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Abstract

The imputation of missing values in time series has many applications in healthcare
and finance. While autoregressive models are natural candidates for time series
imputation, score-based diffusion models have recently outperformed existing
counterparts including autoregressive models in many tasks such as image genera-
tion and audio synthesis, and would be promising for time series imputation. In
this paper, we propose Conditional Score-based Diffusion models for Imputation
(CSDI), a novel time series imputation method that utilizes score-based diffusion
models conditioned on observed data. Unlike existing score-based approaches,
the conditional diffusion model is explicitly trained for imputation and can exploit
correlations between observed values. On healthcare and environmental data, CSDI
improves by 40-65% over existing probabilistic imputation methods on popular
performance metrics. In addition, deterministic imputation by CSDI reduces the
error by 5-20% compared to the state-of-the-art deterministic imputation methods.
Furthermore, CSDI can also be applied to time series interpolation and probabilistic
forecasting, and is competitive with existing baselines. The code is available at
https://github.com/ermongroup/CSDI.

1 Introduction

Multivariate time series are abundant in real world applications such as finance, meteorology and
healthcare. These time series data often contain missing values due to various reasons, including
device failures and human errors [1, 2, 3]. Since missing values can hamper the interpretation of a
time series, many studies have addressed the task of imputing missing values using machine learning
techniques [4, 5, 6]. In the past few years, imputation methods based on deep neural networks have
shown great success for both deterministic imputation [7, 8, 9] and probabilistic imputation [10].
These imputation methods typically utilize autoregressive models to deal with time series.

Score-based diffusion models – a class of deep generative models and generate samples by gradually
converting noise into a plausible data sample through denoising – have recently achieved state-of-
the-art sample quality in many tasks such as image generation [11, 12] and audio synthesis [13, 14],
outperforming counterparts including autoregressive models. Diffusion models can also be used to
impute missing values by approximating the scores of the posterior distribution obtained from the
prior by conditioning on the observed values [12, 15, 16]. While these approximations may work
well in practice, they do not correspond to the exact conditional distribution.

In this paper, we propose CSDI, a novel probabilistic imputation method that directly learns the
conditional distribution with conditional score-based diffusion models. Unlike existing score-based
approaches, the conditional diffusion model is designed for imputation and can exploit useful
information in observed values. We illustrate the procedure of time series imputation with CSDI in
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Figure 1: The procedure of time series imputation with CSDI. The reverse process pθ gradually
converts random noise into plausible time series, conditioned on observed values xco

0 . Dashed lines in
each box represent observed values, which are plotted in order to show the relationship with generated
imputation and not included in each xta

t .

Figure 1. We start imputation from random noise on the left of the figure and gradually convert the
noise into plausible time series through the reverse process pθ of the conditional diffusion model. At
each step t, the reverse process removes noise from the output of the previous step (t+ 1). Unlike
existing score-based diffusion models, the reverse process can take observations (on the top left of
the figure) as a conditional input, allowing the model to exploit information in the observations for
denoising. We utilize an attention mechanism to capture the temporal and feature dependencies of
time series.

For training the conditional diffusion model, we need observed values (i.e., conditional information)
and ground-truth missing values (i.e., imputation targets). However, in practice we do not know the
ground-truth missing values, or training data may not contain missing values at all. Then, inspired by
masked language modeling, we develop a self-supervised training method that separates observed
values into conditional information and imputation targets. We note that CSDI is formulated for
general imputation tasks, and is not restricted to time series imputation.

Our main contributions are as follows:

• We propose conditional score-based diffusion models for probabilistic imputation (CSDI),
and implement CSDI for time series imputation. To train the conditional diffusion model,
we develop a self-supervised training method.

• We empirically show that CSDI improves the continuous ranked probability score (CRPS) by
40-65% over existing probabilistic methods on healthcare and environmental data. Moreover,
deterministic imputation with CSDI decreases the mean absolute error (MAE) by 5-20%
compared to the state-of-the-art methods developed for deterministic imputation.

• We demonstrate that CSDI can also be applied to time series interpolations and probabilistic
forecasting, and is competitive with existing baselines designed for these tasks.

2 Related works

Time series imputations with deep learning Previous studies have shown deep learning models
can capture the temporal dependency of time series and give more accurate imputation than statistical
methods. A popular approach using deep learning is to use RNNs, including LSTMs and GRUs,
for sequence modeling [17, 8, 7]. Subsequent studies combined RNNs with other methods to
improve imputation performance, such as GANs [9, 18, 19] and self-training [20]. Among them,
the combination of RNNs with attention mechanisms is particularly successful for imputation and
interpolation of time series [21, 22]. While these methods focused on deterministic imputation,
GP-VAE [10] has been recently developed as a probabilistic imputation method.

Score-based generative models Score-based generative models, including score matching with
Langevin dynamics [23] and denoising diffusion probabilistic models [11], have outperformed
existing methods with other deep generative models in many domains, such as images [23, 11],
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audio [13, 14], and graphs [24]. Most recently, TimeGrad [25] utilized diffusion probabilistic models
for probabilistic time series forecasting. While the method has shown state-of-the-art performance, it
cannot be applied to time series imputation due to the use of RNNs to handle past time series.

3 Background

3.1 Multivariate time series imputation

We consider N multivariate time series with missing values. Let us denote the values of each time
series as X = {x1:K,1:L} ∈ RK×L where K is the number of features and L is the length of time
series. While the length L can be different for each time series, we treat the length of all time
series as the same for simplicity, unless otherwise stated. We also denote an observation mask as
M = {m1:K,1:L} ∈ {0, 1}K×L where mk,l = 0 if xk,l is missing, and mk,l = 1 if xk,l is observed.
We assume time intervals between two consecutive data entries can be different, and define the
timestamps of the time series as s = {s1:L} ∈ RL. In summary, each time series is expressed as
{X,M, s}.
Probabilistic time series imputation is the task of estimating the distribution of the missing values of
X by exploiting the observed values of X. We note that this definition of imputation includes other
related tasks, such as interpolation, which imputes all features at target time points, and forecasting,
which imputes all features at future time points.

3.2 Denoising diffusion probabilistic models

Let us consider learning a model distribution pθ(x0) that approximates a data distribution q(x0).
Let xt for t = 1, . . . , T be a sequence of latent variables in the same sample space as x0, which is
denoted as X . Diffusion probabilistic models [26] are latent variable models that are composed of
two processes: the forward process and the reverse process. The forward process is defined by the
following Markov chain:

q(x1:T | x0) :=

T∏
t=1

q(xt | xt−1) where q(xt | xt−1) := N
(√

1− βtxt−1, βtI
)

(1)

and βt is a small positive constant that represents a noise level. Sampling of xt has the closed-form
written as q(xt | x0) = N (xt;

√
αtx0, (1 − αt)I) where α̂t := 1 − βt and αt :=

∏t
i=1 α̂i. Then,

xt can be expressed as xt =
√
αtx0 + (1− αt)ε where ε ∼ N (0, I). On the other hand, the reverse

process denoises xt to recover x0, and is defined by the following Markov chain:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1 | xt), xT ∼ N (0, I),

pθ(xt−1 | xt) := N (xt−1;µθ(xt, t), σθ(xt, t)I).

(2)

Ho et al. [11] has recently proposed denoising diffusion probabilistic models (DDPM), which
considers the following specific parameterization of pθ(xt−1 | xt):

µθ(xt, t) =
1

αt

(
xt −

βt√
1− αt

εθ(xt, t)

)
, σθ(xt, t) = β̃

1/2
t where β̃t =

{
1−αt−1

1−αt
βt t > 1

β1 t = 1

(3)

where εθ is a trainable denoising function. We denote µθ(xt, t) and σθ(xt, t) in Eq. (3) as
µDDPM(xt, t, εθ(xt, t)) and σDDPM(xt, t), respectively. The denoising function in Eq. (3) also corre-
sponds to a rescaled score model for score-based generative models [23]. Under this parameterization,
Ho et al. [11] have shown that the reverse process can be trained by solving the following optimization
problem:

min
θ
L(θ) := min

θ
Ex0∼q(x0),ε∼N (0,I),t||ε− εθ(xt, t)||22 where xt =

√
αtx0 + (1− αt)ε. (4)

The denoising function εθ estimates the noise vector ε that was added to its noisy input xt. This
training objective also be viewed as a weighted combination of denoising score matching used for
training score-based generative models [23, 27, 12]. Once trained, we can sample x0 from Eq. (2).
We provide the details of DDPM in Appendix A.
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3.3 Imputation with diffusion models

Here, we focus on general imputation tasks that are not restricted to time series imputation. Let us
consider the following imputation problem: given a sample x0 which contains missing values, we
generate imputation targets xta

0 ∈ X ta by exploiting conditional observations xco
0 ∈ X co, where

X ta and X co are a part of the sample space X and vary per sample. Then, the goal of probabilistic
imputation is to estimate the true conditional data distribution q(xta

0 | xco
0 ) with a model distribution

pθ(x
ta
0 | xco

0 ). We typically impute all missing values using all observed values, and set all observed
values as xco

0 and all missing values as xta
0 , respectively. Note that time series imputation in Section 3.1

can be considered as a special case of this task.

Let us consider modeling pθ(xta
0 | xco

0 ) with a diffusion model. In the unconditional case, the reverse
process pθ(x0:T ) is used to define the final data model pθ(x0). Then, a natural approach is to extend
the reverse process in Eq. (2) to a conditional one:

pθ(x
ta
0:T | xco

0 ) := p(xta
T )

T∏
t=1

pθ(x
ta
t−1 | xta

t ,x
co
0 ), xta

T ∼ N (0, I),

pθ(x
ta
t−1 | xta

t ,x
co
0 ) := N (xta

t−1;µθ(x
ta
t , t | xco

0 ), σθ(x
ta
t , t | xco

0 )I).

(5)

However, existing diffusion models are generally designed for data generation and do not take
conditional observations xco

0 as inputs. To utilize diffusion models for imputation, previous stud-
ies [12, 15, 16] approximated the conditional reverse process pθ(xta

t−1 | xta
t ,x

co
0 ) with the reverse

process in Eq. (2). With this approximation, in the reverse process they add noise to both the target
and the conditional observations xco

0 . While this approach can impute missing values, the added noise
can harm useful information in the observations. This suggests that modeling pθ(xta

t−1 | xta
t ,x

co
0 )

without approximations can improve the imputation quality. Hereafter, we call the model defined in
Section 3.2 as the unconditional diffusion model.

4 Conditional score-based diffusion model for imputation (CSDI)

In this section, we propose CSDI, a novel imputation method based on a conditional score-based
diffusion model. The conditional diffusion model allows us to exploit useful information in observed
values for accurate imputation. We provide the reverse process of the conditional diffusion model,
and then develop a self-supervised training method. We note that CSDI is not restricted to time series.

4.1 Imputation with CSDI

We focus on the conditional diffusion model with the reverse process in Eq. (5) and aim to model
the conditional distribution p(xta

t−1 | xta
t ,x

co
0 ) without approximations. Specifically, we extend the

parameterization of DDPM in Eq. (3) to the conditional case. We define a conditional denoising
function εθ : (X ta ×R | X co)→ X ta, which takes conditional observations xco

0 as inputs. Then, we
consider the following parameterization with εθ:

µθ(x
ta
t , t | xco

0 ) = µDDPM(xta
t , t, εθ(x

ta
t , t | xco

0 )), σθ(x
ta
t , t | xco

0 ) = σDDPM(xta
t , t) (6)

where µDDPM and σDDPM are the functions defined in Section 3.2. Given the function εθ and data
x0, we can sample xta

0 using the reverse process in Eq. (5) and Eq. (6). For the sampling, we set all
observed values of x0 as conditional observations xco

0 and all missing values as imputation targets xta
0 .

Note that the conditional model is reduced to the unconditional one under no conditional observations
and can also be used for data generation.

4.2 Training of CSDI

Since Eq. (6) uses the same parameterization as Eq. (3) and the difference between Eq. (3) and
Eq. (6) is only the form of εθ, we can follow the training procedure for the unconditional model in
Section 3.2. Namely, given conditional observations xco

0 and imputation targets xta
0 , we sample noisy

targets xta
t =

√
αtx

ta
0 + (1− αt)ε, and train εθ by minimizing the following loss function:

min
θ
L(θ) := min

θ
Ex0∼q(x0),ε∼N (0,I),t||(ε− εθ(x

ta
t , t | xco

0 ))||22 (7)
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Figure 2: The self-supervised training procedure of CSDI. On the middle left rectangle, the green and
white areas represent observed and missing values, respectively. The observed values are separated
into red imputation targets xta

0 and blue conditional observations xco
0 , and used for training of εθ.

The colored areas in each rectangle mean the existence of values.

Table 1: Imputation targets xta
0 and conditional observations xco

0 for CSDI at training and sampling.

imputation targets xta
0 conditional observations xco

0

sampling (imputation) all missing values all observed values

training a subset of the observed values
(sampled by a target choice strategy)

the remaining
observed values

where the dimension of ε corresponds to that of the imputation targets xta
0 .

However, this training procedure has an issue. Since we do not know the ground-truth missing values
in practice, it is not clear how to select xco

0 and xta
0 from a training sample x0. To address this

issue, we develop a self-supervised learning method inspired by masked language modeling [28]. We
illustrate the training procedure in Figure 2. Given a sample x0, we separate observed values of x0

into two parts, and set one of them as imputation targets xta
0 and the other as conditional observations

xco
0 . We choose the targets xta

0 through a target choice strategy, which is discussed in Section 4.3.
Then, we sample noisy targets xta

t and train εθ by solving Eq. (7). We summarize how we set xco
0

and xta
0 for training and sampling in Table 1. We also provide the algorithm of training and sampling

in Appendix B.1.

4.3 Choice of imputation targets in self-supervised learning

In the proposed self-supervised learning, the choice of imputation targets is important. We provide
four target choice strategies depending on what is known about the missing patterns in the test dataset.
We describe the algorithm for these strategies in Appendix B.2.

(1) Random strategy : this strategy is used when we do not know about missing patterns, and randomly
chooses a certain percentage of observed values as imputation targets. The percentage is sampled
from [0%, 100%] to adapt to various missing ratios in the test dataset.

(2) Historical strategy: this strategy exploits missing patterns in the training dataset. Given a
training sample x0, we randomly draw another sample x̃0 from the training dataset. Then, we set
the intersection of the observed indices of x0 and the missing indices of x̃0 as imputation targets.
The motivation of this strategy comes from structured missing patterns in the real world. For
example, missing values often appear consecutively in time series data. When missing patterns in the
training and test dataset are highly correlated, this strategy helps the model learn a good conditional
distribution.
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(3) Mix strategy: this strategy is the mix of the above two strategies. The historical strategy may
lead to overfitting to missing patterns in the training dataset. The Mix strategy can benefit from
generalization by the random strategy and structured missing patterns by the historical strategy.

(4) Test pattern strategy: when we know the missing patterns in the test dataset, we just set the patterns
as imputation targets. For example, this strategy is used for time series forecasting, since the missing
patterns in the test dataset are fixed to given future time points.

5 Implementation of CSDI for time series imputation

Figure 3: The architecture of 2D attention. Given a tensor with K features, L length, and C channels,
the temporal Transformer layer takes tensors with (1, L, C) shape as inputs and learns temporal
dependency. The feature Transformer layer takes tensors with (K, 1, C) shape as inputs and learns
feature dependency. The output shape of each layer is the same as the input shape.

In this section, we implement CSDI for time series imputation. For the implementation, we need the
inputs and the architecture of εθ.

First, we describe how we process time series data as inputs for CSDI. As defined in Section 3.1, a
time series is denoted as {X, M, s}, and the sample space X of X is RK×L. We want to handle X
in the sample space RK×L for learning dependencies in a time series using a neural network, but
the conditional denoising function εθ takes inputs xta

t and xco
0 in varying sample spaces that are a

part of X as shown in white areas of xta
t and xco

0 in Figure 2. To address this issue, we adjust the
conditional denoising function εθ to inputs in the fixed sample space RK×L. Concretely, we fix the
shape of the inputs xta

t and xco
0 to (K × L) by applying zero padding to xta

t and xco
0 . In other words,

we set zero values to white areas for xta
t and xco

0 in Figure 2. To indicate which indices are padded,
we introduce the conditional mask mco ∈ {0, 1}K×L as an additional input to εθ, which corresponds
to xco

0 and takes value 1 for indices of conditional observations. For ease of handling, we also fix the
output shape in the sample space RK×L by applying zero padding. Then, the conditional denoising
function εθ(x

ta
t , t | xco

0 ,m
co) can be written as εθ : (RK×L × R | RK×L × {0, 1}K×L)→ RK×L.

We discuss the effect of this adjustment on training and sampling in Appendix D.

Under the adjustment, we set conditional observations xco
0 and imputation targets xta

0 for time series
imputation by following Table 1. At sampling time, since conditional observations xco

0 are all
observed values, we set mco = M and xco

0 = mco �X where � represents element-wise products.
For training, we sample xta

0 and xco
0 through a target choice strategy, and set the indices of xco

0 as
mco. Then, xco

0 is written as xco
0 = mco �X and xta

0 is obtained as xta
0 = (M−mco)�X.

Next, we describe the architecture of εθ. We adopt the architecture in DiffWave [13] as the base,
which is composed of multiple residual layers with residual channel C. We refine this architecture
for time series imputation. We set the diffusion step T = 50. We discuss the main differences from
DiffWave (see Appendix E.1 for the whole architecture and details).

Attention mechanism To capture temporal and feature dependencies of multivariate time series,
we utilize a two dimensional attention mechanism in each residual layer instead of a convolution
architecture. As shown in Figure 3, we introduce temporal Transformer layer and a feature Trans-
former layer, which are 1-layer Transformer encoders. The temporal Transformer layer takes tensors
for each feature as inputs to learn temporal dependency, whereas the feature Transformer layer takes
tensors for each time point as inputs to learn temporal dependency.

Note that while the length L can be different for each time series as mentioned in Section 3.1, the
attention mechanism allows the model to handle various lengths. For batch training, we apply zero
padding to each sequence so that the lengths of the sequences are the same.
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Side information In addition to the arguments of εθ, we provide some side information as ad-
ditional inputs to the model. First, we use time embedding of s = {s1:L} to learn the temporal
dependency. Following previous studies [29, 30], we use 128-dimensions temporal embedding.
Second, we exploit categorical feature embedding for K features, where the dimension is 16.

6 Experimental results

In this section, we demonstrate the effectiveness of CSDI for time series imputation. Since CSDI
can be applied to other related tasks such as interpolation and forecasting, we also evaluate CSDI for
these tasks to show the flexibility of CSDI. Due to the page limitation, we provide the detailed setup
for experiments including train/validation/test splits and hyperparameters in Appendix E.2.

6.1 Time series imputation

Dataset and experiment settings We run experiments for two datasets. The first one is the
healthcare dataset in PhysioNet Challenge 2012 [1], which consists of 4000 clinical time series with
35 variables for 48 hours from intensive care unit (ICU). Following previous studies [7, 8], we process
the dataset to hourly time series with 48 time steps. The processed dataset contains around 80%
missing values. Since the dataset has no ground-truth, we randomly choose 10/50/90% of observed
values as ground-truth on the test data.

The second one is the air quality dataset [2]. Following previous studies [7, 21], we use hourly
sampled PM2.5 measurements from 36 stations in Beijing for 12 months and set 36 consecutive
time steps as one time series. There are around 13% missing values and the missing patterns are not
random. The dataset contains artificial ground-truth, whose missing patterns are also structured.

For both dataset, we run each experiment five times. As the target choice strategy for training, we
adopt the random strategy for the healthcare dataset and the mix of the random and historical strategy
for the air quality dataset, based on the missing patterns of each dataset.

Results of probabilistic imputation CSDI is compared with three baselines. 1) Multitask GP [31]:
the method learns the covariance between timepoints and features simultaneously. 2) GP-VAE [10]:
the method showed the state-of-the-art results for probabilistic imputation. 3) V-RIN [32]: a deter-
ministic imputation method that uses the uncertainty quantified by VAE to improve imputation. For
V-RIN, we regard the quantified uncertainty as probabilistic imputation. In addition, we compare
CSDI with imputation using the unconditional diffusion model in order to show the effectiveness of
the conditional one (see Appendix C for training and imputation with the unconditional diffusion
model).

We first show quantitative results. We adopt the continuous ranked probability score (CRPS) [33] as
the metric, which is freuquently used for evaluating probabilistic time series forecasting and measures
the compatibility of an estimated probability distribution with an observation. We generate 100
samples to approximate the probability distribution over missing values and report the normalized
average of CRPS for all missing values following previous studies [34] (see Appendix E.3 for details
of the computation).

Table 2: Comparing CRPS for probabilistic imputation baselines and CSDI (lower is better). We
report the mean and the standard error of CRPS for five trials.

healthcare air quality

10% missing 50% missing 90% missing

Multitask GP [31] 0.489(0.005) 0.581(0.003) 0.942(0.010) 0.301(0.003)
GP-VAE [10] 0.574(0.003) 0.774(0.004) 0.998(0.001) 0.397(0.009)
V-RIN [32] 0.808(0.008) 0.831(0.005) 0.922(0.003) 0.526(0.025)
unconditional 0.360(0.007) 0.458(0.008) 0.671(0.007) 0.135(0.001)
CSDI (proposed) 0.238(0.001) 0.330(0.002) 0.522(0.002) 0.108(0.001)

7



Figure 4: Examples of probabilistic time series imputation for the healthcare dataset with 50%
missing (left) and the air quality dataset (right). The red crosses show the observed values and the
blue circles show the ground-truth imputation targets. For each method, median values of imputations
are shown as the line and 5% and 95% quantiles are shown as the shade.

Table 2 represents CRPS for each method. CSDI reduces CRPS by 40-65% compared to the existing
baselines for both datasets. This indicates that CSDI generates more realistic distributions than other
methods. We also observe that the imputation with CSDI outperforms that with the unconditional
model. This suggests CSDI benefits from explicitly modeling the conditional distribution.

We provide imputation examples in Figure 4. For the air quality dataset, CSDI (green solid line)
provides accurate imputations with high confidence, while those by GP-VAE (gray dashed line) are
far from ground-truth. CSDI also gives reasonable imputations for the healthcare dataset. These
results indicate that CSDI exploits temporal and feature dependencies to provide accurate imputations.
We give more examples in Appendix G.

Table 3: Comparing MAE for deterministic imputation methods and CSDI. We report the mean and
the standard error for five trials. The asterisks mean the results of the method are cited from the
original paper.

healthcare air quality

10% missing 50% missing 90% missing

V-RIN [32] 0.271(0.001) 0.365(0.002) 0.606(0.006) 25.4(0.62)
BRITS [7] 0.284(0.001) 0.368(0.002) 0.517(0.002) 14.11(0.26)
BRITS [7] (*) 0.278 − − 11.56
GLIMA [21] (*) 0.265 − − 10.54
RDIS [20] 0.319(0.002) 0.419(0.002) 0.631(0.002) 22.11(0.35)
unconditional 0.326(0.008) 0.417(0.010) 0.625(0.010) 12.13(0.07)
CSDI (proposed) 0.217(0.001) 0.301(0.002) 0.481(0.003) 9.60(0.04)

Results of deterministic imputation We demonstrate that CSDI also provides accurate determin-
istic imputations, which are obtained as the median of 100 generated samples. We compare CSDI
with four baselines developed for deterministic imputation including GLIMA [21], which combined
recurrent imputations with an attention mechanism to capture temporal and feature dependencies and
showed the state-of-the-art performance. These methods are based on autoregressive models. We use
the original implementations except RDIS.

We evaluate each method by the mean absolute error (MAE). In Table 3, CSDI improves MAE by
5-20% compared to the baselines. This suggests that the conditional diffusion model is effective to
learn temporal and feature dependencies for imputation. For the healthcare dataset, the gap between
the baselines and CSDI is particularly significant when the missing ratio is small, because more
observed values help CSDI capture dependencies.
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Table 4: Comparing the state-of-the-art interpolation methods with CSDI for the healthcare dataset.
We report the mean and the standard error of CRPS for five trials.

10% missing 50% missing 90% missing

Latent ODE [35] 0.700(0.002) 0.676(0.003) 0.761(0.010)
mTANs [22] 0.526(0.004) 0.567(0.003) 0.689(0.015)
CSDI (proposed) 0.380(0.002) 0.418(0.001) 0.556(0.003)

6.2 Interpolation of irregularly sampled time series

Dataset and experiment settings We use the same healthcare dataset as the previous section, but
process the dataset as irregularly sampled time series, following previous studies [22, 35]. Since the
dataset has no ground-truth, we randomly choose 10/50/90% of time points and use observed values
at these time points as ground-truth on the test data. As the target choice strategy for training, we
adopt the random strategy, which is adjusted for interpolation so that some time points are sampled.

Results We compare CSDI with two baselines including mTANs [22], which utilized an attention
mechanism and showed state-of-the-art results for the interpolation of irregularly sampled time series.
We generate 100 samples to approximate the probability distribution as with the previous section.
The result is shown in Table 4. CSDI outperforms the baselines for all cases.

Table 5: Comparing probabilistic forecasting methods with CSDI. We report the mean and the
standard error of CRPS-sum for three trials. The baseline results are cited from the original paper.
’TransMAF’ is the abbreviation for ’Transformer MAF’.

solar electricity traffic taxi wiki

GP-copula [34] 0.337(0.024) 0.024(0.002) 0.078(0.002) 0.208(0.183) 0.086(0.004)
TransMAF [36] 0.301(0.014) 0.021(0.000) 0.056(0.001) 0.179(0.002) 0.063(0.003)
TLAE [37] 0.124(0.033) 0.040(0.002) 0.069(0.001) 0.130(0.006) 0.241(0.001)
TimeGrad [25] 0.287(0.020) 0.021(0.001) 0.044(0.006) 0.114(0.020) 0.049(0.002)
CSDI (proposed) 0.298(0.004) 0.017(0.000) 0.020(0.001) 0.123(0.003) 0.047(0.003)

6.3 Time series Forecasting

Dataset and Experiment settings We use five datasets that are commonly used for evaluating
probabilistic time series forecasting. Each dataset is composed of around 100 to 2000 features. We
predict all features at future time steps using past time series. We use the same prediction steps as
previous studies [34, 37]. For the target choice strategy, we adopt the Test pattern strategy.

Results We compare CSDI with four baselines. Specifically, TimeGrad [25] combined the diffusion
model with a RNN-based encoder. We evaluate each method for CRPS-sum, which is CRPS for
the distribution of the sum of all time series across K features and accounts for joint effect (see
Appendix E.3 for details).

In Table 5, CSDI outperforms the baselines for electricity and traffic datasets, and is competitive
with the baselines as a whole. The advantage of CSDI over baselines for forecasting is smaller than
that for imputation in Section 6.1. We hypothesize it is because the datasets for forecasting seldom
contains missing values and are suitable for existing encoders including RNNs. For imputation, it is
relatively difficult for RNNs to handle time series due to missing values.

7 Conclusion

In this paper, we have proposed CSDI, a novel approach to impute multivariate time series with
conditional diffusion models. We have shown that CSDI outperforms the existing probabilistic and
deterministic imputation methods.
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There are some interesting directions for future work. One direction is to improve the computation
efficiency. While diffusion models generate plausible samples, sampling is generally slower than
other generative models. To mitigate the issue, several recent studies leverage an ODE solver to
accelerate the sampling procedure [12, 38, 13]. Combining our method with these approaches would
likely improve the sampling efficiency.

Another direction is to extend CSDI to downstream tasks such as classifications. Many previous
studies have shown that accurate imputation improves the performance on downstream tasks [7, 18,
22]. Since conditional diffusion models can learn temporal and feature dependencies with uncertainty,
joint training of imputations and downstream tasks using conditional diffusion models would be
helpful to improve the performance of the downstream tasks.

Finally, although our focus was on time series, it would be interesting to explore CSDI as imputation
technique on other modalities.
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