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ABSTRACT

Adaptive optimizers (e.g., Adam) have achieved tremendous success in deep learn-
ing. The key component of the optimizer is the precondition matrix, which provides
more gradient information and adjusts the step size of each gradient direction. In-
tuitively, the closer the precondition matrix approximates the Hessian, the faster
convergence and better generalization the optimizer can achieve in terms of itera-
tions. However, this performance improvement is usually accompanied by a huge
increase in the amount of computation. In this paper, we propose a new optimizer
called AdaDQH to achieve better generalization with acceptable computational
overhead. The intuitions are the trade-off of the precondition matrix between com-
putation time and approximation of Hessian, and the auto switch of the precondition
matrix from Stochastic Gradient Descent (SGD) to the adaptive optimizer. We
evaluate AdaDQH on public datasets of Computer Vision (CV), Natural Language
Processing (NLP) and Recommendation Systems (RecSys). The experimental
results reveal that, compared to the State-Of-The-Art (SOTA) optimizers, AdaDQH
can achieve significantly better or highly competitive performance. Furthermore,
we analyze how AdaDQH is able to auto switch from stochastic to adaptive and
the actual effects in different scenes. The code is available in the supplemental
material.

1 INTRODUCTION

Consider the following empirical risk minimization problems:

min
w∈Rn

f(w) :=
1

M

M∑
k=1

`(w;xk), (1)

wherew ∈ Rn is a vector of parameters to be optimized, {x1, . . . ,xM} is a training set, and `(w;x)
is a loss function measuring the performance of the parameter w on the example x. Since it is
ineffective to calculate the exact gradient in each optimization iteration when M is large, we usually
adopt a mini-batched stochastic gradient, which is

g(w) =
1

|B|
∑
k∈B

∇`(w;xk),

where B ⊂ {1, . . . ,M} is the sample set of size |B| � M . Obviously, we have Ep(x)[g(w)] =
∇f(w) where p(x) is the distribution of the training data. Equation 1 is usually solved iteratively.
Assume wt is already known and let ∆w = wt+1 −wt, then

arg min
wt+1∈Rn

f(wt+1) = arg min
∆w∈Rn

f(∆w +wt)

≈ arg min
∆w∈Rn

f(wt) + (∆w)T∇f(wt) +
1

2
(∆w)T∇2f(wt)∆w

≈ arg min
∆w∈Rn

f(wt) + (∆w)T∇f(wt) +
1

2
(∆w)TBt∆w︸ ︷︷ ︸

h(∆w)

,

(2)
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where the first approximation is from Taylor expansion. By solving Equation 2 and using mt to
replace∇f(wt), the general update formula is

wt+1 = wt − αtB−1
t mt, t ∈ {1, 2, . . . , T} , (3)

where αt is the step size for avoiding divergence, mt ≈ Ep(x)[gt] is the first moment term which
is the weighted average of gradient gt and Bt is the so-called precondition matrix that incorporates
additional information and adjusts updated velocity of variable wt in each direction. Most of
gradient descent algorithms can be summarized with Equation 3 such as SGD (Robbins & Monro,
1951), MOMENTUM (Polyak, 1964), ADAGRAD (Duchi et al., 2011), ADADELTA (Zeiler, 2012),
ADAM (Kingma & Ba, 2015), AMSGRAD (Reddi et al., 2018), ADABELIEF (Zhuang et al., 2020)
and ADAHESSIAN (Yao et al., 2020). Intuitively, the closer Bt approximates the Hessian, the
closer h(∆w) approximates f(wt+1). Consequently, we can achieve a more accurate solution in
terms of iterations. However, it is usually untrue in terms of runtime. For instance, ADAHESSIAN
that approximates the diagonal Hessian consumes 2.91× more computation time than ADAM for
ResNet32 on Cifar10 (Yao et al., 2020). Therefore, the key factor of designing the precondition
matrix is how to trade off the approximation degree of the Hessian and the computation complexity.

In this paper, we propose AdaDQH (Adaptive optimizer with Diagonal Quasi-Hessian), whose
precondition matrix is closely related to the Hessian but computationally efficient. Furthermore,
AdaDQH can auto switch the precondition matrix from SGD to the adaptive optimizer through the
hyperparameter threshold δ. Our contributions can be summarized as follows.

• We propose AdaDQH, which originates the new design of the precondition matrix. We establish
theoretically proven convergence guarantees in both convex and non-convex stochastic settings.

• We validate AdaDQH on a total of six public datasets: two from CV (Cifar10 (Krizhevsky et al.,
2009) and ImageNet (Russakovsky et al., 2015)), two from NLP (IWSLT14 (Cettolo et al., 2014)
and PTB (Marcus et al., 1993)) and the rest from RecSys (Criteo (Criteo, 2014) and Avazu (Avazu,
2015)). The experimental results reveal that AdaDQH can outperform or be on a par with the
SOTA optimizers.

• We analyze how AdaDQH is able to auto switch from stochastic to adaptive, and assess the rigorous
effect of the hyperparameter δ which controls the auto-switch process in different scenes.

RELATED WORK

By choosing different Bt andmt of Equation 3, different optimizers are invented from the standard
second order optimizer, i.e., Gauss-Newton method to the standard first order optimizer, i.e., SGD
where mt is usually designed for noise reduction and Bt for solving the ill-conditioned problems.
See Table 1. Kunstner et al. (2019) shows that the Fisher information matrix can be the reasonable
approximation of the Hessian whereas the empirical Fisher can’t. Furthermore, they propose the
concept of variance adaption to explain the practical success of the empirical Fisher preconditioning.

The hybrid optimization methods of switching an adaptive optimizer to SGD have been proposed
for improving the generalization performance, such as ADABOUND (Luo et al., 2019) and SWATS
(Keskar & Socher, 2017). Luo et al. (2019) adopts clipping on the learning rate of ADAM, whose
upper and lower bounds are a non-increasing and non-decreasing functions, respectively, which
would converge to the learning rate of SGD. The clipping method is also mentioned in Keskar &
Socher (2017), whose upper and lower bounds are constants.

NOTATION

We use lowercase letters to denote scalars, boldface lowercase to denote vectors, and uppercase
letters to denote matrices. We denote a sequence of vectors by subscripts, that is, x1, . . . ,xt where
t ∈ [T ] := {1, 2, . . . , T}, and entries of each vector by an additional subscript, e.g., xt,i. For any
vectors x,y ∈ Rn, we write xTy or x · y for the standard inner product, xy for element-wise
multiplication, x/y for element-wise division,

√
x for element-wise square root, x2 for element-wise

square. For the standard Euclidean norm, ‖x‖ = ‖x‖2 =
√
〈x,x〉 and max(x,y) for element-wise

maximum. We also use ‖x‖∞ = maxi |x(i)| to denote `∞-norm, where x(i) is the i-th element of x.
Let ei denote the unit vector where the i-th element is one and∇if denote the i-th element of∇f .

2



Under review as a conference paper at ICLR 2023

Table 1: Different optimizers with choosing different Bt.

Bt Optimizer
Bt = H GAUSS-HESSIAN

Bt ≈ H LBFGS (Byrd et al., 1995)
Bt ≈ diag(H) ADAHESSIAN (Yao et al., 2020)
Bt = F NATURAL GRADIENT (Amari, 1998)
B2
t ≈ Femp SHAMPOO (Gupta et al., 2018)

B2
t ≈ diag(Femp)

ADAGRAD (Duchi et al., 2011), ADADELTA (Zeiler, 2012),
ADAM (Kingma & Ba, 2015), ADAMW (Loshchilov & Hutter, 2019),
AMSGRAD (Reddi et al., 2018)

B2
t ≈ diag(Var(gt)) ADABELIEF (Zhuang et al., 2020)

Bt = I SGD (Robbins & Monro, 1951), MOMENTUM (Polyak, 1964)

H is the Hessian. F is the Fisher information matrix. Femp is the empirical Fisher information matrix.

Let ft(w) be the loss function of the model at t-step wherew ∈ Rn. We considermt as Exponential
Moving Averages (EMA) of gt throughout this paper, i.e.,

mt = β1mt−1 + (1− β1)gt = (1− β1)

t∑
i=1

gt−i+1β
i−1
1 , t ≥ 1, (4)

where β1 ∈ [0, 1) is the exponential decay rate.

2 ALGORITHM

2.1 DETAILS AND INTUITIONS OF ADADQH OPTIMIZER

The algorithm is listed in Algorithm 1. The design of AdaDQH comes from two intuitions: Hessian

Algorithm 1 AdaDQH

1: Input: parameters β1, β2, δ, w1 ∈ Rn, step size αt, initializem0 = 0, b0 = 0
2: for t = 1 to T do
3: gt = ∇ft(wt)
4: mt ← β1mt−1 + (1− β1)gt

5: st =

{
m1/(1− β1) t = 1
mt/(1− βt1)−mt−1/(1− βt−1

1 ) t > 1

6: bt ← β2bt−1 + (1− β2)s2
t

7: wt+1 = wt − αt
√

1−βt
2

1−βt
1

mt

max(
√
bt,δ
√

1−βt
2)

8: end for

approximation and auto switch for fast convergence and good generalization across tasks.

HESSIAN APPROXIMATION Let ∆w = −αtB−1
t mt of Equation 3, then we have

E[gt,i − gt−1,i] = ∇if(wt)−∇if(wt−1)

= ∇∇if(wt−1 + θ∆w) ·∆w, θ ∈ (0, 1)

θ=1
≈ ∇∇if(wt) ·∆w

∆w=ei≈ ∇i∇if(wt),

(5)

where the second equality above follows from the mean value theorem and in the second approxi-
mation we assume that wt is not updated except for the i-th direction. Therefore, we can see that
E[g(wt) − g(wt−1)] is closely related to diag(H(wt)). Similar to Kingma & Ba (2015), we use
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mt/(1− βt1) to approximate E[g(wt)] where the denominator is for bias correction. Denote

st =

{
m1/(1− β1) t = 1,
mt/(1− βt1)−mt−1/(1− βt−1

1 ) t > 1.

Therefore, we choose the precondition matrix Bt satisfying

B2
t = diag(EMA(s1s

T
1 , s2s

T
2 , · · · , stsTt ))/(1− βt2),

where β2 is the parameter of EMA and the denominator is also for bias correction.

AUTO SWITCH Normally, a small value is added to Bt for numerical stability, becoming Bt + εI.
However, we replace it with max(Bt, δI), where we use a different notation δ to indicate its essential
role in auto switch. When b̂t :=

√
bt/(1− βt2) is relatively larger than δ, AdaDQH takes a confident

step in the adaptive way. Otherwise, the update is EMA, i.e. mt, with a constant scale αt/(1− βt1),
similar to SGD with momentum. Moreover, AdaDQH can auto switch modes in a per parameter
manner as training progresses.

Compared to the additive method, AdaDQH can eliminate the noise caused by ε in adaptive updates.
Another major benefit is that AdaDQH has the ability to generalize in different tasks by tuning δ,
without choosing from candidates of obscure optimizers empirically. The effect of δ is discussed in
Sec.3.5, experimentally.

2.2 CONVERGENCE ANALYSIS

Using the framework developed in Reddi et al. (2018); Yang et al. (2016); Chen et al. (2019); Zhou
et al. (2018), we have the following theorems that provide the convergence in convex and non-convex
settings. Particularly, we use β1,t to replace β1 where β1,t is non-increasing.
Theorem 1. (Convergence in convex settings) Let {wt} be the sequence obtained by AdaDQH
(Algorithm 1), αt = α/

√
t, β1,t ≤ β1 ∈ [0, 1), β2 ∈ [0, 1), bt,i ≤ bt+1,i ∀i ∈ [n] and ‖gt‖∞ ≤

G∞,∀t ∈ [T ]. Suppose ft(w) is convex for all t ∈ [T ], w∗ is an optimal solution of
∑T
t=1 ft(w),

i.e., w∗ = arg minw∈Rn

∑T
t=1 ft(w) and there exists the constant D∞ such that maxt∈[T ] ‖wt −

w∗‖∞ ≤ D∞. Then we have the following bound on the regret
T∑
t=1

(ft(wt)− ft(w∗)) <
1

1− β1

[
n(2G∞ + δ)D2

∞
2α
√

1− β2(1− β1)2

√
T +

T∑
t=1

β1,t

2α̂t
nD2
∞

+
nαG2

∞
(1− β1)3

(
1 +

1

δ
√

1− β2

)√
T

]
.

The proof of Theorem 1 is given in Appendix A.
Corollary 1. Suppose β1,t = β1/t, then we have

T∑
t=1

(ft(wt)− ft(w∗)) <
1

1− β1

[
n(2G∞ + δ)D2

∞
2α
√

1− β2(1− β1)2

√
T +

nD2
∞β1

α
√

1− β2

√
T

+
nαG2

∞
(1− β1)3

(
1 +

1

δ
√

1− β2

)√
T

]
.

The proof of Corollary 1 is given in Appendix B. Corollary 1 implies the regret is O(
√
T ) and can

achieve the convergence rate O(1/
√
T ) in convex settings.

Theorem 2. (Convergence in non-convex settings) Suppose that the following assumptions are
satisfied:

1. f is differential and lower bounded, i.e., f(w∗) > −∞ where w∗ is an optimal solution. f is
also L-smooth, i.e., ∀u,v ∈ Rn, we have

f(u) ≤ f(v) + 〈∇f(v),u− v〉+
L

2
‖u− v‖2.
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2. At step t, the algorithm can access a bounded noisy gradient and the true gradient is bounded, i.e.,
‖gt‖∞ ≤ G∞, ‖∇f(wt)‖∞ ≤ G∞,∀t ∈ [T ]. Without loss of generality, we assume G∞ ≥ δ.

3. The noisy gradient is unbiased and the noise is independent, i.e., gt = ∇f(wt) + ζt,E[ζt] = 0
and ζi is independent of ζj if i 6= j.

4. αt = α/
√
t, β1,t ≤ β1 ∈ [0, 1), β2 ∈ [0, 1) and bt,i ≤ bt+1,i ∀i ∈ [n].

Then Algorithm 1 yields

min
t∈[T ]

E[‖∇f(wt)‖2] < C1
1√

T −
√

2
+ C2

log T√
T −
√

2
+ C3

∑T
t=1 α̂t(β1,t − β1,t+1)√

T −
√

2
,

where C1, C2 and C3 are defined as follows:

C1 =
G∞

α(1− β1)2(1− β2)2

(
f(w1)− f(w∗) +

nG2
∞α

(1− β1)8δ2
(δ + 8Lα) +

αβ1nG
2
∞

(1− β1)3δ

)
,

C2 =
15LnG3

∞α

2(1− β2)2(1− β1)10δ2
,

C3 =
nG3
∞

α(1− β1)5(1− β2)2δ
.

The proof of Theorem 2 is given in Appendix C. Note that we can let bt+1 = max(bt+1, bt),
which is usually called AMSGrad condition (Reddi et al., 2018), to make sure the assumption
bt,i ≤ bt+1,i∀i ∈ [n] always true, though it could degenerate the effect in practice. The more detailed
analysis is given in Appendix E.3. From Theorem 2, we have the following corollaries.

Corollary 2. Suppose β1,t = β1/
√
t, then we have

min
t∈[T ]

E[‖∇f(wt)‖2] < C4
1√

T −
√

2
+ C5

log T√
T −
√

2
,

where C4 and C5 are defined as follows:

C4 =
G∞

α(1− β1)2(1− β2)2

(
f(w1)− f(w∗) +

nG2
∞α

(1− β1)8δ2
(2δ + 8Lα) +

αβ1nG
2
∞

(1− β1)3δ

)
,

C5 =
nG3
∞

(1− β2)2(1− β1)10δ2

(
15

2
Lα+ δ

)
.

The proof of Corollary 2 is given in Appendix D.
Corollary 3. Suppose β1,t = β1, ∀t ∈ [T ], then we have

min
t∈[T ]

E[‖∇f(wt)‖2] < C1
1√

T −
√

2
+ C2

log T√
T −
√

2
,

where C1 and C2 are the same with Theorem 2.

Corollaries 2, 3 imply the convergence (to the stationary point) rate for AdaDQH is O(log T/
√
T ) in

non-convex settings.

2.3 NUMERICAL ANALYSIS

In this section, we compare AdaDQH against several SOTA optimizers in three test funtions. We
adopt the parameter settings from Zhuang et al. (2020). The learning rate is set to 1e-3 for all adaptive
optimizers, along with the same epsilon/delta (1e-8), betas (β1 = 0.9, β2 = 0.999). For SGD,
momentum is set to 0.9 and learning rate is 1e-6 for numerical stability. AdaDQH shows promising
results as it reaches the optimal points across all of the experiments, shown in Figure 1. Furthermore,
we search the best learing rate for each optimizer with regard to Beale function. AdaDQH is still the
strongest competitor. The details are provided in E.1.
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Figure 1: Trajectories of different optimizers in three test functions, where f(x, y) = (x + y)2 +
(x− y)2/10. We also provide animated versions in the supplemental material.

Table 2: Experiments overview

Task Dataset Model Train Val/Test Params

CV Cifar10 ResNet20/ResNet32 50K 10K 0.27M/0.47M
ImageNet ResNet18 1.28M 50K 11.69M

NLP-NMT IWSLT14 De-En Transformer small 153K 7K/7K 36.7M
1-layer LSTM 5.3M

NLP-LM PTB 2-layer LSTM 0.93M 730K/82K 13.6M
3-layer LSTM 24.2M

RecSys Avazu MLP 36.2M 4.2M 151M
Criteo DCN 39.4M 6.6M 270M

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

We experimentally compare the performance of different optimizers on a wide range of learning
tasks, including CV, NLP and RecSys. The details of the tasks are as follows.

CV: We experiment with ResNet20 and ResNet32 on Cifar10 (Krizhevsky et al., 2009) dataset, and
ResNet18 on ImageNet (Russakovsky et al., 2015) dataset. The details of the datasets are listed in
Table 2. We train 160 epochs and decay the learning rate by a factor of 10 at epoch 80 and 120
for Cifar10, and train 90 epochs and decay the learning rate by a factor of 10 every 30 epochs for
ImageNet. The batch size is 256 for both datasets.

NLP: We experiment with Neural Machine Translation (NMT) on IWSLT14 German-to-English
(De-En) (Cettolo et al., 2014), and Language Modeling (LM) on Penn TreeBank (Marcus et al., 1993).
For NMT task, transformer small architecture is adopted. We use the same setting and pre-processing
method in Yao et al. (2020), as well as the same length penalty (1.0), beam size (5) and max tokens
(4096). We train 55 epochs and average the last 5 checkpoints for inference. For LM task, we train
1,2,3-layer LSTM with batch size of 20 for 200 epochs. The details are listed in Table 2. Additionally,
we keep settings like learning rate scheduler and warm-up steps identical for the same task.

RecSys: We experiment on two common datasets including Avazu (Avazu, 2015) and Criteo (Criteo,
2014) which are various display ads logs for the purpose of predicting the Click Through Rate (CTR).
For Avazu, the samples from the first nine days are used for training, while the rest are for testing.
We use the basic Multilayer Perceptron (MLP) structure of most deep CTR models. Specifically,
the model maps each categorical feature as a 16-dimensional embedding vector, following up with
4 fully connected layer of dimension in 64,32,16,1, respectively. For Criteo, we take the early 6/7
part of all samples as the train set. We adopt Deep & Cross Network (DCN) (Wang et al., 2017) with
embedding size set to 8, along with 2 deep layers of size 64 and 2 cross layers. The details are listed
in Table 2. We train 1 epoch with a batch size of 512 for both datasets.

Optimizers to be compared include SGD (Robbins & Monro, 1951), Adam (Kingma & Ba, 2015),
AdamW (Loshchilov & Hutter, 2019), AdaBelief (Zhuang et al., 2020) and AdaHessian (Yao et al.,
2020). The choices of the hyperparameters are given in Appendix E.2. The experiments of CV and
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Table 3: Top-1 accuracy for different optimizers when trained on Cifar10 and ImageNet.

Dataset Cifar10 ImageNet
Model ResNet20 ResNet32 ResNet18

SGD 92.14± .14 93.10± .07 69.85± .04
Adam 90.46± .20 91.54± .12 63.81± .26
AdamW 92.12± .14 92.72± .01 68.91± .09
AdaBelief 92.19± .15 92.90± .13 69.93± .09
AdaHessian 92.27± .27 92.91± .14 69.94± .09

AdaDQH 92.35± .24 93.12± .18 70.19± .05

Table 4: Relative training time for AdaDQH (baseline), SGD and AdaHessian. Additionally, minutes
of training one epoch with AdaDQH are provided. † is measured on one Nvidia P100 GPU, §/‡ on
one/four Nvidia V100 GPU. Note that ∗ results from the limitations of PyTorch running RNN model
with second order optimizers.

Dataset Cifar10 ImageNet IWSLT14 PTB
Model ResNet20 † ResNet32 † ResNet18 ‡ Transformer † 2-layer LSTM §
SGD 0.85× 0.84× 0.62× 0.67× 0.93×
AdaHessian 1.86× 2.16× 2.98× 2.17× 9.80×∗
AdaDQH 1.00× 1.00× 1.00× 1.00× 1.00×
AdaDQH
(min/epoch) 0.52 0.62 11.25 3.88 0.30

NLP are conducted with GPUs in the PyTorch framework (Paszke et al., 2019), and the experiments
of RecSys are conducted with 3 parameter servers and 5 workers in the TensorFlow framework (Abadi
et al., 2016). We run all the experiments 5 times with random seeds and calculate the statistical
results.

3.2 CV

Table 3 reports the top-1 accuracy for different optimizers when trained on Cifar10 and ImageNet.
It is remarkable that AdaDQH outperforms other optimizers on both Cifar10 and ImageNet. The
testing accuracy ([µ± σ]) curves of different optimizers for ResNet20/32 on Cifar10 and ResNet18
on ImageNet are plotted in Figure 2. Note that the results of SGD, AdaBelief and AdaHessian on
ImageNet are lower than the number reported in original papers (Chen et al., 2020; Zhuang et al.,
2020; Yao et al., 2020) which are run single time. More discussions are given in Appendix E.4.
We also report the accuracy of AdaDQH for ResNet18 on Cifar10 for comparing with the SOTA
results 1, which is listed in Appendix E.5. In addition, it is worth mentioning that although AdaDQH
is considered as quasi-Hessian, its runtime cost is comparable with SGD and much lower than
AdaHessian, which is shown in Table 4.

3.3 NLP

We report case-insensitive BiLingual Evaluation Understudy (BLEU, higher is better) score and the
perplexity (PPL, lower is better) on test set for NMT and LM tasks respectively. The results are
shown in Table 5. For the NMT task on IWSLT14, AdaDQH achieves a similar result to AdaBelief,
outperforming the other optimizers. For LM task on PTB, AdaDQH obtains lowest PPL in all
1,2,3-layer LSTM experiments, as demonstrated in Figure 3. Furthermore, we report the relative
training time in Table 4 which is similar to CV.

3.4 RECSYS

We adopt Area Under the receiver-operator Curve (AUC) as the evaluation criterion which is a
good measurement in CTR estimation (Graepel et al., 2010). Table 6 shows that compared to other

1https://paperswithcode.com/sota/stochastic-optimization-on-cifar-10-resnet-18

7



Under review as a conference paper at ICLR 2023

0 20 40 60 80 100 120 140 160
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

in
g 

ac
cu

ra
cy

120 140 160
0.915

0.920

0.925

AdaDQH
SGD
Adam
AdamW
AdaBelief
AdaHessian

(a) ResNet20 on Cifar10

0 20 40 60 80 100 120 140 160
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

in
g 

ac
cu

ra
cy

120 140 160

0.925

0.930

AdaDQH
SGD
Adam
AdamW
AdaBelief
AdaHessian

(b) ResNet32 on Cifar10
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Figure 2: Testing accuracy curves of different optimizers for ResNet20/32 on Cifar10 and ResNet18
on ImageNet. The solid line represents the mean of the results and the shaded area represents the
standard deviation.
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(c) 3-layer

Figure 3: Test PPL ([µ± σ]) on Penn Treebank for 1,2,3-layer LSTM.
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(a) ResNet18 on ImageNet
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(b) Transformer on IWSLT14
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(c) 2-layer LSTM on PTB
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(d) DCN on Criteo

Figure 4: The distribution of b̂t on different epochs/steps. The colored area denotes the ratio of b̂t in
the corresponding interval. The values of δ of ResNet18 on ImageNet, Transformer on IWSLT14,
2-layer LSTM on PTB, and DCN on Criteo are 1e-5, 1e-14, 1e-5 and 1e-8 respectively.
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Table 5: Test BLEU score and PPL for NMT and LM tasks. † is reported in Yao et al. (2020).

Dataset IWSLT14 PTB
Metric BLEU, higher is better PPL, lower is better
Model Transformer 1-layer LSTM 2-layer LSTM 3-layer LSTM

SGD 28.57± .15 † 85.36± .34 67.26± .17 63.68± .17
Adam 29.61± .17 84.50± .16 67.01± .11 64.45± .26
AdamW 35.75± .03 88.16± .19 95.25± 1.33 102.61± 1.13
AdaBelief 35.93± .08 84.40± .21 66.69± .23 61.34± .11
AdaHessian 35.79± .06 † 88.62± .15 73.37± .22 69.51± .19

AdaDQH 35.94± .11 81.23± .17 65.84± .18 60.89± .09

Table 6: Test AUC for different optimizers when trained on Avazu and Criteo.

Dataset Avazu Criteo
Model MLP DCN

SGD 0.7463± .0005 0.7296± .0067
Adam 0.7458± .0010 0.8023± .0002
AdaBelief 0.7467± .0009 0.8022± .0002
AdaHessian 0.7434± .0006 0.7995± .0018

AdaDQH 0.7480± .0008 0.8023± .0004

optimizers, AdaDQH can achieve significantly better or highly competitive performance on the AUC
metric.

3.5 THE EFFECT OF δ

In this section, we analyze the rigorous effect of δ, i.e., what exact percentage of b̂t is truncated by δ
in Algorithm 1. Figure 4 depicts the distribution of b̂t during the training process on different tasks in
the best configuration we found. The black dot gives the exact percentage of b̂t that is truncated by δ
in the task. Lower percentage means more SGD-like updates than adaptive steps, which is controlled
by the choice of δ.

Figure 4 reveals how auto switch in AdaDQH works in different tasks. As shown in Figure 4a,
AdaDQH behaves more like SGD in early stage of training (before the first learning rate decay at
the 30th epoch) and switches to the adaptive for fine-tuning, since SGD generally outperforms the
adaptive optimizers in CNN tasks. Figure 4b indicates that the parameters taking adaptive updates
are dominant, which is expected because the adaptive optimizers like AdamW are preferred in
transformer. As indicated in Figure 4c, most parameters are updating stochastically, which explains
why AdaDQH has a similar curve to SGD in Figure 3b before the 100th epoch. The ratio grows from
3% to 5% afterwards, resulting in a better PPL in the fine-tuning stage. As for Figure 4d, the model
of the RecSys task is training for only one epoch, and AdaDQH gradually switch to the adaptive
updates for a better fit to the data.

4 CONCLUSION

In this paper, we propose the AdaDQH optimizer, which can evolve from stochastic to adaptive
by auto switch of the precondition matrix and has better generalization compared to the SOTA
optimizers. We theoretically prove the convergence rate in both convex and non-convex stochastic
settings and conduct empirical evaluation in real-world datasets of different scenes. The results clearly
demonstrate the advantages of our optimizer in getting significantly better performance. Finally,
we analyze how it is able to auto switch from stochastic to adaptive, and the rigorous effect of the
hyperparameter δ which controls the auto-switch process.
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