
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DPM: DUAL PREFERENCES-BASED MULTI-AGENT
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Preference-based Reinforcement Learning (PbRL), which optimizes reward func-
tions using preference feedback, is a promising approach for environments where
handcrafted reward modeling is challenging. Especially in sparse-reward envi-
ronments, feedback-based reward modeling achieves notable performance gains
by transforming sparse feedback signals into dense ones. However, most PbRL
research has primarily focused on single-agent environments, with limited attention
to multi-agent environments. In this paper, we propose Dual Preferences-based
Multi-Agent Reinforcement Learning (DPM), which extends PbRL to multi-agent
tasks by introducing dual preferences comparing not only whole trajectories but
also individual agent contributions during transitions. Furthermore, DPM replaces
human preferences with those generated by LLMs to train the reward functions. Ex-
perimental results in the StarCraft Multi-Agent Challenge (SMAC) and SMACv2
environments demonstrate significant performance improvements over baselines,
indicating the efficacy of DPM in optimizing individual reward functions and
enhancing performances in sparse reward settings.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has demonstrated strong performance
across various domains (Du & Ding, 2021; Oroojlooy & Hajinezhad, 2023). However, reinforcement
learning-based decision-making methodologies have limited performance in environments where
the reward signals are rarely given hence learning the optimal policy is challenging. The situation
worsens in multi-agent scenarios since exploration is much harder due to larger state and action space,
and each agent’s behavior can be assessed only with a shared reward signal.

Preference-based Reinforcement Learning (PbRL) is one notable approach to addressing sparse
reward challenges. By training a reward model based on human preferences, PbRL can transform a
sparse reward environment into a dense reward environment, thereby allowing for the facile resolution
of issues arising from sparse rewards. Recent works have demonstrated that PbRL effectively solves
single-agent reinforcement learning tasks in sparse reward setting or even without rewards from the
environments, proving PbRL to be an effective alternative (Lee et al., 2021a; Kim et al., 2023).

However, a challenge in applying PbRL to MARL arises from the limitation in optimizing the
reward function and its application in MARL has been explored in only a few studies (Zhu et al.,
2024). Common methods that rely on a single preference type comparing trajectory pairs struggle to
accurately assess the contributions of individual agents, making it difficult to optimize the reward
functions. In particular, trajectory preferences pose the challenging temporal credit assignment
problem, where it is difficult to identify states or actions within a trajectory that influence the reward
(Wirth et al., 2017). This issue is further exacerbated by the expansive space in MARL. For example,
as depicted in Figure 1 (Left), even within a single trajectory, cooperative and non-cooperative
behaviors are mixed, so identifying non-cooperative actions through trajectory comparison alone
becomes challenging.

In this paper, we present the Dual Preferences-based Multi-Agent Reinforcement Learning (DPM), a
model that utilizes Preference-based Reinforcement Learning (PbRL) to tackle the sparse reward issue
in Multi-Agent Reinforcement Learning (MARL). DPM provides agent-specific reward information
by facilitating comparisons not only between trajectories but also across agents. By integrating
preferences that assess the contributions of individual agents, DPM enhances the optimization of
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Figure 1: Motivating Examples (Left) An example of trajectory selected for preference feed-
back in the SMAC 3m scenario. Within a trajectory, there are both cooperative(t = 13) and
non-cooperative(t = 19) scenes, and even within a single scene(t = 16), there are agents exhibiting
cooperative behavior and those that do not. This makes it difficult to train the reward models based
solely on trajectory comparisons. (Right) Comparison of win rates in the SMAC 8m scenario based
on preference feedback type using human preferences. The red line indicates the use of both types of
feedback, while the blue line(with a win rate of always zero) represents the use of only trajectory
comparison feedback.

reward functions. As shown by the red line in Figure 1 (Right), employing two types of preferences
leads to a higher mean win rate than using a single type.

For DPM’s implementation, we use AI-generated feedback from a Large Language Model (LLM),
which is recognized for its human-level comprehension (Bai et al., 2022; Lee et al., 2023), instead
of human preference feedback. This approach enables smoother training and minimizes the risk of
human error.

The experiments are conducted in the sparse reward settings of SMAC and SMACv2 (Ellis et al.,
2024) environment. Our proposed model brings significant performance improvements across various
scenarios compared to existing MARL baselines. Furthermore, compared to the cases which rely
solely on trajectory comparisons, our method demonstrates more stable convergence and higher win
rates, indicating better optimization of individual reward functions through dual preference types.

2 BACKGROUND

2.1 A COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

A cooperative MARL task can be formulated as a Dec-POMDP (Oliehoek et al., 2016) which consists
of a tuple ⟨S,A, P,R,O,Ω, n, γ⟩. s ∈ S is the global environment state. At each time step, each
agent i ∈ N ≡ {1, ..., n} obtains an observation oi ∈ O with the observation function Ω(s, i) :
S×N → O, and selects an action ai ∈ A which forms a joint action a = {a1, · · · , an} ∈ An. Then
the environment follows the transition function P (s′|s,a) : S ×An × S → [0, 1] and all the agents
share the same reward function r(s,a) : S ×An → R. The objective is to learn a joint policy π to
maximize the expected return Est+1:∞,at+1:∞∼π[

∑∞
k=0 γ

krt+k|st,at] with γ ∈ [0, 1).

2.2 SPARSE REWARD PROBLEM AND SOLUTIONS IN REINFORCEMENT LEARNING

In sparse-reward setting, non-zero rewards r(s,a) are rarely given (e.g., when the given task is
completed). To address the sparse-reward challenge, various approaches have been proposed. A
common solution is reward shaping in which subgoal-based methods adopt a hierarchical architecture
to decompose the given task to smaller sub-tasks (Tang et al., 2018; Jeon et al., 2022). Influence-based
methods quantify the influences caused by each agent’s action to choose optimal actions (Jaques et al.,
2019; Li et al., 2022). DPM instead utilizes preference data to address sparsity. Intrinsic motivation
for exploration gives incentives for visiting diverse environmental states (Gronauer & Diepold, 2022).
DPM assigns intrinsic rewards for choosing preferable actions.
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There are various attempts to solve the sparse reward problem using LLMs. One proposed method
leverages the coding abilities of LLMs to design reward functions (Xie et al., 2023), while another
involves independently generating multiple reward functions with LLMs and selecting the best-
performing one (Ma et al., 2023). Moreover, Sun et al. (2024) enhances the performance of the
LLM coder by adding an evaluator that generates preference feedback, resulting in the creation of a
robust reward model. The method for identifying key states involves using LLMs to extract critical
states, enabling effective exploration of the expansive state-action spaces in MARL (Qu et al., 2024).
DPM shares the aspect of using LLMs, but it differs in that LLMs are used to obtain preferences
rather than to extract key states or generate code for reward models.

2.3 PREFERENCE-BASED REINFORCEMENT LEARNING

Preference-based Reinforcement Learning (PbRL) is an alternative approach for complex tasks
where designing a suitable reward function is difficult. In PbRL, the agent’s learning is also guided
by a preference between difference behaviors rather than just a single scalar feedback from the
environment. The source of preferences could be human feedback (Christiano et al., 2017; Casper
et al., 2023; Lee et al., 2021b;a), a scripted teacher which assigns preferences according to true task
rewards or AI feedback such as that generated by Large Language Models (Bai et al., 2022; Lee
et al., 2023; Klissarov et al., 2023).

A common approach for PbRL is to assign preferences over two trajectory segments (Chris-
tiano et al., 2017). A segment σ is a sequence of observations and actions during k timesteps
{st,at, · · · , st+k−1,at+k−1} in single-RL, and we generate preference labels y ∈ {0, 0.5, 1} for
each segment pair (σ1, σ2) where y = 0 and y = 1 mean σ1 and σ2 is preferred, respectively, and
y = 0.5 implies both segments are equally preferable. Following the Bradley-Terry model (Bradley
& Terry, 1952), the probability of the preference can be defined as:

Pψ[σ
1 ≻ σ2] =

exp(
∑
t r̂ψ(s

1
t ,a

1
t ))∑

i∈{1,2} exp(
∑
t r̂ψ(s

i
t,a

i
t))

(1)

where σ1 ≻ σ2 indicates σ1 is preferred to σ2, and r̂ψ is a reward function from preferences and ψ
refers to the learnable weights of the reward function. Given the preference dataset D = {(σ1, σ2, y)},
the loss of r̂ψ is the negative log-likelihood and is as follows:

L(r̂ψ) = −E(σ1,σ2,y)∼D

[
(1− y) logPψ[σ

1 ≻ σ2] + y logPψ[σ
2 ≻ σ1]

]
(2)

3 METHOD: DPM

In this section, we present Dual Preferences-based Multi-Agent Reinforcement Learning (DPM),
which applies preference-based learning to multi-agent systems based on dual type preferences. DPM
not only offers a solution to the sparse reward problem but also replaces human preferences with large
language model-based preferences, thereby addressing the issues associated with human preferences.
DPM is based on an off-policy online learning MARL algorithm such as QMIX (Rashid et al., 2018).

3.1 OVERVIEW

The overall structure of DPM is illustrated in Figure 2. DPM comprises reward models, which
generate intrinsic rewards, learned from preference feedback. Transition data from the environment
and intrinsic rewards are stored in the replay buffer and utilized in the policy training. DPM trains
the reward models based on two types of preference feedback. One involves comparing trajectory
pairs, while the other entails ranking the actions of agents in a scene. Preferences are obtained
using an LLM. To utilize an LLM, vector-based transition information must be transformed into
text-based prompts. Therefore, a prompt generator is utilized to convert transition information into
text format for input into the LLM. The LLM utilizes the provided information to generate preferences
or rankings. The generated preferences (or rankings) are used to train the reward models.
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Figure 2: Overview of DPM framework. Dual Type Preferences: DPM uses two types of preference
feedback. The first is a preference comparing trajectory pairs, and the second is a preference(ranking)
comparing the contributions of the agents’ actions. Preference Collection: DPM obtains preference
feedback from an LLM. The prompt generator converts vector-form states and actions into text-based
prompts, and the LLM generates preference feedback based on the prompts. Training and Execution:
The intrinsic reward models are trained based on the preference feedback, and the policy is trained
using the rewards generated by the reward models.

3.2 DUAL TYPE PREFERENCES

DPM utilizes two types of preferences to train the reward models. One is trajectory comparison
preference feedback, which selects the better trajectory through comparison. Trajectory comparison
is similar to a common approach in PbRL and consistent with Section 2.3. The other is agent
comparison preference feedback, which ranks the actions of agents in a single step. In MARL,
since agents have different trajectories even within the same episode, comparing entire trajectories
at a macro level cannot provide appropriate rewards for each agent’s actions. To resolve this, it is
necessary to evaluate at a micro level whether the actions of agents at each step are appropriate. To
ensure proper evaluation at the micro level, the actions of agents at a step are ranked, and the rankings
are used as preferences.

Trajectory Comparison: In a multi-agent concept, a trajectory segment includes observations
compared to a single RL segment σ = {(s0,o0,a0), · · · , (sk,ok,ak)}. Two trajectory segments are
sampled from the replay buffer to generate a preference label (y) and we save the pair and the label
into the dataset DT = {(σ1, σ2, y)}.

Agent Comparison: Agent comparison involves preferences in the form of rankings. In a given step,
the actions of agents (a1t , a

2
t , . . . , a

n
t ) are ranked according to their contributions. Therefore, when

the state st and the actions at are provided, the LLM generates ranking labels z = {z1, z2, . . . , zn}
based on the contributions and we save the dataset DA = {(st,at,ot, z)} to the buffer.

3.3 PREFERENCE COLLECTION

Trajectory Selection Strategy: Selecting appropriate trajectories for preference feedback is crucial.
To achieve this, common PbRL research (Lee et al., 2021b) has used ensemble-based sampling
techniques. In DPM, since the contributions of agents can be ranked, we select trajectories (or scenes)
based on the agreement of rankings assigned by the reward functions using Kendall’s Tau (Kendall,
1938). Kendall’s Tau is used to assess the consistency of ranking data generated by reward models
when they create rewards for one step and then rank them based on the generated rewards. A low
Kendall’s Tau value indicates a disagreement among reward models, suggesting that the reward
models are encountering unseen trajectory. Therefore, DPM picks the trajectory with a low average
Kendall’s Tau value across its steps. For detailed explanation, refer to the Appendix C.

Prompt Generation: To obtain preference feedback using a Large Language Model (LLM), prompt
generation is essential. However, most environments provide information in the form of vectors
or images rather than text. We use a prompt generator to convert vector-based states into text-
based prompts that an LLM can understand. The prompt generator employs a template-based
approach, where the provided information is substituted into the corresponding sections of the
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template. Specifically, A predefined prompt contains placeholders and the placeholders are filled
with the corresponding information from the state or observation. The prompt generator effectively
converts vector data into text format. However, it is limited in its ability to include all transitions
of trajectories in the prompt. Therefore, for trajectory comparison, the prompt only includes the
information of the initial state and the end state. Prompt examples can be found in the Appendix E.

LLM Choice: The LLM generates preferences for the given comparison dataset using the prompts
created by the prompt generator. We utilize the GPT-3.5 and GPT-4o (Achiam et al., 2023) as the
preference generation model. This model is considered to possess human-level judgment, enabling it
to make decisions at a level comparable to that of humans (Bai et al., 2022; Lee et al., 2023),

3.4 REWARD MODELS

Structure: In contrast to common MARL approaches that utilize a global (team) reward function,
DPM generates rewards individually for each agent by leveraging preferences based on agent
comparisons. These reward functions take as input the transition and state information of the agent
(st, st+1, o

i
t, o

i
t+1, a

i
t) and produce corresponding an intrinsic reward (r̂it). This reward generation

process enables DPM to tailor rewards to the specific contributions of each agent, enhancing its
effectiveness in multi-agent environments. For more details of the reward models’ structure, please
refer to Appendix A.4. Furthermore, DPM adopts multiple reward models, then the intrinsic reward
is defined as the average of rewards generated by the reward models.

Reward Model Training: DPM trains the reward models using two types of preference feedback;
therefore, the loss function must consider the losses arising from both types. In detail, the loss function
reflects both the loss for trajectory comparison feedback(LT ) and the loss for agent comparison
feedback(LA), and is as follows :

L(r̂ψ) = LT + LA. (3)

Both of these losses are defined based on the Bradley-Terry model and the cross-entropy, similarly to
common preference-based learning. Specifically, the probability model for the trajectory comparison
feedback is defined as follows:

Pψ[σ
1 ≻ σ2] =

exp(
∑
t R̂

1
t )∑

i∈{1,2} exp(
∑
t R̂

i
t)
, (4)

where R̂it :=
∑
j∈N r̂ψ(st, a

j
t , o

j
t ) represents the sum of individual rewards at time t in trajectory

segment i. Then, the corresponding loss function is

LT = −E(σ1,σ2,y)∼DT

[
(1−y) logPψ[σ1 ≻ σ2] + y logPψ[σ

2 ≻ σ1]
]
. (5)

The loss for agent comparison feedback at a single step is similar to the approach used to calculate
action preferences in (Wirth et al., 2017). We define the loss function by breaking down the complete
ordering of agent preferences into a series of pairwise comparisons, as follows:

LA = −E(st,at,ot,z)∼DA

[ 1

|M |
∑

(i,j)∈M

βi≻j logPψ[a
i
t ≻ ajt ]

]
, (6)

where M is the set of agent pairs, M = {(i, j)|i, j ∈ N, i ̸= j}, |M | denotes the total number of
pairs (i, j) in M , and

βi≻j :=

{
0 zi > zj
1 zi < zj
0.5 zi = zj

(7)

which indicates the observed LLM-generated preference for choosing ait over ajt . Here, we follow
the Bradley-Terry choice model for the pair comparisons as follows:

Pψ[a
i
t ≻ ajt ] =

exp(r̂ψ(st, a
i
t, o

i
t))∑

k∈{i,j} exp(r̂ψ(st, a
k
t , o

k
t ))

. (8)
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4 EXPERIMENTS

4.1 SETUP

Environment and Baselines: We evaluate DPM on StarCraft Multi-agent Challenge
(SMAC) (Samvelyan et al., 2019) which consists of diverse micro control task and is one of the most
widely used benchmarks for MARL, and SMACv2 which addresses the deterministic limitations of
SMAC (Ellis et al., 2024). For baselines, We compare DPM with the common MARL algorithms
including VDN (Sunehag et al., 2017), QPLEX (Wang et al., 2020) and Finetuned-QMIX (Hu et al.,
2021) which builds upon QMIX (Rashid et al., 2018) incorporating hyper-parameter optimization
and other enhancements to achieve state-of-the-art performance. Furthermore, we also test DPM
against MASER (Jeon et al., 2022), FOX (Jo et al., 2024) and ICES (Li et al., 2024) which addresses
sparse-reward cooperative tasks.

We conduct experiments by setting both the SMAC and SMACv2 environments to sparse reward
conditions. In previous researches (Jeon et al., 2022; Jo et al., 2024; Li et al., 2024), the sparse reward
setting is applied in a less weak manner such as weak sparse setting in Table 1. However, the setting
is not entirely sparse and provides more cues that make it easier for the agents to solve the problem.
Therefore, to create a fully sparse reward environment, we adopt a reward setting that provides
rewards only upon victory like strong sparse setting in Table 1. We report the average win rates with
the standard deviation from three different random seeds. Further details on the experimental setup
can be found in Appendix A.

MARL Algorithms for DPM and Training: We adopt the Finetuned-QMIX algorithm as our
baseline for agent training. This algorithm performs well in dense reward environments, where
rewards are provided frequently, as illustrated in Table 1, enabling the agent to effectively learn from
the reward signals. However, its performance diminishes in sparse reward settings. To demonstrate
that the intrinsic rewards generated by DPM can effectively substitute sparse rewards with dense
ones, we also compare DPM with QMIX in dense reward settings. For DPM implementation,
we integrate intrinsic rewards (r̂) alongside the extrinsic global reward (rext) provided by the
environment. The total reward (r) used for agent training is then defined as : rt = R̂t + rextt where
R̂t :=

∑
i∈N r̂ψ(st, a

i
t, o

i
t) refers to the sum of individual intrinsic rewards at time t.

4.2 MAIN RESULTS

In this subsection, we conduct experiments in the sparse reward setting of SMAC to evaluate whether
DPM can overcome the sparse reward environment. The results are presented in Figure 3.

Sparse to Dense: QMIX(Dense) represents the results of the QMIX algorithm operating under the
dense reward setting in Table 1. Even though DPM operates in the sparse reward setting, it achieves
performance comparable to QMIX(Dense) in SMAC and SMACv2 scenarios. This demonstrates
that DPM can transform a sparse reward environment into one similar to a dense reward setting
through its intrinsic reward functions. To elaborate, the dense reward setting is manually crafted by
human experts. DPM’s ability to achieve results on par with those in this setting suggests that it can
automatically generate an appropriate reward function using preferences, effectively matching the
level of expert-designed reward modeling.

Overall Performance: Across eight scenarios, DPM outperformed the baseline algorithms. In the
EASY scenarios(3m, 2m vs 1z, 3s vs 3z, 2s vs 1sc, 8m, and 2s3z), DPM achieves an almost
100% win rate. This is a significant performance improvement compared to dense reward-based

Table 1: Rewards according to the reward settings
Dense reward Weak sparse reward Strong sparse reward

All enemies die (Win) +200 +200 +200
One enemy dies +10 +10 -

One ally dies +10 -5 -
Enemy’s health -Enemy’s remaining health - -

Ally’s health +Ally’s remaining health - -
Other elements +/-with other components - -

6
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Figure 3: Comparison of performance between DPM and baselines in the sparse reward setting of
SMAC. The results show that DPM (red line) outperforms all the baselines, and reaches comparable
performances to dense setting (blue line) in several scenarios.

Figure 4: Comparison of performance between DPM and baselines in the sparse reward setting of
SMACv2. In all scenarios, DPM outperforms the baselines and is also comparable to cases using
dense rewards.

algorithms such as QMIX, VDN, and QPLEX, which record a 0% win rate in the sparse reward
setting. The 5m vs 6m and 3s vs 5z scenarios are categorized as HARD scenarios in SMAC,
posing significant challenges even for algorithms designed to address sparse rewards. However, DPM
outperforms baseline algorithms in these scenarios, demonstrating its robustness.

Additionally, when compared to spare reward-bases algorithms such as MASER, FOX and ICES,
DPM shows superior performance. The reason why sparse-reward based algorithms do not perform
well is that the experiments are conducted in a harsher sparse setting compared to the previous
experimental environment. In contrast, DPM performs well even in the harsher setting.

Figure 4 compares the performance of DPM and baselines in SMACv2. In all three scenarios, DPM
significantly outperforms both dense-reward based algorithms and spare-reward based algorithms.
Specifically, in the 10gen terran scenario, DPM achieves a higher win rate than QMIX in
the dense reward setting(QMIX(Dense)). This demonstrates that DPM can perform well even in
stochastic environments.

Scalability and Heterogeneous: DPM performs well even when there are many agents, such as in
the 8m scenario. In cases where the number of agents is large, DPM can be extended by comparing
only a subset of agents rather than all of them. Detailed explanation can be found in the Section 4.5.
Moreover, DPM performs well in scenarios where the agents are heterogeneous, such as in the 2s3z
scenario. This indicates that DPM is not only scalable but also generally applicable across various
environments.

7
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Figure 5: Comparing the performance of DPM based on preference types. It is evident that employing
dual preferences yields significantly superior performance compared to using a single type of
preference. Both refers to the case where both types of feedback are used. Trajectory means the case
where only trajectory comparison feedback type is used. Agent represents the case where feedback
based on comparing the actions of agents is used. Trajectory(Team) refers to the case where the
team reward functions are trained using trajectory comparison feedback.

4.3 PERFORMANCE ANALYSIS OF DUAL TYPE PREFERENCES

DPM optimizes the reward model using two types of preference feedback. In this subsection, we
compare the performance differences between using dual type preferences and a single preference
type, to highlight the advantages of dual type feedback. Additionally, we compare the results with
those obtained by training the team reward functions using trajectory feedback. Figure 5 illustrates
the performances of models using only one type preference versus those incorporating both trajectory
and agent comparison preferences.

The experiments are conducted on EASY scenarios in SMAC: 3m, 2m vs 1z, 2s vs 1sc, and 8m.
For both the single and dual preference types, the total number of feedback used is the same. When
using only trajectory comparison feedback, some scenarios did not converge to a high win rate or
failed to solve the problem entirely. In contrast, using both types of preferences feedback(red line)
leads to a convergence to an almost 100% win rate in all scenarios. Specifically, in the 2m vs 1z
and 8m scenario, the single type feedback approach showed no performance improvement at all.
Furthermore, when using only agent comparison preference feedback and when training team reward
functions, the performance is significantly lower, compared to DPM(both).

In online learning, unlike offline RL, the policy is trained from scratch, making initial policy training
crucial. If the reward model is not well-optimized from the beginning, it is difficult to achieve good
performance. Using only one type of preference often causes the reward function to fall into a local
optimum. Consequently, the policy fails to learn effectively, and the quality of transitions collected
subsequently is poor, making it increasingly difficult to acquire appropriate preferences in the next
iteration. Therefore, using a single type of preference limits both policy and reward model training.

Case study : To verify the efficacy of dual type preferences in optimizing the individual reward
function, we conduct a case study on a single episode of the 8m scenario. The top of Figure 6 depicts
six selected scenes within the episode, describing the states and actions at these steps. The bar graphs
display normalized individual reward values, scaled between 0 and 1, generated by reward models
trained using different preference types. The graphs from top to bottom represent the results for
training the reward models using dual preference feedback(Both), using only trajectory comparison
feedback(Trajectory), and using only feedback that compares agent actions(Agent).

When comparing DPM(Both) and DPM(Trajectory), we observe that the reward models, which are
trained on trajectory comparison feedback only, assign high rewards even when allied agents die or
do useless actions such as stop like red bars in the graph. Similarly, when only agent comparison
preference feedback is used, the individual reward model does not optimize well. For example, at step
5, agents 3 and 4 perform less cooperative actions yet receive high rewards, or at step 9, agent 1 is
not participating in the battle but receives the highest reward, indicating inaccurate reward allocation.

In other words, the graphs prove that dual type preferences effectively mitigate the drawbacks of
using a single preference type by leveraging the advantages of both preference types. Therefore,
employing dual-preferences positively impacts the optimization of the reward model.

8
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Figure 6: A case study for comparing the performance of reward models based on preference types.
Comparing the rewards generated by the reward functions trained with different preference types for
each of the 6 selected scenes(steps) from an episode in the 8m scenario of SMAC.

Figure 7: Performance comparison between DPM models using human preference feedback and
those using an LLM preference feedback. The red line represents the DPM using the LLM feedback,
the blue line represents the DPM using human preference feedback, and the green line represents the
DPM trained using only one type of feedback, specifically trajectory comparison, from the human
preference feedback.

4.4 HUMAN EXPERIMENTS

To verify whether the DPM performs well using human preference feedback instead of LLM feedback,
we trained the DPM with human preference feedback in four scenarios in SMAC. The model’s
performance is shown in Figure 7. When compared to the case of using LLM feedback, the use of
human preference feedback shows similar or even better performance. Additionally, the performance
difference between using two types of preferences and not using them is significant, with the
performance being much better when both types of preferences are used.

4.5 ABLATION STUDIES

Impact of the amount of preference feedback on performance: In online learning, preference
feedback is collected at regular intervals and used to update the reward functions. Figure 8 (a) shows
the performance based on the number of feedback collection iteration(n iter), indicating a trend
where performance significantly improves with more feedback collection.

9
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Figure 8: Ablation studies on SMAC

Impact of the Kendall’s Tau-based trajectory selection strategy: DPM uses a strategy that employs
Kendall’s Tau to select the trajectory or step with the least consensus among the rankings of rewards
generated by the reward functions. Figure 8 (b) compares the performance of using Kendall’s Tau
versus randomly selecting trajectories(or steps) for selection. The strategy used in DPM is more
sample efficient and converges to a higher win rate faster compared to not using the strategy.

The general applicability of DPM: DPM can be applied to various MARL algorithms. Figure
8 (c) shows the results of applying DPM to dense-based MARL algorithms, QPLEX and VDN.
DPM+QPLEX exhibits performance similar to DPM+QMIX, while DPM+VDN, although performing
worse than other algorithms, shows significant performance improvement compared to when DPM is
not applied.

The scalability of DPM: DPM obtains feedback from an LLM, requiring states and actions to be
represented as prompts. However, in environments with many agents, representing all agents in the
prompt can be limiting, restricting its application. To address this, a technique is employed to obtain
preference feedback by utilizing only a subset of agents from the entire set. Figure 8 (d) compares
the win rates of a model that collects feedback using only a subset of agents (3, 5) versus a model
that collects feedback using the information from all agents in the 8m scenario. It shows a trend that
using feedback from only a subset of agents, especially with fewer agents, results in higher win rates
compared to using feedback from all agents. This indicates that effective training is possible by using
only a subset of agents, even in environments with many agents, demonstrating that DPM is scalable.

5 CONCLUSION AND LIMITATION

We propose a novel approach called Dual Preference-based Multi-Agent Reinforcement Learn-
ing(DPM) for applying preference-based learning to multi-agent reinforcement learning. DPM
leverages a reward model trained on preferences to transform sparse reward environments into ones
akin to dense reward settings, thus addressing the sparse reward problem. Moreover, it addresses
issues inherent in traditional human-based preference methods by utilizing a large language model to
obtain preferences instead of relying solely on human input.

DPM differs from conventional models that solely utilize trajectory comparison feedback by intro-
ducing a preference type that compares agents’ contributions through ranking. This addition helps to
better optimize the reward models. We evaluate DPM in SMAC and SMACv2, which are prominent
environments in multi-agent reinforcement learning. DPM demonstrates significant performance
improvement compared to baselines in sparse reward settings, and its performance is comparable
to that in dense reward settings. This confirms that DPM effectively addresses the sparse reward
problem in MARL.

However, there exists a constraint to generate prompts due to the utilization of an LLM. It is limited to
encapsulate information such as state, observation, actions, etc., within the prompt. To convert vector
or image data into text form, additional prepossessing is required. Therefore, we aim for DPM to be
more generally applicable across various environments through future research, such as exploring
the utilization of Vision-Language Models (VLMs) to effectively substitute non-vector data such as
image format data into prompts. This includes investigating methods to seamlessly incorporate data
in forms other than vectors into prompts, thereby enhancing the generality of DPM.

10
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REPRODUCIBILITY STATEMENT

For the details of environments and hyperparameters, please refer Section 4 and Appendix A. To run
our method, please download the supplementary material and follow the instructions in README
files. We employed pymarl2 (Hu et al., 2021) or the official codes from the authors for baselines.
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A EXPERIMENTAL DETAILS

In this section, we introduce the environments used in the experiments, the baseline algorithms, as
well as the hyperparameters and computational resources. Experiments are carried out on NVIDA
A6000 and GTX3090 GPUs and AMD EPYC 7313 CPU.

A.1 ENVIRONMENTS

We conduct experiments in two environments, namely StarCraft Multi-Agent Challenge (SMAC)
(Samvelyan et al., 2019) and SMACv2 (Ellis et al., 2024). All algorithms are implemented based on
the open-source framework pymarl2 (Hu et al., 2021).

We conduct experiments in the following environment:

• StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) from https://
github.com/oxwhirl/smac which is licensed under MIT license.

• SMACv2 (Ellis et al., 2024) from https://github.com/oxwhirl/smacv2 which
is licensed under MIT license.

All algorithms are implemented based on the open-source framework pymarl2 (Hu et al., 2021) from
https://github.com/hijkzzz/pymarl2 which is an augmented version of pymarl from
https://github.com/oxwhirl/pymarl. Both are licensed under Apache License 2.0.

A.1.1 SMAC

The StarCraft Multi-Agent Challenge (SMAC) is one of the benchmarks widely utilized in research to
evaluate MARL algorithms. Units from the strategy video game StarCraft II engage in confrontations
with each other in diver scenarios. The objective is for multiple agents to collaborate in defeating
the enemies. There are multiple scenarios, each categorized into difficulty levels such as EASY,
HARD, and SuperHARD. We primarily conduct experiments in EASY, and HARD scenarios. Table 2
provides a detailed description of the scenarios we used in our experiments.

Table 2: A detailed description of the SMAC scenario used in the experiment
Scenario Difficulty Ally Units Enemy Units Type

2s vs 1sc EASY 2 Stalkers 1 Spine Crawler micro-trick: alternating fire

3s vs 3z EASY 3 Stalkers 3 Zealots micro-trick: kiting

3m EASY 3 Marines 3 Marines homogeneous & symmetric

8m EASY 8 Marines 8 Marines homogeneous & symmetric

2s3z EASY 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots homogeneous & symmetric

2m vs 1z EASY 2 Marines 1 Zealot micro-trick: alternating fire

5m vs 6m HARD 5 Marines 6 Marines homogeneous & symmetric

3s vs 5z HARD 3 Stalkers 5 Zealots micro-trick: kiting

A.1.2 SMACV2

SMACv2 is proposed to address the shortcomings of SMAC, particularly in terms of its lack of
stochasticity and partial observable characteristics (Ellis et al., 2024). Therefore, SMACv2 differs
from SMAC in three main aspects.

First, the unit composition is randomly determined. In SMAC, the generated units are fixed, whereas
in SMACv2, different types of units are randomly generated based on probabilities. The second
difference lies in the observation probability of agents. In SMAC, when one agent observes an enemy,
other agents can also observe the same enemy simultaneously. In contrast, in SMACv2, if one agent
observes an enemy first, other agents within their observation range may not identify the same enemy,
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Table 3: Calculation of the number of tokens used for DPM training and the corresponding costs
Content 3m(3agents) 2s3z(5agents)

Input tokens (per query) Trajectory 780∼800 980∼1,010
Agent 1,200~1,250 1,800∼1,850

Output tokens (per query) Trajectory 80∼100 80∼100
Agent 150∼200 250∼300

Tokens per iteration (75 queries) Input 148,500∼153,750 208,500∼214,500
Output 17,250∼22,500 24,750∼30,000

Total tokens (10 iterations) Input 1.49M∼1.54M 2.09M∼2.15M
Output 0.17M∼0.26M 0.25M∼0.30M

Price per 1M tokens (24.11.19.) gpt-4o $ 2.5 (input)
$ 10.00 (output)

gpt-35-turbo $ 0.5 (input)
$ 1.5 (ouptut)

Cost(GPT-3.5)
Trajectory $0.74∼$0.77 $1.04∼$1.07

Agent $0.09∼$0.11 $0.12∼$0.15
Total $0.83∼$0.88 $1.17∼$1.22

Cost(GPT-4)
Trajectory $3.71∼$3.84 $5.21∼$5.36

Agent $1.72∼$2.25 $2.48∼$3.00
Total $5.44∼$6.09 $7.69∼$8.36

even if it is present. The last distinction involves adding randomness to the location where units are
spawned.

In our experiments, we keep all other factors consistent with the default settings of SMACv2, but we
fix the type of agent to a single kind. For Terran, we fix the unit type to marine; for Protoss, to
stalker, and for Zerg, to hydralisk.

A.2 BASELINES

• VDN (Sunehag et al., 2017) : VDN is a value-based method and introduces a method to
decompose joint value functions into individual agent value functions, addressing challenges
in cooperative multi-agent reinforcement learning with a single team reward signal.

• QMIX (Rashid et al., 2018) : QMIX, one of the most widely used methods in MARL, is
an extension of VDN with a mixing network for monotonic value function factorization,
allowing decentralized policies to be trained centrally for better coordination and efficiency.

• QPLEX (Wang et al., 2020) : QPLEX is also a value-based method and takes a duplex
dueling network for learning environment randomness and cooperative randomness indepen-
dently.

• MASER (Jeon et al., 2022) : MASER is a method proposed to address sparse reward
problems by generating sub-goals for agents from an experience replay buffer and providing
intrinsic rewards based on these sub-goals to effectively solve the sparse reward challenge.
MASER utilizes the intrinsic rewards to train both individual Q-functions and the global
Q-function.

• FOX (Jo et al., 2024) : FOX is another approach to addressing the spare reward problem by
proposing a formation-aware exploration framework, which provides intrinsic rewards to
guide agents toward forming diverse formations, thereby reducing the exploration space and
increasing efficiency.

• ICES (Li et al., 2024) : ICES introduces individual contributions as intrinsic exploration
scaffolds, utilizing Bayesian surprise and privileged global information during training to
address sparse reward challenges and improve cooperative exploration.

• LAIES (Liu et al., 2023) : LAIES distinguishes agent states into internal states, directly
related to the agent, and external states, associated with external information, defining lazy
agents based on their interaction with the environment. LAIES generates intrinsic rewards to
prevent lazy agent behaviors, encouraging agents to actively interact with the environment
and improving overall performance.
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A.3 LLM USAGE

The usage and costs associated with LLM utilization are summarized in Table 3. To calculate the
usage, two scenarios, 3m and 2s3z, are compared. Each query generates approximately 1,000 tokens,
resulting in an output of 100∼300 tokens. Based on this, 150 instances of preference feedback are
collected per round (75 instances each), and this process is repeated a total of 10 times. Finally, the
3m scenario generates approximately 1.5M tokens, while the 2s3z scenario produces around 2.5M
tokens. Based on the pricing of GPT-3.5 and GPT-4 as of 24th November 2024, the cost is estimated
to be about $1 for GPT-3.5 and $5-$8 for GPT-4.

A.4 STRUCTURE OF REWARD FUNCTION AND TRAINING DETAILS

The reward functions adopt a structure based on linear layers, with specific architecture detailed in
Table 4. In the experiments, the size of the hidden layer used is 16.

Table 4: Structure of DPM’s reward functions
Name Type In features Out features

input state Linear state size hidden size
input next state Linear state size hidden size

input obs Linear observation size hidden size
input actions Linear action size hidden size
hidden layer Linear hidden size × 4 hidden size

output Linear hidden size 1

The reward model consists of multiple models (n models) with the same structure as described in
Table4. In the experiment, three reward functions(n = 3) are used, and the reward is calculated as the
average output of these reward functions. The training of the reward functions is performed each time
preference feedback is collected, totaling 10 iterations in the experiment. Once preference feedback is
gathered and stored in the replay buffer, training is conducted using Equation (8) as the loss function.
The reward functions use the Adam optimizer (Diederik, 2014) for optimization. After the reward
model is trained, the rewards stored in the replay buffer are updated and utilized for training the
Q-function.

B ADDITIONAL EXPERIMENTS

B.1 COMPARISON OF GROUND TRUTH REWARD AND ESTIMATED REWARD

(a) (b)

Figure 9: (a) A case study for comparing the performance of reward models based on preference
types. (b) Pearson correlation coefficient between the ground truth reward and the estimated reward

Preference Alignment: To verify how well the trained reward models align with the feedback, we
use human feedback, LLM-based feedback, and scripted teacher-based feedback to assess alignment.
When the preferences for trajectories are calculated based on the sum of the rewards generated by
the reward functions, the agreement with the actual preference feedback is shown in Figure 9(a).
For comparison, 100 trajectory pairs that are not used during the training of the reward model are
generated as a test set, and preference feedback is collected from humans, LLMs, and a scripted
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Figure 10: Experiments in a weak sparse reward setting(SMAC)

Figure 11: Comparison of DPM performance based on different types of LLMs

teacher. The trained reward model generates rewards for each trajectory, assuming that trajectories
with higher rewards are more preferred. The similarity between these preferences and the actual
feedback from humans, LLMs, and the scripted teacher is then evaluated. In all three feedback
types, the highest agreement is observed when using two types of feedback(Both), while the lowest
agreement is found when using only trajectory comparison feedback. This indicates that DPM can
optimize the reward functions to align more closely with the actual feedback.

Pearson correlation coefficient between the ground truth reward and the estimated reward:
The Pearson correlation coefficient is calculated to evaluate how well the reward model trained with
preference feedback aligns with the ground truth reward. Figure 9(b) illustrates the relationship
between the estimated reward and the ground truth reward for reward functions generated under
different preference types. When both types of preference feedback are used (Both), the model
achieves a higher PCC compared to the other cases. This indicates that the reward model is trained in
a direction similar to the reward generated by the expert, ultimately contributing to the development
of policies with higher win rates.

B.2 EXPERIMENTS IN A WEAK SPARSE REWARD SETTING

Our main experiments are conducted in the hard sparse reward setting shown in Table 1, whereas
much of the research on sparse reward problems has been performed in the weak sparse reward
setting. Therefore, we analyze the performance of DPM and the baselines under the weak sparse
reward setting. The experimental results are presented in Figure 10. The experiments are conducted
in four environments of SMAC, and it is evident that the baselines perform better in the weak setting
compared to the hard setting. Nevertheless, DPM consistently achieves near-optimal results across
all four scenarios, with win rates approaching 100%.

B.3 COMPARISON EXPERIMENTS ON RESULTS BASED ON LLM TYPES AND SETTINGS

DPM relies on LLMs to generate preference feedback, making the performance of the LLM a
critical factor. Specifically, the LLM must have a strong understanding of long contexts to generate
appropriate feedback based on the given context. Therefore, we compare the performance of DPM
across different types of LLMs. The LLMs used for comparison include GPT-3.5, GPT-4 (Achiam
et al., 2023), and Gemini Pro 1.0 (Team et al., 2023). The experimental results are shown in Figure
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Figure 12: An example of removing SMAC from the prompt to exclude prior knowledge

Figure 13: Comparison of DPM performance based on the presence or absence of prior knowledge in
LLMs

11. Gemini Pro 1.0 failed to generate appropriate feedback in all experiments, resulting in poor DPM
performance. However, while there are differences in performance between GPT-3.5 and GPT-4, both
consistently generated effective preference feedback, enabling successful DPM training.

B.4 OBSERVATION ON WHETHER THE PRIOR KNOWLEDGE OF LLM AFFECTS PERFORMANCE

Large Language Models (LLMs) are trained on vast amounts of data during pretraining, making it
highly likely that they possess prior knowledge about the problems we aim to solve, including SMAC.
However, for models like GPT, where training data and details are not disclosed, it is impossible to
verify whether specific prior knowledge has been learned. To address this, we conducted experiments
by modifying the prompts through prompt engineering to minimize prior knowledge as much as
possible. Figure 12 illustrates the original prompt and the prompt with SMAC-related information
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removed. The original prompt explicitly includes references to SMAC and detailed unit information.
In contrast, the modified prompt omits any mention of SMAC and adjusts unit information to make it
unrelated (or less directly relatable) to StarCraft.

The experimental results using the modified prompt are shown in Figure 13. The red line represents
the performance of DPM with the original prompt, while the blue line represents the performance
with the modified prompt. In the 3m scenario, the results were similar regardless of the presence
or absence of SMAC-related information. Interestingly, in the 2m vs 1z scenario, the absence of
SMAC-related information led to even better performance. The observed difference in the 2m vs 1z
scenario suggests that the LLM may possess prior knowledge about SMAC. However, this also
indicates that such prior knowledge might not always be utilized in a way that helps generate effective
feedback.

C TRAJECTORY SELECTION STRATEGY

To obtain high-quality preference data, it is crucial to select comparison pairs appropriately. In
prior PbRL research (Lee et al., 2021b), ensemble-based sampling techniques are employed. This
involves assuming rewards generated by multiple reward models as preferences and selecting pairs of
trajectories where the preferences do not align.

On the other hand, in DPM, individual reward functions are utilized, necessitating optimization based
on individual rewards rather than global rewards which are the sum of individual rewards. However,
if trajectory-based sampling, similar to single-RL, is employed, the global reward becomes the
criterion, making it challenging to select appropriate trajectories. To address this issue, DPM employs
Kendall’s Tau (Kendall, 1938) to calculate the degree of consensus among ranking data generated
from individual reward functions. The ranking is determined based on the rewards generated by the
reward functions, with higher-ranked agents having higher rewards.

Since Kendall’s Tau calculates the concordance between pairs of ranking data, to assess the consensus
among multiple reward functions, pairwise combinations is performed, followed by averaging the
results. If the value is lower than the threshold, the trajectory is added to the list for comparison.
Otherwise, the trajectory is excluded from the comparison. The threshold varies with each iteration,
decreasing as the iterations progress.

D PREFERENCE FEEDBACK COLLECTION SETTING AND RESULTS

D.1 LLM FEEDBACK COLLECTION SETTING

DPM fundamentally uses preference feedback generated by LLMs. In online learning, the timing of
feedback acquisition and the amount of feedback are crucial settings. By default, DPM is configured
to repeatedly collect feedback every 1,500 episodes, gathering 150 pieces of feedback at a time. When
using both types of feedback, 75 pieces are collected for each type. If only one type of feedback is
used, 150 pieces are collected at a time. This process is repeated a total of 10 times, resulting in 1500
pieces of feedback used to train the reward models.

D.2 HUMAN FEEDBACK COLLECTION SETTING AND RESULTS

All human feedback was collected by the authors, who are domain experts familiar with the MARL
task and the environments. Similar to the LLM feedback collection, feedback is collected in 10
iterations, with total 150 pieces of feedback gathered in each iteration.

In the process of obtaining human feedback, preferences are determined based on the following
criteria. First, in trajectory comparisons, preferences are determined by assessing scenarios where
allied units retain more health while enemy units sustain significant damage. When comparing the
actions of agents, the following criteria are applied. First, agents demonstrating cooperative behavior
are given higher rankings (e.g., agents engaged in focused attacks are prioritized). Second, agents
with high health that do not participate in engagements are assigned lower rankings. Third, agents for
whom ranking is difficult are left unrated. Preferences are collected based on these criteria.
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E PROMPT EXAMPLES

We list and discuss the prompts we employ in conducting the experiments. The prompt consists
of four stages : LLM system configuration, environment description, providing information about
comparisons, and task instructions.

E.1 LLM SYSTEM CONFIGURATION

In the LLM system configuration, the LLM is endowed with roles and context awareness to enable it
to generate high-quality responses.

Figure 14: Example of a system configuration prompt for the SMAC 3m scenario.

E.2 ENVIRONMENT DESCRIPTION

The environment description encompasses a comprehensive overview of the SMAC scenario. It
includes the scenario name, composition of allies, composition of adversaries, description of the
situation, objectives, and other pertinent details.

Figure 15: Example of an environment description prompt for the SMAC 3m scenario.
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E.3 PROVIDING INFORMATION ABOUT THE COMPARISONS

This part describes the comparison targets for acquiring preferences. In trajectory comparison and
agents comparison, separate prompts exist, each allowing for the provision of information to the
LLM by altering the details in the square brackets([]), including state, actions, and other relevant
information. For the trajectory comparison case, an example prompt is provided in Figure 16, and for
the agent comparison case, an example prompt is given in Figure 17.

Figure 16: Example of a description of trajectories prompt for the SMAC 3m scenario.

Figure 17: Example of a description of state and agent actions prompt for the SMAC 3m scenario.
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E.4 TASK INSTRUCTIONS

The task instruction part provides detailed instructions regarding the output that the LLM should
generate. In the trajectory comparison case, the LLM should produce preferences, while in the agent
comparison case, it should generate rankings. Therefore, they have different prompt formats to
facilitate these distinct tasks.

Figure 18: Example of a task instruction(trajectory comparison) prompt for the SMAC 3m scenario.

Figure 19: Example of a task instruction(agents comparison) prompt for the SMAC 3m scenario.
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E.5 FULL PROMPT

Figure 20: Example of a full trajectory comparison prompt for the SMAC 3m scenario.
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Figure 21: Example of a full agents comparison prompt for the SMAC 3m scenario.
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E.6 EXAMPLE AND RESPONSE IN THE SMAC 3M SCENARIO

E.6.1 TRAJECTORY COMPARISON

Figure 22: Example of a trajectory comparison prompt for the SMAC 3m scenario.

Figure 23: Example of a trajectory comparison response for the SMAC 3m scenario.
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E.6.2 ACTION COMPARISON

Figure 24: Example of an action comparison prompt for the SMAC 3m scenario.
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Figure 25: Example of an action comparison response for the SMAC 3m scenario.

27


	Introduction
	Background
	A Cooperative Multi-agent Reinforcement Learning
	Sparse Reward Problem and Solutions in Reinforcement Learning
	Preference-based Reinforcement Learning

	Method: DPM
	Overview
	Dual Type Preferences
	Preference Collection
	Reward Models

	Experiments
	Setup
	Main Results
	Performance analysis of Dual Type Preferences
	Human Experiments
	Ablation Studies

	Conclusion and Limitation
	Experimental Details
	Environments
	SMAC
	SMACv2

	Baselines
	LLM usage
	Structure of Reward Function and Training Details 

	Additional Experiments
	Comparison of ground truth reward and estimated reward
	Experiments in a weak sparse reward setting
	Comparison experiments on results based on LLM types and settings
	Observation on whether the prior knowledge of LLM affects performance

	Trajectory Selection Strategy
	preference feedback collection setting and results
	llm feedback collection setting
	human feedback collection setting and results

	Prompt Examples
	LLM system configuration
	Environment description
	Providing information about the comparisons
	Task instructions
	Full prompt
	Example and response in the SMAC 3m scenario
	Trajectory Comparison
	Action Comparison



