
BEAST: Efficient Tokenization of B-Splines Encoded
Action Sequences for Imitation Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present the B-spline Encoded Action Sequence Tokenizer (BEAST), a novel1

action tokenizer that encodes action sequences into compact discrete or continuous2

tokens using B-spline. In contrast to existing action tokenizers based on vector3

quantization or byte pair encoding, BEAST requires no separate tokenizer training4

and consistently produces tokens of uniform length, enabling fast action sequence5

generation via parallel decoding. Leveraging our B-spline formulation, BEAST6

inherently ensures generating smooth trajectories without discontinuities between7

adjacent segments. We extensively evaluate BEAST by integrating it with three8

distinct model architectures: a Variational Autoencoder (VAE) with continuous9

tokens, a decoder-only Transformer with discrete tokens, and Florence-2, a Vision-10

Language Model with an encoder-decoder architecture, demonstrating BEAST’s11

compatibility and scalability with large pretrained models. We evaluate BEAST12

across three established benchmarks consisting of 166 simulated tasks and on13

three distinct robot settings with a total of 8 real-world tasks. Experimental results14

demonstrate that BEAST (i) significantly reduces both training and inference15

computational costs, and (ii) consistently generates smooth, high-frequency control16

signals suitable for continuous control tasks while (iii) reliably achieves competitive17

task success rates compared to state-of-the-art methods. Videos and code are18

available at the project page.19

1 Introduction20

Imitation learning has emerged as a powerful paradigm for training robots to perform complex21

tasks by learning from human demonstrations [1]. Early works [2, 3] in this field primarily focused22

on predicting single-step actions based on the current observation. However, recent research [4]23

highlights the importance of learning action sequences to capture the temporal coherence inherent in24

human demonstrations. Moreover, by modeling action sequences, we can reduce compounding errors25

[5] and create task demonstrations that more closely align with human methods [6]. Given the success26

of autoregressive next-token prediction models in natural language processing and other domains27

[7–9], it is compelling to explore similar techniques for modeling action sequences, leveraging their28

ability to predict and generate coherent sequences effectively.29

In natural language processing, tokens typically represent words, which are inherently discrete30

elements. This discrete nature allows for effective next-token prediction, which extends well to the31

generation and prediction of symbolic actions or in discrete action space. However, a significant32

challenge arises when attempting to apply these approaches to sub-symbolic, continuous actions,33

which are not inherently discrete. Discretization addresses this issue by compressing the continuous34

action sequence while trying to retaining essential information. This process helps in balancing the35

expressivity of the action representation against computational efficiency.36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://beast-neurips2025-submission.github.io/BEAST-NeurIPS2025-Submission-Page/

Despite growing interest in this area, effective strategies to create action sequences of discrete tokens37

remain underexplored. Existing approaches often focus on single-step tokenization [10–12], vector38

quantization [13–15], or compression-based schemes [16]. However, they require training separate39

encoder-decoder networks for the tokenizer [13, 17] or produce variable-length token sequences40

for inputs of the same duration [16], which complicates applying fast token generation techniques41

such as parallel decoding [18]. Furthermore, existing action tokenizers do not consider the smooth42

transitions between subsequent action chunks, which could result in undesired jumps at transition.43

To address these challenges, we propose the B-spline Encoded Action Sequence Tokenizer (BEAST),44

a novel tokenizer that represents continuous action sequences using B-splines [19]. BEAST offers45

versatility, allowing for effective integration with both discrete and continuous tokens. Different from46

tokenizers based on the vector quantization [13–15], it does not require additional tokenizer training.47

BEAST compresses action trajectories into fixed-length token sequences enabling efficient parallel48

decoding for faster token generation, requiring 4− 8× fewer tokens than binning-based tokenization.49

By using B-spline encoded control points as discrete tokens, BEAST ensures the generation of smooth50

action chunks, as well as the continuous connection between consecutive chunks.51

Our contributions are: 1) We introduce BEAST, a novel B-spline-based tokenizer designed for52

modeling continuous action sequences. 2) We demonstrate the versatility of BEAST by integrating it53

into diverse model architectures that accommodate both continuous and discrete objectives. 3) We54

conduct extensive evaluations of simulated and real-world robotic tasks, showcasing its effectiveness.55

4) We perform thorough ablation studies to assess the impact of various design choices.56

2 Related Work57

Action Representations for Imitation Learning. Prior work has explored various action representa-58

tions for policy learning. The most common approach is to directly predict low-level actions, such as59

joint positions or end-effector displacements, using a supervised learning objective [3, 2, 20]. While60

simple, these approaches cannot tackle the multimodality present in human behavior. To address these61

limitations, ACT [4] introduces an Action Chunking Transformer trained as a conditional Variational62

Autoencoder (CVAE), which models multimodal behavior via a learned latent space. Instead of63

predicting single actions, ACT generates entire action chunks in a single inference step. These chunks64

are short sequences of actions, which reduces covariate shift and improves performance. Another65

line of work focuses on generating action sequences with diffusion models. Diffusion Policies model66

complex, multimodal behaviors by iteratively denoising from Gaussian noise to generate action67

sequences [5, 21–23]. While effective, these methods require multiple denoising steps per sequence,68

making inference comparatively expensive. In contrast, BEAST compresses full action sequences69

into compact control-point representations using B-spline approximation. This significantly reduces70

the number of predictions needed to model temporally extended behaviors. As a result, it enables71

efficient action chunking with smooth transitions, combining the representational benefits of ACT72

and diffusion policies with the speed and simplicity of tokenized inference.73

Alternatively, robot actions can be represented as discrete values by discretizing them into a set74

of tokens. This discretization scheme is common in many recent Vision-Language-Action models75

(VLAs) [10, 24–27, 14, 15]. These models, often based on Transformers, are well-suited to predicting76

discrete tokens due to their autoregressive pretraining on language. A common discretization77

technique involves dividing the continuous action space into a fixed number of bins [28, 11]. However,78

this strategy struggles to effectively model high-frequency robot data. Further it has very low inference79

speed. More sophisticated tokenization methods have been proposed. Behavior Transformers [17]80

use k-means clustering to form discrete action bins, combined with residual offsets via separate81

prediction heads. VQ-BeT [13] extends this idea by encoding action chunks into codebook vectors82

using a Residual VQ-VAE [13]. While expressive, these methods require training encoder-decoder83

networks, which increases system complexity and introduces sensitivity to hyperparameters and84

quantization loss. In contrast, BEAST requires no additional tokenizer training and avoids such85

instabilities through direct B-spline representation. BEAST does not require any additional tokenizer86

training and does not increase training complexity through its direct B-spline representation.87

More recently, FAST [16] proposes a compression-based tokenization strategy using discrete cosine88

transform and byte-pair encoding [29], resulting in fewer tokens per action chunk. As a consequence,89

the resulting action sequences can have varying lengths. This can complicate parallel decoding90

2

0.00

0.25

0.50

0.75

1.00

Ba
sis

 V
al

ue

0.00 0.25 0.50 0.75 1.00
Normalized Time, Degree P=0

0.00

0.25

0.50

0.75

1.00

Po
sit

io
n

0.00 0.25 0.50 0.75 1.00
Normalized Time, Degree P=1

0.00 0.25 0.50 0.75 1.00
Normalized Time, Degree P=2

0.00 0.25 0.50 0.75 1.00
Normalized Time, Degree P=3

0.00 0.25 0.50 0.75 1.00
Normalized Time, Degree P=4

Figure 1: From left to right: Clamped B-Spline Basis P = 0, 1, 2, 3, 4 (top) and their generated
trajectories (Bottom). Given the same control points, a higher degree will lead to smoother trajecto-
ries. All generated trajectories start exactly from the first control point and end at the last control
point. Notably, action chunk is conceptually equivalent to B-Splines of 0-th degree, i.e., split-wise
constants, as shown in the leftmost subplots. This relation is explained in details later in Section 4.1.

during inference. In comparison, BEAST produces fixed-length action representations. Fixed-length91

representations at every inference step allow for parallel decoding, significantly speeding up inference.92

OpenVLA-OFT [18] investigates how different tokenization strategies impact inference speed and93

policy performance in VLAs, showing that parallel decoding and action chunking can indeed lead94

to faster inference. However, OpenVLA-OFT does not compress the action tokens themselves,95

predicting an individual token for each action. BEAST compresses entire action chunks into a small96

set of B-spline control points. This enables both faster decoding and smooth, high-fidelity trajectories.97

3 Preliminaries98

Problem Formulation. Our goal is to train a policy π(a1:T | s) that capable of mapping a given state99

s to a corresponding sequence of actions a1:T which has T time steps and D Degrees of Freedom100

(DoF). To make this sequence prediction problem compatible with discrete generative models, we101

first transform the continuous action sequence into a sequence of discrete tokens. The goal of action102

sequence tokenization is to obtain a discrete token sequence v̄1:J , where each token belongs to a103

vocabulary V̄ with size |V̄|, by defining a transformation tokenizer : a1:T → v̄1:J ,104

B-Splines (Basis Splines) [30] are widely used in the field of computer graphics and computer-aided105

design. A B-Spline curve y is formulated through a linear basis function representation106

1-DoF B-Spline: y(u) =

N−1∑
n=0

ΦP
n (u) cn = ΦP (u) c, 0 ≤ P < N, u ∈ [k0, kM], (1)

where c are N control points and u is a continuous parameter, often interpreted as normalized107

time. The basis functions ΦP (u) = [ΦP
0 (u), ..,Φ

P
N−1(u)] are N polynomial basis functions of P -th108

degree. These basis functions are defined over M intervals determined by M + 1 knots in a vector109

[k0, ..., kM], and it satisfies M = N + P [30]. Typically, the knot vector is normalized such that110

k0 = 0 and kM = 1. The basis functions ΦP
n (u) are recursively computed using the Cox–de Boor111

recursion [31]. We denote all recursive degrees1 as q = 0 : P . For q = 0, the basis functions are112

defined as piecewise constant and recursively using the (q − 1)-th degree basis for q > 0 with113

piecewise constant: Φ0
n(u) =

{
1 if kn ≤ u < kn+1,

0 otherwise.
and (2)

recursive: Φq
n(u) = kq−1

n Φq−1
n (u) + (1− kq−1

n+1)Φ
q−1
n+1(u), (3)

where kq−1
n = (u− kn)/(kn+q − kn).114

Clamped B-Spline. In this work, we employ the clamped uniform B-Spline, where the first and115

last P + 1 knots are repeated to ensure that the resulting curve starts at the first control point and116

ends at the last control point. In Figure 1, we demonstrate the resulting basis functions of degrees117

from P = 0 to P = 4, together with their generated trajectories, given the same five control points.118

1The B-Spline degree P differs from the recursive degree q. Trajectories are represented by basis functions
of degree P , while lower recursive degree q serve as intermediate representations in the recursive process.

3

Figure 2: Overview of the BEAST Encoding Pipeline: Given a normalized action sequence, the
BEAST pipeline first uses linear regression to extract continuous-valued control points, forming
control point matrices that serve as intermediate continuous representations. These matrices are
then quantized uniformly into discrete values within the range [0, 255] and subsequently flattened to
produce discrete action tokens for auto-regressive next-token prediction or parallel prediction.

Clamped uniform B-splines are particularly suited for trajectory generation due to their smoothness,119

compact representation, and local support, where each control point only affects the curve locally.120

Parallel Decoding. Unlike autoregressive generation, which predicts tokens sequentially and thus121

requires K forward passes for a sequence of length K, parallel decoding [18] enables the prediction122

of the entire output sequence in a single forward pass. This is achieved by feeding the model with K123

empty token embeddings and replacing the causal attention mask with a bidirectional mask, allowing124

the decoder to infer the entire sequence simultaneously. OpenVLA-OFT [18] leverages this approach125

for action sequence generation. In this work, we adopt the parallel decoding strategy to predict all126

BEAST tokens in a single pass, improving the inference efficiency without sacrificing accuracy.127

4 B-Spline Encoded Action Sequence Tokenizer128

In this section, we first describe how BEAST utilizes B-Spline to construct an efficient action sequence129

tokenizer that converts action sequences into either continuous or discrete action tokens. We then130

explain how smooth transitions between consecutive action sequences are achieved by enforcing the131

initial conditions of clamped B-splines. Finally, we discuss strategies for efficient integrating BEAST132

with various model architectures that predict discrete or continuous tokens.133

4.1 Action Sequence Tokenization with B-Spline Tokenizer134

Following prior works in action tokenization [10, 16], we first normalize the input actions such that135

the 1st and 99th quantile value of each action dimension in the dataset maps to the range of [−1, 1].136

Using quantiles makes the normalization robust against outlier data points.137

Figure 2 presents an overview of the tokenization process. We begin by considering the tokenization138

of a 1-DoF trajectory. Given a normalized action sequence a1:T = [a1, a2, ..., aT] of length T , our139

goal is to determine a set of N control points c, with N ≤ T , that approximate the given action140

sequence at spline evaluations y(u)1:T . The linear transformation u = t/T maps from action timestep141

to the parametric coordinate of the B-Spline. The spline evaluations y(u)1:T are approximated by142

minimizing the least-squares error143

c = argmin
c

||y1:T − a1:T ||22 = argmin
c

||ΦP (u)c− a1:T ||22, (4)

where ΦP (u) = [ΦP
1 (u),Φ

P
2 (u), ...,Φ

P
N (u)]⊤ represents precomputed B-spline basis functions144

defined over interval u ∈ [0, 1]. Ridge regression estimates the control points in closed form,145

c = [c0, c1, ..., cN−1] = (Φ⊤Φ+ λI)−1Φ⊤a1:T , with λ acting as a regularization parameter. This146

efficient computation typically introduces only a small overhead, typically 3 to 5 milliseconds per147

batch. For a high-dimensional action sequence, i.e. D>1, each DoF is encoded independently into cd,148

resulting in a matrix C of shape D×N , that stacks each DoF’s control points, C=[c1, c2, ..., cD]⊤.149

To form the final token sequence, this matrix is flattened by interleaving different action dimensions150

corresponding to the same basis functions, as illustrated in Figure 2. This flattening strategy preserves151

the temporal order inherent in the trajectory segments associated with each basis function.152

4

Figure 3: BEAST-F is a new VLA model that combines BEAST encoding with Florence-2 [32], a
lightweight VLM with 0.77B parameters. BEAST produces uniform-length tokens, which allows
BEAST-F to perform parallel decoding via learnable action embeddings (AE), instead of autoregres-
sive next-token prediction. These discrete tokens are fed into the B-Spline Decoder, which first maps
them to real-valued control points and then transforms those control points into continuous action
sequences. The Pr token denotes an optional proprioceptive state.

Figure 4: Simulation [4, 34, 35] and real world (Franka Challenge, Aloha, Franka Kitchen) tasks.

Remark 1: Connection to Action Chunking. Action chunking, defined as a discrete sequence of153

actions a0, a1, ..., aT , is mathematically equivalent to a piecewise constant function generated by154

0-th degree B-splines. As demonstrated in Figure 1 left most, each action step at can be identified as155

a control point cn of 0-th degree B-Spline basis with t = n, T = N .156

4.2 Enforcing Smooth Transition with Clamped B-Spline157

Executing long-horizon tasks typically requires producing multiple small action sequences that158

connect seamlessly (replanning). While predicting action sequences effectively improves consistency159

within individual action chunks, a significant challenge lies in managing discontinuities at transitions160

between consecutive chunks, which often result in jerky motion during online execution. Common161

approaches to address this issue apply temporal ensembles of actions [4, 33], calculating moving162

averages over multiple predictions. However, these temporal ensembles require high-frequency163

replanning (typically every timestep) to generate sufficient chunks for effective ensemble averaging,164

which significantly constrains execution speed in online applications.165

In contrast, BEAST employs clamped B-Spline to ensure smooth transitions between consecutive166

action chunks. As introduced in Section 3, clamped B-Spline is a specialized variant of B-Spline167

that guarantees to start from the first control point and end at the last control point, which is utilized168

to generate seamlessly connected action sequences, as illustrated in Figure 1. To ensure smooth169

transitions, we directly set the first control point c0 to the last action of the previous sequence. We170

then compute the residual trajectory â by subtracting the contribution of the first basis function:171

â = a − c0Φ
P
0 . The remaining control points ĉ = [c1, c2, ...cN−1] are determined by solving the172

linear regression problem similar to equation 4: argminc ||Φ̂P (u)ĉ− â||2. Through this approach,173

BEAST consistently generates action sequences with mathematically guaranteed smooth transitions174

between chunks. This will be further discussed in our toy task experiment in Section 5.1.175

4.3 Combining BEAST tokens with different architectures176

Discrete Tokens. We first evaluate BEAST in a simplified setting with a decode-only transformer177

(see Figure 9) with CLIP [36] for language encoding and Film-conditioned ResNet-18 [37, 38] as178

5

0 1 2 3
Time

0.0

0.2

0.4

Po
sit

io
n

BEAST(ours)

0 1 2 3
Time

0.0

0.2

0.4

Po
sit

io
n

Binning

0 1 2 3
Time

0.0

0.2

0.4

Po
sit

io
n

Binning +AC

Figure 5: Comparison among BEAST, single-step binning tokenization and binning tokenization
with action chunking (AC). The comparison is conducted through the same auto-regressive model
with different tokenizers to fit the same ground truth cube splines given the same context points.
BEAST is smooth within each sequence and continuous at the transitions between sequences.

image encoder. Film-ResNets are used in many prior works given their high efficiency and strong179

performance [39, 40, 11] The proprioceptive state of robot is projected to the embedding dimension180

with a two-layer MLP. We employ parallel decoding with bi-directional attention to accelerate181

the inference. To further demonstrate the scalability of BEAST with large-pretrained models, we182

combine BEAST with Florence-2, a small, pretrained VLM with Encoder-Decoder architecture183

(0.77B parameters). Following the previous works on autoregressive VLAs [10, 16], we overwrite184

the least used 256 tokens in the VLM vocabulary as our action tokens. We also employ a parallel185

decoding technique for the Florence variant, which significantly improves the throughput and reduces186

the latency for action generation. We provide an in-depth overview in Figure 3.187

Continuous Tokens. We also explore the performance of combining BEAST with ACT [4]. ACT188

uses a conditional VAE (CVAE) with a Transformer Encoder-Decoder to predict a sequence of actions.189

We predict N BEAST continuous tokens, where each token has the dimension of D, instead of action190

sequences, this design choice keeps the temporal order inherent in the trajectory segments. Using the191

BEAST tokenization, we reduce the length of predicted token sequence by 6.67 times (from 100 to192

15) without sacrificing the task performance. In addition, our method enables smooth trajectories193

without requiring temporal aggregation.194

5 Experiments195

We conducted extensive evaluations in both simulated and real-world settings, targeting answering196

five key research questions (RQs): 1) What advantages does BEAST offer over commonly used197

binning-based tokenizers? 2) How does BEAST contribute to the performance on imitation learning198

benchmarks? 3) How does BEAST affect the training and inference efficiency? 4) Does BEAST199

generalize to real-world scenarios? 5) How do the design choices affect the performance of BEAST?200

BEAST is integrated into two different architectures: We combine BEAST and Florence-2 [32]201

and term this VLA variant as BEAST-F. In contrast to many baselines, we test BEAST-F without202

second-stage pretraining on large-scale robot datasets. We additionally apply BEAST to a small203

decoder-only transformer model (BEAST-D) and on top of a vanilla ACT [4] (BEAST-ACT).204

5.1 Comparing against binning-based tokenization205

ALOHA TransferCube ALOHA Insertion
0

50

100

6
0

54

14

83

20.6

83.2

22.6Su
cc

es
s

R
at

e
(%

)

DP-CNN π0 ACT BEAST-ACT

Figure 6: ALOHA Benchmark
results. The success rate is reported
over 500 episodes of evaluation.

To answer RQ1, we begin with a 1D toy task to investigate the206

advantages of BEAST over binning-based tokenization. We207

follow the autoregressive prediction pipeline used in previous208

works [10, 16]. Note that BEAST can be used for both autore-209

gressive prediction and parallel decoding. A small decoder-only210

transformer is trained to predict cubic splines from 3 control211

points. We compare against: 1) Single-step binning (denoted212

as Binning) [10], which discretizes each action into one of 256213

bins, and 2) Chunk-level binning (denoted as Binning+AC),214

which discretizes entire action sequences of fixed length. We215

generate 2000 trajectories, 1s each at 100Hz resolution. Each model is trained for 8k steps and216

evaluated on 200 test sequences. BEAST achieves the lowest MSE (0.0004± 0.0005), outperform-217

ing chunked binning (0.0009± 0.0013) and single-step binning (0.0215± 0.0216), with the latter218

performing two orders of magnitude worse. To simulate real-world action chunking [5], we repeat219

the rollout prediction three times. As visualized in Figure 5, single-step binning fails to capture220

6

Train→Test Method PrT Action Type VLM No. Instructions in a Row (1000 chains) Avg. Len.

1 2 3 4 5

ABC→D

Diff-P-CNN [5] × Diffusion × 63.5% 35.3% 19.4% 10.7% 6.4% 1.35
MDT [22] × Diffusion × 63.1% 42.9% 24.7% 15.1% 9.1% 1.55
OpenVLA [10] ✓ Discrete ✓ 91.3% 77.8% 62.0% 52.1% 43.5% 3.27
3DDA [41] × Diffusion × 93.8% 80.3% 66.2% 53.3% 41.2% 3.35
MoDE [40] ✓ Diffusion × 96.2% 88.9% 81.1% 71.8% 63.5% 4.01
VPP [42] ✓ Diffusion × 95.7% 91.2% 86.3% 81.0% 75.0% 4.29
BEAST-F (ours) × Discrete ✓ 99.8% 96.5% 89.3% 82.7% 74.4% 4.42

ABCD→D

Diff-P-CNN [5] × Diffusion × 86.3% 72.7% 60.1% 51.2% 41.7% 3.16
MoDE [40] ✓ Diffusion × 97.1% 92.5% 87.9% 83.5% 77.9% 4.39
MDT [22] × Diffusion × 98.6% 95.8% 91.6% 86.2% 80.1% 4.52
BEAST-F (ours) × Discrete ✓ 98.1% 96.2% 93.0% 89.3% 84.8% 4.61

Table 1: CALVIN Benchmark results for ABC and ABCD. The table reports average success rates
for individual tasks within instruction chains and the average rollout length (Avg. Len.) to complete
5 consecutive instructions, based on 1000 chains. Zero standard deviation indicates methods without
reported standard deviations. BEAST-F achieves SoTA performance in both tasks.

Spatial Object Goal Long Average
SR (↑) Rank (↓) SR (↑) Rank (↓) SR (↑) Rank (↓) SR (↑) Rank (↓) SR (↑) Rank (↓)

Diff-P-CNN 78.3 ± 1.1% 6 92.5 ± 0.7% 4 68.3 ± 1.2% 6 50.5 ± 1.3% 6 72.4 ± 0.7% 6
Octo 78.9 ± 1.0% 5 85.7 ± 0.9% 6 84.6 ± 0.9% 4 51.1 ± 1.3% 5 75.1 ± 0.6% 5
OpenVLA 84.7 ± 0.9% 4 88.4 ± 0.8% 5 79.2 ± 1.0% 5 53.7 ± 1.3% 4 76.5 ± 0.6% 4
π0 96.8% 1 98.8% 1 95.8% 1 85.2% 2 94.2% 1
π0-FAST 96.4% 2 96.8% 3 88.6% 3 60.2% 3 85.5% 3
BEAST-F 92.9 % 3 97.5 % 2 93.1 % 2 86.4 % 1 92.5% 2

Table 2: Experimental Results for the LIBERO Benchmarks. SR: Success Rate. Best results in
each column are shown in bold. BEAST-F achieves comparable performance state-of-the-art VLA,
despite with a much smaller model and without robot data pretraining.

temporal structure and produces erratic outputs. Chunked binning captures some temporal coherence221

but results in jerky transitions due to discretization and a lack of continuity across chunks. In contrast,222

BEAST generates smooth trajectories with minimal error and requires only 5 tokens per 100-step223

sequence, resulting in an approximately 20x reduction in inference steps.224

5.2 Strong Performance on Established Simulation Benchmarks225

To answer RQ2, we evaluate BEAST on established simulation benchmarks and compare with other226

SoTA imitation learning methods and VLAs.227

Simulation Benchmarks. CALVIN [34] features 34 tabletop manipulation tasks with a Franka228

Panda robot using delta end-effector control across four scene configurations (splits A-D). The dataset229

contains 24, 000 language-annotated demonstrations. We evaluate two settings: CALVIN ABC230

(zero-shot generalization) and CALVIN ABCD (scaling with more data). Performance is measured231

by success rates on sequential tasks and mean sequence length completion. All evaluations require232

policies to follow free-form language instructions and complete 5 tasks in sequence across 1, 000233

different instruction chains. LIBERO [35] tests a delta-EEF controlled Panda Robot across various234

scenes with 130 diverse tasks. We report results on four specialized benchmark settings with 10 tasks235

each (Long, Spatial, Object, and Goal). Success is measured as the percentage of successful task236

completions across 50 trials per task. ALOHA [4] tests an absolute joint position controlled ALOHA237

Robot in two challenging bi-manual manipulation tasks that require high precision.238

Baselines. We compare our Vision-Language-Action Model (VLA) against SOTA VLA policies239

and specialized approaches, using results reported in prior publications for fair comparison. Our240

primary baselines are OpenVLA [10] (7.7B parameters), π0 [43] (3.3B parameters), π0-FAST[16]241

(3.3B parameters), and a standard Diffusion Policy using a CNN [5]. For the bi-manual manipulation242

tasks, we compare the BEAST-ACT variant with small action chunking models to a vanilla ACT [4],243

π0, and a standard Diffusion Policy using a CNN.244

Results. Table 1 summarizes the performance of all policies on the CALVIN benchmark, where245

BEAST-F outperforms a diverse set of baselines across two settings, establishing a new state of the art.246

Unlike the most competitive baselines, BEAST-F achieves these results without relying on additional247

pretraining. On the various LIBERO benchmarks, our tokenizer achieves strong performance, being248

surpassed only by π0-VLA. However, π0 relies on large-scale pretraining to reach its performance,249

7

whereas BEAST-F remains competitive without it. In the most challenging long-horizon task setting,250

LIBERO-LONG, BEAST-F outperforms all baselines. See Table 2 for detailed results. For the251

bi-manual tasks (Figure 6), BEAST-ACT and ACT demonstrate significantly better performance than252

π0. BEAST-ACT achieved a higher success rate than vanilla ACT in both tasks.253

5.3 Advantages in Training and Inference Speed254

Method Throughputs (Hz)↑ Latency (s)↓
DP (0.26B) 130.67 0.341
OpenVLA (7B) 6.09 0.164
π0 (3.3B) 288.11 0.104
BEAST-F (0.77B) 617.3 0.019

Table 3: Mean inference efficiency (1000
steps in Bf16). All policies except OpenVLA
use chunking length 50 (48 for DP).

Next, we verify the inference and training efficiency255

of BEAST to answer RQ3. Specifically, we consider256

the VLA variant BEAST-F and compare it against257

several recent VLAs [10, 43, 16], as well as a stan-258

dard CNN-based Diffusion Policy[5]. We measure259

the inference efficiency on an RTX 4090 GPU. As260

shown in Table 3, BEAST-F demonstrates clear com-261

putational advantages. It achieves a throughput of262

617.3 Hz (e.g., generates approximately 617 actions per second), which is 2.14× faster than π0,263

4.72× faster than Diffusion Policy, and 101.4× faster than OpenVLA. In addition, BEAST-F achieves264

the lowest latency at just 19 milliseconds, where latency refers to the time taken to generate one265

action chunk. These gains are due to the parallel decoding, which enables generating the action266

sequence in a single forward pass.267

10k 20k 30k
0

0.2

0.4

0.6

0.8

1

Training Steps

Su
cc

es
s

R
at

e

BEAST-F π0 FAST

Figure 7: LIBERO-LONG.

We further evaluate the training efficiency by comparing BEAST-268

F against π0 and π0-FAST. To exclude the bias introduced by269

the pretraining datasets, we trained all models without robot270

dataset pretraining. We report the success rate on LIBERO-271

LONG benchmark every 10k training steps in Figure 7. BEAST-F272

reaches a approximate 80% success rate at just 20k steps, whereas273

π0 reaches only around 20% at the same point. Notably, π0-FAST274

shows no success till 30k steps. π0-FAST’s poor performance275

indicates a heavy reliance on robot dataset pretraining, which276

further underscores the training efficiency of our method.277

5.4 Real-World Evaluation with 3 Different Robot Setups278

To answer RQ4, we assess the effectiveness of BEAST across diverse real-world scenarios with279

varying data collection frequencies. We evaluate BEAST on 8 challenging manipulation tasks across280

3 different experimental setups: 1) Franka Challenge: Four tabletop manipulation tasks (Towel Fold,281

Sweep, Mixer, Pour) using a joint position-controlled Franka robot with data collected at 20Hz, 2)282

Real Kitchen: Three manipulation tasks on a toy kitchen setup (Move Banana, Open Oven, Move283

Pot) with data collected at 35Hz, 3) Bi-manual ALOHA: A cube transfer task using a bi-manual284

ALOHA robot with data recorded at 60Hz. For each task in the Franka Challenge and Franka285

Kitchen setups, we conduct 10 evaluation runs per method, while for the ALOHA cube transfer286

task, we performed 30 runs. The average success rate for each task is reported in Figure 8. For tasks287

comprising multiple stages, we track intermediate milestones to better evaluate the completion of288

each sub-task. Appendix D provides a detailed description of all setups and tasks. We compare289

BEAST against π0[43], π0-FAST[16], and ACT [4]. We finetune π0 and π0-FAST from the official290

pretrained checkpoints for an additional 60k and 40k steps, respectively. For each method, we train291

one multitask model for all four tasks, Real Franka tasks, and another for the Real Kitchen tasks. The292

results demonstrate that BEAST-F achieves 52.86% success rate and BEAST-D achieves 76.57%. In293

contrast π0 achieves 53.43% and FAST only 28.5%. Interestingly, the smaller model (BEAST-D)294

outperforms all the VLAs, including the Florence variant with BEAST. We attribute this effect to295

the relatively small real-world dataset of only 50 demonstrations for each task. For the Aloha Cube296

Transfer task, we compare BEAST-ACT against the base ACT that directly predicts action sequences297

in the joint space. BEAST-ACT achieves 70% success, which is 21% higher than the base ACT.298

5.5 Ablation Studies299

To answer RQ5, we conduct ablation studies to analyze the impact of various design choices of300

BEAST. All experiments in this section use the Florence variant of BEAST and are evaluated on the301

CALVIN ABC benchmark. All results are summarized in Table 4.302

8

Towel Fold Sweep Mixer Pour Move Banana Open Oven Move Pot Cube Transfer
0

50

100

49

23

38 40

13

61

80

46

0

47

60

8080 80

67

0

68

0

75

93

70 70

35

77

100

91

70

A
vg

.S
uc

ce
ss

R
at

e
(%

)

ACT FAST π0 BEAST-F BEAST-D BEAST-ACT

Figure 8: Experimental Results on Real-World Robot Tasks. This figure shows the average task
success rate across eight real-world tasks. Each task and method was evaluated over 10 runs (30 runs
for Cube Transfer). Success rates are measured at the sub-task level. Detailed descriptions of all
sub-tasks are provided in Appendix D. BEAST variants achieve strong performance in real world.

BEAST vs. Binning-based Tokenizer. We first compare BEAST against a commonly used binning-303

based tokenizer in VLAs[10], which discretizes single-step actions into one of 256 uniformly304

distributed bins. We implement this baseline using the same Florence-2 backbone and denote it as305

Binning-F. It is trained to perform autoregressive token prediction. As shown in Table 4, BEAST306

significantly outperforms the binning-based approach, improving the average sequence length from307

1.41 to 4.43, underscoring the effectiveness of BEAST as an action tokenizer.308

Variant Avg. Len.
BEAST-F [10] 4.43
BEAST-F [5] 3.88
BEAST-F [15] 4.14
BEAST-F [20] 2.71
BEAST-SF 3.98
BEAST-CT 3.93
Binning-F 1.41

Table 4: Average Se-
quence Lengths for
BEAST-F Ablations on
CALVIN ABC.

Discrete Tokens vs. Continuous Tokens. Next, we study the choices309

between using discrete tokens or continuous tokens (denoted as BEAST-310

CT) as the action representation. In the continuous variant, the final311

hidden states of the Florence decoder are directly mapped to continuous312

BEAST tokens via a linear layer, and the learning objective is changed313

from cross-entropy to L1 regression loss. Results show that discrete314

tokens yield 12.7% better performance. We attribute this to the greater315

expressiveness of discrete representations, which are better suited to316

model multi-modal distributions.317

Choice of Number of Basis Functions. Next, we evaluate how the318

number of basis functions affects the policy performance. We evaluate319

using N = [5, 10, 15, 20] basis functions to model action chunks of 20320

steps, denoted as BEAST-F [N] in Table 4. Fewer basis functions lead to fewer tokens for prediction,321

but it also reduces the expressiveness of the B-Spline representation. On the contrary, more basis322

functions increase representational power but reduce compression, which can also negatively influence323

the performance.324

Scaling with Model Size. Finally, we assess the impact of model size on task performance. We com-325

pare BEAST-F, which uses Florence-2-large (0.77B parameters), with BEAST-SF, a smaller variant326

based on Florence-2-base (0.23B parameters). The larger model achieves an 11.3% improvement in327

average sequence length, demonstrating that BEAST benefits from increased model capacity. This328

result highlights its potential as a scalable building block for larger VLAs.329

6 Conclusion330

We present BEAST, a B-spline–based tokenizer for continuous robot actions that compresses arbitrary331

trajectories into fixed-length token sequences while preserving smooth transitions between segments.332

BEAST supports discrete and continuous outputs and integrates seamlessly with various model archi-333

tectures. By exploiting parallel decoding, it delivers fast inference and high compression rates without334

sacrificing performance. In extensive experiments—both in simulation and on real robots—BEAST335

consistently achieves strong results, demonstrating the effectiveness of our tokenization strategy.336

Limitations: Although BEAST delivers strong performance, it is sensitive to the choice of the337

number of B-spline basis functions, which can markedly affect task outcomes (Section 5.5). The338

optimal count depends on the smoothness and sampling frequency of the trajectory; our experiments339

indicate that using 5–10 bases works well for one-second robot trajectories. Future Work: We plan340

to extend BEAST to large-scale robot pretraining and to integrate continuous token representations341

with diffusion- and flow-matching objectives, aiming to further boost downstream task performance.342

9

References343

[1] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters,344

et al. An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics,345

7(1-2):1–179, 2018.346

[2] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation347

learning. Advances in neural information processing systems, 32, 2019.348

[3] Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured349

data. Robotics: Science and Systems XVII, 2020. URL https://api.semanticscholar.350

org/CorpusID:235657751.351

[4] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual352

manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.353

[5] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and354

Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings355

of Robotics: Science and Systems (RSS), 2023.356

[6] Lucy Lai, Ann Zixiang Huang, and Samuel J Gershman. Action chunking as policy compression.357

2022.358

[7] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural359

networks. In International conference on machine learning, pages 1747–1756. PMLR, 2016.360

[8] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Re-361

current neural network based language model. In Interspeech, volume 2, pages 1045–1048.362

Makuhari, 2010.363

[9] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language364

understanding by generative pre-training. 2018.365

[10] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,366

Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source367

vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.368

[11] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea369

Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz,370

Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry371

Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav372

Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta,373

Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar,374

Pannag Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan,375

Huong Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun376

Xu, Tianhe Yu, and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at377

scale. In arXiv preprint arXiv:2212.06817, 2022.378

[12] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-379

manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-380

action models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818,381

2023.382

[13] Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafiullah,383

and Lerrel Pinto. Behavior generation with latent actions. In International Conference on384

Machine Learning, pages 26991–27008. PMLR, 2024.385

[14] Andrew Szot, Bogdan Mazoure, Harsh Agrawal, R Devon Hjelm, Zsolt Kira, and Alexander To-386

shev. Grounding multimodal large language models in actions. Advances in Neural Information387

Processing Systems, 37:20198–20224, 2024.388

[15] Andrew Szot, Bogdan Mazoure, Omar Attia, Aleksei Timofeev, Harsh Agrawal, Devon Hjelm,389

Zhe Gan, Zsolt Kira, and Alexander Toshev. From multimodal llms to generalist embodied390

agents: Methods and lessons. arXiv preprint arXiv:2412.08442, 2024.391

10

https://api.semanticscholar.org/CorpusID:235657751
https://api.semanticscholar.org/CorpusID:235657751
https://api.semanticscholar.org/CorpusID:235657751

[16] Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,392

Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action393

models. arXiv preprint arXiv:2501.09747, 2025.394

[17] Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior395

transformers: Cloning k modes with one stone. Advances in neural information processing396

systems, 35:22955–22968, 2022.397

[18] Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models:398

Optimizing speed and success. arXiv preprint arXiv:2502.19645, 2025.399

[19] William J. Gordon and Richard F. Riesenfeld. B-spline curves and surfaces. Computer400

Aided Geometric Design, pages 95–126, 1974. URL https://api.semanticscholar.org/401

CorpusID:118698454.402

[20] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey403

Levine, and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning.404

In Conference on Robot Learning, pages 991–1002. PMLR, 2022.405

[21] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal conditioned imitation406

learning using score-based diffusion policies. In Proceedings of Robotics: Science and Systems407

(RSS), 2023.408

[22] Moritz Reuss, Ömer Erdinç Yağmurlu, Fabian Wenzel, and Rudolf Lioutikov. Multimodal409

diffusion transformer: Learning versatile behavior from multimodal goals. In Robotics: Science410

and Systems, 2024.411

[23] Paul Maria Scheikl, Nicolas Schreiber, Christoph Haas, Niklas Freymuth, Gerhard Neumann,412

Rudolf Lioutikov, and Franziska Mathis-Ullrich. Movement primitive diffusion: Learning413

gentle robotic manipulation of deformable objects. IEEE Robotics and Automation Letters,414

2024.415

[24] Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng,416

Chaomin Shen, Yaxin Peng, et al. Tinyvla: Towards fast, data-efficient vision-language-action417

models for robotic manipulation. arXiv preprint arXiv:2409.12514, 2024.418

[25] Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul419

Wohlhart, Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer420

web knowledge to robotic control. In 7th Annual Conference on Robot Learning.421

[26] Zhongyi Zhou, Yichen Zhu, Minjie Zhu, Junjie Wen, Ning Liu, Zhiyuan Xu, Weibin Meng,422

Ran Cheng, Yaxin Peng, Chaomin Shen, et al. Chatvla: Unified multimodal understanding and423

robot control with vision-language-action model. arXiv preprint arXiv:2502.14420, 2025.424

[27] Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan425

Gu, Bin Zhao, Dong Wang, and Xuelong Li. Spatialvla: Exploring spatial representations for426

visual-language-action models. 2025.427

[28] Open X-Embodiment Collaboration. Open X-Embodiment: Robotic learning datasets and RT-X428

models. https://arxiv.org/abs/2310.08864, 2023.429

[29] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words430

with subword units. In Katrin Erk and Noah A. Smith, editors, Proceedings of the 54th Annual431

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages432

1715–1725, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:433

10.18653/v1/P16-1162. URL https://aclanthology.org/P16-1162/.434

[30] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-spline techniques.435

Springer Science & Business Media, 2002.436

[31] C de Boor. Subroutine package for calculating with b-splines. In Los Alamos Sci. Lab. Los437

Alamos, NM, USA, 1971.438

11

https://api.semanticscholar.org/CorpusID:118698454
https://api.semanticscholar.org/CorpusID:118698454
https://api.semanticscholar.org/CorpusID:118698454
https://arxiv.org/abs/2310.08864
https://aclanthology.org/P16-1162/

[32] Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng,439

Ce Liu, and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision440

tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,441

pages 4818–4829, 2024.442

[33] Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,443

Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for444

synergizing cognition and action in robotic manipulation. arXiv preprint arXiv:2411.19650,445

2024.446

[34] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark447

for language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE448

Robotics and Automation Letters, 7(3):7327–7334, 2022.449

[35] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:450

Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information451

Processing Systems, 36, 2024.452

[36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,453

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual454

models from natural language supervision. In International conference on machine learning,455

pages 8748–8763. PmLR, 2021.456

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image457

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,458

pages 770–778, 2016.459

[38] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film:460

Visual reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on461

Artificial Intelligence, volume 32, 2018.462

[39] Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and463

Vikash Kumar. Roboagent: Generalization and efficiency in robot manipulation via semantic464

augmentations and action chunking, 2023.465

[40] Moritz Reuss, Jyothish Pari, Pulkit Agrawal, and Rudolf Lioutikov. Efficient diffusion trans-466

former policies with mixture of expert denoisers for multitask learning. In The Thirteenth467

International Conference on Learning Representations, 2025. URL https://openreview.468

net/forum?id=nDmwloEl3N.469

[41] Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy470

diffusion with 3d scene representations. In 8th Annual Conference on Robot Learning, 2024.471

URL https://openreview.net/forum?id=gqCQxObVz2.472

[42] Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke Zhang,473

Koushil Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction policy: A generalist robot474

policy with predictive visual representations, 2024. URL https://arxiv.org/abs/2412.475

14803.476

[43] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo477

Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi_0: A vision-language-action flow478

model for general robot control. arXiv preprint arXiv:2410.24164, 2024.479

A Architectures480

12

https://openreview.net/forum?id=nDmwloEl3N
https://openreview.net/forum?id=nDmwloEl3N
https://openreview.net/forum?id=nDmwloEl3N
https://openreview.net/forum?id=gqCQxObVz2
https://arxiv.org/abs/2412.14803
https://arxiv.org/abs/2412.14803
https://arxiv.org/abs/2412.14803

Figure 9: Overview of BEAST-D: BEAST-D is a small transformer model that integrates BEAST. It
replaces the causal attention in the decoder-only transformer with bidirectional attention to enable
fast parallel decoding. BEAST-D integrates ResNet as image encoder and CLIP as language encoder.

B Baselines Implementation481

ACT: Action Trucking Transformer (ACT) adopts an encoder-decoder architecture similar to CAVE.482

It uses a transformer encoder to map the input action sequence into a latent vector. During inference,483

a latent variable is sampled to represent the mode variation. Combined with image conditions,484

this latent variable is fed into a transformer decoder to generate a chunk of actions. We use the485

implementation provided by Lerobot as our baseline.486

π0: π0 is a generalist robot policy that combines a pre-trained VLM backbone with a lightweight487

action expert module trained from scratch to generate continuous actions using flow matching. A key488

innovation of π0 is its cross-embodiment training strategy, which integrates over 900M timesteps of489

data from 7 distinct robot embodiments and 68 manipulation tasks, enabling generalization across490

heterogeneous hardware platforms. The model is trained using a two-phase pipeline: a large-scale491

pre-training stage leveraging Internet-scale semantic priors, followed by post-training on curated492

task-specific data to enhance performance on complex, dexterous tasks.493

FAST: FAST introduces a novel compression-based tokenization method, named Frequency-space494

Action Sequence Tokenization, for training autoregressive VLA models on high-frequency, dexterous495

robot control tasks. Unlike prior VLAs that struggle with discretizing continuous actions at high496

frequencies, FAST leverages the Discrete Cosine Transform (DCT) and Byte-Pair Encoding (BPE) to497

produce compact, information-rich action tokens, marking a significant advance in training efficiency.498

C Hyperparameters499

Hyperparameter LIBERO CALVIN
SPATIAL OBJECT GOAL LONG ABCD→D ABC→D

Action Sequence Length 20 20 20 20 20 20
Number of Basis 10 10 10 10 10 10
Vocabulary Size 256 256 256 256 256 256
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Betas [0.9, 0.95] [0.9, 0.95] [0.9, 0.95] [0.9, 0.95] [0.9, 0.95] [0.9, 0.95]
Learning Rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Batch Size 128 128 128 128 32 32
Train Steps (k) 35 35 50 70 30 30

Table 5: Summary of BEAST-F hyperparameters for all simulation experiments.

13

Hyperparameter REAL KITCHEN REAL FRANKA

Action Sequence Length 80 20
Number of Basis 15 5
Vocabulary Size 256 256
Optimizer AdamW AdamW
Betas [0.9, 0.95] [0.9, 0.95]
Learning Rate 2e-5 2e-5
Batch Size 96 96
Train Steps (k) 60 60

Table 6: BEAST-F hyperparameters for real robot experiments.

Hyperparameter REAL KITCHEN REAL FRANKA

Action Sequence Length 80 20
Number of Basis 10 5
Vocabulary Size 256 256
Transformer Layers 6 6
Attention Heads 8 8
Embedding Dim 256 256
Image Encoder FiLM-ResNet18 FiLM-ResNet18
Goal Lang Encoder CLIP ViT-B/32 CLIP ViT-B/32
Attn Dropout 0.1 0.1
Residual Dropout 0.1 0.1
MLP Dropout 0.1 0.1
Optimizer AdamW AdamW
Betas [0.9, 0.999] [0.9, 0.999]
Learning Rate 3e-4 3e-4
Weight Decay (Trans/Other) 0.05 / 0.05 0.05 / 0.05
Batch Size 384 256
Train Steps (k) 60 60
EMA False False

Table 7: BEAST-D hyperparameters for real robot experiments.

D Real Robots Setup & Tasks500

D.1 Robot System Details501

Real Kitchen. This setup consists of a single Franka Emika robot operating within a simulated502

kitchen environment. It is equipped with two OAK-D Lite cameras providing top-down and side503

perspectives, each delivering visual input at a resolution of 250×250 pixels. The robot has an504

8-dimensional configuration and action space, which includes seven joint and one gripper states.505

Real Franka. This configuration features a single Franka Emika robot situated in a general-purpose506

tabletop environment designed for more challenging manipulation tasks. Visual observations are507

obtained from two Orbbec Femto Bolt cameras, positioned to capture left and right perspectives. The508

input images are resized to a resolution of 180×320 pixels. The robot configuration and action space509

remain the same as the Franka Kitchen setup.510

ALOHA. Based on the ALOHA setup [4], the system incorporates two 6-DoF Trossen ViperX511

robotic arms. The environment includes two wrist-mounted and an additional top-mounted Logitech512

C920 camera. The combined system operates in a 14-dimensional configuration and action space,513

accounting for both arms’ joint and gripper states.514

D.2 Tasks Description and Evaluation Metrics515

In the Real Kitchen setup, the robot performs pick-and-place tasks, whereas in the Real Franka setup,516

the robot is required to execute more diverse manipulation behaviors, such as sweeping or pouring.517

For each task performed by the Franka Emika robot, a scoring rubric is defined to quantitatively518

evaluate task progression. The specific evaluation criteria for each task are detailed below.519

14

• Open the door: The task begins under one of two initial conditions: with or without an520

object placed on the stove. The objective is for the robot to open the oven door. Task521

completion is evaluated as a success or a failure. Although the task involves three key522

motion phases, as shown in Figure 10 (Open the door), all the policies under evaluation are523

capable of completing the task in its entirety once the robot successfully grasps the handle.524

A trial is considered successful if the robot fully opens the oven door by first grasping the525

handle and then using its fingers to push the opposite side of the door, ensuring that it is526

completely open. We conducted four evaluation trials with no object on the stove and one527

with a randomly placed object.528

• Banana into the pot: In this task, the robot aims to grasp a banana and place it on or into a529

pot. The initial conditions are categorized based on the relative positions of the pot and the530

banana, as well as the position of the banana relative to the corresponding stove. The pot531

is assumed to be correctly positioned on the stove. The banana, however, may be placed532

directly on the stove in one of three orientations or slightly offset to the left or right. A total533

of 10 trials are conducted across these different initial configurations. Task performance is534

scored on a scale of 0 to 3, with one point awarded for each of the following criteria: (1)535

successfully positioning the banana between the robot’s two fingers, (2) lifting the banana536

off the surface, and (3) placing the banana onto or into the pot. If the robot attempts to grasp537

more than three times, exhibits jerky hand movements, or significantly displaces the pot538

from its original position, the subtask is awarded 0.5 points to reflect partial completion.539

• Pot into the sink: This task is similar to the one described previously. The initial conditions540

in this task differ based on the relative position between the pot and the two stoves. Task541

performance is evaluated using three criteria: (1) successfully positioning the pot between542

the robot’s two fingers - note that directly grasping the pot with its handle is considered an543

unstable grasp and is awarded 0.5 points, (2) lifting the pot off the surface, and (3) placing544

the pot in the sink. In this task, penalties for jerky hand movements are still applied.545

• Towel folding: The objective of this task is to neatly fold a towel that is randomly oriented546

at the beginning of each trial. One point is awarded for each of the following: lifting a corner547

of the towel, completing the fold, and achieving accurate alignment of the folded towel.548

• Sweep: In the Sweep task, the positions of the broom, dustpan, and trash vary across549

trials. Four pieces of trash are placed on the table for the robot to clean. A maximum550

of four points can be awarded, based on the following criteria: successfully grasping the551

broom, performing a single sweeping motion, demonstrating the ability to execute multiple552

sweeping motions, and sweeping all trash into the dustpan.553

• Mixer: In this task, a cup and a mixer are placed on the table. The robot’s objective is to554

sequentially (1) open the mixer, (2) grasp the cup, (3) place the cup on the mixer’s platform,555

and (4) close the mixer. Task performance is evaluated based on the successful completion556

of these four subtasks, with one point awarded for each. Notably, unlike previous tasks, the557

language instructions provided to the robot consist of three separate sentences corresponding558

to the actions of opening/closing the mixer and placing the cup onto the platform.559

• Pour: In the Pour task, the source cup is initially placed on a platform and contains plastic560

pellets that simulate liquid. The objective is to pour the pellets into a designated target561

cup. Task performance is evaluated out of a maximum of 4 points, awarded based on the562

following criteria: (1) successfully grasping the source cup, (2) pouring the pellets into the563

target cup, (3) ensuring that all pellets are poured into the target cup, and (4) placing the564

source cup back on the platform.565

• ALOHA cube transfer: In the cube transfer task, the ALOHA robot is designed to pick566

up a randomly placed cube using its right arm and then transfer the cube to its left arm.567

The performance of the task is evaluated by assigning scores to three specific steps: (1)568

successfully picking up the cube, (2) successfully initiating the transfer with the left arm569

making contact with the cube, and (3) the left arm successfully taking possession of the570

cube while the right arm releases it.571

15

Pot into the
sink

Banana into
the pot

Open the
Door

Fold the
towel

Sweep

Arrange

Pour

Figure 10: Key frames for real world different tasks

16

E Compute Resources572

We train and evaluate all the models based on our private clusters. Each node contains 4 NVIDIA573

A100, for BEAST-F we use 4 GPUs for training. For BEAST-D and BEAST-ACT, we use one GPU574

for training. We report the average training cost in Table 8.575

BEAST-F BEAST-D BEAST-ACT

vRAM 64GB 8GB 15GB
steps/hour 6000 10000 11000

Table 8: Training time for each variant.

17

NeurIPS Paper Checklist576

The checklist is designed to encourage best practices for responsible machine learning research,577

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove578

the checklist: The papers not including the checklist will be desk rejected. The checklist should579

follow the references and follow the (optional) supplemental material. The checklist does NOT count580

towards the page limit.581

Please read the checklist guidelines carefully for information on how to answer these questions. For582

each question in the checklist:583

• You should answer [Yes] , [No] , or [NA] .584

• [NA] means either that the question is Not Applicable for that particular paper or the585

relevant information is Not Available.586

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).587

The checklist answers are an integral part of your paper submission. They are visible to the588

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it589

(after eventual revisions) with the final version of your paper, and its final version will be published590

with the paper.591

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.592

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a593

proper justification is given (e.g., "error bars are not reported because it would be too computationally594

expensive" or "we were unable to find the license for the dataset we used"). In general, answering595

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we596

acknowledge that the true answer is often more nuanced, so please just use your best judgment and597

write a justification to elaborate. All supporting evidence can appear either in the main paper or the598

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification599

please point to the section(s) where related material for the question can be found.600

IMPORTANT, please:601

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",602

• Keep the checklist subsection headings, questions/answers and guidelines below.603

• Do not modify the questions and only use the provided macros for your answers.604

1. Claims605

Question: Do the main claims made in the abstract and introduction accurately reflect the606

paper’s contributions and scope?607

Answer: [Yes]608

Justification: Our main contribution is a novel action tokenizer that encodes action sequences609

into compact discrete or continuous tokens using B-splines, which is outlined and described610

in the abstract and the introduction and the method section. Claims wrt to the performance611

of the distilled policies are verified in the experiment section.612

Guidelines:613

• The answer NA means that the abstract and introduction do not include the claims614

made in the paper.615

• The abstract and/or introduction should clearly state the claims made, including the616

contributions made in the paper and important assumptions and limitations. A No or617

NA answer to this question will not be perceived well by the reviewers.618

• The claims made should match theoretical and experimental results, and reflect how619

much the results can be expected to generalize to other settings.620

• It is fine to include aspirational goals as motivation as long as it is clear that these goals621

are not attained by the paper.622

2. Limitations623

Question: Does the paper discuss the limitations of the work performed by the authors?624

18

Answer: [Yes]625

Justification: We discuss the limitations of this work in the Sec. 6626

Guidelines:627

• The answer NA means that the paper has no limitation while the answer No means that628

the paper has limitations, but those are not discussed in the paper.629

• The authors are encouraged to create a separate "Limitations" section in their paper.630

• The paper should point out any strong assumptions and how robust the results are to631

violations of these assumptions (e.g., independence assumptions, noiseless settings,632

model well-specification, asymptotic approximations only holding locally). The authors633

should reflect on how these assumptions might be violated in practice and what the634

implications would be.635

• The authors should reflect on the scope of the claims made, e.g., if the approach was636

only tested on a few datasets or with a few runs. In general, empirical results often637

depend on implicit assumptions, which should be articulated.638

• The authors should reflect on the factors that influence the performance of the approach.639

For example, a facial recognition algorithm may perform poorly when image resolution640

is low or images are taken in low lighting. Or a speech-to-text system might not be641

used reliably to provide closed captions for online lectures because it fails to handle642

technical jargon.643

• The authors should discuss the computational efficiency of the proposed algorithms644

and how they scale with dataset size.645

• If applicable, the authors should discuss possible limitations of their approach to646

address problems of privacy and fairness.647

• While the authors might fear that complete honesty about limitations might be used by648

reviewers as grounds for rejection, a worse outcome might be that reviewers discover649

limitations that aren’t acknowledged in the paper. The authors should use their best650

judgment and recognize that individual actions in favor of transparency play an impor-651

tant role in developing norms that preserve the integrity of the community. Reviewers652

will be specifically instructed to not penalize honesty concerning limitations.653

3. Theory assumptions and proofs654

Question: For each theoretical result, does the paper provide the full set of assumptions and655

a complete (and correct) proof?656

Answer: [NA]657

Justification: This paper does not include theoretical results.658

Guidelines:659

• The answer NA means that the paper does not include theoretical results.660

• All the theorems, formulas, and proofs in the paper should be numbered and cross-661

referenced.662

• All assumptions should be clearly stated or referenced in the statement of any theorems.663

• The proofs can either appear in the main paper or the supplemental material, but if664

they appear in the supplemental material, the authors are encouraged to provide a short665

proof sketch to provide intuition.666

• Inversely, any informal proof provided in the core of the paper should be complemented667

by formal proofs provided in appendix or supplemental material.668

• Theorems and Lemmas that the proof relies upon should be properly referenced.669

4. Experimental result reproducibility670

Question: Does the paper fully disclose all the information needed to reproduce the main ex-671

perimental results of the paper to the extent that it affects the main claims and/or conclusions672

of the paper (regardless of whether the code and data are provided or not)?673

Answer: [Yes]674

Justification: We describe how the baselines are implemented in Appendix. B and corre-675

sponding hyperparameters to reproduce the experiment results in the Appendix. C.676

19

Guidelines:677

• The answer NA means that the paper does not include experiments.678

• If the paper includes experiments, a No answer to this question will not be perceived679

well by the reviewers: Making the paper reproducible is important, regardless of680

whether the code and data are provided or not.681

• If the contribution is a dataset and/or model, the authors should describe the steps taken682

to make their results reproducible or verifiable.683

• Depending on the contribution, reproducibility can be accomplished in various ways.684

For example, if the contribution is a novel architecture, describing the architecture fully685

might suffice, or if the contribution is a specific model and empirical evaluation, it may686

be necessary to either make it possible for others to replicate the model with the same687

dataset, or provide access to the model. In general. releasing code and data is often688

one good way to accomplish this, but reproducibility can also be provided via detailed689

instructions for how to replicate the results, access to a hosted model (e.g., in the case690

of a large language model), releasing of a model checkpoint, or other means that are691

appropriate to the research performed.692

• While NeurIPS does not require releasing code, the conference does require all submis-693

sions to provide some reasonable avenue for reproducibility, which may depend on the694

nature of the contribution. For example695

(a) If the contribution is primarily a new algorithm, the paper should make it clear how696

to reproduce that algorithm.697

(b) If the contribution is primarily a new model architecture, the paper should describe698

the architecture clearly and fully.699

(c) If the contribution is a new model (e.g., a large language model), then there should700

either be a way to access this model for reproducing the results or a way to reproduce701

the model (e.g., with an open-source dataset or instructions for how to construct702

the dataset).703

(d) We recognize that reproducibility may be tricky in some cases, in which case704

authors are welcome to describe the particular way they provide for reproducibility.705

In the case of closed-source models, it may be that access to the model is limited in706

some way (e.g., to registered users), but it should be possible for other researchers707

to have some path to reproducing or verifying the results.708

5. Open access to data and code709

Question: Does the paper provide open access to the data and code, with sufficient instruc-710

tions to faithfully reproduce the main experimental results, as described in supplemental711

material?712

Answer: [Yes]713

Justification: We will open source the codes in the near future once they are cleaned up714

and anonymity is not a concern anymore. All the experiments we conducted were using715

open-source datasets. In the experiments section and appendix D we provide information to716

get access to the data.717

Guidelines:718

• The answer NA means that paper does not include experiments requiring code.719

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/720

public/guides/CodeSubmissionPolicy) for more details.721

• While we encourage the release of code and data, we understand that this might not be722

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not723

including code, unless this is central to the contribution (e.g., for a new open-source724

benchmark).725

• The instructions should contain the exact command and environment needed to run to726

reproduce the results. See the NeurIPS code and data submission guidelines (https:727

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.728

• The authors should provide instructions on data access and preparation, including how729

to access the raw data, preprocessed data, intermediate data, and generated data, etc.730

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide scripts to reproduce all experimental results for the new731

proposed method and baselines. If only a subset of experiments are reproducible, they732

should state which ones are omitted from the script and why.733

• At submission time, to preserve anonymity, the authors should release anonymized734

versions (if applicable).735

• Providing as much information as possible in supplemental material (appended to the736

paper) is recommended, but including URLs to data and code is permitted.737

6. Experimental setting/details738

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-739

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the740

results?741

Answer: [Yes]742

Justification: We provide hyperparameter lists for each of the algorithms, how they were743

chosen and type of optimizer in appendix C.744

Guidelines:745

• The answer NA means that the paper does not include experiments.746

• The experimental setting should be presented in the core of the paper to a level of detail747

that is necessary to appreciate the results and make sense of them.748

• The full details can be provided either with the code, in appendix, or as supplemental749

material.750

7. Experiment statistical significance751

Question: Does the paper report error bars suitably and correctly defined or other appropriate752

information about the statistical significance of the experiments?753

Answer: [Yes]754

Justification: The experiments describe the number of trials and show the deviations in the755

result tables.756

Guidelines:757

• The answer NA means that the paper does not include experiments.758

• The authors should answer "Yes" if the results are accompanied by error bars, confi-759

dence intervals, or statistical significance tests, at least for the experiments that support760

the main claims of the paper.761

• The factors of variability that the error bars are capturing should be clearly stated (for762

example, train/test split, initialization, random drawing of some parameter, or overall763

run with given experimental conditions).764

• The method for calculating the error bars should be explained (closed form formula,765

call to a library function, bootstrap, etc.)766

• The assumptions made should be given (e.g., Normally distributed errors).767

• It should be clear whether the error bar is the standard deviation or the standard error768

of the mean.769

• It is OK to report 1-sigma error bars, but one should state it. The authors should770

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis771

of Normality of errors is not verified.772

• For asymmetric distributions, the authors should be careful not to show in tables or773

figures symmetric error bars that would yield results that are out of range (e.g. negative774

error rates).775

• If error bars are reported in tables or plots, The authors should explain in the text how776

they were calculated and reference the corresponding figures or tables in the text.777

8. Experiments compute resources778

Question: For each experiment, does the paper provide sufficient information on the com-779

puter resources (type of compute workers, memory, time of execution) needed to reproduce780

the experiments?781

Answer: [Yes]782

21

Justification: The used compute resources are described in appendix E.783

Guidelines:784

• The answer NA means that the paper does not include experiments.785

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,786

or cloud provider, including relevant memory and storage.787

• The paper should provide the amount of compute required for each of the individual788

experimental runs as well as estimate the total compute.789

• The paper should disclose whether the full research project required more compute790

than the experiments reported in the paper (e.g., preliminary or failed experiments that791

didn’t make it into the paper).792

9. Code of ethics793

Question: Does the research conducted in the paper conform, in every respect, with the794

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?795

Answer: [Yes]796

Justification: Yes797

Guidelines:798

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.799

• If the authors answer No, they should explain the special circumstances that require a800

deviation from the Code of Ethics.801

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-802

eration due to laws or regulations in their jurisdiction).803

10. Broader impacts804

Question: Does the paper discuss both potential positive societal impacts and negative805

societal impacts of the work performed?806

Answer: [NA]807

Justification: There is no societal impact of the work performed.808

Guidelines:809

• The answer NA means that there is no societal impact of the work performed.810

• If the authors answer NA or No, they should explain why their work has no societal811

impact or why the paper does not address societal impact.812

• Examples of negative societal impacts include potential malicious or unintended uses813

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations814

(e.g., deployment of technologies that could make decisions that unfairly impact specific815

groups), privacy considerations, and security considerations.816

• The conference expects that many papers will be foundational research and not tied817

to particular applications, let alone deployments. However, if there is a direct path to818

any negative applications, the authors should point it out. For example, it is legitimate819

to point out that an improvement in the quality of generative models could be used to820

generate deepfakes for disinformation. On the other hand, it is not needed to point out821

that a generic algorithm for optimizing neural networks could enable people to train822

models that generate Deepfakes faster.823

• The authors should consider possible harms that could arise when the technology is824

being used as intended and functioning correctly, harms that could arise when the825

technology is being used as intended but gives incorrect results, and harms following826

from (intentional or unintentional) misuse of the technology.827

• If there are negative societal impacts, the authors could also discuss possible mitigation828

strategies (e.g., gated release of models, providing defenses in addition to attacks,829

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from830

feedback over time, improving the efficiency and accessibility of ML).831

11. Safeguards832

Question: Does the paper describe safeguards that have been put in place for responsible833

release of data or models that have a high risk for misuse (e.g., pretrained language models,834

image generators, or scraped datasets)?835

22

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]836

Justification: This paper poses no such risks.837

Guidelines:838

• The answer NA means that the paper poses no such risks.839

• Released models that have a high risk for misuse or dual-use should be released with840

necessary safeguards to allow for controlled use of the model, for example by requiring841

that users adhere to usage guidelines or restrictions to access the model or implementing842

safety filters.843

• Datasets that have been scraped from the Internet could pose safety risks. The authors844

should describe how they avoided releasing unsafe images.845

• We recognize that providing effective safeguards is challenging, and many papers do846

not require this, but we encourage authors to take this into account and make a best847

faith effort.848

12. Licenses for existing assets849

Question: Are the creators or original owners of assets (e.g., code, data, models), used in850

the paper, properly credited and are the license and terms of use explicitly mentioned and851

properly respected?852

Answer: [Yes]853

Justification: We do used pretrained models and open source code base for baselines, which854

is clearly stated in both experiment section and appendix.855

Guidelines:856

• The answer NA means that the paper does not use existing assets.857

• The authors should cite the original paper that produced the code package or dataset.858

• The authors should state which version of the asset is used and, if possible, include a859

URL.860

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.861

• For scraped data from a particular source (e.g., website), the copyright and terms of862

service of that source should be provided.863

• If assets are released, the license, copyright information, and terms of use in the864

package should be provided. For popular datasets, paperswithcode.com/datasets865

has curated licenses for some datasets. Their licensing guide can help determine the866

license of a dataset.867

• For existing datasets that are re-packaged, both the original license and the license of868

the derived asset (if it has changed) should be provided.869

• If this information is not available online, the authors are encouraged to reach out to870

the asset’s creators.871

13. New assets872

Question: Are new assets introduced in the paper well documented and is the documentation873

provided alongside the assets?874

Answer: [NA]875

Justification: We plan to open source the code in the future.876

Guidelines:877

• The answer NA means that the paper does not release new assets.878

• Researchers should communicate the details of the dataset/code/model as part of their879

submissions via structured templates. This includes details about training, license,880

limitations, etc.881

• The paper should discuss whether and how consent was obtained from people whose882

asset is used.883

• At submission time, remember to anonymize your assets (if applicable). You can either884

create an anonymized URL or include an anonymized zip file.885

14. Crowdsourcing and research with human subjects886

23

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper887

include the full text of instructions given to participants and screenshots, if applicable, as888

well as details about compensation (if any)?889

Answer: [NA]890

Justification: This paper does not involve crowdsourcing nor research with human subjects.891

Guidelines:892

• The answer NA means that the paper does not involve crowdsourcing nor research with893

human subjects.894

• Including this information in the supplemental material is fine, but if the main contribu-895

tion of the paper involves human subjects, then as much detail as possible should be896

included in the main paper.897

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,898

or other labor should be paid at least the minimum wage in the country of the data899

collector.900

15. Institutional review board (IRB) approvals or equivalent for research with human901

subjects902

Question: Does the paper describe potential risks incurred by study participants, whether903

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)904

approvals (or an equivalent approval/review based on the requirements of your country or905

institution) were obtained?906

Answer: [NA]907

Justification: This paper does not involve crowdsourcing nor research with human subjects.908

Guidelines:909

• The answer NA means that the paper does not involve crowdsourcing nor research with910

human subjects.911

• Depending on the country in which research is conducted, IRB approval (or equivalent)912

may be required for any human subjects research. If you obtained IRB approval, you913

should clearly state this in the paper.914

• We recognize that the procedures for this may vary significantly between institutions915

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the916

guidelines for their institution.917

• For initial submissions, do not include any information that would break anonymity (if918

applicable), such as the institution conducting the review.919

16. Declaration of LLM usage920

Question: Does the paper describe the usage of LLMs if it is an important, original, or921

non-standard component of the core methods in this research? Note that if the LLM is used922

only for writing, editing, or formatting purposes and does not impact the core methodology,923

scientific rigorousness, or originality of the research, declaration is not required.924

Answer: [NA]925

Justification: The core method development of this paper does not involve LLMs as any926

important, original, or non-standard components.927

Guidelines:928

• The answer NA means that the core method development in this research does not929

involve LLMs as any important, original, or non-standard components.930

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)931

for what should or should not be described.932

24

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	B-Spline Encoded Action Sequence Tokenizer
	Action Sequence Tokenization with B-Spline Tokenizer
	Enforcing Smooth Transition with Clamped B-Spline
	Combining BEAST tokens with different architectures

	Experiments
	Comparing against binning-based tokenization
	Strong Performance on Established Simulation Benchmarks
	Advantages in Training and Inference Speed
	Real-World Evaluation with 3 Different Robot Setups
	Ablation Studies

	Conclusion
	Architectures
	Baselines Implementation
	Hyperparameters
	Real Robots Setup & Tasks
	Robot System Details
	Tasks Description and Evaluation Metrics

	Compute Resources

