation. The model separately aggregates the α, D, and θh,αt+1

Dt+1

θt+1
h

←−
∑m

k=1
nk

n αt+1
k∑m

k=1
nk

n Dt+1
k∑m

k=1
nk

n θt+1
k,h

 . (8)

Global Reconsturction. The global convolutonal filter is then formed by multiplying αt+1 and
Dt+1 of selected m clients, i.e.,

θt+1
ϕ ←− αt+1 ×Dt+1. (9)

And F (wt+1) = F (αt+1,Dt+1,θt+1
h ) becomes a new global model with parameters wt+1 =

{θt+1
ϕ ,θt+1

h } for the next round local update. In practice, the reconstruction step is automatically
achieved by the neural network design without incurring any additional computational overhead.
The algorithm is summarized in Appendix Algorithm 1.
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4.1 REDUCED GLOBAL MODEL VARIANCE

Based on our formulation, the reconstruction of decomposed filters results in a natural incorporation
of additional local model variants. By inserting (8) into (9), we have

θt+1
ϕ = (

m∑
k=1

nk

n
αt+1

k )× (

m∑
k=1

nk

n
Dt+1

k )

=

m∑
k=1

n2
k

n2
θt+1
k,ϕ +

m∑
k1 ̸=k2

nk1
· nk2

n2
θt+1
k1,k2,ϕ

, (10)

where θt+1
k,ϕ = αt+1

k × Dt+1
k and θt+1

k1,k2,ϕ
= αt+1

k1
× Dt+1

k2
. Compared with the weight update

of FedAvg in (5), (10) contains both averaging of selected clients represented in the first term and
extra reconstructed virtual clients in the second term, as illustrated in Figure 1(a). The additional
reconstructed local model variants contribute to a decrease in the variance of the aggregated global
model, as shown next.
Proposition 4.1. Denote the parameter obtained by (5) as θϕ =

∑m
k=1

nk

n θk,ϕ, and parameter

obtained by (10) as θ′
ϕ =

∑m
k=1

n2
k

n2 θk,ϕ +
∑m

k1 ̸=k2

nk1
·nk2

n2 θk1,k2,ϕ, we have

E||θ′
ϕ − E(θ′

ϕ)||2 ≤E||θϕ − E(θϕ)||2.

We provide further details on the analysis in Appendix A.3. Empirical results are presented in
Section 6.6 to demonstrate that increasing the number of clients involved in the aggregation process
leads to a reduction in the variance of the aggregated model.

4.2 PERSONALIZATION

To implement our approach for model personalization, each client maintains both local filter atoms
Dl and global filter atoms Dg . The training procedure for global filter atoms adheres to the federated
learning update rule explained in the preceding sections. In contrast, the local filter atoms undergo
only local training without any global aggregation. Specifically, the local filter atoms update locally
using the local data with the fixed atom coefficients at round t, expressed as,

Dt+1
l,k = Dt

l,k − ηt∇Dt
l,k
Fk

where Dt
l,k is the local filter atoms of client k at communication round t, and ∇Dt

l,k
Fk denotes the

gradient of the local loss function concerning the local filter atoms.

This formulation communicates global knowledge via atom coefficients αt, as new atom co-
efficients αt+1 are acquired in each round through aggregation from selected local clients,
αt+1

∑m
k=1

nk

n αt+1
k . Atom coefficients can be interpreted as shared knowledge of combining fil-

ter atoms. Throughout the local training process, the fixed atom coefficients function as guides,
enabling the local filter atoms Dt+1

l,k to learn more specific representations of the local data while
maintaining an awareness of the global combination rule.

5 CONVERGENCE ANALYSIS

In this section, we provide theoretical analyses of the proposed approach with regard to convergence.
The objective function of client k is denoted by Fk, where k = 0, 1, 2, ...m − 1. We assume the
following properties of the objective function which are adapted from (Li et al., 2020c):
Assumption 5.1. Fk are all L-smooth, that is, for all v and w, Fk(v) ≤ Fk(w)+(v−w)T▽Fk(w)+
L
2 ∥v − w∥22.
Assumption 5.2. Fk are all µ-strongly convex, that is, for all v and w, Fk(v) ≥ Fk(w) + (v −
w)T▽Fk(w) +

µ
2 ∥v − w∥22.

Assumption 5.3. The expected squared norm of stochastic gradients is uniformly bounded, that is,
E ∥▽Fk(w

t
k)∥2 ≤ G2 for k = 0, 1, ...m− 1, and t = 0, ..T − 1.

In accordance with Theorem 1 in (Li et al., 2020c) and our scenario in which all local data stored on
clients are used for training in every iteration, we can derive the following convergence result.
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Theorem 5.4. Let Assumptions 5.1 to 5.3 hold and L, µ,G be defined therein. Choose γ =
max{8L

µ , E}, and ηt = 2
µ(γ+t) . Let F ∗ and F ∗

k be the minimum value of global model F and
each local model Fk respectively, then:

E[F (wT )]− F ∗

≤ 2

µ2
· L

γ + T
(6LΓ + 8(E − 1)2G2 + 4

M2 −m2

m2M2(M2 − 1)
(E − 1)2G2 +

µ2

4
E∥w1 −w∗∥2).

where T is the total number of iterations, E is the local training epoch, and Γ = F ∗ −
∑m

k=1 pkF
∗
k

which effectively quantifies the degree of data heterogeneity. The convergence speed is O( 1
T ). The

proof for the theorem is available in Appendix A.5.
Remark 5.5. In order to ensure that the upper bound is less than a predefined value ϵ, given as
2
µ2 · LD

γ+T ≤ ϵ, then the minimal required communication round T must satisfy the condition T ≥
2LD
µ2ϵ − γ, where D = 6LΓ + 8(E − 1)2G2 + 4 M2−m2

m2M2(M2−1) (E − 1)2G2 + µ2

4 E∥w1 −w∗∥2.

Remark 5.6. With full client participation (m = M ), the term M2−m2

m2M2(M2−1) in Theorem 5.4 be-
comes 0. It means full client participation leads to a tighter convergence bound.
Remark 5.7. In the absence of our formulation, which implies no additional virtual clients, the term

M2−m2

m2M2(M2−1) in Theorem 5.4 becomes M−m
m(M−1) . As m > 1,M > 1, M2−m2

m2M2(M2−1) < M−m
m(M−1) . It

means our approach leads to a faster convergence speed. The analysis is available in Appendix A.5.

6 EXPERIMENTS

In this section, we demonstrate the efficacy of our proposed approach on three widely used image
datasets, namely CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and Tiny-ImageNet (Le &
Yang, 2015). Our approach outperforms baseline methods in terms of global test accuracy, both for
IID and non-IID cases. We further explore the potential of our approach in personalized FL with
maintained local filter atoms. Finally, we provide an intuitive explanation of the effectiveness of our
approach using the loss landscape.

6.1 EXPERIMENTAL SETUP

Datasets and Models. We conduct a series of experiments on three image datasets: CIFAR-
10, CIFAR-100 (Krizhevsky & Hinton, 2009), and Tiny-Imagenet (Le & Yang, 2015), using
AlexNet (Krizhevsky et al., 2012) model. The model consists of 3 convolution layers, and the
channel sizes are 64, 256, and 256, respectively. It is then followed by two fully connected layers
with ReLU activation, and the number of hidden units is 256 and 128, respectively. In each exper-
iment, we have set the number of filter atoms ma in our approach to 9. Details of the datasets and
model architectures are presented in Appendix A.6.

Data Partitions. In the FL setting, we assume the existence of a central server and a set of
M = 100 local clients for CIFAR-10/100 and M = 1000 local clients for CIFAR-100/Tiny-
ImageNet, each client holding a subset of the total dataset. In each communication round, a random
subset of 10% clients is selected for local training, and we set the number of local epochs E and
communication rounds T to E = 10 and T = 200, respectively. In the independent and identically
distributed (IID) case, the data are uniformly distributed among the clients, while in the non-IID
case, we follow (Collins et al., 2021; McMahan et al., 2017) to partition the data in the following
manner: for CIFAR-10, the data are divided into 100 clients with either 2 or 5 classes on each
client, denoted as (100, 2) and (100, 5), respectively; for CIFAR-100, the data are split into either
100 or 1000 clients, each holding 5 or 20 classes, denoted as (100, 5), (100, 20), (1000, 5), and
(1000, 20), respectively; for Tiny-ImageNet, the data are divided into 1000 clients, each holding 20
or 50 classes, denoted as (1000, 20) and (1000, 50), respectively.

Compared Methods. For the evaluation of the global model, we compare the proposed method
with three baseline approaches including FedAvg (McMahan et al., 2017), FedProx (Li et al.,
2020b), and Ditto (Li et al., 2021b). To evaluate the performance of personalized models, we com-
pare our approach with several baseline methods. These baselines include Local-only, where each
client is trained independently without any communication, as well as global models fine-tuned on
local data, such as FedAvg+FT and FedProx+FT. We also consider the multi-task method Ditto and
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(a) CIFAR-10 (100,2)
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(b) CIFAR-10 (100,5)
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(c) CIFAR-100 (100,5)
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(d) CIFAR-100 (100,20)
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(e) CIFAR-100 (1000,5)

0 25 50 75 100 125 150 175 200
Communication Rounds

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

Ours
ditto
fedavg
fedprox

(f) CIFAR-100 (1000,20)
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(g) Tiny-ImageNet (1000,20)
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(h) Tiny-ImageNet (1000,50)

Figure 2: Test accuracy for different non-IID datasets, CIFAR-10, CIFAR-100 and Tiny-ImageNet,
with different approaches, FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020b), Ditto (Li
et al., 2021b) and the proposed approach for 200 communication rounds and 10 local training epoch.
Our approach reports higher accuracy and reaches stable accuracy much faster than the other ap-
proaches in all three datasets. (e) and (f) have more clients involved in each communication round,
which leads to higher final accuracy, compared with (c) and (d).

parameter decoupling approaches, including LG-FedAvg (Liang et al., 2020), FedPer (Arivazhagan
et al., 2019), FedRep (Collins et al., 2021), and FedPAC (Jian Xu & Huang, 2023).

6.2 ACCURACY COMPARISON

The test accuracy of all four approaches in the non-IID case is shown in Figure 2, with all experi-
ments conducted with three random seeds and shown with their mean and standard deviation. The
accuracy is calculated on the test set which contains all classes. It is evident that the proposed ap-
proach exhibits higher accuracy and attains convergence much faster than other methods. Compared
with CIFAR-100 (100,20) experiment, CIFAR-100 (1000,20) experiment involves more clients in
each communication round and it leads to higher final accuracy, as in Figure 2(d)(f). This observa-
tion is aligned with the analysis in Section 4.1. As discussed in Appendix A.2, our approach achieves
significant communication round reduction, without sacrificing accuracy, which is particularly cru-
cial in edge computing, where minimizing communication cost is essential for energy conservation.
The experimental results of the IID case are provided in Appendix A.7.

6.3 EFFECTIVENESS OF LOCAL EPOCHS

We examine the impact of the number of local training epochs on the final model accuracy at the
200th communication round. To this end, we vary the number of local epochs from 1 to 40 and
report the results in Figure 3(a). Our approach achieves higher accuracy than the baseline methods
across various local training epochs. When the number of local epochs is set to 1, the magnitude
of the local update is small, which results in a slow training process and relatively lower accuracy
at the same number of communication rounds. Conversely, increasing the number of local epochs
beyond a certain threshold causes the accuracy of all approaches to drop, which is attributed to the
phenomenon of local optima drift, where the local optima are inconsistent with the global optima.

6.4 PERSONALIZATION

We demonstrate the efficacy of our approach in the personalized federated learning setting. Each
client maintains both local filter atoms Dl and global filter atoms Dg . We evaluate the accuracy of
local models constructed with preserved local filter atoms and shared global atom coefficients. For
the baseline methods FedAvg and FedProx, we fine-tune the models on clients’ data for 10 epochs.

The experimental results are presented in Table 1, highlighting the best accuracy in bold and the
second-best accuracy with underlines. In the majority of cases, our approach exhibits higher ac-
curacy compared to other methods. Particularly, in challenging tasks such as Tiny-ImageNet, our
method outperforms the baselines by a large margin. A potential rationale behind this observation
is that our method derives more advantages from an increased number of clients. More client in-
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Table 1: The test accuracy for personalized FL.

CIFAR10 CIFAR100 Tiny-ImageNet
(100,2) (100,5) (100,5) (100,20) (1000,20) (1000,50)

Local 88.00 76.00 76.10 41.90 12.89 6.13
FedAvg (McMahan et al., 2017) + FT 93.53 86.85 85.29 64.10 30.77 14.6
FedProx (Li et al., 2020b) + FT 92.46 85.31 80.28 59.07 28.69 14.96

Ditto (Li et al., 2021b) 93.67 85.75 80.37 62.56 21.93 9.64
FedPer (Arivazhagan et al., 2019) 92.60 83.30 76.00 37.70 14.20 6.15
FedRep (Collins et al., 2021) 89.34 79.25 78.53 57.89 13.90 6.14
FedPAC (Jian Xu & Huang, 2023) 91.20 85.30 80.90 61.64 13.90 6.15
LG-FedAvg (Liang et al., 2020) 88.50 72.80 73.00 41.10 12.44 5.99

Ours 94.14 87.49 84.28 63.28 41.57 24.32

Table 2: The test accuracy for different numbers of filter atoms ma.

CIFAR10 CIFAR100 Tiny-ImageNet
(100,2) (100,5) (100,5) (100,20) (1000,20) (1000,50)

ma = 12 94.25 87.08 84.66 63.67 42.25 23.81
ma = 9 94.14 87.49 84.28 63.28 41.57 24.32
ma = 6 94.29 85.92 83.38 62.71 39.4 21.5
ma = 3 91.98 81.66 80.27 57.68 38.51 20.91

volvement leads to a higher number of additional client variants and, as a result, a more substantial
reduction in aggregation variance, ultimately contributing to improved convergence. The experi-
ments demonstrate that the filter atoms can effectively capture personalized local knowledge and are
substantial for model personalization.

6.5 INFLUENCE OF DIFFERENT ma

Adjusting ma is a trade-off between model accuracy and training parameters. We investigate the
influence of the number of filter atoms ma on the model accuracy within the pFL framework. The
corresponding results are presented in Table 2. It is evident that larger values of ma correspond to
higher accuracy. Smaller values of ma lead to fewer involved parameters, thus less computational
resource required for training and less communication overhead.

For simpler datasets, such as CIFAR, the differences in accuracy among ma = 6, 9, 12 are relatively
small. However, in more challenging tasks, such as Tiny-ImageNet, employing a greater number
of filter atoms ma = 9, 12 results in a more substantial accuracy gap compared to ma = 3, 6.
Therefore, it more preferable to use smaller ma in experiments with CIFAR datasets but a larger ma

in experiments with Tiny-ImageNet.

6.6 INFLUENCE OF ADDITIONAL CLIENTS

In this experiment, we explore the influence of the number of involved clients on both aggregation
variance and global test accuracy. Figure 3(b) presents the aggregation variance of FedAvg and our
method for the 30 communication rounds. Compared to FedAvg, our approach exhibits significantly
reduced variance with the inclusion of additional clients. Figure 3(c) compares the accuracy of
FedAvg and our method at 200th round with the number of training clients varies from 2 to 40.
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Figure 3: (a) The effect of the number of local training epochs. (b) Our approach leads to reduced
variance compared with FedAvg. (c) The effect of the number of clients on test accuracy.
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Figure 4: (a) The training loss of FedAvg and our method for 200 communication rounds. (b)
The loss landscape of FedAvg and our method for the first 25 rounds. (c) The training trajectory
of our method from the 4th to 8th epoch, where “∇” represents local clients while “×” represents
additional virtual clients.

More participation of clients in the training process leads to improved accuracy, and our approach
exhibits a higher increase in test accuracy. This phenomenon can be attributed to our method’s
ability to generate more additional client variants with increased client participants, which, in turn,
leads to a more substantial reduction in aggregation variance. Consequently, this results in enhanced
convergence and improved test accuracy.

Synthetic Experiment. We design a synthetic experiment to validate that more clients lead to a
decrease in the variance of the global model. This is a classification task with positive samples from
N (µ+,Σ) and negative samples from N (µ−,Σ), where µ+ = [2 2] and µ− = [−2 −2]. The
model is one fully-connected layer with two parameters so that we can better visualize the result in a
2D plot. And the loss function is the mean square error. The experiment is conducted with 5 models
and 25 models, and Figure 1(b) displays the loss landscape of the averaged model. It is evident
that as the number of clients increases, the global model becomes more stable and approaches the
optimal point more closely within the same number of training rounds.

6.7 TRAINING LOSS

We compare the training loss of FedAvg with our approach, empirically validating that the proposed
approach leads to an increase in client diversity and exhibits faster convergence speed, as shown in
Figure 4. This experiment involves four clients, each containing 5 out of 10 classes from the CIFAR-
10 dataset. The training process consists of 200 communication rounds and each client performs one
local training epoch, and the training loss of both FedAvg and our method is depicted in Figure 4(a).
Our approach exhibits lower training loss than FedAvg starting from the 20th round.

To gain further insights into the faster convergence of our approach, we examine the loss land-
scape (Li et al., 2018) by plotting the training trajectories of FedAvg and our approach for the first
25 epochs, as depicted in Figure 4(b). The contour map represents the loss reduction from 2.24
(bottom left) to 1.72 (top right). Our approach demonstrates faster movement towards a lower loss
compared to FedAvg within the same number of training rounds. In Figure 4(c), we provide de-
tails of our training trajectory from the 4th to 8th epoch. In addition to four local models, the six
additional virtual clients are reconstructed by multiplying the aggregated filter atoms and aggre-
gated atom coefficients. The virtual clients increase the diversity of local models without inducing
any more divergence or outliers. Compared with FedAvg, our approach overall has a noticeable
reduction in loss.

7 CONCLUSION

This paper tackled the data heterogeneity challenges in FL. Different from conventional FL ag-
gregation methods, our approach utilizes decomposed filters, consisting of filter atoms and atom
coefficients, to reconstruct a global model through aggregated atoms and coefficients. This recon-
structed global model effectively reduces the variance of the global model by introducing additional
model variants, thereby providing a faster convergence. Through extensive experiments conducted
on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, we have demonstrated that our approach
outperforms state-of-the-art methods in terms of test accuracy. These results highlight the effective-
ness and superiority of our approach in the context of federated learning.
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A APPENDIX

A.1 ALGORITHM DESIGN

The main training procedure is summarized in Algorithm 1.

Algorithm 1 Global Communicated Filter Atoms and Atom Coefficients
Input: K,T, β,w0, η0, B,C,E
Server:

for t = 0, 1, 2, . . . , T − 1 do
m←− max(C ·K, 1)
St ←−Random set of m clients
for k ∈ St do
αt+1

k ,Dt+1
k ,θt+1

k,h ←− Client(k,αt,Dt,θt
h)

end for
// weight aggregation
αt+1 ←−

∑m
k=1

nk

n αt+1
k

Dt+1 ←−
∑m

k=1
nk

n Dt+1
k

θt+1
h ←−

∑m
k=1

nk

n θt+1
k,h

// re-construct global model
θt+1
ϕ ←− αt+1 ×Dt+1

end for
Client:

for i = 0, 1, 2, . . . , E − 1 do
for b ∈ B do
αt+1

k ←− αt
k − ηt∇αt

k
Fk

Dt+1
k ←− Dt

k − ηt∇Dt
k
Fk

θt+1
k,h ←− θt

k,h − ηt∇θt
k,h

Fk

end for
end for
return αt+1

k ,Dt+1
k ,θt+1

k,h

A.2 FAST/SLOW COMMUNICATION PROTOCOL

Compared with atom coefficients α ∈ Rma×c′×c, the filter atoms D ∈ Rka×ka×ma have sig-
nificantly fewer parameters since ka × ka ≪ c′ × c, a few hundred of parameters typically. To
incorporate this finding, we further adopt a fast/slow communication protocol, which prioritizes the
transmission of local knowledge, i.e., filter atoms, over atom coefficients to minimize communi-
cation costs. More precisely, we introduce a parameter β, that determines the frequency of atom
coefficient communication. For instance, if β = 1/10, the atom coefficients are communicated and
updated once every ten rounds.

With this, the parameters of the model can be aggregated as follows,αt+1

Dt+1

θt+1
h

←−
∑m

k=1
nk

n αt+1
k 1{βt∈N} +αt

1{βt/∈N}∑m
k=1

nk

n Dt+1
k∑m

k=1
nk

n θt+1
k,h

 , (11)

where 1{βt∈N} is the indicator which equals to 1 only when βt is an integer. The algorithm is
summarized in Appendix Algorithm 2.

Reduction in Communication Overhead. Suppose the number of parameters in classification
heads is l1 × l2, i.e., θh ∈ Rl1×l2 . the communication complexity of transmitting atoms and classi-
fication head is O(ma · k2a + l1 · l2), while transmitting the entire model needs atoms, coefficients
and classification heads, which is of O(ma · k2a + c · c′ · ma + l1 · l2). By utilizing the fast/slow
communication protocol, the reduction rate of the total communicated parameters is expressed as
β(ma·k2

a+c·c′·ma+l1·l2)+(1−β)(ma·k2
a+l1·l2)

(ma·k2
a+c·c′·ma+l1·l2) ≈ β, compared to communicating the entire model.
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And the training procedure of fast/slow communication protocol is summarized in Algorithm 2.
Different from Algorithm 1, the fast/slow communication protocol only transmits atom coefficients
α every once of 1/β round to decrease the communication overhead.

Algorithm 2 Fast/Slow Communication Protocol
Input: K,T, β,w0, η0, B,C,E
Server:

for t = 0, 1, 2, . . . , T − 1 do
m←− max(C ·K, 1)
St ←−Random set of m clients
for k ∈ St do

if tβ ∈ N then
αt+1

k ,Dt+1
k ,θt+1

k,h ←− Client(k,αt,Dt,θt
h)

else
Dt+1

k ,θt+1
k,h ←− Client(k,αt,Dt,θt

h)
end if

end for
// weight aggregation
if tβ ∈ N then

αt+1 ←−
∑m

k=1
nk

n αt+1
k

else
αt+1 ←− αt

end if
Dt+1 ←−

∑m
k=1

nk

n Dt+1
k

θt+1
h ←−

∑m
k=1

nk

n θt+1
k,h

// re-construct global model
θt+1
ϕ ←− αt+1 ×Dt+1

end for
Client:

for i = 0, 1, 2, . . . , E − 1 do
for b ∈ B do
αt+1

k ←− αt
k − ηt∇αt

k
Fk

Dt+1
k ←− Dt

k − ηt∇Dt
k
Fk

θt+1
k,h ←− θt

k,h − ηt∇θt
k,h

Fk

end for
end for
if tβ ∈ N then

return αt+1
k ,Dt+1

k ,θt+1
k,h

else
return Dt+1

k ,θt+1
k,h

end if

Convergence analysis of fast/slow communication protocol. The convergence outcome of the
fast/slow communication protocol, which involves transmitting only filter atoms every round while
the entire model including atom coefficients every 1/β round, can be expressed as follows:

Theorem A.1. Let Assumptions 5.1 to 5.3 hold and L, µ,G be defined therein, with filter atoms
transmitted every round and the entire model communicated every 1/β round. Choose γ =
max{8L

µ , E}, and ηt = 2
µ(γ+t) . Let F ∗ and F ∗

k be the minimum value of global model F and
each local model Fk respectively, then:

E[F (wT )]− F ∗ ≤ 2

µ2
· L

γ + T
(6LΓ + 8(E/β − 1)2G2 +

µ2

4
E∥w0 −w∗∥2).

The convergence analysis of the fast/slow protocol results in a slightly looser bound compared to
Theorem 5.4, as 8(E/β − 1)2G2 > 8(E − 1)2G2 with β < 1. It means the fast/slow protocol
takes more time to reach the same amount of convergence bound than the regular communication
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protocol. However, the convergence rate is still approximately O( 1
T ). And because of its lower

communication cost at each round, the overall communication cost of fast/slow protocol is less than
the regular communication protocol, further empirically validated in Section A.2.1. Appendix A.4
shows a formal proof of this theorem.

A.2.1 COMMUNICATION EFFICIENCY

As mentioned previously, our proposed method demonstrates a faster convergence to stable accu-
racy compared to the baseline approaches, which is depicted in Figure 5 and Figure 2. Furthermore,
by employing the fast/slow communication protocol, our method can efficiently reduce commu-
nication overhead by transferring filter atoms, which contain only a small amount of parameters.
Specifically, as presented in Figure 3(b), our approach communicates filter atoms every round but
transmits complete models every 5th or 10th communication round, represented by β = 1/5 and
β = 1/10, respectively. The x-axis depicts the number of transmitted parameters, and our ap-
proach with β = 1/5 communicates only about 500 million parameters to achieve an accuracy of
52%, while FedAvg requires 2, 500 million parameters, which is five times more than our proposed
method. Moreover, FedPara requires communicating 1, 250 parameters to achieve 52%, which is
over twice the number of parameters than our method.

A.3 PROOF OF REDUCED GLOBAL MODEL VARIANCE

According to (10), the reconstruction of decomposed filters results in a natural incorporation of
additional local model variants, which is

θt+1
ϕ = (

m∑
k=1

nk

n
αt+1

k )× (

m∑
k=1

nk

n
Dt+1

k )

=

m∑
k=1

n2
k

n2
θt+1
k,ϕ +

m∑
k1 ̸=k2

nk1
· nk2

n2
θt+1
k1,k2,ϕ

,

where θt+1
k,ϕ = αt+1

k ×Dt+1
k and θt+1

k1,k2,ϕ
= αt+1

k1
×Dt+1

k2
. Compared with the weight update of

FedAvg in (5), (10) contains both averaging of selected clients represented in the first term and extra
reconstructed virtual clients in the second term.

Denote the parameter obtained by (5) as θϕ =
∑m

k=1
nk

n θk,ϕ =
∑m

k=1 pkθk,ϕ, and param-

eter obtained by (10) as θ′
ϕ =

∑m
k=1

n2
k

n2 θk,ϕ +
∑m

k1 ̸=k2

nk1
·nk2

n2 θk1,k2,ϕ =
∑m

k=1 p
2
kθk,ϕ +∑m

k1 ̸=k2
pk1

pk2
θk1,k2,ϕ.

By the definition of variance, we have,

E||θ′
ϕ − E(θ′

ϕ)||2 = V ar(θ′
ϕ)

= V ar(

m∑
k=1

p2kθk,ϕ +

m∑
k1 ̸=k2

pk1
pk2

θk1,k2,ϕ)

=

m∑
k=1

p4kV ar(θk,ϕ) +

m∑
k1 ̸=k2

p2k1
p2k2

V ar(θk1,k2,ϕ)

= Σ

 m∑
k=1

p4k +

m∑
k1 ̸=k2

p2k1
p2k2


= Σ ·

(
m∑

k=1

p2k

)2

,
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where Σ is the covariance matrix of θk,ϕ. Similarly,

E||θϕ − E(θϕ)||2 = V ar(θϕ)

= V ar(

m∑
k=1

pkθk,ϕ)

=

m∑
k=1

p2kV ar(θk,ϕ)

= Σ ·
m∑

k=1

p2k.

Since
∑m

k=1 pk = 1 and pk ≥ 0, we have
∑m

k=1 p
2
k ≤ (

∑m
k=1 pk)

2
= 1. Therefore,

(∑m
k=1 p

2
k

)2 ≤∑m
k=1 p

2
k. Thus,

E||θ′
ϕ − E(θ′

ϕ)||2 ≤E||θϕ − E(θϕ)||2.

It verifies that as the number of aggregated clients increases, the variance of the global model de-
creases. Additionally, our method introduces additional virtual clients, which naturally contributes
to a reduction in the variance of the global model.

A.4 CONVERGENCE ANALYSIS

Recall the definitions from the main content, the global objective function is defined as

F (w) =

m∑
k=1

pk · Fk(wk).

The local objective function Fk(·) is given by

Fk(wk) =
1

nk

nk∑
j=1

L(αk,Dk,θk,h;xj , yj),

where wk = {αk,Dk,θk,h}. And the model is updated asαt+1
k

Dt+1
k

θt+1
k,h

←−
 αt

k − ηt∇αt
k
Fk

Dt
k − ηt∇Dt

k
Fk

θt
k,h − ηt∇θt

k,h
Fk

 .

The model separately aggregates the α, D, and θh,αt+1

Dt+1

θt+1
h

←−
∑m

k=1 pkα
t+1
k∑m

k=1 pkD
t+1
k∑m

k=1 pkθ
t+1
k,h

 .

Thus, we have wt+1 = {αt+1,Dt+1,θt+1
h } and wt+1 =

∑m
k=1 pkw

t+1
k . For convenience, we

define gt =
∑m

k=1 pk∇Fk(w
t
k), where∇Fk(w

t
k) = {∇αk

Fk(αk),∇Dk
Fk(Dk),∇θk,h

Fk(θk,h)}.

A.4.1 ANALYSIS ON CONSECUTIVE STEPS

To bound the expectation of the global objective function at time T from its optimal value, we first
consider analyzing the global weight from the optimal weights by calculating single-step SGD:

∥wt+1 −w∗∥2 = ∥wt −w∗ − ηtgt∥2

= ∥wt −w∗∥2 − 2ηt⟨wt −w∗, gt⟩+ η2t ∥gt∥2. (12)
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The second term of (12) can be expressed as

− 2ηt⟨wt −w∗, gt⟩

=− 2ηt

m∑
k=1

pk⟨wt −w∗,∇Fk(w
t
k)⟩

=− 2ηt

m∑
k=1

pk⟨wt −wt
k,∇Fk(w

t
k)⟩ − 2ηt

m∑
k=1

pk⟨wt
k −w∗,∇Fk(w

t
k)⟩. (13)

By Cauchy-Schwarz inequality and AM-GM inequality, we have

−2⟨wt −wt
k,∇Fk(w

t
k)⟩ ≤

1

ηt
∥wt −wt

k∥2 + ηt∥∇Fk(w
t
k)∥2. (14)

By the µ-strong convexity of Fk(·), with v = w∗ and w = wt
k, we have

−⟨wt
k −w∗,∇Fk(w

t
k)⟩ ≤ −(Fk(w

t
k)− Fk(w

∗))− µ

2
∥wt

k −w∗∥2. (15)

By the convexity of ∥ · ∥ and the L-smoothness of Fk(·), we can express third term of (12) as

η2t ∥gt∥2 ≤ η2t

m∑
k=1

pk∥∇Fk(w
t
k)∥2 ≤ 2Lη2t

m∑
k=1

pk(Fk(w
t
k)− F ∗

k ), (16)

where F ∗
k is the optimal model of local client k. Combining (12)− (16), we have

∥wt −w∗ − ηtgt∥2

≤∥wt −w∗∥2 + ηt

m∑
k=1

pk(
1

ηt
∥wt −wt

k∥2 + ηt∥∇Fk(w
t
k)∥2)

− 2ηt

m∑
k=1

pk((Fk(w
t
k)− Fk(w

∗)) +
µ

2
∥wt

k −w∗∥2) + 2Lη2t

m∑
k=1

pk(Fk(w
t
k)− F ∗

k )

=(1− µηt)∥wt −w∗∥2 +
m∑

k=1

pk∥wt −wt
k∥2 + 2Lη2t

m∑
k=1

pk(Fk(w
t
k)− F ∗

k )

+ η2t

m∑
k=1

pk∥∇Fk(w
t
k)∥2 − 2ηt

m∑
k=1

pk(Fk(w
t
k)− Fk(w

∗))

≤(1− µηt)∥wt −w∗∥2 +
m∑

k=1

pk∥wt −wt
k∥2

+ 4Lη2t

m∑
k=1

pk(Fk(w
t
k)− F ∗

k )− 2ηt

m∑
k=1

pk(Fk(w
t
k)− Fk(w

∗)), (17)

where we use the L-smoothness of Fk(·) in the last inequality. And set γt = 2ηt(1− 2Lηt), the last
two terms of (17) further become,
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4Lη2t

m∑
k=1

pk(Fk(w
t
k)− F ∗

k )− 2ηt

m∑
k=1

pk(Fk(w
t
k)− Fk(w

∗))

=(4Lη2t − 2ηt)

m∑
k=1

pk(Fk(w
t
k)− F ∗

k )− 2ηt

m∑
k=1

pk(Fk(w
t
k)− Fk(w

∗)) + 2ηt

m∑
k=1

pk(Fk(w
t
k)− F ∗

k )

=− γt

m∑
k=1

pk(Fk(w
t
k)− F ∗)− γt

m∑
k=1

pk(F
∗ − F ∗

k ) + 2ηt

m∑
k=1

pk(Fk(w
∗)− F ∗

k )

=− γt

m∑
k=1

pk(Fk(w
t
k)− F ∗)− γt

m∑
k=1

pk(F
∗ − F ∗

k ) + 2ηt

m∑
k=1

pk(F
∗ − F ∗

k )

=− γt

m∑
k=1

pk(Fk(w
t
k)− F ∗) + (2ηt − γt)

m∑
k=1

pk(F
∗ − F ∗

k )

=− γt

m∑
k=1

pk(Fk(w
t
k)− F ∗) + 4Lη2tΓ, (18)

where Γ =
∑m

k=1 pk(F
∗−F ∗

k ) = F ∗−
∑m

k=1 pkF
∗
k , representing the degree of data heterogeneity.

The first term of (18)
m∑

k=1

pk(Fk(w
t
k)− F ∗)

=

m∑
k=1

pk(Fk(w
t
k)− Fk(w

t)) +

m∑
k=1

pk(Fk(w
t)− F ∗)

≥
m∑

k=1

pk⟨∇Fk(w
t),wt

k −wt)⟩+
m∑

k=1

pk(Fk(w
t)− F ∗)

=

m∑
k=1

pk⟨∇Fk(w
t),wt

k −wt)⟩+ F (wt)− F ∗

≥− 1

2

m∑
k=1

pk

(
ηt∥Fk(w

t)∥2 + 1

ηt
∥wt

k −wt∥2
)
+ F (wt)− F ∗

≥−
m∑

k=1

pk

(
ηtL(Fk(w

t)− F ∗
k ) +

1

2ηt
∥wt

k −wt∥2
)
+ F (wt)− F ∗, (19)

where the first inequality results from the convexity of Fk(·), the second inequality from AM-GM
inequality and the third inequality from L-smoothness of Fk(·).
Therefore, (18) becomes

− γt

m∑
k=1

pk(Fk(w
t
k)− F ∗) + 4Lη2tΓ

≤γt
m∑

k=1

pk

(
ηtL(Fk(w

t)− F ∗
k ) +

1

2ηt
∥wt

k −wt∥2
)
− γt(F (wt)− F ∗) + 4Lη2tΓ

=γt

m∑
k=1

pk

(
ηtL(Fk(w

t)− F ∗) +
1

2ηt
∥wt

k −wt∥2
)
+ γtηtLΓ− γt(F (wt)− F ∗) + 4Lη2tΓ

=γt(ηtL− 1)

m∑
k=1

pk(Fk(w
t)− F ∗) +

γt
2ηt

m∑
k=1

pk∥wt
k −wt∥2 + (4Lη2t + γtηtL)Γ, (20)

18



Under review as a conference paper at ICLR 2024

Since we choose η0 < 1
4 , ηtL− 1 < −3/4 < 0. And with F (wt)− F ∗ > 0, we have

γt(ηtL− 1)

m∑
k=1

pk(Fk(w
t)− F ∗) ≤ 0,

and recall γt = 2ηt(1− 2Lηt), so γt

2ηt
≤ 1 and 4Lη2t + γtηtL ≤ 6Lη2t . Therefore,

−γt
m∑

k=1

pk(Fk(w
t
k)− F ∗) + 4Lη2tΓ ≤

m∑
k=1

pk∥wt
k −wt∥2 + 6Lη2tΓ.

Thus, (17) becomes

∥wt −w∗ − ηtgt∥2 ≤ (1− µηt)∥wt −w∗∥2 + 2

m∑
k=1

pk∥wt
k −wt∥2 + 6Lη2tΓ. (21)

A.4.2 BOUND FOR THE DIVERGENCE OF WEIGHTS

To bound the weights, we assume within E communication steps, there exists t0 < t, such that
t − t0 ≤ E − 1 and wt0

k = wt0 for all k = 1, 2, . . . ,m. And we know ηt is non-increasing and
ηt0 ≤ 2ηt. With the fact E∥X − EX∥2 ≤ E∥X∥2 and Jensen inequality, we have

E
m∑

k=1

pk∥wt −wt
k∥2 ≤E

m∑
k=1

pk∥wt0 −wt
k∥2

≤
m∑

k=1

pkE
t−1∑
t0

(E − 1)η2t ∥Fk(w
t
k)∥2

≤
m∑

k=1

pkE
t−1∑
t0

(E − 1)η2t0G
2

≤
m∑

k=1

pk

t−1∑
t0

(E − 1)η2t0G
2

≤
m∑

k=1

pk(E − 1)2η2t0G
2

≤4η2t (E − 1)2G2. (22)

The weigh divergence bound for fast/slow communication protocol. Since the fast/slow com-
munication protocol transmits the atom coefficients αk once every 1/β round, within E/β commu-
nication steps, there exists t0 < t, such that t−t0 ≤ E/β−1 and wt0

k = wt0 for all k = 1, 2, . . . ,m.
Similar to above, we have the bound for the divergence of weights,

E
m∑

k=1

pk∥wt −wt
k∥2 ≤4η2t (E/β − 1)2G2. (23)

A.4.3 CONVERGENCE BOUND

Combining (12), (21), and (22), we have

∥wt+1 −w∗∥2 =∥wt −w∗ − ηtgt∥2

≤(1− µηt)∥wt −w∗∥2 + 2

m∑
k=1

pk∥wt
k −wt∥2 + 6Lη2tΓ

≤(1− µηt)∥wt −w∗∥2 + 8η2t (E − 1)2G2 + 6Lη2tΓ. (24)

Therefore,

E∥wt+1 −w∗∥2 ≤ (1− µηt)E∥wt −w∗∥2 + 8η2t (E − 1)2G2 + 6Lη2tΓ. (25)
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We set ηt = β
t+γ for some β > 1

µ and γ > 0, such that η1 ≤ min{ 1µ ,
1
4L} =

1
4L and ηt ≤ 2ηt+E .

We want to prove E∥wt − w∗∥2 ≤ v
γ+t , where v = max{ β2B

βµ−1 , (γ + 1)E∥w1 − w∗∥2} and
B = 8(E − 1)2G2 + 6LΓ.

Firstly, the definition of v ensures that E∥w1 − w∗∥2 ≤ v
γ+1 . Assume the conclusion holds for

some t, we have

E∥wt+1 −w∗∥2 ≤(1− µηt)E∥wt −w∗∥2 + η2tB

≤(1− βµ

t+ γ
)

v

t+ γ
+

β2B

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v + [

β2B

(t+ γ)2
− βµ− 1

(t+ γ)2
v]

≤ v

t+ γ + 1
. (26)

By the L-smoothness of F (·), E[F (wt)]− F ∗ ≤ L
2E∥w

t −w∗∥2 ≤ L
2

v
γ+t .

Thus we have

E[F (wT )]− F ∗ ≤ 2

µ2
· L

γ + T
(6LΓ + 8(E − 1)2G2 +

µ2

4
E∥w1 −w∗∥2).

The convergence bound for fast/slow communication protocol. Based on (23), we have B =
8(E/β − 1)2G2 + 6LΓ. And with the above formulation, the bound for fast/slow communication
protocol is,

E[F (wT )]− F ∗ ≤ 2

µ2
· L

γ + T
(6LΓ + 8(E/β − 1)2G2 +

µ2

4
E∥w1 −w∗∥2).

A.5 CONVERGENCE ANALYSIS FOR PARTIAL DEVICE PARTICIPATION

With partial device participation, each time there are m = C ·M clients involved in aggregation.
Suppose the aggregated global model with full model participation is ŵ =

∑M
k=1 pkwk, which is

different from the aggregated global model with partial model participation w =
∑m

k=1 pkwk.
Assumption A.2. Suppose the weight pk of each device is the same, which is, p1 = p2 = · · · =
pM = 1

M .

As each sampling distribution is identical, and Assumption A.2 holds, we have unbiased sampling
scheme,

E(w) = ŵ.

And its proof is as follows,

E(w) = E(
m∑

k=1

pkwk) =

m∑
k=1

pk E(wk) =

m∑
k=1

pk

M∑
k=1

qkwk =

M∑
k=1

qkwk = ŵ.

A.5.1 ANALYSIS ON CONSECUTIVE STEPS

Similar to the previous analysis, to bound the expectation of the global objective function at time T
from its optimal value, we first consider analyzing the global weight from the optimal weights by
calculating single-step SGD:

∥wt+1 −w∗∥2 = ∥wt+1 − ŵt+1 + ŵt+1 −w∗∥2

= ∥wt+1 − ŵt+1∥2 + ∥ŵt+1 −w∗∥2 + 2⟨ŵt+1 −w∗,wt+1 − ŵt+1⟩. (27)

Once taking the expectation over selected devices, we have,

E∥wt+1 −w∗∥2 = E∥wt+1 − ŵt+1∥2 + E∥ŵt+1 −w∗∥2. (28)
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Due to the unbiased sampling, the expectation of the third term of (27) is 0. Based on previous
analysis, the second term of (28) becomes,

E∥ŵt+1 −w∗∥2 ≤ (1− µηt)E∥ŵt −w∗∥2 + η2tB. (29)

And (28) becomes,

E∥wt+1 −w∗∥2 = E∥wt+1 − ŵt+1∥2 + E∥ŵt+1 −w∗∥2

≤ E∥wt+1 − ŵt+1∥2 + (1− µηt)E∥ŵt −w∗∥2 + η2tB. (30)

A.5.2 BOUND FOR THE VARIANCE OF wt

Based on the Assumption A.2, we have ŵt+1 = 1
M

∑M
k=1 w

t+1
k and wt+1 = 1

m

∑m
k=1 w

t+1
k , where

m = C ·M is the number of selected clients. And the set of selected clients is denoted as St. In this
case, the first term of (28) becomes,

ESt+1
∥wt+1 − ŵt+1∥2

=ESt+1
∥ 1
m

m∑
k=1

wt+1
k − ŵt+1∥2

=
1

m2
∥

M∑
k=1

I(k ∈ St+1)(w
t+1
k − ŵt+1)∥2

=
1

m2

 M∑
k=1

P(k ∈ St+1)∥(wt+1
k − ŵt+1)∥2 +

M∑
ki ̸=kj

P(ki, kj ∈ St+1)⟨wt+1
ki
− ŵt+1,wt+1

kj
− ŵt+1⟩


=

1

mM

M∑
k=1

∥(wt+1
k − ŵt+1)∥2 + m− 1

mM(M − 1)

M∑
ki ̸=kj

⟨wt+1
ki
− ŵt+1,wt+1

kj
− ŵt+1⟩

=(
1

mM
− m− 1

mM(M − 1)
)

M∑
k=1

∥(wt+1
k − ŵt+1)∥2, (31)

where in the last equality we use
∑M

k=1 ∥(w
t+1
k − ŵt+1)∥2 +

∑M
ki ̸=kj

⟨wt+1
ki
− ŵt+1,wt+1

kj
−

ŵt+1⟩ = ∥
∑M

k=1(w
t+1
k − ŵt+1)∥2 = 0.

Therefore,

E∥wt+1 − ŵt+1∥2 = (
1

mM
− m− 1

mM(M − 1)
)E

M∑
k=1

∥(wt+1
k − ŵt+1)∥2

≤ (
1

m
− m− 1

m(M − 1)
)E

M∑
k=1

∥ 1

M
(wt+1

k −wt0)∥2

≤ (
1

m
− m− 1

m(M − 1)
)4η2t (E − 1)2G2

= 4
M −m

m(M − 1)
η2t (E − 1)2G2, (32)

where the last inequality is based on (22).

Influences of virtual clients. As we perform the proposed procedure, the aggregated model is
merged with additional virtual clients, which is, w′,t+1 = 1

m2

∑m
k=1 w

t+1
k + 1

m2

∑m
ki ̸=kj

wt+1
ki,kj

.
Based on A.3, we have E∥w′,t+1 − ŵt+1∥2 ≤ E∥wt+1 − ŵt+1∥2, which means lower variance of
wt with our method. Compare it with (31), we have,
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ES′
t+1
∥w′,t+1 − ŵt+1∥2 = ES′

t+1
∥ 1

m2
(

m∑
k=1

wt+1
k +

m∑
ki ̸=kj

wt+1
ki,kj

)− ŵt+1∥2

=(
1

m2M2
− m2 − 1

m2M2(M2 − 1)
)

M∑
ki=1

M∑
kj=1

∥(wt+1
ki,kj

− ŵt+1)∥2, (33)

where S ′t denotes the set of selected clients and reconstructed virtual clients. And it is straightfor-
ward to calculate that as m > 1,M > 1, 1

m2M2 − m2−1
m2M2(M2−1) < 1

mM −
m−1

mM(M−1) . It is aligned
with the low variance argument of w′,t+1.

A.5.3 CONVERGENCE BOUND

Combine (30) and (32), we have,

E∥wt+1 −w∗∥2 = E∥wt+1 − ŵt+1∥2 + E∥ŵt+1 −w∗∥2

≤ (1− µηt)E∥ŵt −w∗∥2 + η2t (B +D), (34)

where D = 4 M−m
m(M−1) (E − 1)2G2 is the upper bound of 1

η2
t
ESt+1∥wt+1 − ŵt+1∥2. While with our

method, D = 4 M2−m2

m2M2(M2−1) (E − 1)2G2 is the upper bound of 1
η2
t
ES′

t+1
∥w′t+1 − ŵt+1∥2.

With the same form as in Section A.4.3, we can prove E∥wt − w∗∥2 ≤ v
γ+t , where v =

max{β
2(B+D)
βµ−1 , (γ + 1)E∥w1 −w∗∥2}. Specifically, if we choose β = 2/µ we have

E[F (wT )]− F ∗ ≤ 2

µ2
· L

γ + T
(B +D +

µ2

4
E∥w1 −w∗∥2).

A.6 EXPERIMENTAL SETTINGS

Dataset partitions. Suppose a dataset contains N training data with K classes, and the data are
randomly distributed to M clients with K ′ classes in each client, which is the case (M,K ′). To
partition the data, we adopt the data partition rule outlined in (McMahan et al., 2017), where the
dataset is divided into Sn = M ∗K ′ shards. Each shard contains N/Sn images from a single class.
Each client stores K ′ shards locally.

Training time. Each model is trained on Nvidia RTX A5000 for 200 communication rounds. With
100 clients, the training time for Ditto (Li et al., 2021b) and FedPac (Jian Xu & Huang, 2023) is
3.2 hours, while other methods take about 1 hour. With 1000 clients, the training time for Ditto and
FedPac is over 35 hours, while other methods take about 19.7 hours.
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(a) CIFAR-10 (100)
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(b) CIFAR-100 (100)
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(c) CIFAR-100 (1000)
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(d) Tiny-ImageNet (1000)

Figure 5: Test accuracy for different IID datasets, CIFAR-10, CIFAR-100 and Tiny-ImageNet, with
different approaches, FedAvg, FedProx, Ditto and the proposed approach for 200 communication
rounds and 10 local training epoch. (a)(b) are CIFAR-10/100 with 100 clients and (c)(d) are CIFAR-
100/Tiny-ImageNet with 1000 clients. Our approach reaches to the stable accuracy much faster than
other approaches in all three datasets. Compared with (b), (c) has more clients involved in each
communication round, and it leads to a higher final accuracy of (c).
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Hyper-Parameters. Our implementation adapts codebase from (Collins et al., 2021; Jian Xu &
Huang, 2023). The optimizer of all the methods is SGD with a learning rate of 0.01 and momentum
of 0.9. The local batch size is 10 and the local training epoch is 10. For Ditto we used λ = 0.75 for
all cases. For FedProx we use µ = 0.1. For FedRep, we follow the same setting in (Collins et al.,
2021). For each local update, FedRep executes 10 local epochs to train the local head, followed by
1 epoch for the representation.

A.7 EXTRA EXPERIMENTS

Experiment of IID case. The test accuracy of all four approaches in IID case is shown in Figure 5.
As evident, our approach reaches stable accuracy much faster than other methods. For example, in
CIFAR-100 with 1000 clients experiment, FedAvg reaches 48% accuracy at 200 communication
round, while the proposed approach achieves the same accuracy at 50 communication rounds, yield-
ing a speedup of 4× over FedAvg. As the datasets change from CIFAR-10 to Tiny-ImageNet, the
test accuracy decreases accordingly, suggesting an increase in the task complexity for AlexNet.
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