
Published as a conference paper at ICLR 2023

MACHINE UNLEARNING OF FEDERATED CLUSTERS

Chao Pan∗, Jin Sima∗, Saurav Prakash∗ , Vishal Rana & Olgica Milenkovic
Department of Electrical and Computer Engineering
University of Illinois Urbana-Champaign, USA
{chaopan2,jsima,sauravp2,vishalr,milenkov}@illinois.edu

ABSTRACT

Federated clustering (FC) is an unsupervised learning problem that arises in a num-
ber of practical applications, including personalized recommender and healthcare
systems. With the adoption of recent laws ensuring the “right to be forgotten”,
the problem of machine unlearning for FC methods has become of significant
importance. We introduce, for the first time, the problem of machine unlearning
for FC, and propose an efficient unlearning mechanism for a customized secure
FC framework. Our FC framework utilizes special initialization procedures that
we show are well-suited for unlearning. To protect client data privacy, we develop
the secure compressed multiset aggregation (SCMA) framework that addresses
sparse secure federated learning (FL) problems encountered during clustering as
well as more general problems. To simultaneously facilitate low communication
complexity and secret sharing protocols, we integrate Reed-Solomon encoding with
special evaluation points into our SCMA pipeline, and prove that the client commu-
nication cost is logarithmic in the vector dimension. Additionally, to demonstrate
the benefits of our unlearning mechanism over complete retraining, we provide a
theoretical analysis for the unlearning performance of our approach. Simulation
results show that the new FC framework exhibits superior clustering performance
compared to previously reported FC baselines when the cluster sizes are highly
imbalanced. Compared to completely retraining K-means++ locally and globally
for each removal request, our unlearning procedure offers an average speed-up of
roughly 84x across seven datasets. Our implementation for the proposed method is
available at https://github.com/thupchnsky/mufc.

1 INTRODUCTION

The availability of large volumes of user training data has contributed to the success of modern
machine learning models. For example, most state-of-the-art computer vision models are trained on
large-scale image datasets including Flickr (Thomee et al., 2016) and ImageNet (Deng et al., 2009).
Organizations and repositories that collect and store user data must comply with privacy regulations,
such as the recent European Union General Data Protection Regulation (GDPR), the California
Consumer Privacy Act (CCPA), and the Canadian Consumer Privacy Protection Act (CPPA), all of
which guarantee the right of users to remove their data from the datasets (Right to be Forgotten).
Data removal requests frequently arise in practice, especially for sensitive datasets pertaining to
medical records (numerous machine learning models in computational biology are trained using UK
Biobank (Sudlow et al., 2015) which hosts a collection of genetic and medical records of roughly half
a million patients (Ginart et al., 2019)). Removing user data from a dataset is insufficient to ensure
sufficient privacy, since training data can often be reconstructed from trained models (Fredrikson et al.,
2015; Veale et al., 2018). This motivates the study of machine unlearning (Cao & Yang, 2015) which
aims to efficiently eliminate the influence of certain data points on a model. Naively, one can retrain
the model from scratch to ensure complete removal, yet retraining comes at a high computational
cost and is thus not practical when accommodating frequent removal requests. To avoid complete
retraining, specialized approaches have to be developed for each unlearning application (Ginart et al.,
2019; Guo et al., 2020; Bourtoule et al., 2021; Sekhari et al., 2021).

∗Equal contribution.

1

https://github.com/thupchnsky/mufc


Published as a conference paper at ICLR 2023

Figure 1: Overview of our proposed FC framework. K-means++ initialization and quantization are
performed at each client in parallel. The SCMA procedure ensures that only the server knows the
aggregated statistics of clients, without revealing who contributed the points in each individual cluster.
The server generates points from the quantization bins with prescribed weights and performs full
K-means++ clustering to infer the global model.

At the same time, federated learning (FL) has emerged as a promising approach to enable distributed
training over a large number of users while protecting their privacy (McMahan et al., 2017; Chen et al.,
2020; Kairouz et al., 2021; Wang et al., 2021; Bonawitz et al., 2021). The key idea of FL is to keep
user data on their devices and train global models by aggregating local models in a communication-
efficient and secure manner. Due to model inversion attacks (Zhu et al., 2019; Geiping et al., 2020),
secure local model aggregation at the server is a critical consideration in FL, as it guarantees that
the server cannot get specific information about client data based on their local models (Bonawitz
et al., 2017; Bell et al., 2020; So et al., 2022; Chen et al., 2022). Since data privacy is the main goal
in FL, it should be natural for a FL framework to allow for frequent data removal of a subset of
client data in a cross-silo setting (e.g., when several patients request their data to be removed in the
hospital database), or the entire local dataset for clients in a cross-device setting (e.g., when users
request apps not to track their data on their phones). This leads to the largely unstudied problem
termed federated unlearning (Liu et al., 2021; Wu et al., 2022; Wang et al., 2022). However, existing
federated unlearning methods do not come with theoretical performance guarantees after model
updates, and often, they are vulnerable to adversarial attacks.

Our contributions are summarized as follows. 1) We introduce the problem of machine unlearning
in FC, and design a new end-to-end system (Fig. 1) that performs highly efficient FC with privacy
and low communication-cost guarantees, which also enables, when needed, simple and effective
unlearning. 2) As part of the FC scheme with unlearning features, we describe a novel one-shot FC
algorithm that offers order-optimal approximation for the federated K-means clustering objective,
and also outperforms the handful of existing related methods (Dennis et al., 2021; Ginart et al., 2019),
especially for the case when the cluster sizes are highly imbalanced. 3) For FC, we also describe a
novel sparse compressed multiset aggregation (SCMA) scheme which ensures that the server only
has access to the aggregated counts of points in individual clusters but has no information about the
point distributions at individual clients. SCMA securely recovers the exact sum of the input sparse
vectors with a communication complexity that is logarithmic in the vector dimension, outperforming
existing sparse secure aggregation works (Beguier et al., 2020; Ergun et al., 2021), which have a linear
complexity. 4) We theoretically establish the unlearning complexity of our FC method and show that
it is significantly lower than that of complete retraining. 5) We compile a collection of datasets for
benchmarking unlearning of federated clusters, including two new datasets containing methylation
patterns in cancer genomes and gut microbiome information, which may be of significant importance
to computational biologists and medical researchers that are frequently faced with unlearning requests.
Experimental results reveal that our one-shot algorithm offers an average speed-up of roughly 84x
compared to complete retraining across seven datasets.

2 RELATED WORKS

Due to space limitations, the complete discussion about related works is included in Appendix A.

Federated clustering. The goal of this learning task is to perform clustering using data that resides
at different edge devices. Most of the handful of FC methods are centered around the idea of sending
exact (Dennis et al., 2021) or quantized client (local) centroids (Ginart et al., 2019) directly to the
server, which may not ensure desired levels of privacy as they leak the data statistics or cluster
information of each individual client. To avoid sending exact centroids, Li et al. (2022) proposes
sending distances between data points and centroids to the server without revealing the membership
of data points to any of the parties involved, but their approach comes with large computational

2



Published as a conference paper at ICLR 2023

and communication overhead. Our work introduces a novel communication-efficient secure FC
framework, with a new privacy criterion that is intuitively appealing as it involves communicating
obfuscated point counts of the clients to the server and frequently used in FL literature (Bonawitz
et al., 2017).

Machine unlearning. Two types of unlearning requirements were proposed in previous works: exact
unlearning (Cao & Yang, 2015; Ginart et al., 2019; Bourtoule et al., 2021; Chen et al., 2021) and
approximate unlearning (Guo et al., 2020; Golatkar et al., 2020a;b; Sekhari et al., 2021; Fu et al.,
2022; Chien et al., 2022). For exact unlearning, the unlearned model is required to perform identically
as a completely retrained model. For approximate unlearning, the “differences” in behavior between
the unlearned model and the completely retrained model should be appropriately bounded. A limited
number of recent works also investigated data removal in the FL settings (Liu et al., 2021; Wu
et al., 2022; Wang et al., 2022); however, most of them are empirical methods and do not come
with theoretical guarantees for model performance after removal and/or for the unlearning efficiency.
In contrast, our proposed FC framework not only enables efficient data removal in practice, but
also provides theoretical guarantees for the unlearned model performance and for the expected time
complexity of the unlearning procedure.

3 PRELIMINARIES

We start with a formal definition of the centralized K-means problem. Given a set of n points in Rd

X arranged into a matrix X ∈ Rn×d, and the number of clusters K, the K-means problem asks for
finding a set of points C = {c1, ..., cK}, ck ∈ Rd,∀k ∈ [K] that minimizes the objective

ϕc(X ;C) = ∥X − C∥2F , (1)
where || · ||F denotes the Frobenius norm of a matrix, ∥ · ∥ denotes the ℓ2 norm of a vector, and C ∈
Rn×d records the closest centroid in C to each data point xi ∈ X (i.e., ci = argmincj∈C ∥xi − cj∥).
Without loss of generality, we make the assumption that the optimal solution is unique in order
to facilitate simpler analysis and discussion, and denote the optimum by C∗ = {c∗1, ..., c∗K}. The
set of centroids C∗ induces an optimal partition

⋃K
k=1 C∗k over X , where ∀k ∈ [K], C∗k = {xi :

||xi − c∗k|| ≤ ||xi − c∗j || ∀i ∈ [n], j ∈ [K]}. We use ϕ∗
c(X ) to denote the optimal value of the

objective function for the centralized K-means problem. With a slight abuse of notation, we also use
ϕ∗
c(C∗k) to denote the objective value contributed by the optimal cluster C∗k . A detailed description of a

commonly used approach for solving the K-means problem, K-means++, is available in Appendix B.

In FC, the dataset X is no longer available at the centralized server. Instead, data is stored on L
edge devices (clients) and the goal of FC is to learn a global set of K centroids Cs at the server
based on the information sent by clients. For simplicity, we assume that there exists no identical
data points across clients, and that the overall dataset X is the union of the datasets X (l) arranged as
X(l) ∈ Rn(l)×d on device l,∀l ∈ [L]. The server will receive the aggregated cluster statistics of all
clients in a secure fashion, and generate the set Cs. In this case, the federated K-means problem
asks for finding K global centroids Cs that minimize the objective

ϕf (X ;Cs) =

L∑
l=1

∥X(l) − C(l)
s ∥2F , (2)

where C
(l)
s ∈ Rn(l)×d records the centroids of the induced global clusters that data points {x(l)

i }n
(l)

i=1
on client l belong to. Note that the definition of the assignment matrix C for the centralized K-means
is different from that obtained through federated K-means C(l)

s : the i-th row of C only depends on
the location of xi while the row in C

(l)
s corresponding to xi depends on the induced global clusters

that xi belongs to (for a formal definition see 3.1). In Appendix L, we provide a simple example that
further illustrates the difference between C and C

(l)
s . Note that the notion of induced global clusters

was also used in Dennis et al. (2021).

Definition 3.1. Suppose that the local clusters at client l are denoted by C(l)k ,∀k ∈ [K], l ∈ [L],
and that the clusters at the server are denoted by Csk,∀k ∈ [K]. The global clustering equals
Pk = {x(l)

i |x
(l)
i ∈ C

(l)
j , c

(l)
j ∈ Csk,∀j ∈ [K], l ∈ [L]}, where c

(l)
j is the centroid of C(l)j on client l.

Note that (P1, . . . ,PK) forms a partition of the entire dataset X , and the representative centroid for
Pk is defined as cs,k ∈ Cs.

3



Published as a conference paper at ICLR 2023

Exact unlearning. For clustering problems, the exact unlearning criterion may be formulated as
follows. Let X be a given dataset and A a (randomized) clustering algorithm that trains on X and
outputs a set of centroids C ∈M, whereM is the chosen space of models. Let U be an unlearning
algorithm that is applied to A(X ) to remove the effects of one data point x ∈ X . Then U is an exact
unlearning algorithm if ∀C ∈ M, x ∈ X ,P(U(A(X ),X , x) = C) = P(A(X\x) = C). To avoid
confusion, in certain cases, this criterion is referred to as probabilistic (model) equivalence.

Privacy-accuracy-efficiency trilemma. How to trade-off data privacy, model performance, commu-
nication and computational efficiency is a long-standing problem in distributed learning (Acharya &
Sun, 2019; Chen et al., 2020; Gandikota et al., 2021) that also carries over to FL and FC. Solutions that
simultaneously address all these challenges in the latter context are still lacking. For example, Den-
nis et al. (2021) proposed a one-shot algorithm that takes model performance and communication
efficiency into consideration by sending the exact centroids of each client to the server in a nonanony-
mous fashion. This approach may not be desirable under stringent privacy constraints as the server
can gain information about individual client data. On the other hand, privacy considerations were
addressed in Li et al. (2022) by performing K-means Lloyd’s iterations anonymously via distribution
of computations across different clients. Since the method relies on obfuscating pairwise distances for
each client, it incurs computational overheads to hide the identity of contributing clients at the server
and communication overheads due to interactive computations. None of the above methods is suitable
for unlearning applications. To simultaneously enable unlearning and address the trilemma in the
unlearning context, our privacy criterion involves transmitting the number of client data points within
local client clusters in such a manner that the server cannot learn the data statistics of any specific
client, but only the overall statistics of the union of client datasets. In this case, computations are
limited and the clients on their end can perform efficient unlearning, unlike the case when presented
with data point/centroid distances.

Algorithm 1 Secure Federated Clustering
1: input: Dataset X distributed on L clients

(X (1), . . . ,X (L)).
2: Run K-means++ initialization on each client

l in parallel, obtain the initial centroid sets
C(l), and record the corresponding cluster sizes
(|C(l)1 |, . . . , |C

(l)
K |), ∀l ∈ [L].

3: Perform uniform quantization of C(l) on each
dimension, and flatten the quantization bins into
a vector q(l), ∀l ∈ [L].

4: Set q(l)j =
∣∣∣C(l)k

∣∣∣ with j being the index of the

quantization bin where c(l)k lies in for ∀k ∈ [K],
and c

(l)
k is the centroid of C(l)k . Set q(l)j = 0 for

all other indices.
5: Securely sum up q(l) at server by Algorithm 2,

with the aggregated vector denoted as q.
6: For index j ∈ {t : qt ̸= 0}, sample qj points

based on pre-defined distribution and denote
their union as new dataset Xs at server.

7: Run full K-means++ clustering at server with
Xs to obtain the centroid set Cs at server.

8: return Each client retains its own centroid set
C(l), server retains Xs, q and Cs.

Random and adversarial removal. Most un-
learning literature focuses on the case when all
data points are equally likely to be removed, a
setting known as random removal. However,
adversarial data removal requests may arise
when users are malicious in unlearning certain
points that are critical for model training (i.e.,
boundary points in optimal clusters). We re-
fer to such a removal request as adversarial
removal. In Section 5, we provide theoretical
analysis for both types of removal.

4 FEDERATED CLUSTERING WITH
SECURE MODEL AGGREGATION

The block diagram of our FC (Alg. 1) is de-
picted in Fig. 1. It comprises five components:
a client-side clustering, client local informa-
tion processing, secure compressed aggrega-
tion, server data generation, and server-side
clustering module. We explain next the role of
each component of the system.

For client- and server-side clustering (line 2
and 7 of Alg. 1), we adopt K-means++ as it
lends it itself to highly efficient unlearning, as

explained in Section 5. Specifically, we only run the K-means++ initialization procedure at each
client but full K-means++ clustering (initialization and Lloyd’s algorithm) at the server.

Line 3 and 4 of Alg. 1 describe the procedure used to process the information of local client clusters.
As shown in Fig. 1, we first quantize the local centroids to their closest centers of the quantization
bins, and the spatial locations of quantization bins naturally form a tensor, in which we store the
sizes of local clusters. A tensor is generated for each client l, and subsequently flattened to form a
vector q(l). For simplicity, we use uniform quantization with step size γ for each dimension (line 3 of

4



Published as a conference paper at ICLR 2023

Alg. 1, with more details included in Appendix H). The parameter γ > 0 determines the number of
quantization bins in each dimension. If the client data is not confined to the unit hypercube centered
at the origin, we scale the data to meet this requirement. Then the number of quantization bins in
each dimension equals B = γ−1, while the total number of quantization bins for d dimensions is
Bd = γ−d.

Line 5 of Alg. 1 describes how to aggregate information efficiently at the server without leaking
individual client data statistics. This scheme is discussed in Section 4.1. Line 6 pertains to generating
qj points for the j-th quantization bin based on its corresponding spatial location. The simplest idea
is to choose the center of the quantization bin as the representative point and assign weight qj to it.
Then, in line 7, we can use the weighted K-means++ algorithm at the server to further reduce the
computational complexity.

A simplified version of Alg. 1 is discussed in Appendix I, for applications where the privacy criterion
is not an imperative.

4.1 SCMA AT THE SERVER

Algorithm 2 SCMA

1: input: L different vectors q(l) of length Bd to
be securely aggregated, a finite field Fp.

2: Each client l ∈ [L] communicates
(S

(l)
1 , . . . , S

(l)
2KL) to the server, where S

(l)
i =

(
∑

j:q
(l)
j ̸=0

q
(l)
j ·ji−1+z

(l)
i ) mod p, i ∈ [2KL]

and z
(l)
i is a random key uniformly distributed

over Fp and hidden from the server. The keys
{z(l)i }l∈[L],i∈[2KL] are generated offline using
standard secure model aggregation so that
(
∑

l z
(l)
i ) mod p = 0.

3: The server first computes the sum Si =

(
∑

l∈[L] S
(l)
i ) mod p. Given Si, the server

computes the coefficients of the polyno-
mial g(x) =

∏
j:qj ̸=0(1 − j · x) using

the Berlekamp-Massey algorithm (Berlekamp,
1968; Massey, 1969). Then, the server fac-
torizes g(x) over the field Fp to determine
the roots j−1, qj ̸= 0, using the polyno-
mial factorizing algorithm (Kedlaya & Umans,
2011). Finally, the server solves a set of
2KL linear equations Si =

∑
l∈[L] S

(l)
i =∑

j:qj ̸=0 qj · ji−1 for i ∈ [2KL], by consider-
ing qj as unknowns and ji−1 as known coeffi-
cients for qj ̸= 0.

4: return q reconstructed at the server.

Once the vector representations q(l) of length
Bd for client l are generated (line 4 of Alg. 1),
we can use standard secure model aggregation
methods (Bonawitz et al., 2017; Bell et al., 2020;
So et al., 2022) to sum up all q(l) securely and
obtain the aggregated results q at the server.
However, since the length of each vector q(l)

is Bd, securely aggregating the whole vector
would lead to an exponential communication
complexity for each client. Moreover, each q(l)

is a sparse vector since the number of client
centroids is much smaller than the number of
quantization bins (i.e., K ≪ Bd). It is ineffi-
cient and unnecessary for each client to send out
the entire q(l) with noisy masks for aggregation.
This motivates us to first compress the vectors
and then perform the secure aggregation, and
we refer to this process as SCMA (Alg. 2), with
one example illustrated in Fig. 2.

By observing that there can be at most K
nonzero entries in q(l),∀l ∈ [L] and at
most KL nonzero entries in q, we invoke
the Reed-Solomon code construction (Reed &
Solomon, 1960) for designing SCMA. Let Fp =
{0, 1, . . . , p− 1} be a finite field of prime order
p ≥ max{n,Bd}. We treat the indices of the
quantization bins as distinct elements from the
underlying finite field, and use them as evalua-
tion points of the encoder polynomial. In addi-
tion, we treat a nonzero entry q

(l)
j in vector q(l)

as a substitution error at the j-th entry in a codeword. Then, we use our SCMA scheme shown
in Alg. 2, where the messages that the clients send to server can be treated as syndromes in Reed-
Solomon decoding. Note that in our scheme, the server does not know q(l), l ∈ [L] beyond the fact
that

∑
l∈[L] q

(l) = q, which fits into our privacy criterion. This follows because z
(l)
i is uniformly

distributed over Fp and independently chosen for different l ∈ [L], i ∈ [2KL]. For details, please
refer to Appendix J.

4.2 PERFORMANCE ANALYSIS

We describe next the performance guarantees of Alg. 1 w.r.t. the objective defined in Eq. (2).

5



Published as a conference paper at ICLR 2023

Theorem 4.1. Suppose that we performed uniform quantization with step size γ in Algorithm 1. Then
we have E (ϕf (X ;Cs)) < O(log2 K) · ϕ∗

c(X ) +O(ndγ2 logK).

Figure 2: Example of the SCMA procedure for
K = 2, L = 2, Bd = 4, n = 12, p = 13.

The performance guarantee in Theorem 4.1 per-
tains to two terms: the approximation of the op-
timal objective value and the quantization error
(line 3 of Alg. 1). For the first term, the approx-
imation factor O(log2 K) is order-optimal for
one-shot FC algorithms since one always needs
to perform two rounds of clustering and each
round will contribute a factor of O(logK). To
make the second term a constant w.r.t. n, we can
choose γ = Θ(1/

√
n), which is a good choice

in practice for the tested datasets as well. The
above conclusions hold for any distribution of
data across clients. Note that SCMA does not
contribute to the distortion as it always returns

the exact sum, while other methods for sparse secure aggregation based on sparsification (Han et al.,
2020) may introduce errors and degrade the FC objective. See Appendix D for more details.

4.3 COMPLEXITY ANALYSIS

We derived a cohort of in-depth analysis pertaining to the computational and communication complex-
ity for our proposed FC framework (Alg. 1). Due to space limitations, these results are summarized
in Appendix C.

5 MACHINE UNLEARNING VIA SPECIALIZED SEEDING

We first describe an intuitive exact unlearning mechanism (Alg. 3) for K-means clustering in the
centralized setting, which will be used later on as the unlearning procedure on the client-sides of
the FC framework described in Section 5.3. The idea behind Alg. 3 is straightforward: one needs to
rerun the K-means++ initialization, corresponding to retraining only if the current centroid set C
contains at least one point requested for removal. This follows from two observations. First, since
the centroids chosen through K-means++ initialization are true data points, the updated centroid set
C′ returned by Alg. 3 is guaranteed to contain no information about the data points that have been
removed. Second, as we will explain in the next section, Alg. 3 also satisfies the exact unlearning
criterion (defined in Section 3).

5.1 PERFORMANCE ANALYSIS

To verify that Alg. 3 is an exact unlearning method, we need to check that C′ is probabilistically
equivalent to the models generated by rerunning the K-means++ initialization process on X ′, the set
of point remaining after removal. This is guaranteed by Lemma 5.1, and a formal proof is provided
in Appendix E.
Lemma 5.1. For any set of data points X and removal set XR, assuming that the remaining dataset
is X ′ = X\XR and the centroid set returned by Algorithm 3 is C′, we have

P(U(A(X ),X ,XR) = C) = P(A(X ′) = C); E(ϕc(X ′;C′)) ≤ 8(lnK + 2)ϕ∗
c(X ′),

where A represents Algorithm 1 and U represents the unlearning mechanism in Algorithm 3.

5.2 COMPLEXITY ANALYSIS

We present next analytical results for the expected time complexity of removing a batch of R data
points simultaneously by our Alg. 3. For this, we consider both random and adversarial removal
scenarios. While the analysis for random removal is fairly straightforward, the analysis for adversarial
removal requests requires us to identify which removals force frequent retraining from scratch. In
this regard, we state two assumptions concerning optimal cluster sizes and outliers, which will allow
us to characterize the worst-case scenario removal setting.

6



Published as a conference paper at ICLR 2023

Assumption 5.2. Let ϵ1 = n
Ksmin

be a constant denoting cluster size imbalance, where smin equals
the size of the smallest cluster in the optimal clustering; when ϵ1 = 1, all clusters are of size n

K .
Assumption 5.3. Assume that ϵ2 ≥ 1 is a fixed constant. An outlier xi in X satisfies ∥xi − c∗j∥ ≤
∥xi − c∗k∥,∀k ∈ [K] and ∥xi − c∗j∥ >

√
ϵ2ϕ∗

c(C∗j )/|C∗j |.

Algorithm 3 Unlearning via K-means++ Init.
1: input: Dataset X , centroid set C obtained

by K-means++ initialization on X , re-
moval request set XR = {xr1 , . . . , xrR}.

2: if cj /∈ XR ∀cj ∈ C then
3: C′ ← C
4: else
5: i← (argminj cj ∈ XR)− 1
6: if i = 0 then
7: C′ ← ∅, X ′ ← X\XR.
8: else
9: C′ ← {c1, . . . , ci}, X ′ ← X\XR.

10: end if
11: for j = i+ 1, . . . ,K do
12: Sample x from X ′ with prob

d2(x,C′)
ϕc(X ′;C′) .

13: C′ ← C′ ∪ {x}.
14: end for
15: end if
16: return C′

Under Assumptions 5.2 and 5.3, we arrive at an
estimate for the expected removal time presented in
Theorem 5.4 below. Notably, the expected removal
time does not depend on the data set size n.
Theorem 5.4. Assume that the number of data
points in X is n and the probability of the data set
containing at least one outlier is upper bounded
by O (1/n). Algorithm 3 supports removing R
points within one single request with expected time
min{O(RK2d), O(nKd)} for random removals,
and expected time min{O(RK3ϵ1ϵ2d), O(nKd)}
in expectation for adversarial removals. The com-
plexity for complete retraining equals O(nKd).
Remark. Due to the distance-based K-means++
initialization procedure, the existence of outliers
in the dataset inevitably leads to higher retraining
probability. This is the case since outliers are more
likely to lie in the initial set of centroids. Hence, for
analytical purposes, we assume in Theorem 5.4 that
the probability of the data set containing at least
one outlier is upper bounded by O (1/n). This is
not an overly restrictive assumption as there exist

many different approaches for removing outliers before clustering Chawla & Gionis (2013); Gan &
Ng (2017); Hautamäki et al. (2005), which effectively make the probability of outliers negligible.

5.3 UNLEARNING FEDERATED CLUSTERS

We describe next the complete unlearning algorithm for the new FC framework which uses Alg. 3 for
client-level clustering. In the FL setting, data resides on client storage devices, and thus the basic
assumption of federated unlearning is that the removal requests will only appear at the client side, and
the removal set will not be known to other unaffected clients and the server. We consider two types
of removal requests in the FC setting: removing R points from one client l (cross-silo, single-client
removal), and removing all data points from R clients l1, . . . , lR (cross-device, multi-client removal).
For the case where multiple clients want to unlearn only a part of their data, the approach is similar to
that of single-client removal and can be handled via simple union bounds.

The unlearning procedure is depicted in Alg. 4. For single-client data removal, the algorithm will first
perform unlearning at the client (say, client l) following Alg. 3. If the client’s local clustering changes
(i.e., client l reruns the initialization), one will generate a new vector q(l) and send it to the server
via SCMA. The server will rerun the clustering procedure with the new aggregated vector q′ and
generate a new set of global centroids C′

s. Note that other clients do not need to perform additional
computations during this stage. For multi-client removals, we follow a similar strategy, except that
no client needs to perform additional computations. Same as centralized unlearning described in
Lemma 5.1, we can show that Alg. 4 is also an exact unlearning method.

Removal time complexity. For single-client removal, we know from Theorem 5.4
that the expected removal time complexity of client l is min{O(RK2d), O(n(l)Kd)} and
min{O(RK3ϵ1ϵ2d), O(n(l)Kd)} for random and adversarial removals, respectively. n(l) denotes
the number of data points on client l. Other clients do not require additional computations, since their
centroids will not be affected by the removal requests. Meanwhile, the removal time complexity for
the server is upper bounded by O(K2LTd), where T is the maximum number of iterations of Lloyd’s
algorithm at the server before convergence. For multi-client removal, no client needs to perform
additional computations, and the removal time complexity for the server equals O((L−R)K2Td).

7



Published as a conference paper at ICLR 2023

6 EXPERIMENTAL RESULTS

Algorithm 4 Unlearning of Federated Clusters
1: input: Dataset X distributed on L clients

(X (1), . . . ,X (L)), (C(l),Xs, q,Cs) obtained
by Algorithm 1 on X , removal request set
X (l)

R for single-client removal or LR for multi-
client removal.

2: if single-client removal then
3: Run Algorithm 3 on client l and update q(l)

if client l has to perform retraining.
4: else
5: q(l) ← 0 on client l, ∀l ∈ LR.
6: end if
7: Securely sum up q(l) at server by Algorithm 2,

with the aggregated vector denoted as q′.
8: if q′ = q then
9: C′

s ← Cs.
10: else
11: Generate X ′

s with q′.
12: Run full K-means++ at the server with X ′

s
to obtain C′

s.
13: end if
14: return Client centroid sets C(l)′, server data
X ′

s, q
′ and centroids C′

s.

To empirically characterize the trade-off be-
tween the efficiency of data removal and per-
formance of our newly proposed FC method, we
compare it with baseline methods on both syn-
thetic and real datasets. Due to space limitations,
more in-depth experiments and discussions are
delegated to Appendix M.

Datasets and baselines. We use one synthetic
dataset generated by a Gaussian Mixture Model
(Gaussian) and six real datasets (Celltype, Cov-
type, FEMNIST, Postures, TMI, TCGA) in our
experiments. We preprocess the datasets such
that the data distribution is non-i.i.d. across dif-
ferent clients. The symbol K ′ in Fig. 3 repre-
sents the maximum number of (true) clusters
among clients, while K represents the number
of true clusters in the global dataset. A detailed
description of the data statistics and the prepro-
cessing procedure is available in Appendix M.
Since there is currently no off-the-shelf algo-
rithm designed for unlearning federated clusters,
we adapt DC-Kmeans (DC-KM) from Ginart
et al. (2019) to apply to our problem setting, and
use complete retraining as the baseline compari-

son method. To evaluate FC performance on the complete dataset (before data removals), we also
include the K-FED algorithm from Dennis et al. (2021) as the baseline method. In all plots, our Alg. 1
is referred to as MUFC. Note that in FL, clients are usually trained in parallel so that the estimated
time complexity equals the sum of the longest processing time of a client and the processing time of
the server.

Clustering performance. The clustering performance of all methods on the complete dataset is
shown in the first row of Tab. 1. The loss ratio is defined as ϕf (X ;Cs)/ϕ

∗
c(X )1, which is the metric

used to evaluate the quality of the obtained clusters. For the seven datasets, MUFC offered the best
performance on TMI and Celltype, datasets for which the numbers of data points in different clusters
are highly imbalanced. This can be explained by pointing out an important difference between MUFC
and K-FED/DC-KM: the quantized centroids sent by the clients may have non-unit weights, and
MUFC is essentially performing weighted K-means++ at the server. In contrast, both K-FED and
DC-KM assign equal unit weights to the client’s centroids. Note that assigning weights to the client’s
centroids based on local clusterings not only enables a simple analysis of the scheme but also improves
the empirical performance, especially for datasets with highly imbalanced cluster distributions. For
all other datasets except Gaussian, MUFC obtained competitive clustering performance compared
to K-FED/DC-KM. The main reason why DC-KM outperforms MUFC on Gaussian data is that all
clusters are of the same size in this case. Also note that DC-KM runs full K-means++ clustering for
each client while MUFC only performs initialization. Although running full K-means++ clustering
at the client side can improve the empirical performance on certain datasets, it also greatly increases
the computational complexity during training and the retraining probability during unlearning, which
is shown in Fig. 3. Nevertheless, we also compare the performance of MUFC with K-FED/DC-KM
when running full K-means++ clustering on clients for MUFC in Appendix M.

We also investigated the influence of K ′ and γ on the clustering performance. Fig. 3(a) shows that
MUFC can obtain a lower loss ratio when K ′ < K, indicating that data is non-i.i.d. distributed across
clients. Fig. 3(b) shows that the choice of γ does not seem to have a strong influence on the clustering
performance of Gaussian datasets, due to the fact that we use uniform sampling in Step 6 of Alg. 1 to
generate the server dataset. Meanwhile, Fig. 3(c) shows that γ can have a significant influence on
the clustering performance of real-world datasets, which agrees with our analysis in Theorem 4.1.

1ϕ∗
c(X) is approximated by running K-means++ multiple times and selecting the smallest objective value.

8



Published as a conference paper at ICLR 2023

Table 1: Clustering performance of different FC algorithms compared to centralized K-means++
clustering.

TMI Celltype Gaussian TCGA Postures FEMNIST Covtype

Loss ratio
MUFC 1.24 ± 0.10 1.14 ± 0.03 1.25 ± 0.02 1.18 ± 0.05 1.10 ± 0.01 1.20 ± 0.00 1.03 ± 0.02
K-FED 1.84 ± 0.07 1.72 ± 0.24 1.25 ± 0.01 1.56 ± 0.11 1.13 ± 0.01 1.21 ± 0.00 1.60 ± 0.01
DC-KM 1.54 ± 0.13 1.46 ± 0.01 1.02 ± 0.00 1.15 ± 0.02 1.03 ± 0.00 1.18 ± 0.00 1.03 ± 0.02

Speed-up of MUFC
(if no retraining is performed) 151x 1535x 2074x 483x 613x 53x 267x

Figure 3: The shaded areas represent the standard deviation of results from different trails. (a)
Influence of data heterogeneity on the clustering performance of MUFC: K ′ represents the maximum
number of (global) clusters covered by the data at the clients, while K ′ = 10 indicates that the data
points are i.i.d. distributed across clients. (b)(c) Influence of the quantization step size γ on the
clustering performance of MUFC. The red vertical line indicates the default choice of γ = 1/

√
n,

where n is the total number of data points across clients. (d) The change in the loss ratio after
each round of unlearning. (e) The accumulated removal time for adversarial removals. (f)-(l) The
accumulated removal time for random removals.

The red vertical line in both figures indicates the default choice of γ = 1/
√
n, where n stands for the

number of total data points across clients.

Unlearning performance. Since K-FED does not support data removal, has high computational
complexity, and its empirical clustering performance is worse than DC-KM (see Tab. 1), we only
compare the unlearning performance of MUFC with that of DC-KM. For simplicity, we consider
removing one data point from a uniformly at random chosen client l at each round of unlearning.
The second row of Tab. 1 records the speed-up ratio w.r.t. complete retraining for one round of
MUFC unlearning (Alg. 4) when the removed point does not lie in the centroid set selected at client l.
Fig. 3(e) shows the accumulated removal time on the TMI dataset for adversarial removals, which
are simulated by removing the data points with the highest contribution to the current value of
the objective function at each round, while Fig. 3(f)-(l) shows the accumulated removal time on
different datasets for random removals. The results show that MUFC maintains high unlearning
efficiency compared to all other baseline approaches, and offers an average speed-up ratio of 84x
when compared to complete retraining for random removals across seven datasets. We also report
the change in the loss ratio of MUFC during unlearning in Fig. 3(d). The loss ratio remains nearly
constant after each removal, indicating that our unlearning approach does not significantly degrade
clustering performance. Similar conclusions hold for other tested datasets, as shown in Appendix M.

9



Published as a conference paper at ICLR 2023

ETHICS STATEMENT

The seven datasets used in our simulations are all publicly available. Among these datasets, TCGA
and TMI contain potentially sensitive biological data and are downloaded after logging into the
database. We adhered to all regulations when handling this anonymized data and will only release the
data processing pipeline and data that is unrestricted at TCGA and TMI. Datasets that do not contain
sensitive information can be downloaded directly from their open-source repositories.

REPRODUCIBILITY STATEMENT

Our implementation is available at https://github.com/thupchnsky/mufc. Detailed
instructions are included in the source code.

ACKNOWLEDGMENT

This work was funded by NSF grants 1816913 and 1956384. The authors thank Eli Chien for the
helpful discussion.

10

https://github.com/thupchnsky/mufc


Published as a conference paper at ICLR 2023

REFERENCES

Jayadev Acharya and Ziteng Sun. Communication complexity in locally private distribution estimation
and heavy hitters. In International Conference on Machine Learning, pp. 51–60. PMLR, 2019.

Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. Streaming k-means approximation. Advances in
neural information processing systems, 22, 2009.

Constance Beguier, Mathieu Andreux, and Eric W Tramel. Efficient sparse secure aggregation for
federated learning. arXiv preprint arXiv:2007.14861, 2020.

James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova.
Secure single-server aggregation with (poly) logarithmic overhead. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pp. 1253–1269, 2020.

Elwyn R. Berlekamp. Algebraic coding theory. In McGraw-Hill series in systems science, 1968.

Jock A Blackard and Denis J Dean. Comparative accuracies of artificial neural networks and
discriminant analysis in predicting forest cover types from cartographic variables. Computers and
electronics in agriculture, 24(3):131–151, 1999.

Kallista Bonawitz, Peter Kairouz, Brendan McMahan, and Daniel Ramage. Federated learning
and privacy: Building privacy-preserving systems for machine learning and data science on
decentralized data. Queue, 19(5):87–114, 2021.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191, 2017.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium
on Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. LEAF: A Benchmark for Federated Settings. arXiv
preprint arXiv:1812.01097, 2018.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE Symposium on Security and Privacy, pp. 463–480. IEEE, 2015.

Sanjay Chawla and Aristides Gionis. k-means–: A unified approach to clustering and outlier detection.
In Proceedings of the 2013 SIAM international conference on data mining, pp. 189–197. SIAM,
2013.

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang.
Graph unlearning. arXiv preprint arXiv:2103.14991, 2021.

Wei-Ning Chen, Peter Kairouz, and Ayfer Ozgur. Breaking the communication-privacy-accuracy
trilemma. Advances in Neural Information Processing Systems, 33:3312–3324, 2020.

Wei-Ning Chen, Christopher A Choquette Choo, Peter Kairouz, and Ananda Theertha Suresh. The
fundamental price of secure aggregation in differentially private federated learning. In International
Conference on Machine Learning, pp. 3056–3089. PMLR, 2022.

Eli Chien, Chao Pan, and Olgica Milenkovic. Certified graph unlearning. In NeurIPS 2022 Workshop:
New Frontiers in Graph Learning, 2022. URL https://openreview.net/forum?id=
wCxlGc9ZCwi.

Eli Chien, Chao Pan, and Olgica Milenkovic. Efficient model updates for approximate unlearning of
graph-structured data. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=fhcu4FBLciL.

11

https://openreview.net/forum?id=wCxlGc9ZCwi
https://openreview.net/forum?id=wCxlGc9ZCwi
https://openreview.net/forum?id=fhcu4FBLciL


Published as a conference paper at ICLR 2023

Jichan Chung, Kangwook Lee, and Kannan Ramchandran. Federated unsupervised clustering with
generative models. In AAAI 2022 International Workshop on Trustable, Verifiable and Auditable
Federated Learning, 2022.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. EMNIST: Extending MNIST
to handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp.
2921–2926. IEEE, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Don Kurian Dennis, Tian Li, and Virginia Smith. Heterogeneity for the win: One-shot federated
clustering. In International Conference on Machine Learning, pp. 2611–2620. PMLR, 2021.

Alfredo Eisinberg and Giuseppe Fedele. On the inversion of the vandermonde matrix. Applied
mathematics and computation, 174(2):1384–1397, 2006.

Irem Ergun, Hasin Us Sami, and Basak Guler. Sparsified secure aggregation for privacy-preserving
federated learning. arXiv preprint arXiv:2112.12872, 2021.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on
computer and communications security, pp. 1322–1333, 2015.

Keith Frikken. Privacy-preserving set union. In International Conference on Applied Cryptography
and Network Security, pp. 237–252. Springer, 2007.

Shaopeng Fu, Fengxiang He, and Dacheng Tao. Knowledge removal in sampling-based bayesian
inference. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=dTqOcTUOQO.

Guojun Gan and Michael Kwok-Po Ng. K-means clustering with outlier removal. Pattern Recognition
Letters, 90:8–14, 2017.

Venkata Gandikota, Daniel Kane, Raj Kumar Maity, and Arya Mazumdar. vqsgd: Vector quantized
stochastic gradient descent. In International Conference on Artificial Intelligence and Statistics,
pp. 2197–2205. PMLR, 2021.

Andrew Gardner, Christian A Duncan, Jinko Kanno, and Rastko Selmic. 3D hand posture recognition
from small unlabeled point sets. In 2014 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pp. 164–169. IEEE, 2014a.

Andrew Gardner, Jinko Kanno, Christian A Duncan, and Rastko Selmic. Measuring distance between
unordered sets of different sizes. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 137–143, 2014b.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how
easy is it to break privacy in federated learning? Advances in Neural Information Processing
Systems, 33:16937–16947, 2020.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. Advances in Neural Information Processing Systems, 33:19586–
19597, 2020.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making AI forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020a.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing deep
networks of information accessible from input-output observations. In European Conference on
Computer Vision, pp. 383–398. Springer, 2020b.

12

https://openreview.net/forum?id=dTqOcTUOQO
https://openreview.net/forum?id=dTqOcTUOQO


Published as a conference paper at ICLR 2023

Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering
data streams: Theory and practice. IEEE transactions on knowledge and data engineering, 15(3):
515–528, 2003.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 3832–3842. PMLR, 13–18 Jul 2020.

Pengchao Han, Shiqiang Wang, and Kin K Leung. Adaptive gradient sparsification for efficient
federated learning: An online learning approach. In 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), pp. 300–310. IEEE, 2020.

Xiaoping Han, Renying Wang, Yincong Zhou, Lijiang Fei, Huiyu Sun, Shujing Lai, Assieh Saadat-
pour, Ziming Zhou, Haide Chen, Fang Ye, et al. Mapping the mouse cell atlas by microwell-seq.
Cell, 172(5):1091–1107, 2018.

John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm. Journal
of the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.

Ville Hautamäki, Svetlana Cherednichenko, Ismo Kärkkäinen, Tomi Kinnunen, and Pasi Fränti.
Improving k-means by outlier removal. In Scandinavian conference on image analysis, pp. 978–
987. Springer, 2005.

Carolyn Hutter and Jean Claude Zenklusen. The Cancer Genome Atlas: Creating Lasting Value
beyond Its Data. Cell, 173(2):283–285, 2018.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Kiran S Kedlaya and Christopher Umans. Fast polynomial factorization and modular composition.
SIAM Journal on Computing, 40(6):1767–1802, 2011.

Lea Kissner and Dawn Song. Privacy-preserving set operations. In Annual International Cryptology
Conference, pp. 241–257. Springer, 2005.

Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability for
k-means. Information Processing Letters, 120:40–43, 2017.

Songze Li, Sizai Hou, Baturalp Buyukates, and Salman Avestimehr. Secure federated clustering.
arXiv preprint arXiv:2205.15564, 2022.

Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Federaser: Enabling
efficient client-level data removal from federated learning models. In 2021 IEEE/ACM 29th
International Symposium on Quality of Service (IWQOS), pp. 1–10. IEEE, 2021.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem is
np-hard. Theoretical Computer Science, 442:13–21, 2012.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

James Massey. Shift-register synthesis and bch decoding. IEEE transactions on Information Theory,
15(1):122–127, 1969.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

13



Published as a conference paper at ICLR 2023

Chao Pan, Eli Chien, and Olgica Milenkovic. Unlearning graph classifiers with limited data resources.
In The Web Conference, 2023.

Jane Peterson, Susan Garges, Maria Giovanni, Pamela McInnes, Lu Wang, Jeffery A Schloss, Vivien
Bonazzi, Jean E McEwen, Kris A Wetterstrand, Carolyn Deal, et al. The NIH Human Microbiome
Project. Genome research, 19(12):2317–2323, 2009.

Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the
society for industrial and applied mathematics, 8(2):300–304, 1960.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neural
networks and learning systems, 32(8):3710–3722, 2020.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember
what you want to forget: Algorithms for machine unlearning. Advances in Neural Information
Processing Systems, 34:18075–18086, 2021.

Jae Hong Seo, Jung Hee Cheon, and Jonathan Katz. Constant-round multi-party private set union
using reversed laurent series. In International Workshop on Public Key Cryptography, pp. 398–412.
Springer, 2012.

Jinhyun So, Corey J Nolet, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E Ali, Basak Guler, and
Salman Avestimehr. Lightsecagg: a lightweight and versatile design for secure aggregation in
federated learning. Proceedings of Machine Learning and Systems, 4:694–720, 2022.

Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul Downey,
Paul Elliott, Jane Green, Martin Landray, et al. Uk biobank: an open access resource for identifying
the causes of a wide range of complex diseases of middle and old age. PLoS medicine, 12(3):
e1001779, 2015.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

Sergei Vassilvitskii and David Arthur. k-means++: The advantages of careful seeding. In Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, 2006.

Michael Veale, Reuben Binns, and Lilian Edwards. Algorithms that remember: model inversion
attacks and data protection law. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 376(2133):20180083, 2018.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated
optimization. arXiv preprint arXiv:2107.06917, 2021.

Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated unlearning via class-discriminative
pruning. In Proceedings of the ACM Web Conference 2022, pp. 622–632, 2022.

Chen Wu, Sencun Zhu, and Prasenjit Mitra. Federated unlearning with knowledge distillation. arXiv
preprint arXiv:2201.09441, 2022.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural information
processing systems, 32, 2019.

14



Published as a conference paper at ICLR 2023

A RELATED WORKS

Federated clustering. The idea of FC is to perform clustering using data that resides at different
edge devices. It is closely related to clustered FL (Sattler et al., 2020), whose goal is to learn several
global models simultaneously, based on the cluster structure of the dataset, as well as personalization
according to the cluster assignments of client data in FL (Mansour et al., 2020). One difference
between FC and distributed clustering (Guha et al., 2003; Ailon et al., 2009) is the assumption of data
heterogeneity across different clients. Recent works (Ghosh et al., 2020; Dennis et al., 2021; Chung
et al., 2022) exploit the non-i.i.d nature of client data to improve the performance of some learners.
Another difference pertains to data privacy. Most previous methods were centered around the idea of
sending exact (Dennis et al., 2021) or quantized client (local) centroids (Ginart et al., 2019) to the
server, which may not be considered private as it leaks the data statistics or cluster information of all
the clients. To avoid sending exact centroids, Li et al. (2022) proposes sending distances between data
points and centroids to the server without revealing the membership of data points to any of the parties
involved. Note that there is currently no formal definition of computational or information-theoretic
secrecy/privacy for FC problems, making it hard to compare methods addressing different aspects of
FL. Our method introduces a simple-to-unlearn clustering process and new privacy mechanism that is
intuitively appealing as it involves communicating obfuscated point counts of the clients to the server.

Sparse secure aggregation. Sparse secure aggregation aims to securely aggregate local models in a
communication-efficient fashion for the case that the local models are high-dimensional but sparse.
Existing works on sparse secure aggregation (Beguier et al., 2020; Ergun et al., 2021) either have
a communication complexity that is linear in the model dimension, or they can only generate an
approximation of the aggregated model based on certain sparsification procedures (Han et al., 2020).
In comparison, our SCMA scheme can securely recover the exact sum of the input sparse models
with a communication complexity that is logarithmic in the model dimension.

Private set union. The private set union (Kissner & Song, 2005; Frikken, 2007; Seo et al., 2012) is a
related but different problem compared to sparse secure aggregation. It requires multiple parties to
communicate with each other to securely compute the union of their sets. In SCMA we aggregate
multisets, which include the frequency of each element that is not considered in the private set union
problem. In addition, our scheme includes only one round of communication from the clients to
the server, while there is no server in the private set union problem but multi-round client to client
communication is needed.

Machine unlearning. For centralized machine unlearning problems, two types of unlearning
requirements were proposed in previous works: exact unlearning and approximate unlearning. For
exact unlearning, the unlearned model is required to perform identically as a completely retrained
model. To achieve this, Cao & Yang (2015) introduced distributed learners, Bourtoule et al. (2021)
proposed sharding-based methods, Ginart et al. (2019) used quantization to eliminate the effect of
removed data in clustering problems, and Chen et al. (2021) applied sharding-based methods to Graph
Neural Networks. For approximate unlearning, the “differences” in behavior between the unlearned
model and the completely retrained model should be appropriately bounded, similarly to what is done
in the context of differential privacy. Following this latter direction, Guo et al. (2020) introduced the
inverse Newton update for linear models, Sekhari et al. (2021) studied the generalization performance
of approximately unlearned models, Fu et al. (2022) proposed an MCMC unlearning algorithm for
sampling-based Bayesian inference, Golatkar et al. (2020a;b) designed model update mechanisms
for deep neural networks based on Fisher Information and Neural Tangent Kernel, while Chien et al.
(2022; 2023); Pan et al. (2023) extended the analysis to Graph Neural Networks. A limited number
of recent works also investigated data removal in the FL settings: Liu et al. (2021) proposed to use
fewer iterations during retraining for federated unlearning, Wu et al. (2022) introduced Knowledge
Distillation into the unlearning procedure to eliminate the effect of data points requested for removal,
and Wang et al. (2022) considered removing all data from one particular class via inspection of the
internal influence of each channel in Convolutional Neural Networks. These federated unlearning
methods are (mostly) empirical and do not come with theoretical guarantees for model performance
after removal and/or for the unlearning efficiency. In contrast, our proposed FC framework not only
enables efficient data removal in practice, but also provides theoretical guarantees for the unlearned
model performance and for the expected time complexity of the unlearning procedure.

15



Published as a conference paper at ICLR 2023

B K-MEANS++ INITIALIZATION

The K-means problem is NP-hard even for K = 2, and when the points lie in a two-dimensional
Euclidean space (Mahajan et al., 2012). Heuristic algorithms for solving the problem, including
Lloyd’s (Lloyd, 1982) and Hartigan’s method (Hartigan & Wong, 1979), are not guaranteed to
obtain the global optimal solution unless further assumptions are made on the point and cluster
structures (Lee et al., 2017). Although obtaining the exact optimal solution for the K-means problem
is difficult, there are many methods that can obtain quality approximations for the optimal centroids.
For example, a randomized initialization algorithm (K-means++) was introduced in Vassilvitskii &
Arthur (2006) and the expected objective value after initialization is a (logK)-approximation to the
optimal objective (E(ϕ) ≤ (8 lnK + 16)ϕ∗). K-means++ initialization works as follows: initially,
the centroid set C is assumed to be empty. Then, a point is sampled uniformly at random from X
for the first centroid and added to C. For the following K − 1 rounds, a point x from X is sampled
with probability d2(x,C)/ϕc(X ;C) for the new centroid and added to C. Here, d(x,C) denotes the
minimum ℓ2 distance between x and the centroids in C chosen so far. After the initialization step, we
arrive at K initial centroids in C used for running Lloyd’s algorithm.

C COMPLEXITY ANALYSIS OF ALGORITHM 1

Computational complexity of client-side clustering. Client-side clustering involves running K-
means++ initialization procedure, which is of complexity O(nKd).

Computational complexity of server-side clustering. Server-side clustering involves running
K-means++ initialization procedure followed by Lloyd’s algorithm with T iterations, which is of
complexity O(K2LTd).

Computational complexity of SCMA at the client end. The computation of S(l)
i on client l requires

at most O(K log i) multiplications over Fp, i ∈ [2KL]. The total computational complexity equals
O(K2L log(KL)) multiplication and addition operations over Fp.

Computational complexity of SCMA at the server end. The computational complexity at the
server is dominated by the complexity of the Berlekamp-Massey decoding algorithm (Berlekamp,
1968; Massey, 1969), factorizing the polynomial g(x) over Fp (Kedlaya & Umans, 2011), and solving
the linear equations Si =

∑
l∈[L] S

(l)
i =

∑
j:qj ̸=0 qj · ji−1 with known j, qj ̸= 0. The complexity

of Berlekamp-Massey decoding over Fp is O(K2L2). The complexity of factorizing a polynomial
g(x) over Fp using the algorithm in Kedlaya & Umans (2011) is O((KL)1.5 log p + KL log2 p)

operations over Fp. The complexity of solving for Si =
∑

l∈[L] S
(l)
i equals that of finding the inverse

of a Vandermonde matrix, which takes O(K2L2) operations over Fp (Eisinberg & Fedele, 2006).
Hence, the total computational complexity at the server side is max{O(K2L2), O((KL)1.5 log p+
KL log2 p)} operations over Fp.

Communication complexity of SCMA at the client end. Since each S
(l)
i can be represented by

⌈log p⌉ bits, the information {S(l)
i }i∈[2KL] sent by each client l can be represented by 2KL⌈log p⌉ ≤

max{2KL log n, 2KLd logB} + 1 bits. Note that there are at most
∑

k∈[KL]

(
Bd

k

)(
n

k−1

)
q-ary

vectors of length Bd. Hence, the cost for communicating q(l) from the client to server l is at
least log

(∑
k∈[KL]

(
Bd

k

)(
n

k−1

))
= max{O(KL log n), O(KLd logB)} bits, which implies that

our scheme is order-optimal w.r.t. the communication cost. Note that following standard practice in
the area, we do not take into account the complexity of noise generation in secure model aggregation,
as it can be done offline and independently of the Reed-Solomon encoding procedure.

D PROOF OF THEOREM 4.1

Proof. We first consider the case where no quantization is performed (Algorithm 5). The performance
guarantees for the federated objective value in this setting are provided in Lemma D.1.

16



Published as a conference paper at ICLR 2023

Lemma D.1. Suppose that the entire data set across clients is denoted by X , and the set of server
centroids returned by Algorithm 5 is Cs. Then we have

E (ϕf (X ;Cs)) < O(log2 K) · ϕ∗
c(X ).

Proof. Let C∗ denote the optimal set of centroids that minimize the objective (1) for the entire dataset
X ∈ Rn×d, let C∗ ∈ Rn×d be the matrix that records the closest centroid in C∗ to each data point,
Cs the set of centroids returned by Alg. 1, and Cs ∈ Rn×d the matrix that records the corresponding
centroid in Cs for each data point based on the global clustering defined in Definition 3.1. Since we
perform K-means++ initialization on each client dataset, for client l it holds

E
(
∥X(l) − C(l)∥2F

)
≤ (8 lnK + 16)∥X(l) − C

(l)
∗ ∥2F , ∀l ∈ [L]

≤ (8 lnK + 16)∥X(l) − C∗,(l)∥2F (3)

where C(l) ∈ Rn(l)×d records the closest centroid in C(l) to each data point xi in X (l), C(l)
∗ is the

optimal solution that can minimize the local K-means objective for client l, and C∗,(l) denotes the
row in C∗ that corresponds to client l. Summing up (3) over all clients gives

E

(
L∑

l=1

∥X(l) − C(l)∥2F

)
≤ (8 lnK + 16)

L∑
l=1

∥X(l) − C∗,(l)∥2F . (4)

At the server side the client centroids are reorganized into a matrix Xs ∈ Rn×d. The weights of
the client centroids are converted to replicates of rows in Xs. Since we perform full K-means++
clustering at the server, it follows that

E
(
∥Xs − Cs∥2F

)
= E

(
L∑

l=1

∥C(l) − C(l)
s ∥2F

)
(a)

≤ (8 lnK + 16)

L∑
l=1

E
(
∥C(l) − C

(l)
s,∗∥2F

)
≤ (8 lnK + 16)

L∑
l=1

E
(
∥C(l) − C∗,(l)∥2F

)
, (5)

where Cs,∗ ∈ Rn×d is the optimal solution that minimizes the K-means objective at the server.
It is worth pointing out that Cs,∗ is different from C∗, as they are optimal solutions for different
optimization objectives. Note that we still keep the expectation on RHS for (a). The randomness
comes from the fact that C(l) is obtained by K-means++ initialization, which is a probabilistic
procedure.

Combining (4) and (5) results in

E (ϕf (X ;Cs)) = E

(
L∑

l=1

∥X(l) − C(l)
s ∥2F

)

≤ 2 · E

[
L∑

l=1

(
∥X(l) − C(l)∥2F + ∥C(l) − C(l)

s ∥2F
)]

≤ (16 lnK + 32)

L∑
l=1

[
∥X(l) − C∗,(l)∥2F + E

(
∥C(l) − C∗,(l)∥2F

)]
. (6)

For E
(
∥C(l) − C∗,(l)∥2F

)
, we have

E
(
∥C(l) − C∗,(l)∥2F

)
≤ 2 · E

(
∥C(l) −X(l)∥2F + ∥X(l) − C∗,(l)∥2F

)
= 2 · ∥X(l) − C∗,(l)∥2F + 2 · E

(
∥C(l) −X(l)∥2F

)
. (7)

Replacing (7) into (6) shows that E (ϕf (X ;Cs)) < O(log2 K) · ϕ∗
c(X), which completes the proof.

17



Published as a conference paper at ICLR 2023

If we are only concerned with the performance of non-outlier points over the entire dataset, we can
upper bound the term E

(∑L
l=1 ∥C(l) − C∗,(l)∥2F

)
by

E

(
L∑

l=1

∥C(l) − C∗,(l)∥2F

)
≤ ϵ2ϕ

∗
c(X ). (8)

Here, we used the fact that rows of C(l) are all real data points sampled by the K-means++ initial-
ization procedure. For each data point xi, it holds that ∥xi − c∗i ∥2|C∗i | ≤ ϵ2ϕ

∗
c(C∗i ), where xi ∈ C∗i .

In this case, we arrive at E (ϕf (Xt;Cs)) < O(ϵ2 logK) · ϕ∗
c(Xt), where Xt corresponds to all

non-outlier points.

Remark. In Theorem 4 of Guha et al. (2003) the authors show that for the distributed K-median
problem, if we use a O(b)-approximation algorithm (i.e., ϕ ≤ O(b) · ϕ∗) for the K-median problem
with subdatasets on distributed machines, and use a O(c)-approximation algorithm for the K-median
problem on the centralized machine, the overall distributed algorithm achieves effectively a O(bc)-
approximation of the optimal solution to the centralized K-median problem. This is consistent
with our observation that Alg. 5 can offer in expectation a O(log2 K)-approximation to the optimal
solution of the centralized K-means problem, since K-means++ initialization achieves a O(logK)-
approximation on both the client and server side.

We also point out that in Dennis et al. (2021) the authors assume that the exact number of clusters
from the global optimal clustering on client l is known and equal to K(l), and propose the K-FED
algorithm which performs well when K ′ = maxl∈[L] K

(l) ≤
√
K. The difference between K ′ and

K represents the data heterogeneity across different clients. With a slight modifications of the proof,
we can also obtain E (ϕf (X ;Cs)) < O(logK · logK ′) ·ϕ∗

c(X ), when K(l) is known for each client
beforehand, and perform K(l)-means++ on client l instead of K-means++ in Alg. 1. For the extreme
setting where each client safeguards data of one entire cluster (w.r.t. the global optimal clustering
(L = K,K ′ = 1)), the performance guarantee for Alg. 1 becomes E (ϕf (X ;Cs)) < O(1) · ϕ∗

c(X ),
which is the same as seeding each optimal cluster by a data point sampled uniformly at random
from that cluster. From Lemma 3.1 of Vassilvitskii & Arthur (2006) we see that we can indeed have
E (ϕf (X ;Cs)) = 2ϕ∗

c(X ), where the approximation factor does not depend on K. This shows that
data heterogeneity across different clients can benefit the entire FC framework introduced.

Next we show the proof for Theorem 4.1. Following the same idea as the one used in the proof of
Lemma D.1, we arrive at

E (ϕf (X ;Cs)) ≤ 3 · E

[
L∑

l=1

(
∥X(l) − C(l)∥2F + ∥C(l) − Ĉ(l)∥2F + ∥Ĉ(l) − C(l)

s ∥2F
)]

, (9)

where Ĉ(l) is the quantized version of C(l). The first term can be upper bounded in the same way as
in Lemma D.1. For the second term, the distortion introduced by quantizing one point is bounded by√

dγ
2 , if we choose the center of the quantization bin as the reconstruction point. Therefore,

E

(
L∑

l=1

∥C(l) − Ĉ(l)∥2F

)
≤ n

(√
dγ

2

)2

=
ndγ2

4
. (10)

The third term can be bounded as

E

(
L∑

l=1

∥Ĉ(l) − C(l)
s ∥2F

)
≤ (8 lnK + 16)

L∑
l=1

E
(
∥Ĉ(l) − C∗,(l)∥2F

)
E
(
∥Ĉ(l) − C∗,(l)∥2F

)
≤ 3 · E

(
∥Ĉ(l) − C(l)∥2F + ∥C(l) −X(l)∥2F + ∥X(l) − C∗,(l)∥2F

)
. (11)

Replacing (10) and (11) into (9) leads to

E (ϕf (X ;Cs)) < O(log2 K) · ϕ∗
c(X ) +O(ndγ2 logK),

which completes the proof. Similar as in Lemma D.1, we can have that for non-outlier points Xt,
E (ϕf (Xt;Cs)) < O(ϵ2 logK) · ϕ∗

c(Xt) +O(ndγ2 logK).

18



Published as a conference paper at ICLR 2023

E PROOF OF LEMMA 5.1

Proof. Assume that the number of data points in X is n, the size of XR is R, and the initial centroid
set for X is C. We use induction to prove that C′ returned by Alg. 3 is probabilistically equivalent to
rerunning the K-means++ initialization on X ′ = X\XR.

The base case of induction amounts to investigating the removal process for c1, the first point selected
by K-means++. There are two possible scenarios: c1 ∈ XR and c1 /∈ XR. In the first case, we will
rerun the initialization process over X ′, which is equivalent to retraining the model. In the second
case, since we know c1 /∈ XR, the probability of choosing c1 from X as the first centroid equals the
conditional probability

1

n−R
= P(choose c1 from X as the first centroid|c1 /∈ XR)

= P(choose c1 from X ′ as the first centroid).

Next suppose that K > 1, i = (argminj cj ∈ XR)−1. The centroids C′
i−1 = {c′1 = c1, . . . , c

′
i−1 =

ci−1} returned by Alg. 3 can be viewed probabilistically equivalent to the model obtained from
rerunning the initialization process over X ′ for the first i− 1 rounds. Then we have

P(choose ci from X as i-th centroid|ci /∈ XR) =
P(choose ci from X as i-th centroid ∩ ci /∈ XR)

P(ci /∈ XR)

(a)
=

P(choose ci from X as i-th centroid)
P(ci /∈ XR)

=
d2(ci,C

′
i−1)/ϕc(X ;C′

i−1)

1−
∑

x∈XR
d2(x,C′

i−1)/ϕc(X ;C′
i−1)

=
d2(ci,C

′
i−1)/ϕc(X ;C′

i−1)

ϕc(X ′;C′
i−1)/ϕc(X ;C′

i−1)

=
d2(ci,C

′
i−1)

ϕc(X ′;C′
i−1)

= P(choose ci from X ′ as i-th centroid),

where (a) holds based on the definition of i, indicating that the i-th centroid is not in XR. Therefore,
the centroid c′i = ci returned by Alg. 3 can be seen as if obtained from rerunning the initialization
process over X ′ in the i-th round. Again based on the definition of i, it is clear that for j > i, c′j are
the centroids chosen by the K-means++ procedure over X ′. This proves our claim that C′ returned
by Alg. 3 is probabilistic equivalent to the result obtained by rerunning the K-means++ initialization
on X ′.

Theorem 1.1 of Vassilvitskii & Arthur (2006) then establishes that

E(ϕc(X ′;C′)) ≤ 8(lnK + 2)ϕ∗
c(X ′), (12)

which completes the proof.

F PROOF OF THEOREM 5.4

Proof. We first analyze the probability of rerunning K-means++ initialization based on Alg. 3.
Assumptions 5.2 and 5.3 can be used to derive an expression for the probability of xi ∈ C (where xi

is the point that needs to be unlearned), which also equals the probability of retraining.

Lemma F.1. Assume that the number of data points in X is n and that the probability of the data set
containing at least one outlier is upper bounded by O (1/n). Let C be the centroid set obtained by
running K-means++ on X . For an arbitrary removal set XR ⊆ X of size R, we have

for random removals: P(XR ∩C ̸= ∅) < O (RK/n) ;

for adversarial removals: P(XR ∩C ̸= ∅) < O
(
RK2ϵ1ϵ2/n

)
.

19



Published as a conference paper at ICLR 2023

Proof. Since outliers can be arbitrarily far from all true cluster points based on definition, during
initialization they may be sampled as centroids with very high probability. For simplicity of analysis,
we thus assume that outliers are sampled as centroids with probability 1 if they exist in the dataset,
meaning that we will always need to rerun the K-means++ initialization when outliers exist in the
complete dataset before any removals.

For random removals, where the point requested for unlearning, xi, is drawn uniformly at random
from X , it is clear that P(xi ∈ C) = K

n , since C contains K distinct data points in X .

For adversarial removals, we need to analyze the probability of choosing xi as the (k+1)-th centroid,
given that the first k centroids have been determined and xi /∈ Ck = {c1, . . . , ck}. For simplicity we
first assume that there is no outlier in X . Then we have

P(choose xi from X as the (k + 1)-th centroid|Ck) =
d2(xi,Ck)∑

y ̸=xi
d2(y,Ck) + d2(xi,Ck)

(13)

For the denominator
∑

y ̸=xi
d2(y,Ck) + d2(xi,Ck), the following three observations are in place∑

y ̸=xi

d2(y,Ck) + d2(xi,Ck) ≥ ϕ∗
c(X ) ≥ ϕ∗

c(C∗i ), xi ∈ C∗i∑
y ̸=xi

d2(y,Ck) + d2(xi,Ck) ≥
∑
y ̸=xi

d2(y,C∗)

∑
y ̸=xi

d2(y,Ck) + d2(xi,Ck) ≥
∑
y ̸=xi

d2(y,Ck).

Therefore,

∑
y ̸=xi

d2(y,Ck) + d2(xi,Ck) ≥
ϕ∗
c(C∗i )
5

+
2

5

∑
y ̸=xi

d2(y,C∗) + d2(y,Ck)


(a)

≥ 1

5

ϕ∗
c(C∗i ) +

∑
y ̸=xi

∥cy − c∗y∥2
 , (14)

where cy, c
∗
y are the closest centroid in Ck and C∗ to y, respectively. Here, (a) is a consequence of

the fact that ∥a− b∥2 = ∥a− c+ c− b∥2 ≤ 2(∥a− c∥2 + ∥b− c∥2). Since xi is not an outlier for
C∗i based on our assumption, we have

ϕ∗
c(C∗i ) ≥

|C∗i |
ϵ2
∥xi − c∗i ∥2 ≥

n

Kϵ1ϵ2
∥xi − c∗i ∥2.

Consequently,

ϕ∗
c(C∗i ) +

∑
y ̸=xi

∥cy − c∗y∥2 ≥
|C∗i |
ϵ2
∥xi − c∗i ∥2 +

∑
y∈C∗

i

∥cy − c∗y∥2

=
|C∗i |
ϵ2
∥xi − c∗i ∥2 +

∑
y∈C∗

i

∥cy − c∗i ∥2. (15)

For ∀y ∈ C∗i , it hold ∥xi − c∗i ∥2 + ∥cy − c∗i ∥2 ≥ 1
2∥xi − cy∥2 ≥ 1

2d
2(xi,Ck). Thus, (15) can be

lower bounded by

|C∗i |
ϵ2
∥xi − c∗i ∥2 +

∑
y∈C∗

i

∥cy − c∗i ∥2 ≥
|C∗i |
2ϵ2

d2(xi,Ck) ≥
n

2Kϵ1ϵ2
d2(xi,Ck). (16)

Combining (16) and (14) we obtain∑
y ̸=xi

d2(y,Ck) + d2(xi,Ck) ≥
n

10Kϵ1ϵ2
d2(xi,Ck).

20



Published as a conference paper at ICLR 2023

Using this expression in (13) results in

P(choose xi from X as the (k + 1)-th centroid|Ck) ≤
10Kϵ1ϵ2

n
, (17)

which holds for ∀k ∈ [K]. Thus, the probability P(xi ∈ C) can be computed as

P(xi ∈ C) =

K−1∑
k=0

P(choose xi from X as the (k + 1)-th centroid|Ck)P(Ck)

≤
K−1∑
k=0

P(choose xi from X as the (k + 1)-th centroid|Ck)

≤ 1

n
+

10K(K − 1)ϵ1ϵ2
n

< O

(
K2ϵ1ϵ2

n

)
. (18)

Here, we assumed that C0 = ∅.

For the case where outliers are present in the dataset, we have

P(xi ∈ C) = P(xi ∈ C|xi is outlier)P(xi is outlier) + P(xi ∈ C|xi is not outlier)P(xi is not outlier)

≤ 1 ·O
(
1

n

)
+O

(
K2ϵ1ϵ2

n

)
· 1 < O

(
K2ϵ1ϵ2

n

)
,

which completes the proof for the adversarial removal scenario. Finally, by union bound we can have
that for the removal set XR of size R,

random removals: P(XR ∩C ̸= ∅) < O

(
RK

n

)
;

adversarial removals: P(XR ∩C ̸= ∅) < O

(
RK2ϵ1ϵ2

n

)
.

Also, the probability naturally satisfies that

P(XR ∩C ̸= ∅) ≤ 1.

Next we show the proof for Theorem 5.4. The expected removal time for random removals can be
upper bounded by

E(Removal time) = E(Removal time|new initialization needed)P(new initialization needed)+
E(Removal time|new initialization not needed)P(new initialization not needed)

≤ O(nKd+RK) ·O
(
RK

n

)
+O(RK) · 1

< O(RK2d).

Following a similar argument, we can also show that the expected removal time for adversarial
removals can be upper bounded by O(RK3ϵ1ϵ2d). And based on our Algorithm 3, the unlearning
complexity for both types of removal requests would be always upper bounded by the retraining
complexity O(nKd) as well, which completes the proof.

G COMPARISON BETWEEN ALGORITHM 3 AND QUANTIZED K-MEANS

In Ginart et al. (2019), quantized K-means were proposed to solve a similar problem of machine
unlearning in the centralized setting. However, that approach substantially differs from Alg. 3. First,
the intuition behind quantized K-means is that the centroids are computed by taking an average, and
the effect of a small number of points is negligible when there are enough terms left in the clusters
after removal. Therefore, if we quantize all centroids after each Lloyd’s iteration, the quantized
centroids will not change with high probability when we remove a small number of points from the

21



Published as a conference paper at ICLR 2023

dataset. Meanwhile, the intuition behind Alg. 3 is as described in Lemma F.1. Second, the expected
removal time complexity for quantized K-means equals O

(
R2K3T 2d2.5/ϵ

)
, which is high since

one needs to check if all quantized centroids remain unchanged after removal at each iteration, where
T denotes the maximum number of Lloyd’s iteration before convergence and ϵ is some intrinsic
parameter. In contrast, Alg. 3 only needs O(RK3ϵ1ϵ2d) even for adversarial removals. Also note
that the described quantized K-means algorithm does not come with performance guarantees on
removal time complexity unless it is randomly initialized.

H QUANTIZATION

For uniform quantization, we set ŷ = γ · a(y), where a(y) = argminj∈Z |y − γj|, y ∈ R2. The
parameter γ > 0 determines the number of quantization bins in each dimension. Suppose all client
data lie in the unit hypercube centered at the origin, and that if needed, pre-processing is performed
to meet this requirement. Then the number of quantization bins in each dimension equals B = γ−1,
while the total number of quantization bins for d dimensions is Bd = γ−d.

In Section 4, we remarked that one can generate qj points by choosing the center of the quantization
bin as the representative point and endow it with a weight equal to qj . Then, in line 7, we can use
the weighted K-means++ algorithm at the server to further reduce the computational complexity,
since the effective problem size at the server reduces from n to KL. However, in practice we find
that when the computational power of the server is not the bottleneck in the FL system, generating
data points uniformly at random within the quantization bins can often lead to improved clustering
performance. Thus, this is the default approach for our subsequent numerical simulations.

I SIMPLIFIED FEDERATED K-MEANS CLUSTERING

When privacy criterion like the one stated in Section 3 is not enforced, and as done in the framework of
Dennis et al. (2021), one can skip line 3-6 in Alg. 1 and send the centroid set C(l) obtained by client
l along with the cluster sizes (|C(l)1 |, . . . , |C

(l)
K |) directly to the server. Then, one can run the weighted

K-means++ algorithm at the server on the aggregated centroid set to obtain Cs. The pseudocode for
this simplified case is shown in Alg. 5. It follows a similar idea as the divide-and-conquer schemes
of Guha et al. (2003); Ailon et al. (2009), developed for distributed clustering.

Algorithm 5 Simplified Federated K-means Clustering

1: input: Dataset X distributed on L clients (X (1), . . . ,X (L)).
2: Run K-means++ initialization on each client l in parallel, obtain the initial centroid sets C(l),

and record the corresponding cluster sizes
(
|C(l)1 |, . . . , |C

(l)
K |
)
, ∀l ∈ [L].

3: Send
(
c
(l)
1 , . . . , c

(l)
K

)
along with the corresponding cluster sizes

(
|C(l)1 |, . . . , |C

(l)
K |
)

to the server,
∀l ∈ [L].

4: Concatenate
(
c
(l)
1 , . . . , c

(l)
K

)
as rows of Xs and set

(
|C(l)1 |, . . . , |C

(l)
K |
)

as the weights for the
corresponding rows, ∀l ∈ [L].

5: Run full weighted K-means++ clustering at server with Xs to obtain the centroid set at server
Cs.

6: return Each client retains their own centroid set C(l) while the server retains Xs and Cs.

In line 5 of Alg. 5, weighted K-means++ would assign weights to data points when computing the
sampling probability during the initialization procedure and when computing the average of clusters
during the Lloyd’s iterations. Since the weights we are considering here are always positive integers,
a weighted data point can also be viewed as there exist identical data points in the dataset with
multiplicity equals to the weight.

2We can also add random shifts during quantization as proposed in Ginart et al. (2019) to make the data
appear more uniformly distributed within the quantization bins.

22



Published as a conference paper at ICLR 2023

J THE UNIQUENESS OF THE VECTOR q GIVEN {Si}i∈[2KL]

To demonstrate that the messages generated by Alg. 2 can be uniquely decoded, we prove that
there exists a unique q that produces the aggregated values {Si}i∈[2KL] at the server. The proof
is by contradiction. Assume that there exist two different vectors q and q′ that result in the same
{Si}i∈[2KL]. In this case, we have the following set of linear equations

∑
j:qj ̸=0 qj ·ji−1−

∑
j:q′j ̸=0 q

′
j ·

ji−1 = 0, i ∈ [2KL]. Given that {qj : qj ̸= 0} and {q′j : q′j ̸= 0} represent at most 2KL unknowns
and ji−1 coefficients, the linear equations can be described using a square Vandermonde matrix for
the coefficients, with the columns of the generated by the indices of the nonzero entries in q. This
leads to a contradiction since a square Vandermonde matrix with different column generators is
invertible, which we show below. Hence, the aggregated values {Si} must be different for different q.
Similarly, the sums

∑
j:q

(l)
j ̸=0

q
(l)
j · ji−1 are distinct for different choices of vectors q(l), i ∈ [2KL],

l ∈ [L].

If two vectors q and q′ result in the same {Si}i∈[2KL], then
∑

j:qj ̸=0 qj ·ji−1−
∑

j:q′j ̸=0 q
′
j ·ji−1 = 0,

for all i ∈ [2KL]. Let {i1, . . . , iu} = ({j : qj ̸= 0} ∪ {j : q′j = 0}) be the set of integers such that
at least one of qim and q′im is nonzero for m ∈ [u]. Note that u ≤ 2KL. Rewrite this equation as

1 · · · 1
i1 · · · iu
...

...
...

i2KL−1
1 · · · i2KL−1

u


qi1 − q′i1

...
qiu − q′iu

 = 0. (19)

Since u ≤ 2KL, we take the first u equations in (19) and rewrite them as

Bv = 0,

where

B =


1 · · · 1
i1 · · · iu
...

...
...

i2KL−1
1 · · · i2KL−1

u


is a square Vandermonde matrix and

v =

qi1 − q′i1
...

qiu − q′iu


is a nonzero vector since q ̸= q′. It is known that the determinant of a square Vandermonde matrix B
is given by

∏
m1<m2,m1,m2∈[u](im2

− im1
), which in our case is nonzero since all the i1, . . . , iu are

different. Therefore, B is invertible and does not admit a non-zero solution, which contradicts the
equation Bv = 0.

K A DETERMINISTIC LOW-COMPLEXITY ALGORITHM FOR SCMA AT THE
SERVER

In the SCMA scheme we described in Alg. 1, the goal of the server is to reconstruct the vector q,
given values Si =

∑
j:qj ̸=0 qj · ji−1 mod p for i ∈ [2KL]. To this end, we first use the Berlekamp-

Massey algorithm to compute the polynomial g(x) =
∏

j:qj ̸=0(1− j · x). Then, we factorize g(x)

over the finite field Fp using the algorithm described in Kedlaya & Umans (2011). The complexity
O((KL)1.5 log p + KL log2 p) referred to in Section 4.3 corresponds to the average complexity
(finding a deterministic algorithm that factorizes a polynomial over finite fields with poly(log p)
worst-case complexity is an open problem). The complexity max{O(K2L2), O((KL)1.5 log p +
KL log2 p)} referred to in Appendix C for the SCMA scheme represents an average complexity.

23



Published as a conference paper at ICLR 2023

We show next that the SCMA scheme has small worst-case complexity under a deterministic decoding
algorithm at the server as well. To this end, we replace the integer p in Alg. 2 with a large number
p′ ≥ max{KLB2dKL, n} + 1 such that p′ is larger than the largest possible Si and there is no
overflow when applying the modulo p′ operation on Si. It is known (Bertrand’s postulate) that there
exists a prime number between any integer n > 3 and 2n−2, and hence there must be a prime number
lower-bounded by max{KLB2dKL, n}+1 and twice the lower bound 2(max{KLB2dKL, n}+1).
However, since searching for a prime number of this size can be computationally intractable, we
remove the requirement that p′ is prime. Correspondingly, Fp′ is not necessarily a finite field.
Then, instead of sending S

(l)
i = (

∑
j:q

(l)
j ̸=0

q
(l)
j · ji−1 + z

(l)
i ) mod p, client l, l ∈ [L], will send

S
(l)
i = (

∑
j:q

(l)
j ̸=0

q
(l)
j · ji−1 + z

(l)
i ) mod p′ to the server, i ∈ [2KL], where random keys z(l)i are

independently and uniformly distributed over {0, . . . , p′ − 1} and hidden from the server. After
obtaining Si, i ∈ [2KL], the server can continue performing operations over the field of reals since
there is no overflow in computing Si mod p′. We note that though p′ is exponentially large, the
computation of S(l)

i and Si, l ∈ [L] and i ∈ [2KL] is still manageable, and achieved by computing
and storing S

(l)
i and Si using O(KL) floating point numbers, instead of computing and storing S

(l)
i

in a single floating point number. Note that ji can be computed using O(i) floating point numbers
with complexity almost linear in i (i.e., O(i logc i) for some constant c).

We now present a low complexity secure aggregation algorithm at the server. After reconstructing Si,
we have Si =

∑
j:qj ̸=0 qj · ji−1. The server switches to computations over the real field. First, it uses

the Berlekamp-Massey algorithm to find the polynomial g(x) =
∏

j:qj ̸=0(1− j · x) (the algorithm
was originally proposed for decoding of BCH codes over finite fields, but it applies to arbitrary fields).
Let m be the degree of g(x). Then h(x) = xmg(1/x) =

∏
j:qj ̸=0(x− j). The goal is to factorize

h(x) over the field of reals, where the roots are known to be integers in [Bd] and the multiplicity of
each root is one.

If the degree of h(x) is odd, then h(0) < 0 and h(Bd) > 0. Then we can use bisection search to find
a root of h(x), which requires O(logBd) polynomial evaluations of h(x), and thus O(MK logBd)
multiplication and addition operations of integers of size at most log p′. After finding one root j, we
can divide h(x) by x− j and start the next root-finding iteration.

If the degree of h(x) is even, then the degree of h′(x) is odd, and the roots of h′(x) are different
and confined to [Bd]. We use bisection search to find a root j′ of h′(x). If h(j′) < 0, then we use
bisection search on [0, j′] = {0, 1, . . . , j′} to find a root of h(x) and start a new iteration as described
above when the degree of h(x) is odd. If h(j′) > 0, then h′(j′ − 1) > 0 and h′(0) < 0. We use
bisection search to find another root of h′(x) in [j′ − 1]. Note that for every two roots j′1 and j′2
(j′1 < j′2) of h′(x) satisfying h(j′1) > 0 and h(j′2) > 0 we can always find another root j′3 of h′(x) in
[j′1+1, j′2−1]. We keep iterating the search for every two such roots j′1, j

′
2 until we find a list of roots

r1, . . . , r2R+1 of h′(x) such that h(ri) < 0 for odd i in [2R+1] and h(ri) > 0 for even i ∈ [2R+1].
Then we can run bisection search on the sets [0, r1], [r1, r2], . . . , [r2R, r2R+1], [r2R+1, B

d], to find
2R + 2 roots of h(x). Note that during the iteration we need 2R + 1 bisection search iterations to
find the roots r1, . . . , r2R+1 for h′(x) and 2R+ 2 bisection search iterations to find 2R+ 2 roots for
h(x).

The total computations complexity is hence at most O(MK logBd) evaluations of polynomials
with degree at most O(MK) and at most O(MK) polynomial divisions, which requires at most
O((MK)2 logBd) multiplications and additions for integers of size at most log p′. This results in an
overall complexity of O((MK)3d2 logc(MK) logB), for some constant c < 2.

L DIFFERENCE BETWEEN THE ASSIGNMENT MATRICES C AND Cs

One example that explains the difference between these two assignment matrices is as follows.
Suppose the global data sets and centroid sets are the same for the centralized and FC settings, i.e.,

X =

X(1)

· · ·
X(L)

 , C = Cs = {c1, . . . , cK}.

24



Published as a conference paper at ICLR 2023

Suppose that for x1, which is the first row of X , we have

d(x1, c1) < d(x1, cj), ∀j ∈ [K], j ̸= 1.

Then, the first row of C equals c1. However, if x1 resides on the memory of client l and belongs to
the local cluster C(l)i , and the recorded local centroid c

(l)
i satisfies

d
(
c
(l)
i , c2

)
< d

(
c
(l)
i , cj

)
, ∀j ∈ [K], j ̸= 2,

then the first row of Cs is c2, even if d(x1, c1) < d(x1, c2). Here Cs is the row concatenation of the
matrices C(l)

s on client l. This example shows that the assignment matrices C and Cs are different,
which also implies that ϕf and ϕc are different.

M EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

M.1 DATASETS

In what follows, we describe the datasets used in our numerical experiments. Note that we prepro-
cessed all datasets such that the absolute value of each element in the data matrix is smaller than 1.
Each dataset has an intrinsic parameter K for the number of optimal clusters, and these are used in
the centralized K-means++ algorithm to compute the approximation of the optimal objective value.
We use ϕ∗

c(X) in subsequent derivation to denote the objective value returned by the K-means++
algorithm. Besides K, we set an additional parameter K ′ ∼

√
K for each client data so that the

number of true clusters at the client level is not larger than K ′. This non-i.i.d. data distribution across
clients is discussed in Dennis et al. (2021). For small datasets (e.g., TCGA, TMI), we consider the
number of clients L as 10, and set L = 100 for all other datasets.

Celltype [n = 12009, d = 10,K = 4] (Han et al., 2018; Gardner et al., 2014b) comprises single cell
RNA sequences belonging to a mixture of four cell types: fibroblasts, microglial cells, endothelial
cells and mesenchymal stem cells. The data, retrieved from the Mouse Cell Atlas, consists of 12009
data points and each sample has 10 feature dimensions, reduced from an original dimension of 23, 433
using Principal Component Analysis (PCA). The sizes of the four clusters3 are 6506, 2328, 2201, 974.

Postures [n = 74975, d = 15,K = 5] (Gardner et al., 2014b;a) comprises images obtained via a
motion capture system and a glove for 12 different users performing five hand postures – fist, pointing
with one finger, pointing with two fingers, stop (hand flat), and grab (fingers curled). For establishing
a rotation and translation invariant local coordinate system, a rigid unlabeled pattern on the back of
the glove was utilized. There are a total of 74975 samples in the dataset and the data dimension is 15.
The sizes of the given clusters are 19772, 17340, 15141, 12225, 10497.

Covtype [n = 15120, d = 52,K = 7] (Blackard & Dean, 1999) comprises digital spatial data for
seven forest cover types obtained from the US Forest Service (USFS) and the US Geological Survey
(USGS). There are 52 cartographic variables including slope, elevation, and aspect. The dataset has
15120 samples. The sizes of the seven clusters are 3742, 3105, 2873, 2307, 1482, 886, 725.

Gaussian [n = 30000, d = 10,K = 10] comprises ten clusters, each generated from a 10-variate
Gaussian distribution centered at uniformly at random chosen locations in the unit hypercube. From
each cluster, 3000 samples are taken, for a total of 30000 samples. Each Gaussian cluster is spherical
with variance 0.5.

FEMNIST [n = 36725, d = 784,K = 62] (Caldas et al., 2018) is a popular FL benchmark dataset
comprising images of digits (0-9) and letters from the English alphabet (both upper and lower cases)
from over 3500 users. It dataset is essentially built from the Extended MNIST repository (Cohen et al.,
2017) by partitioning it on the basis of the writer of the digit/character. We extract data corresponding
to 100 different clients, each of which contributed at least 350 data points. Each image has dimension
784. The size of the largest cluster is 1234, and that of the smallest cluster is 282.

TCGA [n = 1904, d = 57,K = 4] methylation consists of methylation microarray data for 1904
samples from The Cancer Genome Atlas (TCGA) (Hutter & Zenklusen, 2018) corresponding to four

3The clusters are obtained by running centralized K-means++ clustering multiple times and selecting the
one inducing the lowest objective value.

25



Published as a conference paper at ICLR 2023

different cancer types: Low Grade Glioma (LGG), Lung Adenocarcinoma (LUAD), Lung Squamous
Cell Carcinoma (LUSC) and Stomach Adenocarcinoma (STAD). The observed features correspond
to a subset of β values, representing the coverage of the methylated sites, at 57 locations on the
promoters of 11 different genes (ATM, BRCA1, CASP8, CDH1, IGF2, KRAS, MGMT, MLH1,
PTEN, SFRP5 and TP53). This subset of genes was chosen for its relevance in carcinogenesis. The
sizes of the four clusters are 735, 503, 390, 276.

TMI [n = 1126, d = 984,K = 4] contains samples from human gut microbiomes. We retrieved
1126 human gut microbiome samples from the NIH Human Gut Microbiome (Peterson et al., 2009).
Each data point is of dimension 983, capturing the frequency (concentration) of identified bacterial
species or genera in the sample. The dataset can be roughly divided into four classes based on gender
and age. The sizes of the four clusters are 934, 125, 46, 21.

M.2 BASELINE SETUPS.

We use the publicly available implementation of K-FED and DC-KM as our baseline methods. For
DC-KM, we set the height of the computation tree to 2, and observe that the leaves represent the clients.
Since K-FED does not originally support data removal, has high computational complexity, and its
clustering performance is not comparable with that of DC-KM (see Tab. 1), we thus only compare
the unlearning performance of MUFC with DC-KM. During training, the clustering parameter K is
set to be the same in both clients and server for all methods, no matter how the data was distributed
across the clients. Experiments on all datasets except FEMNIST were repeated 5 times to obtain the
mean and standard deviations, and experiments on FEMNIST were repeated 3 times due to the high
complexity of training. Note that we used the same number of repeated experiments as in Ginart et al.
(2019).

M.3 ENABLING COMPLETE CLIENT TRAINING FOR MUFC

Note that both K-FED and DC-KM allow clients to perform full K-means++ clustering to improve
the clustering performance at the server. Thus it is reasonable to enable complete client training for
MUFC as well to compare the clustering performance on the full datasets. Although in this case we
need to retrain affected clients and the server for MUFC upon each removal request, leading to a
similar unlearning complexity as DC-KM, the clustering performance of MUFC is consistently better
than that of the other two baseline approaches (see Tab. 2). This is due to the fact that we utilize
information about the aggregated weights of client centroids.

Table 2: Clustering performance of different FC algorithms compared to centralized K-means++
clustering.

TMI Celltype Gaussian TCGA Postures FEMNIST Covtype

Loss ratio
MUFC 1.05 ± 0.01 1.03 ± 0.00 1.02 ± 0.00 1.02 ± 0.01 1.02 ± 0.00 1.12 ± 0.00 1.02 ± 0.00
K-FED 1.84 ± 0.07 1.72 ± 0.24 1.25 ± 0.01 1.56 ± 0.11 1.13 ± 0.01 1.21 ± 0.00 1.60 ± 0.01
DC-KM 1.54 ± 0.13 1.46 ± 0.01 1.02 ± 0.00 1.15 ± 0.02 1.03 ± 0.00 1.18 ± 0.00 1.03 ± 0.02

M.4 LOSS RATIO AND UNLEARNING EFFICIENCY

In Fig. 4 we plot results pertaining to the change of loss ratio after each removal request and the
accumulated removal time when the removal requests are adversarial. The conclusion is consistent
with the results in Section 6.

M.5 BATCH REMOVAL

In Fig. 5 we plot the results pertaining to removing multiple points within one removal request (batch
removal). Since in this case the affected client is more likely to rerun the K-means++ initialization
for each request, it is expected that the performance (i.e., accumulated removal time) of our algorithm
would behave more similar to retraining when we remove more points within one removal request,
compared to the case in Fig. 3 where we only remove one point within one removal request.

26



Published as a conference paper at ICLR 2023

Figure 4: The shaded areas represent the standard deviation of results from different trails for
all subplots. (a)-(d) The change of loss ratio ϕf (X ;Cs)/ϕ

∗
c(X) after each round of unlearning

procedure. (e)-(h) The accumulated removal time for adversarial removals.

0 20 40 60 80 100
Number of batch removals

(a)

10 2

10 1

100

101

A
cc

um
ul

at
ed

 r
em

ov
al

 ti
m

e 
(s

)

TCGA, noni.i.d., K ′ = 2, K = 4

MUFC (10x average speedup)
DCKmeans (2x average speedup)
Retraining

0 10 20 30 40 50
Number of batch removals

(b)

10 1

100

A
cc

um
ul

at
ed

 r
em

ov
al

 ti
m

e 
(s

)

TCGA, noni.i.d., K ′ = 2, K = 4

MUFC (4x average speedup)
DCKmeans (2x average speedup)
Retraining

0 20 40 60 80 100
Number of batch removals

(c)

10 2

10 1

100

101

102

A
cc

um
ul

at
ed

 r
em

ov
al

 ti
m

e 
(s

)

Postures, noni.i.d., K ′ = 2, K = 5

MUFC (18x average speedup)
DCKmeans (6x average speedup)
Retraining

0 10 20 30 40 50
Number of batch removals

(d)

10 1

100

101

A
cc

um
ul

at
ed

 r
em

ov
al

 ti
m

e 
(s

)

Postures, noni.i.d., K ′ = 2, K = 5

MUFC (8x average speedup)
DCKmeans (5x average speedup)
Retraining

Figure 5: The shaded areas represent the standard deviation of results from different trails for all
subplots. (a), (c) Remove 10 points within one batch removal request. (b), (d) Remove 30 points
within one batch removal request.

27


	Introduction
	Related Works
	Preliminaries
	Federated Clustering with Secure Model Aggregation
	SCMA at the Server
	Performance Analysis
	Complexity Analysis

	Machine Unlearning via Specialized Seeding
	Performance Analysis
	Complexity Analysis
	Unlearning Federated Clusters

	Experimental Results
	Related Works
	K-means++ Initialization
	Complexity Analysis of Algorithm 1
	Proof of Theorem 4.1
	Proof of Lemma 5.1
	Proof of Theorem 5.4
	Comparison between Algorithm 3 and Quantized K-means
	Quantization
	Simplified Federated K-means Clustering
	The Uniqueness of the Vector q given {Si}i[2KL]
	A Deterministic Low-Complexity Algorithm for SCMA at the Server
	Difference between the Assignment Matrices C and Cs
	Experimental Setup and Additional Results
	Datasets
	Baseline Setups.
	Enabling Complete Client Training for MUFC
	Loss Ratio and Unlearning Efficiency
	Batch Removal


