
TestRank: Bringing Order into Unlabeled Test
Instances for Deep Learning Tasks

Yu Li†, Min Li†, Qiuxia Lai†, Yannan Liu∗, and Qiang Xu†
† CURE Lab, The Chinese University of Hong Kong

∗ Wuheng Lab, ByteDance
{yuli,mli,qxlai,qxu}@cse.cuhk.edu.hk

Abstract

Deep learning (DL) systems are notoriously difficult to test and debug due to
the lack of correctness proof and the huge test input space to cover. Given the
ubiquitous unlabeled test data and high labeling cost, in this paper, we propose a
novel test input prioritization technique, namely TestRank, which aims at revealing
more model failures with less labeling effort. TestRank brings order into the
unlabeled test data according to their likelihood of being a failure, i.e., their failure-
revealing capabilities. Different from existing solutions, TestRank leverages both
intrinsic and contextual attributes of the unlabeled test data when prioritizing
them. To be specific, we first build a similarity graph on both unlabeled test
samples and labeled samples (e.g., training or previously labeled test samples).
Then, we conduct graph-based semi-supervised learning to extract contextual
features from the correctness of similar labeled samples. For a particular test
instance, the contextual features extracted with the graph neural network and the
intrinsic features obtained with the DL model itself are combined to predict its
failure-revealing capability. Finally, TestRank prioritizes unlabeled test inputs in
descending order of the above probability value. We evaluate TestRank on three
popular image classification datasets, and results show that TestRank significantly
outperforms existing test input prioritization techniques. Our code is available at:
https://github.com/cure-lab/TestRank.

1 Introduction

Deep learning (DL) systems are prone to errors due to many factors, such as the biased train-
ing/validation dataset, the limitations of the model architecture, and the constraints on training cost.
It is essential to conduct high-quality testing before DL models are deployed in the field; otherwise,
the behaviors of DL models can be unpredictable and result in severe accidents after deployment.
However, the cost of building test oracles (i.e., the ground-truth output) by manually labeling a
massive set of test instances is prohibitive, especially for tasks requiring experts for accurate labeling,
such as medical images and malware executables.

To tackle the above problem, various test input prioritization techniques [Feng et al., 2020, Byun
et al., 2019, Shen et al., 2020] are proposed to identify ‘high-quality’ test instances from a large
amount of unlabeled data, which facilitates revealing more failures (e.g., misclassification) of the DL
model with reasonable labeling effort. These methods try to derive the failure-revealing capability of
a test instance with its intrinsic attributes extracted from the responses of the model under test (e.g.,
the softmax-based probabilities given by the target DL model to this specific input). DeepGini [Feng
et al., 2020] feeds the unlabeled data to the target DL model and calculates confidence-related scores
based on the model’s output probabilities to rank the unlabeled test cases. Test cases with nearly
equal probabilities on all output classes are regarded as less confident ones and are likely to reveal

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/cure-lab/TestRank

model failures. Similarly, [Byun et al., 2019] use the uncertainty score obtained from MC-Dropout
for test input prioritization. Multiple-boundary clustering and prioritization (MCP) [Shen et al.,
2020] considers both the output probabilities and the balance among each classification boundary
when selecting test cases. All existing works try to identify instances near the decision boundary
and prioritize them. However, we argue that near-boundary instances are not necessarily failures,
especially for well-trained classifiers with high accuracy. Also, as failures can be far from the decision
boundary, existing methods could fail to reveal these remote failures.

To estimate a test instance’s capability in revealing failures, in addition to the intrinsic attributes
mentioned above, there is another type of information: the known classification correctness of labeled
samples (i.e., training samples and previously tested samples) and their relationship to the unlabeled
instance. This information provides extra insight into the target model’s behavior. Such data is already
known, and it provides contextual information that reflects the corresponding inference behaviors of
the target model for a set of similar instances.

This work presents a novel test input prioritization technique, namely TestRank, for DL classifiers.
TestRank exploits both intrinsic and contextual attributes of test instances to evaluate their failure-
revealing capabilities. Based on the intuition that similar inputs are usually associated with the same
classification results, we propose to use graph neural networks (GNNs) [Kipf and Welling, 2017]
to summarize the neighboring classification correctness for each unlabeled instance into contextual
attributes. GNNs have been well-studied and valued for their relational inductive bias for extracting
graph information. Our method, TestRank, constructs a similarity graph on both unlabeled and labeled
instances and apply the semi-supervised GNN learning to extract the contextual attributes. After
that, we aggregate intrinsic (such attributes are extracted from the input samples without considering
their neighbors) and contextual attributes with a neural-network-based binary classifier for test input
prioritization.

The contributions of our work are as follows:

• To the best of our knowledge, TestRank is the first work that takes the contextual information
from the target DL model into consideration for test input prioritization.

• We propose constructing a similarity graph on both labeled and unlabeled samples and
training a graph neural network to extract useful contextual attributes from the contextual
information for these unlabeled instances. We also present approximation techniques to
reduce its computational complexity with minor impact on the performance of TestRank.

• We propose a simple yet effective neural network that combines the intrinsic attributes
and contextual attributes of unlabeled test instances for their failure-revealing capability
estimation.

We empirically evaluate TestRank on three popular image classification benchmarks: CIFAR-10,
SVHN, and STL10. The results show that our method outperforms the state-of-the-art methods by a
considerable margin.

2 Test Input Prioritization

Let us use f : X → Y to represent the given target DL model, where X and Y are the input and
output space, respectively. For effective testing1, the debugging center needs to perform test input
prioritization, i.e., select a certain number of test instances from the large unlabeled test instance pool
that can reveal as many failures as possible. Later, these failures are fed back to the training center
for failure analysis and model repair. We define the model failures as follows:

Definition 1. DL Model Failure. A failure of the DL model can be uncovered by the test instance x
if the predicted label f (x) is inconsistent with its ground truth label yx, namely f (x) , yx.

Formally, the debugging center selects and labels b test cases XS (|XS | = b) from the unlabeled test
instance pool XU . The objective of test input prioritization is to maximize the detected failures:

max |{x| f (x) , yx}|,where x ∈ XS and |XS | = b. (1)

1Please note that, we focus on testing the functional correctness of the DL model, and we assume the collected
testing data are clean samples instead of maliciously generated ones.

2

Different solutions are proposed to quantify the failure-revealing capability of unlabeled instances.
DeepGini [Feng et al., 2020] proposes to evaluate a single test instance via the DL model’s final
statistical output: f (t) = 1 − ΣN

i=1 p2
t,i, where pt,i is the predicted probability that the test case t belongs

to the class i. Given the sum of pt,i is 1, impurity function f (t) is maximal when all pt,i values
are equal. DeepGini also adopts the neuron coverage criteria proposed in DeepXplore [Pei et al.,
2017] and DeepGauge [Ma et al., 2018] in test input prioritization, and the result shows that the
impurity-based selection is much better than coverage-based selection.

Instead of evaluating the overall likelihood of failure for all classes, Multiple-Boundary Clustering
and Prioritization (MCP) proposes to evaluate it for each pair of classes individually [Shen et al.,
2020]. In this way, test instances can be evenly selected for each class pair and the failure cases
are investigated at the finer granularity. Besides these metrics, [Byun et al., 2019] also propose to
measure the likelihood of incorrect prediction by the uncertainty of the model’s output, which reflects
the degree to which a model is uncertain about its prediction. In practice, evaluating uncertainty
requires the task DL model to be a Bayesian Neural Network [Richard and Lippmann, 1991, Neal,
2012] or containing a dropout layer for approximation [Gal and Ghahramani, 2016].

Besides examining the DL model’s final outputs, [Kim et al., 2019] proposes two surprise adequacy
(SA) criteria that make use of the target DL’s internal outputs (e.g., the activation traces). They
are Likelihood-based Surprise Adequacy Coverage (LSA) and Distance-based Surprise Adequacy
Coverage (DSA). LSA and DSA measure the likelihood or distance of an unlabeled instance to the
training instances, respectively. Test samples with higher SA values are preferred in testing.

To sum up, all existing methods use the target model’s outputs to one input, i.e., its intrinsic attributes,
for its failure-revealing capability estimation. In contrast, we make use of both intrinsic and contextual
attributes of an instance for better estimation (see later sections for details).

3 TestRank

3.1 Motivation

Labeled data Unlabeled data in test set

Near-boundary failure
Remote failure

Near-boundary failure
DL model boundary

Unlabeled data which uncover model failures

Figure 1: A motivational example.

The failure-revealing capability of an unla-
beled test input is closely related to its at-
tributes for the DL model under test. In this
work, we distinguish two kinds of attributes
for an unlabeled instance: the intrinsic at-
tributes and the contextual attributes.

We define the intrinsic attributes of an in-
put as the output responses assigned by the
target DL model to this specific input. It
could be, for example, the predictive out-
put distribution of the input from the target
DL model, reflecting the sentiment derived
from the computation performed by the tar-
get model [Byun et al., 2019]. This kind of
attributes is adopted by existing test input
prioritization approaches [Feng et al., 2020,
Shen et al., 2020, Byun et al., 2019]. Note
that we define such attributes as ‘intrinsic’
because they are extracted from inputs without considering their context, i.e., the classification
correctness of its similar instances.

In contrast with the intrinsic attributes, the contextual attributes provide a deeper insight into the
target model for the unlabeled samples: the contextual attributes for an unlabeled sample summarize
the classification correctness of similar and labeled samples. For a particular test instance, such
contextual attributes are useful and complementary to the intrinsic attributes.

An illustrative example is shown in Figure 1, wherein we visualize the behavior of a two-class
classifier on the unlabeled test data and historically labeled data distribution. The blue region
includes the instances that are near the decision boundary. Intuitively, the classifier is uncertain
about the data when data is near the decision boundary and is likely to misclassify it. Existing

3

Figure 2: The overview of TestRank.

works [Shen et al., 2020, Feng et al., 2020, Byun et al., 2019] propose various indicators (e.g.,
confidence/uncertainty/surprise scores) to help identify the near-boundary instances. However, the
near-boundary instances are not necessarily failures, and some of them can be correctly classified by
a well-trained classifier. What is worse, such testing approaches fail to capture the failures lying far
from the decision boundary (i.e., remote failures, shown in the red region in Figure 1), because DL
models usually output high confidence (or low uncertainty) for these inputs. These failures may be
caused by limited model capacity, insufficient training data, etc.

Our key insight is that we can use the contextual information (e.g. the classification correctness of
similar labeled samples) to help locate both near-boundary and remote failures. The usefulness of the
contextual information is due to the local continuity property [Bishop, 2006], which means that inputs
close in the feature space share similar prediction behavior, e.g., classification results from the target
model. As shown in Figure 1, some already labeled data, whose classification correctness is already
known, surround the unlabeled data. If an unlabeled instance is close to already falsely classified data,
under the local continuity property, it is likely that this instance is also a model failure. This property
motivates us to extract the contextual attributes for an unlabeled instance from its neighboring labeled
data. By combining the extracted contextual attributes with the intrinsic attributes, we expect to
achieve better failure-revealing capability estimation.

3.2 Overview

Figure 2 shows the overview of TestRank, which consists of two attribute extraction paths for the
final failure-revealing capability estimation:

1. Path A: intrinsic attributes extraction. Given a pool of unlabeled inputs XU , we use the
target DL model f to extract the intrinsic attributes em for each input. More precisely, we
collect the output logits (i.e., vectors before the so f tmax layer) from the DL model as em.

2. Path B: contextual attributes extraction. First, we use a feature extractor to map the
original data space into a more compact feature space with good local continuity property.
Then, we create a similarity graph (i.e., k-Nearest Neighbor Graph) based on the obtained
feature vectors and their corresponding classification correctness, if any, from both unlabeled
data pool XU and labeled data pool XL (e.g. training set and previously labeled test samples).
Last but not least, the graph-based representation learning technique is applied to extract the
contextual attributes ec for each unlabeled instance. The details are elaborated in Sec. 3.3.

After attributes em and ec are extracted, we combine them together via a Multi-Layer Perceptron
(MLP) (see Sec. 3.4 for details). The MLP is responsible for predicting the failure-revealing ability
for unlabeled test instances. At last, these instances are ranked according to their failure-revealing
capability, and the top ones are selected under the given labeling budget.

As intrinsic attributes extraction is straightforward, we discuss the path B and how to combine path A
and B in detail in the following subsections.

3.3 Contextual Attributes Extraction

We represent the contextual information from the DL model as a set of labeled inputs XL and the
corresponding classification correctness YL ∈ {0, 1}, where correctly classified inputs are labeled as
0 and misclassified ones are labeled as 1. Given the contextual information, our goal is to extract
the contextual attributes for each unlabeled test instance x ∈ XU . However, extracting contextual
attributes from labeled and unlabeled data is a non-trivial task because of the following reasons.

4

Algorithm 1: GNN-based Contextual Attributes Extraction
Input: Input samples XU ∪ XL, Correctness of labeled samples YL, Number of neighbors k, Feature

extractor fetr, number of GNN layers M, number of training epochs.
Output: Contextual attributes Ec for XU

1 X = fetr(XU ∪ XL) # Extract compact representation;
2 Edge = knn_graph(X, k). # KNN Graph construction;
3 Ã = Edge + IN , D̃ =

∑
j Ãi, j;

4 H0 = X;
5 for number of training epochs do
6 for l = 0, 1, . . . ,M − 1 do
7 Hl+1 = σ(D̃− 1

2 ÃD̃− 1
2 HlΘl),

8 end
9 loss = CrossEntropyLoss(HM ,YL);

10 Update Θ;
11 end
12 Ec = HM−1[index of Xu] # extract the representation from the M − 1th GNN layer;
13 return Ec;

First, it is well-known that the real data, especially image data, usually locates in high-dimensional
space, wherein the underlying data distribution will live on complex and non-linear manifold em-
bedded within the high-dimensional space [Bishop, 2006]. Therefore, constructing the relationships
between different instances is difficult. To address the challenge, we adopt the representation learning
process [Grill et al., 2020, van den Oord et al., 2018, Chen et al., 2020, He et al., 2020], which map
the raw data into a compact feature space with better local continuity property, such that inputs close
in the feature space share similar classification results. Thus, in the feature space, the proximity
between inputs can be measured with simple distance metrics (e.g., L2, cosine).

Second, manually designing protocols to summarize the neighboring classification results is subject
to the imperfection of local continuity. Namely, the result is easily affected by the noisy data in the
neighboring space. To solve this challenge, we construct a similarity graph based on the labeled and
unlabeled data, and then apply the more powerful graph learning technique – graph neural networks
(GNN) – for contextual attribute extraction.

The GNN empowers graph embedding learning, as it employs a learnable aggregation and transform
procedure [Kipf and Welling, 2017], which exploits the relational inductive-bias that exhibits in the
graph structure. It generates a embedding/representation that summarizes the “contextual information”
for each input sample, making it easier to separate the correct and misclassified inputs.The contextual
attributes extracted by the graph neural network can then be combined with the intrinsic attributes to
conduct the better failure-revealing capability estimation (See Sec. 3.4). The contextual attributes
extraction process is formally depicted by Algorithm 1.

Feature Vector Representation (Line 1). As the target model is to be tested, its feature extraction
quality is not guaranteed. Out of this concern, and to make full use of the labeled and unlabeled data,
we choose to use a out-of-shelf unsupervised model for feature space construction.

Among the unsupervised learning techniques, the BYOL [Grill et al., 2020] explicitly introduces local
continuity constraint into the learned feature space and shows good results on various downstream
tasks. Therefore, we train a BYOL model fetr to extract the features from the raw input images. The
data used to train the BYOL model includes both labeled and unlabeled data: (XU ∪ XL), and the
resulting feature matrix is denoted as X. Please note that the feature extractor can be replaced by any
other well-trained feature extractor with the local continuity property (e.g., SimCLR [Chen et al.,
2020] and MoCo [He et al., 2020]).

Similarity Graph Construction and Approximation (Line 2). After the extraction of feature
representation, we use the simple distance metric (i.e., cosine) to measure the similarity between any
two test instance xi and x j in X: Dist(i, j) = cosine(xi, x j). Based on the distance matrix Dist, we
construct a k-NN Graph G, wherein each sample is connected to its top-k most similar samples. The
connection is represented by an adjacency matrix A ∈ RN×N , where N is the number of sample in X.
The entry Ai j equals 1 if node j is within the k nearest neighbors of node i, and 0 otherwise. The

5

edge weight matrix of the similarity graph is denoted as Edge, wherein each edge weight in Edge, if
exists, is inversely proportional to the corresponding distance Dist:

Edgei j =

{
1/Dist(i, j) Ai j = 1.
0 Ai j = 0.

i, j ∈ {0, . . . ,N − 1}. (2)

This means that the connection between two nodes, if exists, is weaker if their proximity is large.

Constructing such a k-NN graph is, however, computationally expensive. This is because, calculating
the distance between each pair of test instances requires a computational complexity of O(N2), which
is prohibitive to scale up to the current massive unlabeled test instances in real applications. Therefore,
we propose an approximation method for k-NN graph construction. Our intuition is that, since the
target of graph construction is to exploit the failure patterns of the nearby labeled instances for the
unlabeled instances, the connections between unlabeled data are less meaningful. Therefore, we
propose to only consider the connections among labeled data XL, and the connections between labeled
XL to unlabeled data XU . This approximation reduces the cost from O(N2) to O(P2 + PQ), where P
and Q stand for the number of data in XL and XU , respectively. Usually, in the real-world scenario,
P is much smaller than Q, thereby we could obtain a near-linear graph construction algorithm with
complexity O(PQ).

GNN-based representation Learning (Line 3-12). To apply the GNN algorithm, we first initialize
the input node representation matrix H0 in the similarity graph G as X. Recall that in each GNN
layer, the node representations are propagated between neighbors and aggregated together. Thus, we
can obtain the representation in the next GNN layer by:

Hl+1 = σ(D̃−
1
2 ÃD̃−

1
2 HlΘl), (3)

where Ã = Edge + IN , IN is the identity matrix, D̃ =
∑

j Ãi, j, Θl is the trainable weight matrix for the
lth layer, σ is an activation function and Hl+1 is the output representation matrix. The propagation
and aggregation are repeated for M layers, with the output dimension of the Mth layer is 1 (for binary
classification purpose).

Then, for any labeled node xe ∈ XL, we could obtain a cross entropy loss between the GNN output
hM and the expected label y ∈ YL (e.g. misclassified or not): Lce = −(ylog(hM) + (1− y)log(1− hM)),
where hM denotes probability that xe is misclassified. The model is trained via minimizing the loss
for some training epochs (we set it as 600 in our experiment). After that, we apply the trained GNN
model (except the last layer) on XU to obtain the Ec (line 12). In this way, the correctness of the
neighboring samples could be effectively summarized for each node.

3.4 Failure-revealing Capability Estimation

To properly combine both the intrinsic attributes em and contextual attributes ec for collaborative
failure-revealing capability estimation, we formulate the combination function as a simple binary
classifier (e.g. a MLP). Specifically, the input to the MLP is a concatenation of em and ec, and the
output is the failure-revealing estimation for an test instance. The final failure-revealing probability
is produced by applying a sigmoid function S (t) = 1

1+e−t on the MLP model’s output. We use the
labeled instances (XL,YL) to train the MLP in a supervised manner, with an objective of minimizing
the binary Cross-Entropy loss. After training, the MLP shall re-weight the importance of intrinsic
and contextual attributes and make a final decision by assigning a high probability to a test instance if
it is likely to reveal a failure.

Finally, we rank the unlabeled test instances in a descending order based on their failure-revealing
capability. Under the given budget, we select the top ones to label and test.

4 Experiment

4.1 Setup

Datasets. We evaluate the performance of TestRank on three popular image classification datasets:
CIFAR-10 [Krizhevsky et al., 2009], SVHN [Netzer et al., 2011], and STL10 [Coates et al., 2011],
as shown in Table 1. More elaboration is shown in the Appendix.

6

Dataset # Class Size Official Train/Test/Extra Split Our Split(TC/DC/HO) Model Architecture Model Acc. On HO set(%) (A/B/C)

CIFAR-10 10 60K 50K/10K/x 20K/39K/1K ResNet-18 70.1/66.4/68.3
SVHN 10 630K 73K/26K/531K 50K/49K/531K Wide-ResNet 94.2/92.5/81.6
STL10 10 13K 5K/8K/x 5K/7.5K/0.5K ResNet-34 54.8/54.0/53.6

Table 1: The Dataset and DL Models.

There are mainly two parties involved in the model construction process: the training center and the
debugging center. Hence, we manually split the dataset into the training center dataset (see the TC
column in Table 1) and the debugging center dataset (see the DC column in Table 1). To mimic the
practical scenario where the unlabeled data is abundant, we move a portion of training data to the
debugging center to create this scenario. In the debugging center, we let a set of test data as labeled
ones to represent the historical test oracles, and they are 8K/10K/1.5K for CIFAR-10, SVHN, and
STL10, respectively, which are used to train the GNN and MLP model. The rest of the data in the
debugging center are left unlabeled. Also, we spare a hold-out dataset (see the HO column), which is
used for evaluating the model accuracy.

Target DL model (model under test). As shown in Table 1, we use the popular ResNet and
WideResNet architectures as the backbone models [He et al., 2016, Zagoruyko and Komodakis,
2016]. To simulate models of different qualities, for each dataset, we train three DL models with
different randomly drawn sub-sets from the training set owned by the training center. For model
B and C, the training set are drawn with in-equivalent class weights. After training, we report the
accuracy of models on the debugging center’s hold-out dataset THO in Table 1.

Evaluation metric. We propose a new evaluation metric for test input prioritization techniques: Test
Relative Coverage (TRC). TRC is defined as the number of detected failures divided by the number of
budget or the number of total failures identified by the whole unlabeled test set, whichever is minimal:

TRC =
#Detected Failures

min(#Budget, #Total Failures)
. (4)

When # budget ≤ # total failures, the maximum number of failures can be identified equals to the
budget. When # budget ≥ # total failures, the maximum number of failures can be detected equals to
the total number of failures. Therefore, TRC measures how far a test input prioritization technique is
to the ideal case.

In practice, under the massive unlabeled data, the performance under a small budget is considered
more important than that under a large budget. To provide an insight on the quality of one test input
prioritization technique under a small budget, we also provide an ATRC metric: ATRC measures the
average TRC values for budget values less than the total failures:

ATRC =
1
N

N−1∑
i

TRCi, (5)

where TRCi stands for the TRC value under budget bi, bi , b j, and bi ≤ number of total failures.

The proposed metrics enhance the ones used by Feng et. al. [Feng et al., 2020] and Byun et. al.
[Byun et al., 2019]. They use the percentage of detected failures against the percentage of budget (and
an APFD [Do and Rothermel, 2006] value derived based on it) for evaluation. Their metric would
produce a small value under a small budget, regardless of how good the prioritization technique is.
For example, let’s assume that there are 10,000 unlabeled data, and 2,000 of them can detect model
failures. If the budget is 100, the best percentage of detected failures is 5%, and the worst is 0%. Thus,
under their metric, the gap between the best and the worst is only 5%. By contrast, TRC enlarges this
gap to 100% to better differentiate the ability of different test input prioritization techniques.

4.2 Comparison of TestRank with Baselines

We evaluate TestRank against five representative baselines: Random, DeepGini [Feng et al., 2020]
(the state-of-the-art), MCP [Shen et al., 2020], DSA [Kim et al., 2019], and Dropout-uncertainty
[Byun et al., 2019]. The details of each baseline are illustrated in the Appendix. For the dropout
uncertainty method, we run 1000 times inferences with a default dropout rate of 0.5 (the dropout rate
is consistent with the one used in [Byun et al., 2019]). For the DSA method, we collect the activation

7

Dataset Model ID Random MCP DSA Uncertainty DeepGini TestRank
Contextual-Only TestRank

CIFAR-10
A 30.15 58.25 60.93 58.09 67.47 51.39 76.56
B 34.18 46.46 62.34 61.85 67.80 58.85 87.87
C 34.27 65.25 64.47 63.10 71.15 75.33 85.53

SVHN
A 10.16 39.98 55.47 58.29 63.47 44.16 66.06
B 11.85 38.07 57.96 58.06 63.85 51.26 76.36
C 23.41 65.33 69.34 71.80 81.68 93.99 95.32

STL10
A 39.25 66.62 64.56 64.30 69.70 60.09 79.00
B 42.60 69.97 67.12 65.30 72.89 71.90 80.96
C 46.05 71.88 66.60 70.34 73.34 79.55 88.67

Table 2: Comparison of TestRank with baseline methods with ATRC values (%).

(b) SVHN(a) CIFAR-10 (c) STL10
0 20 40 60 80 100

40

50

60

70

80

90

100

Ours
DeepGini
MCP
DSA
Uncertainty
Random

0 20 40 60 80 100

20

40

60

80

100

Ours
DeepGini
MCP
DSA
Uncertainty
Random

0 20 40 60 80 100
40

50

60

70

80

90

100

Ours
DeepGini
MCP
DSA
Uncertainty
Random

Figure 3: The TRC values against all budgets. X-axis: the budget (%). Y-axis: the TRC value. Note:
this figure is generated with model B on each dataset.

traces of the final convolution layer to calculate the surprise score. For our method, we set the number
of neighbors for constructing the kNN graph as 100. Also, we use a two-layer GNN with a hidden
dimension of 32. More ablation studies are in Section 4.3.

Table 2 compares TestRank with baselines using the ATRC metric. From this table, we have several
observations. First, compared with the baselines, TestRank can achieve the highest ATRC values
on all evaluated datasets and models. For instance, on CIFAR-10, TestRank can achieve 9.09%,
20.07%, 14.38% higher ATRC values than the best baseline DeepGini for model A, B, C, respectively.
Therefore, our method can distinguish the failure-revealing capability of the unlabeled test inputs
much more accurately. Second, the testrank-Contextual-Only column shows the result using only the
contextual attributes. We observe that the contextual attributes alone can achieve higher effectiveness
than random prioritization. For example, for model A on CIFAR-10, the effectiveness of random
prioritization is 30.15% while that of the context-only method is 51.39%. We manually check the
distribution of failures of model C and find that many failures are centralized on two classes, where the
training data is insufficient. This kind of failure is easily detected by the contextual attributes-based
method. Hence, the contextual information is helpful. But still, the context attributes alone are
not sufficient. The combination of intrinsic and contextual attributes is essential in achieving high
accuracy failure-revealing capability estimation.

To show more detailed results, we present the TRC value against every labeling budget in Figure 3.
We observe that the TRC values for most curves decrease in the beginning and then increase. The
turning point is when # budget = # total failures. When # budget < # total failures, the TRC values
decrease because we rank the test instances according to their failure-revealing probabilities. With
the budget increases, the selected test cases have a lower average failure-revealing ability, thus the
decreased TRC value. When # budget > # total failures, according to the definition of TRC (see
Equation 4), the denominator is fixed. The increase in budget will improve the number of detected
failures, and hence the TRC value will increase.

Figure 3 shows that our method consistently outperforms baselines, especially when the budget is
small. For example, in Figure 3 (a), TestRank improves the prioritization efficiency by around 20%
compared to the best baseline when the budget is around 1%. When the budget is rather high (e.g.
budget ≥ 80%), the difference between different methods is less obvious because most failures can be
selected under the large budget.

8

Dataset Model TestRank
(%)

TestRank
w/o approx. (%)

TestRank
TargetModel(%)

CIFAR-10
A 76.56 77.77 (+1.21) 68.84 (-7.71)
B 87.87 87.70 (-0.17) 81.46 (-6.40)
C 85.53 88.10 (+2.57) 77.73 (-7.79)

SVHN
A 66.06 63.87 (-2.19) -
B 76.36 82.04 (+5.68) -
C 95.32 96.62 (+1.30) -

STL10
A 79.00 80.50 (+1.50) 67.59 (-11.40)
B 80.96 78.98 (-1.98) 74.43 (-6.52)
C 88.67 89.32 (+0.65) 72.43 (-16.23)

Average Influence (%) +0.95 -6.23

Table 3: The performance (ATRC values) of Tes-
tRank under different configurations.

0 200 400 600 800
Number of Neighbors

0

20

40

60

80

100

AT
PF

 v
al

ue
s (

%
)

Model A
Model B
Model C

Figure 4: The impact of the number of neighbors
k (STL10 dataset).

4.3 Impact of TestRank Configurations

Feature Extractor. TestRank uses an unsupervised BYOL model trained on both labeled and
unlabeled data to extract their features. One may wonder if it can be replaced by a supervised model
(e.g., the target DL model). To investigate this, we replace the feature extractor in TestRank with the
front layers (we remove the last few linear layers) of the target DL model. The result is shown in the
TestRank-TargetModel column in Table 3. Comparing with the original TestRank, the average ATRC
value on the reported datasets and models reduces by 6.23%, which is significant. As the quality
of the given model is to be examined, its feature extraction performance may not be reliable. Also,
the dimension of the hidden layer could be huge, making it computationally expensive to calculate
similarity values between input samples (This is why we do not report results on the SVHN dataset).
In contrast, the separate model is more controllable, enabling it to extract better features for these
data. Hence, using a separate feature extractor is necessary.

k-NN graph approximation. To reduce the computation complexity, TestRank uses approximation
techniques when constructing the k-NN graph (see Section 3.3). The TestRank-w/o-approx. column in
Table 3 shows the result when we use the original k-NN graph without approximation. It indicates that
the average influence of the approximation is small (e.g. 0.95%). Therefore, if there is a computation
resource limit and the unlabeled test instances are massive, we recommend using the approximation
to save computation with negligible performance loss greatly.

Number of nearest neighbors k. When constructing the k-NN graph, the number of neighbors k
decides the range of the context one node can reach. In previous experiments, the k is set to 100. We
enlarge this range to (20 - 800) to study the influence. The result is shown in Figure 4.3. One can
observe that the prioritization effectiveness will decrease when k is too small or too large. When k
is too small, the context information available to one instance is limited, making it difficult for the
GNN to extract valuable contextual attributes. On the other hand, when k is too large, the GNN may
grasp irrelevant/noisy information. Still, TestRank can achieve good performance in a wide range of
k values. For example, for model A, TestRank is better than the best baseline 69.70% (see Table 2)
when k is larger than 20. Hence, selecting the number of nearest neighbors k is relatively flexible.

5 Conclusion
We propose TestRank, a novel test input prioritization framework for DL models. To estimate a
test instance’s failure-revealing capability, TestRank not only leverages the intrinsic attributes of an
input instance obtained from the target DL model, but also extracts the contextual attributes from the
DL model’s historical inputs and responses. Our empirical results show that TestRank outperforms
existing solutions significantly. At the same time, this paper considers each test case equally and aims
to identify as many failure-revealing test cases as possible. In practice, the impact of each test case
could be different. We leave the study of such impact for future work.

Acknowledgment

This work is supported in part by General Research Fund (GRF) of Hong Kong Research Grants
Council (RGC) under Grant No. 14205018 and No. 14205420.

9

References
Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Taejoon Byun, Vaibhav Sharma, Abhishek Vijayakumar, Sanjai Rayadurgam, and Darren D. Cofer.
Input prioritization for testing neural networks. In IEEE International Conference On Artificial
Intelligence Testing, AITest 2019, Newark, CA, USA, April 4-9, 2019, pages 63–70. IEEE, 2019.
doi: 10.1109/AITest.2019.000-6.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 1597–1607. PMLR, 2020.

Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-
vised feature learning. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, volume 15 of
JMLR Proceedings, pages 215–223. JMLR.org, 2011.

Hyunsook Do and Gregg Rothermel. On the use of mutation faults in empirical assessments
of test case prioritization techniques. IEEE Trans. Software Eng., 32(9):733–752, 2006. doi:
10.1109/TSE.2006.92.

Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen. Deepgini:
prioritizing massive tests to enhance the robustness of deep neural networks. In ISSTA ’20: 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, USA,
July 18-22, 2020, pages 177–188. ACM, 2020. doi: 10.1145/3395363.3397357.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. CoRR,
abs/1903.02428, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop
and Conference Proceedings, pages 1050–1059. JMLR.org, 2016.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap your own latent - a
new approach to self-supervised learning. In Advances in Neural Information Processing Systems,
volume 33, pages 21271–21284, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

Jinhan Kim, Robert Feldt, and Shin Yoo. Guiding deep learning system testing using surprise
adequacy. In Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019, pages 1039–1049. IEEE / ACM, 2019. doi:
10.1109/ICSE.2019.00108.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

10

L. Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, C. Chen, Ting Su, L. Li,
Y. Liu, Jianjun Zhao, and Yadong Wang. Deepgauge: Multi-granularity testing criteria for
deep learning systems. 2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 120–131, 2018.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. DeepXplore: Automated Whitebox Testing
of Deep Learning Systems. Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP), 2017. doi: 10.1145/3132747.3132785.

Michael D. Richard and Richard P. Lippmann. Neural network classifiers estimate bayesian a
posteriori probabilities. Neural Comput., 3(4):461–483, 1991. doi: 10.1162/neco.1991.3.4.461.

Weijun Shen, Yanhui Li, Lin Chen, Yuanlei Han, Yuming Zhou, and Baowen Xu. Multiple-boundary
clustering and prioritization to promote neural network retraining. In 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia, September
21-25, 2020, pages 410–422. IEEE, 2020. doi: 10.1145/3324884.3416621.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British
Machine Vision Conference 2016, BMVC 2016, York, UK, September 19-22, 2016. BMVA Press,
2016.

11

A Appendix

A.1 Experiment details

Our code is implemented with the open-source PyTorch (under BSD license) [Paszke et al., 2019]
and PyG (under MIT license) [Fey and Lenssen, 2019] ML libraries. All of our experiments are
performed on a single TITAN V GPU 2.

A.1.1 Datasets

CIFAR-10 is officially composed of 50,000 training images and 10,000 test images, and it has ten
classes of natural images. The Street View House Numbers (SVHN) dataset contains house numbers
from Google Street View images. It contains 73,257 training images and 26,032 testing images.
Besides, the SVHN dataset also has an extra set of 531,131 images. The STL10 dataset contains ten
classes of natural images. In each class, there are 500 training images and 800 test images.

Please note that the datasets we used are open-sourced and available for research purposes 3 4 5.
Also, since the data we used is about numbers and the animals, we assume there are no personally
identifiable information or offensive content.

A.1.2 Baselines

Given a DL model and a specific budget, the goal of our method is to select test cases from an
unlabeled data pool to discover the failures of the given DL model. We compare our work with the
following test input prioritization techniques:

• DeepGini [Feng et al., 2020]: DeepGini is the state-of-art test case selection technique.
DeepGini ranks unlabeled test cases by a score defined based on the output confidence.
• MCP [Shen et al., 2020]: In addition to the output confidence, MCP also considers the

balance among different class boundaries of the selected test inputs. Specifically, MCP
groups test cases into different clusters, where each cluster stands for a distinct classification
boundary, and equally choose low confidence test cases from each cluster.
• DSA [Byun et al., 2019]: Byun et. al. propose to use the distance-based surprise score

(DSA) as a test input prioritization metric, which was initially proposed in [Kim et al., 2019].
The surprise score measures the distance between the test case to the training set. Samples
with higher surprise scores are prioritized.
• Uncertainty [Byun et al., 2019]: The uncertainty is calculated as the entropy on the

averaged output probabilities by running the model multiple times (e.g. t times) with a
specific dropout rate.
• Random: Test inputs are randomly drawn from all unlabeled samples.

A.2 Evaluation on More Model Structures

We evaluate our TestRank on two extra architectures: ShuffleNet and MobileNet. The results are
shown in Table 4. The model ID indicates the same meaning (e.g., model training with different
parts of the training set) as our main paper (see Section 4.1-Target DL model). As we can observe,
TestRank can generalize to other models and architectures.

A.3 Limitation

Run-time overhead. We compare TestRank with baseline methods in terms of the run-time overhead
in Table 5. However, despite the considerable performance improvement in test input prioritization,
TestRank introduces a longer run-time than most baselines. The main reason is due to the calculation
of the distances between input features for k-NN graph construction. This limitation hinders the
application of TestRank in large datasets, and we will solve it in our future work.

2https://www.nvidia.com/en-us/titan/titan-v/
3http://ufldl.stanford.edu/housenumbers/
4https://cs.stanford.edu/ acoates/stl10/
5https://www.cs.toronto.edu/ kriz/cifar.html

12

Dataset Architecture ID Accuracy Random MCP DSA Uncertainty DeepGini Ours

CIFAR-10

ShuffleNet
A 83.1 19.13 57.16 56.69 37.63 64.33 66.76
B 79.1 23.02 56.82 59.03 37.55 65.95 76.15
C 75.6 24.93 60.23 62.54 51.23 69.64 79.55

MobieNet
A 79.5 21.94 58.08 56.99 53.86 64.83 66.85
B 73.5 26.21 56.28 62.45 49.92 64.72 80.71
C 72.9 28.08 62.61 67.18 68.11 73.09 80.84

SVHN

ShuffleNet
A 96.88 6.11 53.58 52.32 5.12 59.18 59.77
B 96.56 6.97 54.76 55.95 5.84 59.74 64.32
C 95.68 8.55 61.90 58.34 7.01 68.62 78.03

MobieNet
A 96.55 7.08 53.94 55.87 12.98 62.55 61.91
B 95.46 8.93 55.43 52.57 14.32 62.44 68.63
C 94.14 11.41 58.65 71.50 15.24 69.19 81.60

STL10

ShuffleNet
A 71.8 25.9 56.86 57.42 64.23 64.94 67.42
B 69.8 27.15 59.50 54.68 62.87 64.5 68.71
C 63.4 32.63 59.19 58.02 66.13 66.3 84.40

MobieNet
A 62.8 32.28 58.40 58.65 66.69 67.6 72.22
B 60.8 35.71 61.48 67.62 67.75 66.52 72.73
C 60.6 38.7 64.16 66.58 70.59 70.01 86.46

Table 4: Additional comparison of TestRank with baseline methods on ATRC values (%).

Dataset Random MCP DSA Uncertainty DeepGini Ours
CIFAR10 7 15 779 103 9 747

STL10 5 9 627 108 6 142
SVHN 16 33 7931 1413 18 1020

Table 5: Run-time overhead comparison of TestRank with baseline methods (s).

Failure diversity. Besides the number of detected failures, failure diversity is another important
factor for model debugging. In this work, we have the implicit assumption that the historical labeled
data can cover the input distribution, and under such circumstances, TestRank can prioritize unlabeled
tests effectively. If, however, the historical test data is severely biased, before prioritizing tests with
TestRank, we should analyze the test pool and try to fill this gap first. Otherwise, the detected failures
are lack diversity. We shall consider this problem in our future research.

A.4 Broader Impacts

This work targets building an efficient and effective test input prioritization technique for deep
learning models, which can help ensure the security of deep learning models after deployment.
Various safety-critical tasks, such as autonomous vehicles, industrial robotics, and medical diagnosis,
can benefit from test input prioritization techniques. We consider the scenario in which the unlabeled
data is abundant, and a subset of unlabeled data is selected for labeling and testing. While building the
unlabeled data by collecting them from the Internet or other sources, it may have a chance to include
some unauthorized or private data. Also, the collected unlabeled data could be biased, resulting in the
testing being incomplete. To avoid such cases, we should always guarantee that the collected data
will not violate any privacy or rights and ensure that the collected data cover instances as many as
possible.

13

	Introduction
	Test Input Prioritization
	TestRank
	Motivation
	Overview
	Contextual Attributes Extraction
	Failure-revealing Capability Estimation

	Experiment
	Setup
	Comparison of TestRank with Baselines
	Impact of TestRank Configurations

	Conclusion
	Appendix
	Experiment details
	Datasets
	Baselines

	Evaluation on More Model Structures
	Limitation
	Broader Impacts

