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ABSTRACT

This work aims to discover nonlinear dynamical systems given a set of time series
data on solution trajectories. To tackle this problem, we propose Optimal Control
Neural Networks (OCN) to learn the unknown vector field. The OCN consists of
a neural network representation of the system, coupled with an optimal control
formulation. Specifically, we formulate the parameter learning problem as a data-
driven optimal control problem. This allows for the use of existing optimal control
tools. We derive generalization error bounds for both the solution and the vector
field, and the bounds are shown to depend on both the training error and the time
gaps between neighboring data. We also provide several numerical examples to
demonstrate the viability of OCN, as well as its generalization ability.

1 INTRODUCTION

A central challenge in many diverse areas of science and engineering is to discover physical laws.
This work is concerned with learning dynamical systems arising from real-world applications, but
where a complete mathematical description is unavailable. In such scenarios, we rely on extracting
insight from data. In particular, machine learning techniques have emerged to ascertain the proper-
ties of these systems, given an abundance of data.

Data-driven discovery of dynamical systems. There is a long and fruitful history of modeling
dynamics from data. Earlier efforts for system discovery include a large set of methods (See 1.1
below); one of them is the symbolic regression Bongard & Lipson (2007); Schmidt & Lipson (2009),
which finds nonlinear dynamic equations. This strategy balances the complexity of the model with
predictive power, however, it is often expensive and requires extra care in dealing with candidate
models. More recently, sparsity has been used to determine the governing dynamical system Proctor
et al. (2014); Brunton et al. (2016); Champion et al. (2019a;b), where the authors deploy certain
sparsity promoting strategies to obtain parsimonious models. The challenge with this strategy lies
in choosing a suitable sparsifying function basis. Instead of discovering exact systems, increasing
efforts have been made to seek accurate numerical approximations to dynamical systems; see e.g.
Raissi et al. (2018); Rudy et al. (2019); Qin et al. (2019); Lu et al. (2019) for works using the neural
network representation. Our work in this paper falls into this category.

Deep neural networks (DNN). DNNs have seen tremendous successes in many different disci-
plines, particularly in supervised learning. Their structure with numerous consecutive layers of
artificial neurons allows DNNs to express complex input-output relationships. Efforts have been de-
voted to the use of DNNs for various aspects of scientific computing, including solving and learning
systems involving ODEs and PDEs. Recently, the interpretation of residual networks by He et al.
He et al. (2016) as approximate ODE solvers in E (2017) spurred research on the use of ODEs in
deep learning Chen et al. (2018); Gholami et al. (2019); Quaglino et al. (2019). Neural ODEs Chen
et al. (2018) as neural network models generalize standard layer-to-layer propagation to continuous
depth models. Along this line of research, work Liu & Markowich (2020) uses the PDE model to
represent a continuum limit of neural networks in both depth and width.

Optimal control neural networks. Recently, there has been a growing interest in understanding
deep learning methods through the lens of dynamical systems and optimal control Li et al. (2018); Li
& Hao (2018); Zhang et al. (2019); Benning et al. (2019). An appealing feature of this approach is
that the compositional structure is explicitly taken into account in the time evolution of the dynam-
ical systems, from which novel algorithms and network structures can be designed using optimal
control techniques. In particular, mathematical concepts from optimal control theory are naturally
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translatable to dynamic neural networks, and provide interesting possibilities including computing
loss gradient by the adjoint method and natural incorporation of regularization and/or prior knowl-
edge into the loss function. The current work directly takes advantage of these concepts.

In this paper, we build upon recent efforts that discover dynamical systems using deep neural net-
works (DNN) Raissi et al. (2018); Qin et al. (2019) and the optimal control approach for learning
system parameters Liu & Tian (2021) for COVID-19. We seek to gain new insight into the dynamic
discovery problem with optimal control networks (OCN for short). In this framework, we use DNN
as a global representation to approximate the unknown vector field in the underlying dynamical
system, and define a loss function to fit the observational data, this way the resulting optimization
becomes an optimal control problem. The study on the learning problem can then be conducted by
optimal control techniques. Here we select gradient flows ẋ = −∇f(x) as an example, while the
methodology can be applied to more general dynamical systems ẋ = F (x, t).

In summary, our contributions are:

1. We propose and study a method for discovering unknown dynamical systems from ob-
served data, using neural network approximations and an optimal control formulation.

2. We establish generalization error bounds for both the solution and the vector field, which
show that the bounds depend only on the training error and the time interval between data
in the time series.

3. We demonstrate OCN’s performance on linear and nonlinear gradient flows by learning
their dynamical behavior around different types of nodes. We further illustrate OCN’s
performance on general dynamic systems, including the damped pendulum system and
Lorenz system.

1.1 RELATED WORKS

There are techniques that address various aspects of the dynamical system discovery problem, in-
cluding methods to discover governing equations from time-series data Crutchfield & McNamara
(1987), equation-free modeling Kevrekidis et al. (2003), empirical dynamic modeling Sugihara et al.
(2012); Ye et al. (2015), modeling emergent behavior Roberts (2014), nonlinear Laplacian spectral
analysis Giannakis & Majda (2012), artificial neural networks González-Garcı́a et al. (1998), Koop-
man analysis Williams et al. (2015); Brunton et al. (2017) and automated inference of dynamics
Daniels & Nemenman (2015); Schmidt et al. (2011).

Our work is aligned with those of Raissi et al. (2018); Qin et al. (2019) but with a different strategy.
Work in Qin et al. (2019) first discretizes the dynamical system based on a local integral form,
then uses a neural network as an approximation to the local flow map between two neighboring
data points. In contrast, we incorporate a global network representation into the optimal control
formulation. Such global approximation using neural network representation is also considered
in Raissi et al. (2018), while the parameter learning method therein is also built for a discretized
dynamical system in the form of multi-step time-stepping schemes. Importantly, we are able to
obtain generalization error bounds that allow users to judiciously reason about the accuracy and
convergence of such methods.

This work is complementary to efforts that incorporate ODE solver technology into training neural
networks. This includes numerical methods to accelerate learning neural ODEs like the checkpoint
methods Gholami et al. (2019), symplectic adjoint method Matsubara et al. (2021), interpolation
instead of adjoint method Daulbaev et al. (2020), and the proximal implicit solvers Baker et al.
(2022).

The rest of the paper is arranged as follows: problem setup and our methods are introduced in
Section 2 with detailed mathematical formulations. Section 3 presents a theoretical analysis of the
errors. Computational results are presented in Section 4. Finally, some concluding remarks and
discussions are given in Section 5. Implementation details and technical proofs are given in the
appendix.

2 METHODS

Here we provide an overview of our method. We first present the problem setup based on a set
of time series data in order to learn the unknown vector field. Afterward, we argue why we can
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use neural networks to realize the needed approximation. Then we explain the learning phase of
the neural network, which seeks to solve an optimal control problem. And finally, we explain the
training stage, where we are able to produce gradients in parameter space in order to update network
parameters.

2.1 PROBLEM SETUP

Many applications are modeled by gradient flows Ambrosio et al. (2005). We consider gradient flow
systems of form

ẋ(t) = −∇f(x(t)), x(0) = x0 (2.1)
on [0, T ], where x ∈ Rd is the state variable. In this paper, we assume the form of f : Rd → R is
unknown. We aim to create an accurate model for learning or recovering f using data sampled from
the solution trajectories, and generating solutions over the entire time interval.

Numerically, in order to produce trajectories of the dynamical system when f is known one can use
various integrators, such as forward Euler,

x(ti+1) = x(ti)−∆t∇f(x(ti)), (2.2)

where the time domain is divided into equal step-sizes so that 0 = t0 < ... < tn = T . Other
high-accuracy schemes with better convergence properties, e.g. 4th order Runge-Kutta can also be
used. Here we assume that data is collected as solution states on a uniform lattice of time points
{ti}ni=0.

2.2 NEURAL NETWORK APPROXIMATOR

Our approach is to first model f(x) using a deep neural network. Though f(x(t)) is an operator,
taking x(t) as the input, we can still apply network approximations since input functions are actually
represented discreetly.

A fully connected feedforward neural network G(·, θ) : RN1 → RNm can be seen as a composition
of a sequence of linear functions and nonlinear functions:

G(·, θ) = σm−1 ◦ hm−1 ◦ · · · ◦ σ1 ◦ h1.

Here hj : RNj → RNj+1 are linear functions: hj(x) = Wjx + bj , where Wj ∈ RNj×Nj+1 are
matrices, also called weights, bj ∈ RNj+1 are biases. σj : R→ R are nonlinear activation functions
applied component-wisely to the j-th layer. θ ∈ RN denotes the parameter set containing all the
parameters W1, b1, ...,Wm−1, bm−1 in the network, where N =

∑m−1
j=1 (Nj+1)Nj+1. In this work,

we take N1 = d,Nm = 1 so that

f(·) ∼ G(·, θ) : Rd → R.

The universal approximation capacity of full connected feedforward neural networks Hornik et al.
(1989); Barron (1993) ensure that this is a reasonable choice. Additionally, to ensure that ∇f is
Lipschitz continuous in x, we take σj(x) = tanh(x) so that∇yG(y, θ) is also Lipschitz continuous.

2.3 NEURAL GRADIENT FLOW AND LOSS FUNCTION

With no access to function values f(xi) for i ∈ [n] := {1, 2, ..., n}, the usual supervised learning of
a function is not directly applicable. The way we learn θ in the approximator G(·, θ) is to solve the
parameterized ODE system

ẏ(t) = −∇yG(y(t), θ), y(0) = x0, (2.3)

so that its solution at ti is close to xi for i ∈ [n]. To this end, we simply take the loss function

J(θ) =

n∑
i=1

∥y(ti)− xi∥2, (2.4)

where the dependence of J on θ is through y(t). Solution trajectory of (2.3) when an optimal
parameter θ is obtained should be close to the solution trajectory of

ẋ(t) = −∇f(x(t)), x(0) = x0. (2.5)

Note that the dataset {xi}ni=1 used to train the model is time-independent, hence θ can be a time-
independent parameter. This point is important for our choice of solvers of (2.3).
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2.4 OPTIMAL CONTROL FORMULATION

Now our problem is reduced to learning θ by minimizing the loss function (2.4) subjected to the
neural gradient flow (2.3). From the perspective of control, we only need to find an optimal param-
eter θ∗ for dynamic system (2.3) such that the loss function (2.4) is minimized. This motivates us to
formulate it as an optimal control problem:

min
θ∈A

J(θ) =

n∑
i=1

Li(y(ti)),

s.t. ẏ(t) = −∇yG(y(t), θ) t ∈ (0, T ], y(0) = x0,

(2.6)

where A ⊂ RN is the control set, t0 = 0, tn = T and

Li(y(ti)) := ∥y(ti)− xi∥2, 1 ≤ i ≤ n. (2.7)

Here Li is a local loss that measures the error between the solution to neural gradient flow (2.3) and
the observed data at ti. When n = 1, this reduces to the usual optimal control. We solve this optimal
control problem by iteration with gradient-based methods to update θ. For instance, given θk, the
vanilla gradient descent (GD) computes θk+1 by

θk+1 = θk − η∇J(θk), (2.8)

where η is a step size. One of the main tasks here is to compute the gradient ∇J(θ). This can
be obtained via backpropagation through ODE solvers, which gives a discrete approximation to the
dynamical system. Another approach to computing the gradient is to use the adjoint method, which
is summarized in Theorem 1.

2.5 COMPUTE THE GRADIENT

The following result allows computation of the gradient∇J(θ).
Theorem 1 If (y(t), θ), 0 ≤ t ≤ T is the state control trajectory starting from x(0), then there
exists a co-state trajectory p(t) satisfying

ẏ(t) = −∇yG(y(t), θ), y(0) = x0,

ṗ(t) =
(
∇2

yG(y(t), θ)
)⊤

p(t), ti−1 ≤ t < ti, i = n, ..., 1,

p(T ) = ∇yLn(y(T )), p(t
−
i ) = p(t+i ) +∇yLi(y(ti)), i = n− 1, ..., 1.

(2.9)

Moreover, the gradient of J can be evaluated by

∇J = −
∫ T

0

(
∇θ∇yG(y(t), θ)

)⊤
p(t)dt. (2.10)

This allows us to compute∇J at each iteration, say when θ = θk, in three steps:

Step 1. Solve the forward problem to obtain state yk(t) := y(t; θk),

Step 2. Solve the piece-wise backward problem to obtain co-state pk,

Step 3. Evaluate the gradient of J by (2.10), which gives the needed∇J(θk).
In our experiments, we use both approaches, backpropagation or the adjoint method, to compute the
gradient, depending on which method is easier to compute for a specific example. The computational
procedure for the adjoint method used in our experiments follows the framework introduced in Chen
et al. (2018). For the sake of completeness, we summarize the details in Appendix A.1.

In practice, some real-world systems are not in the form of gradient flows, our algorithm is readily
extended to encompass these situations, allowing for the discovery of general ODE systems

ẋ(t) = F (x(t)), (2.11)

where F : Rd → Rd is unknown. In such case, Theorem 1 needs to be modified by replacing
−∇yG(y(t), θ) by G(y(t), θ), where G(·, θ) : Rd → Rd is a neural network approximator of F .
We also conducted some numerical tests on this type of problem; see Section 4.3. Finally, we
should point out that a priori knowledge of properties of G (say, smoothness) can be incorporated
to improve the performance of OCN.
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2.6 DATA GENERATION

In this work, we assume the training data are collected from one or multiple trajectories of the
dynamical system with randomly chosen initial points. To simulate this process, we generate the
training data in our numerical experiments in the following way:

• We first generate m initial points from the uniform distribution over a domain, in which we
would like to learn the dynamical behavior of the solutions. Denote y(j) as the solution to
the neural gradient flow in (2.6) starting with the j-th initial point, the loss function in (2.6)
becomes

J(θ) =
1

m

m∑
j=1

n∑
i=1

Li(y
(j)(ti)).

• Starting with each initial point, we generate {xi}ni=1 over time interval [0, T ] with ∆t =
ti+1 − ti for i = 1, ..., n − 1 by solving the true dynamical system using a high accuracy
ODE solver. For simplicity of notation, we assume the time interval [0, T ], number of data
points n, and the distance between two neighboring data points ∆t are the same for all
trajectories.

3 ERROR ANALYSIS

In this section, we present theoretical results on the convergence behavior and the generalization
error for OCN.

Let f(x) be such that ∇f(x) is Lipschitz continuous, and x(t) be the unique solution to the ODE,
and yk(t) := y(t; θk) be the solution corresponding to the network parameter θk at the k−th iteration
of the optimization. These are functions evaluated at any point t ∈ [0, T ] = [t0, tn]. We want to
bound the generalization error

ek(t) = ∥x(t)− yk(t)∥.
We shall show that the generalization error is bounded by respectively the optimization error J(θK)
and time step O(∆t) with ∆t = max0≤i≤n−1 |ti+1 − ti|.
To quantify the errors and also control their propagation in time we make the following assumptions:

Assumption 1. f ∈ C1(Rd) and ∇f is Lipschitz continuous with constant Lf :

∥∇f(x)−∇f(z)∥ ≤ Lf∥x− z∥, ∀x, z ∈ Rd.

Assumption 1 is a sufficient condition for the existence and uniqueness of the solution to (2.5). This
is also used to control the truncation error in the discrete ODE (2.2).

Assumption 2. G ∈ C1(Rd × RN ) and there exist constant LGy such that for any θ ∈ A,

∥∇yG(y, θ)−∇yG(z, θ)∥ ≤ LGy
∥y − z∥, ∀y, z ∈ Rd.

Assumption 2 plays a similar role for the neural gradient flows as in Assumption 1 for the target ODE
system. Here Assumption 2 can be ensured by the choice of activation functions in the construction
of deep neural networks.

The main result is stated as follows.

Theorem 2 Let Assumption 1 and 2 hold respectively on the structure of f and network prediction
G. Suppose that θk ∈ A, where θk is generated by gradient descent method (2.8) with gradient be
computed using Theorem 1, and A is bounded. If ∆t = max0≤i≤n−1 |ti+1 − ti| ≤ 1

2LGy
, then

max
t∈[0,T ]

∥x(t)− yk(t)∥ ≤ C1(
√

J(θk) + (∆t)2). (3.1)

In addition,

max
i
∥∇f(xi)−∇yG(xi, θk)∥ ≤ C2

(√
J(θk)

∆t
+∆t

)
, (3.2)

where J(θk) is the training loss defined by (2.4), C1, C2 are constants depend on the data, control
set A, and structural parameters for f and G in Assumptions 1 and 2.

5



Under review as a conference paper at ICLR 2023

Due to space constraints, a detailed proof is relegated to Appendix A.3.

In an asymptotic manner, we have limk→∞ J(θk) = J(θ∗), which is zero or rather small, then the
generalization error in (3.1) will ultimately be dominated by (∆t)2, which is determined by how
dense the data is collected over time. We note that the bound in (3.2) is not optimal.

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the proposed method on several canonical systems. For all experi-
ments, we use feed-forward neural networks with tanh activation function. The detailed structure of
the neural network applied for each problem is provided. All the weights are initialized randomly
from Gaussian distributions, and all the biases are initialized to zero. During training, each trajec-
tory is divided into several mini-batches, and all batches of data are trained simultaneously. After the
neural network is well trained, we generate {y(ti)}ni=1 from the learned dynamics ẏ = −∇yG(y, ·)
(or ẏ = G(y, ·)) and compare it against the training data {xi}ni=1. We further investigate the perfor-
mance of the trained neural network by applying it to the observed data {xi}ni=0. Specifically, we
compute G(xi, ·) and compare it against f(xi).

For experiments on the gradient flow problem, we also test the performance of the trained neural
network by applying it to test data, which are some initial points generated randomly over the same
domain and do not appear in the training data. Just like the comparison of the training result, we
also compare the trajectories given by neural gradient flow and that given by the true dynamics.

For each experiment, we provide the true dynamical system, which is used to generate the training
data and verify the performance of the trained neural network, but in no way facilitates the neural
network approximation of form G(y, θ).

4.1 LINEAR GRADIENT FLOW

For this example, the training data is collected on solution trajectories to
ẋ1 = −2x1 − x2,

ẋ2 = −x1 − 2x2,

This is of form ẋ = −∇f(x) where

f(x1, x2) = x2
1 + x1x2 + x2

2. (4.1)
This system has critical point (0, 0) as a stable node. All solution trajectories tend to (0, 0) as
t → ∞. We want to extract f from the training data, which is sampled from 8 trajectories on
domain [−2, 2] × [−2, 2] with time interval [0, 5] and time step ∆t = 0.05. The neural network G
used to approximate f in (4.1) has 2 hidden layer of 50 neurons.

(a) Training result (b) Test result (c) Function

Figure 1: Results of the linear gradient flow. For (a) and (b), the star represents the minimizer of f in
4.1. For (c), two curves for G(x) correspond to two independent runs of our method with different
initial parameters θ0 for G(x, θ).

The training and test results are presented in Figure 1 (a) and (b), respectively. We observe that
all trajectories generated by the trained neural gradient flow (2.3) fit the data generated by the true
dynamical system accurately.
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Figure 1 (c) is a comparison between the true governing function f(x) and the trained neural network
G(x, ·), where x represents the training data set {xi}. There is a distance between them because the
original problem (2.1) is uniquely determined by f + c for any constant c. For G(x, ·) that satisfies
(2.1), G(x, ·) + c also satisfies (2.1) for any constant c.

4.2 NONLINEAR GRADIENT FLOW

For this example, the training data is collected on solution trajectories to

ẋ1 = − cos(x1) cos(x2),

ẋ2 = sin(x1) sin(x2),
(4.2)

This is of form ẋ = −∇f(x) where

f(x1, x2) = sin(x1) cos(x2). (4.3)

This system has three types of nodes – stable nodes, unstable nodes, and saddle points – spread over
the domain in a staggered pattern. The training data consists of 24 trajectories sampled from domain
[−6, 6]× [−4, 6] with time interval [0, 8] and ∆t = 0.05. The neural network G used to approximate
f in (4.3) has 2 hidden layers of 200 neurons.

(a) Training result (b) Test result (c) Function

Figure 2: Results of the nonlinear gradient flow. The stars represent unstable nodes, the squares
represent stable nodes.

The training results are presented in Figure 2 (a). We observe that for trajectories around different
types of nodes, either diverging from sources or converging to sinks, the trained neural gradient flow
(2.3) fits the training data accurately.

The performance of the trained neural network on test data is shown in Figure 2 (b). The test data is
composed of 8 initial points, among which 4 initial points (in the center of the figure) correspond to
trajectories that have a similar pattern to that of the training data; another 4 initial points correspond
to trajectories whose dynamic behavior is different from that of the training data. For both types of
initial points, the trained neural gradient flow recovers their corresponding trajectories accurately.

4.3 DAMPED PENDULUM

To show that our method can be applied to general ODE systems, we consider the pendulum prob-
lem, which has the form of ẋ(t) = f(x(t)). Specifically,

ẋ1 = x2,

ẋ2 = −0.2x2 − 8.91 sin(x1).

Here x1 is the angular displacement, and x2 is angular velocity. This is a damped system that obeys
a dissipation law:

d

dt

(
x2
2

2
+ 8.91(1− cos(x1))

)
= −0.2x2

2 ≤ 0.

The critical point (0, 0) is a stable spiral. The training data is collected from 1 trajectory starting
from [−1,−1] within time interval [0, 5] and time step ∆t = 0.05. The neural network G used to
approximate f has 1 hidden layer of 100 neurons.

7



Under review as a conference paper at ICLR 2023

After finishing training, we generate a trajectory over [0, 20] to examine the relatively long-term
predictive behavior of the neural gradient flow. The results are presented in Figure 3. We observe
accurate fitting between the true trajectory and the trajectory generated by the neural gradient flow,
even on a time horizon that is much larger than what was used during training.

(a) Trajectory (b) Phase portrait (c) Function

Figure 3: Results of the nonlinear ODE system.

4.4 LORENZ SYSTEM

We also demonstrate our method on the 3D Lorenz system:

ẋ = σ(y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz.

(4.4)

The dynamics is very rich for different parameters. The well-known Lorenz attractor shows up for
(σ, ρ, β) = (10, 28, 8/3). The training data is collected from 1 trajectory starting from [0, 1, 1.05],
and the time interval is [0, 15] with ∆t = 0.01. The neural network G used to approximate f has
4 hidden layers of 500 neurons. The training results presented in Figure 4 demonstrate that our
method does well in capturing the chaotic dynamics.

(a) Trajectory - y (b) True dynamics (c) Learned dynamics

Figure 4

5 DISCUSSION

In summary, we have demonstrated a powerful approach to discovering gradient flows from data
without assumptions on the form of the governing equations. This builds on prior work in data-
driven discovery of ODEs using machine learning techniques, but with innovations related to a
global network representation of the vector field and an optimal control formulation, which allow
our algorithm to scale to more complex problems.

8



Under review as a conference paper at ICLR 2023

We demonstrate this method on a number of example systems, ranging from linear gradient flow,
nonlinear gradient flow, and the damped pendulum, to the Lorenz system exhibiting chaos. As
shown in these examples, our method has the ability to predict a particular trajectory, and capture
complex dynamics. There are many dynamical systems to which this method may be applied, where
there are ample data with the absence of governing equations. We believe our method is an important
step toward the long-held goal of intelligent, unassisted discovery of dynamical systems.

The general form of the loss function allows for incorporating further knowledge or regularization,
so to make the methods more accurate and robust. We have derived generalization error bounds for
both the solution and the vector field. Specifically, we prove that the generalization error depends on
both the optimization error and the sparsity level of the time series data. We achieve this by carefully
studying the error equation and obtaining a priori bounds.

We see several avenues for work, both theoretical and computational. For example, is it possible to
improve the error bounds for ∥∇f − ∇G∥? WHat if we assume more structure on the dynamics?
How can we improve the computational efficiency of solving the coupled control system? Can we
deploy this to learn the dynamics of truly large-scale problems?

We now briefly discuss possible extensions of our method. For systems with time dependence, such
as ẋ = F (x, t), for which we consider the augmented system

ẋ = F (x, u), u̇ = 1.

For systems with physical parameters, ẋ = F (x, µ), then µ can be appended to the dynamics in the
following way

ẋ = F (x, u), u̇ = 0.

It is then possible to use neural networks to represent F (x, u) or F (x, µ).

Finally, we illustrate how gradeint flows in the form of PDEs can be reduced by the method of lines
as a finite dimensional gradient flow so that our method can be applied. We take the Allen-Cahn
equation

∂tϕ(x, t) = ϵ2∆ϕ(x, t)− F ′(ϕ(x, t)),

with energy

E(ϕ) :=

∫
Ω

(F (ϕ) +
ϵ2

2
|∇ϕ|2)dx.

an an example. We restrict to the one-dimensional periodic torus. Applying the finite difference
method to the Allen-Cahn equation over the grid points {xi} with uniform mesh xi+1− xi = h, we
have

d

dt
ϕi =

ϕi+1 − 2ϕi + ϕi−1

h2
− F ′(ϕi), ϕN+1 = ϕ1, ϕ0 = ϕN .

Here the corresponding discrete energy is

Eh(ϕ) =

N∑
i=1

F (ϕi) +
ϵ2

2h2
(ϕi+1 − ϕi)

2.

One can verify that
d

dt
Φ = −∇ΦEh(Φ),

where Φ represents [ϕ1, ..., ϕN ]. This is a gradient flow in RN .
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Raul González-Garcı́a, Ramiro Rico-Martı̀nez, and Ioannis G Kevrekidis. Identification of dis-
tributed parameter systems: A neural net based approach. Computers & chemical engineering,
22:S965–S968, 1998.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989.

Ioannis G Kevrekidis, C William Gear, James M Hyman, Panagiotis G Kevrekidis, Olof Runborg,
Constantinos Theodoropoulos, et al. Equation-free, coarse-grained multiscale computation: en-
abling microscopic simulators to perform system-level analysis. Commun. Math. Sci, 1(4):715–
762, 2003.

10



Under review as a conference paper at ICLR 2023

Qianxiao Li and Shuji Hao. An optimal control approach to deep learning and applications to
discrete-weight neural networks. In International Conference on Machine Learning, pp. 2985–
2994. PMLR, 2018.

Qianxiao Li, Long Chen, Cheng Tai, and E Weinan. Maximum principle based algorithms for deep
learning. Journal of Machine Learning Research, 18(165):1–29, 2018.

Hailiang Liu and Peter Markowich. Selection dynamics for deep neural networks. Journal of Dif-
ferential Equations, 269(12):11540–11574, 2020.

Hailiang Liu and Xuping Tian. Data-driven optimal control of a SEIR model for COVID-19. Com-
munications on Pure and Applied Analysis, 2021.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepOnet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193, 2019.

Takashi Matsubara, Yuto Miyatake, and Takaharu Yaguchi. Symplectic adjoint method for exact gra-
dient of neural ode with minimal memory. Advances in Neural Information Processing Systems,
34:20772–20784, 2021.

Joshua L Proctor, Steven L Brunton, Bingni W Brunton, and JN Kutz. Exploiting sparsity and
equation-free architectures in complex systems. The European Physical Journal Special Topics,
223(13):2665–2684, 2014.

Tong Qin, Kailiang Wu, and Dongbin Xiu. Data driven governing equations approximation using
deep neural networks. Journal of Computational Physics, 395:620–635, 2019.

Alessio Quaglino, Marco Gallieri, Jonathan Masci, and Jan Koutnı́k. SNODE: Spectral discretiza-
tion of neural odes for system identification. arXiv preprint arXiv:1906.07038, 2019.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep neural networks for data-
driven discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236, 2018.

Anthony John Roberts. Model emergent dynamics in complex systems, volume 20. SIAM, 2014.

Samuel Rudy, Alessandro Alla, Steven L Brunton, and J Nathan Kutz. Data-driven identification
of parametric partial differential equations. SIAM Journal on Applied Dynamical Systems, 18(2):
643–660, 2019.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Michael D Schmidt, Ravishankar R Vallabhajosyula, Jerry W Jenkins, Jonathan E Hood, Abhishek S
Soni, John P Wikswo, and Hod Lipson. Automated refinement and inference of analytical models
for metabolic networks. Physical biology, 8(5):055011, 2011.

George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, and Stephan
Munch. Detecting causality in complex ecosystems. science, 338(6106):496–500, 2012.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation
of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science,
25(6):1307–1346, 2015.

Hao Ye, Richard J Beamish, Sarah M Glaser, Sue CH Grant, Chih-hao Hsieh, Laura J Richards,
Jon T Schnute, and George Sugihara. Equation-free mechanistic ecosystem forecasting using
empirical dynamic modeling. Proceedings of the National Academy of Sciences, 112(13):E1569–
E1576, 2015.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Accelerating adversarial training via maximal principle. Advances in Neural Information
Processing Systems, 32, 2019.

11



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 NUMERICAL COMPUTATION OF THE OPTIMAL CONTROL SYSTEM

From (2.10), we see that computing ∇J requires the value of y(t) and p(t) along t ∈ [0, T ]. The
value of y(t) can be obtained by solving the forward problem (A.1), which can be done by calling an
ODE solver. The tricky part is to solve the backward problem in (2.9) for p(t), since it requires the
value of y(t) along the trajectory of p(t). This difficulty is resolved by recomputing y(t) backward in
time with p(t) using y(T ) computed in Step 1 as the initial data. For Step 3, we note that∇J = ξ(0)
with ξ defined by

ξ(t) = −
∫ T

t

(
∇θ∇yG(y(s, θ)

)⊤
p(s)ds.

Hence∇J can be obtained by solving the following equation

ξ̇(t) =
(
∇θ∇yG(y(t, θ)

)⊤
p(t)

backward in time with initial condition ξ(T ) = 0. Numerically, we concatenate y, p, ξ into a single
vector U , such that all the backward computation can be conducted at the same time by solving the
following augmented system:

U̇(t) = F (U(t), θ),

where

U =

[
y
p
ξ

]
, F (U(t), θ) =

 −∇yG(y(t), θ)(
∇2

yG(y(t), θ)
)⊤

p(t)(
∇θ∇yG(y(t), θ)

)⊤
p(t)

 .

Algorithm 1
Require: {xi}ni=0: data, G(·, θ): parameterized neural network, θ0: initial guess, η: step size for

the optimizer, K: total number of iterations.
1: for k = 0 to K − 1 do
2: Solve the forward problem:

y(T ) = ODEsolver
(
ẏ(t) = −∇yG(y(t), θk),
y(0) = x0

)
3: Solve the augmented backward system:

[y(0), p(0),∇J(θk)] = ODEsolver

U̇(t) = F (U(t), θk),
U(T ) = [y(T ),∇yLn(y(T )),0],
∇yLi(y(ti)), i = 1, ..., n− 1


4: Update the parameter: θk+1 ← Optimizer(θk,∇J(θk), η)
5: return θK

Remark 3 The augmented backward system is solved piece-wisely as the initial condition for the
co-state p needs to be adjusted between each intervals as indicated in (2.9).

Algorithm 1 is a general framework for solving the optimal control problem (2.9). To extend it or
make it more concrete, one may apply different ODE solvers such as the Runge-Kutta method to
solve the forward and backward problems depending on the desired level of accuracy.

A.2 PROOF OF THEOREM 1
The computation of the gradient of J can be realized in the following recipe when y = y(t; θ) has
been found to solve the following forward problem:

ẏ(t) = −∇yG(y(t), θ), y(0) = x0. (A.1)

(i) Build an augmented functional (associated Lagrangian) L, a functional of independent variables
ỹ, p, θ defined by

L(ỹ, p, θ) =
n∑

i=1

Li(ỹ(ti))−
∫ T

0

( ˙̃y(t) +∇ỹG(ỹ(t), θ))⊤p(t)dt,

12



Under review as a conference paper at ICLR 2023

where p is the Lagrange multiplier, and can be chosen freely. Taking ỹ = y, we have

L(y, p, θ) =
n∑

i=1

Li(y(ti)) = J(θ). (A.2)

In order to evaluate ∇θJ , we proceed to calculate the first variation of L(ỹ, p, θ) at (y, θ), defined
by

δL(y, p, θ) := lim
τ→0

L(y + τδy, p, θ + τδθ)− L(y, p, θ)
τ

,

from which we will see why p should be chosen as in (2.9).

(ii) Defining the adjoint-state equations for p. By formal calculations, we obtain

δL(y, p, θ)

= δ

n∑
i=1

(
Li(y(ti))−

∫ ti

ti−1

(
ẏ(t) +∇yG(y(t), θ)

)⊤
p(t)dt

)

=
n∑

i=1

(
δy(ti)

⊤∇yLi(y(ti))−
∫ ti

ti−1

(
δẏ(t) + δ∇yG(y(t), θ)

)⊤
p(t)dt

)

=

n∑
i=1

(
δy(ti)

⊤∇yLi(y(ti))− δy(ti)
⊤p(t−i ) + δy(ti−1)

⊤p(t+i−1)

+

∫ ti

ti−1

(δy)⊤ṗ(t)−
(
∇2

yG(y(t), θ)δy +∇θ∇yG(y(t), θ)δθ
)⊤

p(t)dt

)

= δy(T )⊤
(
∇yLn(y(T ))− p(T )

)
+ δy(0)⊤p(0) +

n−1∑
i=1

δy(ti)
⊤
(
∇yLi(y(ti))− p(t−i ) + p(t+i )

)
+

n∑
i=1

(∫ ti

ti−1

(δy)⊤
(
ṗ(t)−

(
∇2

yG(y(t), θ)
)⊤

p(t)
)
− (δθ)⊤

((
∇θ∇yG(y(t), θ)

)⊤
p(t)

)
dt

)
,

where we have used integration by parts, and regrouping of terms. Since y(0) = x0 is fixed,
δy(0) = 0; if p is taken to satisfy (2.9), then

δL(y, p, θ) = −(δθ)⊤
∫ T

0

(
∇θ∇yG(y(t), θ)

)⊤
p(t)dt.

(iii) Computation of the gradient of J . Recall (A.2), the first variation of J(θ) is actually ∇J · δθ,
we thus conclude

∇J = −
∫ T

0

(
∇θ∇yG(y(t), θ)

)⊤
p(t)dt,

as asserted in (2.10).

A.3 PROOF OF THEOREM 2
It suffices to prove that the stated result holds for any t ∈ [0, T ]. Without loss of generality, we
assume t ∈ Ii := (ti, ti+1] for some i ∈ {0, 1, ..., n− 1}. Using the notation

ek(t) := ∥yk(t)− x(t)∥,

and (2.3), (2.5), we get

d

dt
e2k = 2(yk − x) · d

dt
(yk − x) ≤ 2ek∥∇f(x)−∇yG(yk, θk)∥,

which is estimated by the Cauchy-Schwarz inequality. This further implies

ėk ≤ ∥∇f(x)−∇yG(yk, θk)∥
≤ ∥∇f(x)−∇f(yk)∥+ ∥∇f(yk)−∇yG(yk, θk)∥
≤ Lfek +R(yk).

(A.3)
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Here we used the assumption that∇f is Lf Lipschitz continuous and the notation

R(yk(t)) := ∥∇f(yk(t))−∇yG(yk(t), θk)∥.

Rewriting (A.3) against an integrating factor e−Lf t we obtain

d

dt
(e−Lf tek(t)) ≤ e−Lf tR(yk(t)).

Integration of this over (ti, t) gives

ek(t) ≤ eLf (t−ti)ek(ti) +

∫ t

ti

eLf (t−s)R(yk(s))ds

≤ eLf∆t
(
ek(ti) + ∆tmax

t∈Ii
R(yk(t))

)
,

(A.4)

where |ti+1 − ti| ≤ maxi |ti+1 − ti| =: ∆t is used.

We now proceed to bound the right hand side (RHS) of (A.4). First notice that

ek(ti) =
√
∥yk(ti)− xi∥2 ≤

√
J(θk). (A.5)

For R(yk(t)), we use triangle inequality to obtain

R(yk(t)) ≤ ∥∇f(yk(t))−∇f(yk(ti))∥
+ ∥∇yG(yk(ti), θk)−∇yG(yk(t), θk)∥
+ ∥∇f(yk(ti))−∇yG(yk(ti), θk)∥,

which implies
max
t∈Ii

R(yk(t)) ≤ D1 +D2 +D3, (A.6)

where

D1 = max
t∈Ii
∥∇f(yk(t))−∇f(yk(ti))∥,

D2 = max
t∈Ii
∥∇yG(yk(ti), θk)−∇yG(yk(t), θk)∥,

D3 = ∥∇f(yk(ti))−∇yG(yk(ti), θk)∥.

We further derive bounds on D1, D2, D3. The derivation of bounds on D1 and D2 are similar. The
idea is to use Lf Lipschitz continuity of∇f and LGy , respectively with respect to y to get

D1 ≤ Lf max
t∈Ii
∥yk(t)− yk(ti)∥,

D2 ≤ LGy
max
t∈Ii
∥yk(t)− yk(ti)∥,

then show the following bound

max
t∈Ii
∥yk(t)− yk(ti)∥ ≤

∆t

1−∆tLGy

(
∥∇yG(xi, θk)∥+ LGy

√
J(θk)

)
. (A.7)

Hence for ∆t ≤ 1
2LGy

, we have
D1 +D2 ≤ C0∆t. (A.8)

where
C0 = 2

(
∥∇yG(xi, θk)∥+ LGy

√
J(θk)

)
(Lf + LGy ).

For the derivation of (A.7), we start with

max
t∈Ii
∥yk(t)− yk(ti)∥ = max

t∈Ii
∥
∫ t

ti

∇yG(yk(s), θk)ds∥ ≤ ∆tmax
t∈Ii
∥∇yG(yk(t), θk)∥. (A.9)

Using the LGy Lipschitz continuity of∇yG with respect to y, we have

∥∇yG(yk(t), θk)−∇yG(xi, θk)∥ ≤ LGy
∥yk(t)− xi∥

≤ LGy
(∥yk(t)− yk(ti)∥+ ∥yk(ti)− xi∥),
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which together with (A.5) lead to

max
t∈Ii
∥∇yG(yk(t), θk)∥ ≤ ∥∇yG(xi, θk)∥+ LGy

√
J(θk) + LGy

max
t∈Ii
∥yk(t)− yk(ti)∥. (A.10)

Connecting (A.9) and (A.10), we obtain (A.7).

For the bound on D3, we use triangle inequality to get

D3 ≤ ∥∇f(yk(ti))−∇f(xi)∥+ ∥∇f(xi) +
xi+1 − xi

∆t
∥

+ ∥ − yk(ti+1)− yk(ti)

∆t
−∇yG(yk(ti), θk)∥+ ∥

yk(ti+1)− yk(ti)

∆t
− xi+1 − xi

∆t
∥.
(A.11)

The first term on the RHS of (A.11) can be bounded by

∥∇f(yk(ti))−∇f(xi)∥ ≤ Lfek(ti) ≤ Lf

√
J(θk), (A.12)

using the Lf Lipschitz continuous of∇f and (A.5).

For the second and third term on the RHS of (A.11), note that Assumption 1 and 2 also imply

x(ti+1) ≤ x(ti)−∆t∇f(x(ti)) +
Lf

2
(∆t)2,

y(ti+1) ≤ y(ti)−∆t∇yG(yk(ti), θk) +
LGy

2
(∆t)2.

Since x(ti) = xi, we have

∥∇f(xi) +
xi+1 − xi

∆t
∥ ≤ Lf

2
∆t,

∥ − yk(ti+1)− yk(ti)

∆t
−∇yG(yk(ti), θk)∥ ≤

LGy

2
∆t.

(A.13)

For the last term on the RHS of (A.11), we use triangle inequality and (A.5) to get

∥yk(ti+1)− yk(ti)

∆t
− xi+1 − xi

∆t
∥

≤ 1

∆t

(
∥yk(ti+1)− xi+1∥+ ∥yk(ti)− xi∥

)
≤

2
√

J(θk)

∆t
.

(A.14)

Substituting (A.12), (A.13), (A.14) into (A.11), we obtain the following bound on D3

D3 ≤ Lf

√
J(θk) +

Lf + LGy

2
∆t+

2
√

J(θk)

∆t
. (A.15)

With bounds on D1, D2 in (A.8) and D3 in (A.15), (A.6) becomes

max
t∈Ii

R(yk(t)) ≤ C0∆t+ (Lf +
2

∆t
)
√
J(θk).

This together with (A.5), (A.4) and ∆t ≤ 1
2LGy

leads to

ek(t) ≤ eLf∆t
(√

J(θk) + C0(∆t)2 + (Lf∆t+ 2)
√
J(θk)

)
,

≤ C1

(√
J(θk) + (∆t)2

)
,

where

C1 = e
Lf

2LGy max

{
C0, 3 +

Lf

2LGy

}
,

which further implies (3.1).
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The method used to derive (3.2) is similar as that used for D3. For any i ∈ {1, ..., n},

∥∇f(xi)−∇yG(xi, θk)∥

≤ ∥∇f(xi) +
xi+1 − xi

∆t
∥+ ∥ − yk(ti+1)− yk(ti)

∆t
−∇yG(yk(ti), θk)∥

∥∇G(yk(ti))−∇G(xi, θk)∥+ ∥
yk(ti+1)− yk(ti)

∆t
− xi+1 − xi

∆t
∥.

(A.16)

Using (A.13), (A.14) and

∥∇G(yk(ti))−∇G(xi, θk)∥ ≤ LGy
ek(ti) ≤ LGy

√
(θk),

we obtain

∥∇f(xi)−∇yG(xi, θk)∥ ≤ LGy

√
J(θk) +

Lf + LGy

2
∆t+

2
√
J(θk)

∆t
,

≤ 5

2

√
J(θk)

∆t
+

Lf + LGy

2
∆t,

≤ C2

(√
J(θk)

∆t
+∆t

)
where

C2 = max

{
5

2
,
Lf + LGy

2

}
.

This further implies (3.2).

16


	Introduction
	Related Works

	Methods
	Problem Setup
	Neural Network Approximator
	Neural gradient flow and Loss function
	Optimal control formulation
	Compute the gradient
	Data generation

	Error Analysis
	Experimental results
	Linear gradient flow
	Nonlinear gradient flow
	Damped pendulum
	Lorenz system

	Discussion
	Appendix
	Numerical computation of the optimal control system
	Proof of Theorem 1
	Proof of Theorem 2


