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Abstract

Constructing knowledge graphs from open-
domain corpora is a crucial stage in question
answering. Most previous works are based on
open information extraction methods, which ex-
tract relations by parsing sentences into triples
<ei, I, eo>. These methods lack inference abil-
ity and are limited by corpus. When the query
is different from the relations in the text-based
knowledge graph, it is hard to return correct
answers. In this paper, we propose a method
to enhance knowledge graphs by using typed
entailment graphs to add missing links. We
construct the enhanced knowledge graph in
both dynamical and offline ways. The experi-
ment shows that our method outperforms the
pre-trained language models in zero-shot cloze-
style question answering. Furthermore, we find
entailment graphs can significantly improve the
recall and F-score of knowledge graphs.

1 Introduction

Recently, Knowledge graphs are widely used
in question answering and information querying.
Building knowledge graphs from unstructured text
is a crucial task in Natural Language Processing,
which aims at extracting (subject, relation, object)
triples such as (Google, buy, YouTube) to construct
knowledge graphs.

Supervised methods mainly concentrate on clas-
sifying relational facts into pre-defined relation
types (Mintz et al., 2009; Su et al., 2018). However,
these methods require collecting and annotating
labeled data, which is time-consuming and human-
intensive for practical applications. Open-domain
knowledge graphs can be constructed from corpora
by applying unsupervised open information extrac-
tion methods. Open information extraction meth-
ods are mainly based on semantic parsing, which is
fast to deal with large corpora but lacks inference
ability. If the corresponding triple was not found in
the text by parsers, the relation edges will be miss-
ing in the knowledge graph. Petroni et al. (2019)

prove that language models such as ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2019) may
also be storing relational knowledge present in the
training corpus too. These models could work as
knowledge graphs to answer queries structured as
“fill-in-the-blank” cloze statements.

In this paper, we propose a method for enhanc-
ing open-domain knowledge graphs by using en-
tailment graphs as a plug-in. Typed entailment
graphs (Berant et al., 2010) are used to store the
entailment between predicates, which could be an
excellent fit for alleviating the above problem. We
construct knowledge graphs from large corpora in
low time-consuming by semantic analysis. We pro-
pose two ways to enhance the knowledge graph:
enhancing the knowledge graph offline and using
the entailment graph dynamically. The experiments
show entailment graphs can improve F-score sig-
nificantly in question answering tasks. Compared
with the state-of-art language models, the enhanced
knowledge graph also achieves higher F-score in
context-free situation. In addition, we analyze the
effects of entailment graphs based on different cor-
pora and score functions.

2 Related Work

Knowledge is expressed as a collection of “facts”,
represented in the form (subject, relation, object)
triples, where subject and object are entities and
relations between those entities. Open-domain
knowledge graphs aim at extracting these facts
from large open-domain corpora.

In Petroni et al. (2019) work, language models
could extract relational knowledge present in texts
and perform well in cloze-style question answering.
Language models encode the sentence between
entities. They are optimized to either predict the
next words in a sequence or some masked words
anywhere in a given sequence. Ali et al. (2021)
proposed a method for facts extraction based on
BERT, using the BERT sentence-encoding algo-



rithm on a corpus already annotated for named
entities(NE). Petroni et al. (2020) find the context
information could improve BERT’s zero-shot cloze-
style question-answering performance.

Another approach is using open-domain infor-
mation extraction (Etzioni et al., 2011), which is
based on semantic parsing. Harrington and Clark
(2007) propose an efficient pipeline to extract facts
by using a localized update algorithm. Each sen-
tence will be transferred into a syntax structure and
added in knowledge graphs incrementally. How-
ever, these knowledge graphs lack inference ability
and the quality is limited by training corpus. Et-
zioni et al. (2011) use link prediction to add relation
edges that are missing from the graph because the
corresponding triple was not found in the text. For
example, by semantic analysis, we extract a fact
(Google, buy, YouTube) from the sentence “Ten
years ago this week, Google bought YouTube for
1.65 billion dollars.”. However, when we query
“Which company owns YouTube now?”, the knowl-
edge graph can’t get the correct answer, because
there is no sentence like “Google owns YouTube”
in our training corpus. It will limit the practical
value of the knowledge graph.

In this paper, we propose to use contextual en-
tailment to solve the problem. We construct typed
entailment graphs to enhance the knowledge graph
in both dynamical and offline ways. After being
combined with the entailment graphs, the experi-
ments show that our methods significantly improve
the F-score in cloze-style question-answering tasks.
Compared with the pre-trained language models,
our enhanced knowledge graph performs better
than the context-free BERT.

3 Method

In this section, we present our method for building
knowledge graphs and entailment graphs on text.
The method contains two parts: building a knowl-
edge graph in 3.1 and 3.2 is building entailment
graphs to enhance our knowledge graph. There are
two methods for constructing knowledge graphs
and enhancing knowledge graphs: offline method
and dynamic method.

3.1 Knowledge Graph
3.1.1 Build knowledge graph offline:

We extract facts from sentences by semantic pars-
ing. In order to improve semantic parsing preci-
sion, we use the Lee et al., 2018 proposed coref-

erence resolution tools to filter sentences. After
pre-processing the text, we use the Graph Parser
(Reddy et al., 2014) to extract binary relations from
documents. Graph parser converts sentences to se-
mantic graphs using combinatory categorial gram-
mar (CCG) (Clark and Curran, 2007) and subse-
quently grounds them to Freebase. We only extract
the triples contain binary relations, the triples are
represented in the form < e;, 1, ¢; >, e;, e; means
entity 7,j and r means the relation name. With
extracted facts, we build a directed graph as the
knowledge graph. Our offline knowledge graph is
trained on whole Wikipedia corpus. To construct
the knowledge graph on large corpora in low time-
consuming, we use Aidalight (Hoffart et al., 2011)
tools to link the extracted mentions to named en-
tities in Wikipedia, which have little ambiguity.
Figure 1 shows an example of changes from raw
sentences to knowledge. The knowledge graph

sentence. Diego, a miniature painter. He was born at Toledo in 1498,

extracted facts: <Diego, (bear.l, bearin.2), Toledo>
<Diego, (is.1, is.2), painter>

knowledge in KG: <Diego de Arroyo, (bear.1, bear.in.2), Toledo>
<Diego de Arroyo, (is.1, is.2), painter>

Figure 1: Example of changes from raw sentence to
knowledge.

is constituted by a set of facts. The nodes in the
knowledge graph are labeled with entity names
from the original document. The edges are labeled
with extracted relation names. Due to the tokens
having been transferred into entity names in the
Wikipedia namespace. It means querying the entity
and relations in the knowledge graph just needs to
search the keys in Hash maps of entities. Not like
ASKNet (Harrington and Clark, 2007) calculating
nouns similarity matrix, our method is more effi-
cient and accurate. When adding a new fact (e;, 7,
ej), we only query the knowledge graph and see if
the knowledge graph already has the facts (e;, 7, e;).
If the entities or relations are already in the knowl-
edge graph, we just need to update the frequency
of the relation.

3.1.2 Build knowledge graph dynamically:

We also create a pipeline to build the knowledge
graph dynamically. We trained a documents re-
triever based on the DrQA (Chen et al., 2017).
Each query, like (Google, buy, [MASK]), can be



transferred into a natural sentence to retrieve re-
lated documents. We build the knowledge graph
on the retrieved documents dynamically. Not like
the large pre-trained offline knowledge graph, it
doesn’t need large memories and runs faster for a

query.

3.2 Build Typed Entailment Graph
3.2.1 Typed entailment graph:

Textual entailment between predicates is common
in natural language. The typed entailment graphs
aim at learning entailment rules between typed
predicates. For example, the sentence “Google
bought YouTube for 1.65 billion dollars.” entails
“Google owns YouTube”. With arguments of entity-
pair types (Company, Company), the predicate
“buy” entails “own”.

Entailment needs to calculate a directed simi-
larity score function between the typed predicates
based on the distributional inclusion hypothesis,
which states that a predicate p entails another pred-
icate ¢ if in any context that p can be used, g can be
used in the same place (Geffet and Dagan, 2005).
Fig 2b shows an example of a simple typed entail-
ment graph. An entailment graph defines a score

(a) Knowledge Graph

located in

(b) Entailment Graph

types: ( Company, Company )

Figure 2: (a) shows an example of knowledge graphs,
which relation “own” is missing. The missing edge
could be added by using the entailment “buy” entails
“own”. (b) shows an examples of typed entailment graphs
for arguments of types (company, company).

function between the typed predicates. The similar-
ity score function is used to describe how likely a
predicate entails other predicates. The local score
function is used to compute local distributional
similarity scores to learn entailments between pred-
icates with typed arguments. Previous work com-
pute local similarity scores (both symmetric and
directional) between typed predicates: Weeds sim-
ilarities (Weeds and Weir, 2003), Lin similarities
(Lin et al., 2016) and Balanced Inclusion (BInc)
similarities (Szpektor and Dagan, 2008). Hosseini
et al. (2021) propose a model, named Contextual-
ized and Non-Contextualized Embeddings (CNCE).
The model uses contextual link prediction to calcu-
late a new relation entailment score, which could
be used to produce high-quality entailment graphs.

Based on the local score, Javad Hosseini et al.
(2018) propose a novel method to build high-
quality entailment graphs, the global score, based
on new soft constraints that consider both the struc-
tures across typed entailment graphs and inside
each graph. This method performs well in large
corpora, we use the global score function to build
entailment graphs.

3.2.2 Enhance the knowledge graphs:

The entailment graph is used to predict missing re-
lations in the knowledge graph. We add latent facts
in the knowledge graph for querying. The knowl-
edge graph is enhanced in two ways: enhancing
the knowledge graph offline or using the entail-
ment graph dynamically. In the offline method, if
the predicate p entails the predicate ¢, it means
in any fact (e;, p, e;) in the knowledge graph, g
can be used in the same place. We will add a
new fact (e;, g, e;) in the knowledge graph. Fig
2 shows an example, the predicate “buy” entails
“own” with arguments of types (company, company)
in our entailment graph. There is a fact (Google,
buy, YouTube) stored in our raw knowledge graph,
we could add fact (Google, own, YouTube) in our
knowledge graph for querying. If the query is
“Which company owns YouTube?”, it will return
a correct answer, even if there is no fact (Google,
own, YouTube) in the raw knowledge graph.

We also use the entailment graph dynamically
during querying. When querying, we run both
knowledge graph and typed entailment graph at
the same time. If query (entity, p, [target entity])
returns “Not found” in the knowledge graph (p
means a predicate), we query the typed entailment
graph and get a candidate list of predicates q = [q1,



q2, - » qnl, gi (1 <1 < n) means a predicate in
candidate list q. Vg; € q, g; entails p. We rank
the list q by global score. Then we choose the
predicate in ¢ to replace predicate p for the query.
The new query will be (entity, q;, [target entity]).
In our experiments, we found the entailment graph
can improve F-score in question answering tasks.

4 Experiment

In this section, we present our experimental set-
tings for comparing the baselines in the LAMA
probe dataset (Petroni et al., 2019). We present the
datasets in 4.1 and the baselines in 4.2. The details
of the evaluation settings are presented in 4.3.

4.1 Data

We use the Wikipedia corpus, NewsSpike corpus,
and NewsCrawl corpus as the training dataset to
build the knowledge graph and entailment graphs.
The LAMA probe dataset requires the language
model to answer cloze-style questions about rela-
tional facts under a zero-shot setting. We focus on
Google-RE and T-REx in LAMA for evaluation,
which are aimed at factual knowledge.

4.1.1

Wikipedia: We use the Wikipedia corpus to train
the knowledge graph and entailment graphs. To
include all wiki entities in the training set, we use
the whole Wikipedia corpus to train the knowl-
edge graph. The Wikipedia data is extracted from
Wikipedia articles and the corpus contains 5.4M
documents. We extract about 158M binary rela-
tions using the semantic parser of (Reddy et al.,
2014), Graph Parser. For the same type of entities,
the documents of wikipedia describs similar events.
For example, most documents of type person in
Wikipedia contain a description of the person’s
birth event, it means the corpus contains many dif-
ferent descriptions of the same event. It works
for training entailment graphs. In our experiment,
we find that with the size of the entailment graph
growth, the rate of increase in retrieval F-score
will gradually decrease. Considering the millions
of documents in Wikipedia, it will take up a lot
of impractical calculations for training entailment
graphs on the whole Wikipedia corpus. Our entail-
ment graph is trained on 33 % Wikipedia corpus.
NewsSpike: To analyze the effects of entailment
graphs from different corpus sources and make
a fair comparison. We use the multiple-source
NewsSpike (Zhang and Weld, 2013) corpus to train

training data

the entailment graph. In NewsSpike, the corpus
was deliberately built to include different articles
from different sources describing identical news
events. It contains RSS news and linked news to
full stories collected through a Web search. The
corpus contains 550K articles (20M sentences). We
extracted 29M binary relations using the same se-
mantic parser, Graph Parser. We use the NewsSpike
corpus to train an entailment graph and compare
the results with entailment graphs based on the
Wikipedia corpus.

NewsCrawl: The NewsCrawl (Bojar et al.,
2017) extracts newspaper articles from multiple
sources, in order to obtain separately authored de-
scriptions of the same events. The NewsCrawl is
much larger than the NewsSpike. It contains 160M
sentences.

4.1.2 test data

Google-RE: Google-RE corpus is used in the
LAMA probe (Petroni et al., 2019) for evaluation.
The Google-RE corpus is manually extracted from
Wikipedia. It covers five relations and three of them
are used in the LAMA probe. To fair compare the
results of LAMA (Petroni et al., 2019, 2020), we
use relations “Place-of-Birth”, “Date-of-Birth”,
“Place-of-Death” in our experiment.

In the LAMA probe, the Google-RE contains
5.5K facts and the relation template is defined man-
ually. e.g., “[S] was born in [O]” for “Place-of-
Birth”. Each fact in the Google-RE is, by design,
manually aligned to short pieces of Wikipedia text
supporting it. We run the experiment on it with the
three relations above.

T-REx: The T-REx knowledge source is a subset
of Wikidata triples. It is derived from the T-REx
dataset (Elsahar et al., 2018) and is much larger
than Google-RE with a broader set of relations.
There are 41 relations and subsample at most 1000
facts per relation in our test dataset. In contrast to
the Google-RE knowledge source, which is defined
manually, the facts in T-REx were automatically
aligned to Wikipedia.

YAGO3-10: In order to compare with the lan-
guage models without context, we add the test set
of YAGO3-10 (Rebele et al., 2016) in our experi-
ments. YAGO3-10 is a large semantic knowledge
base, derived from Wikipedia, WordNet, GeoN-
ames, and other data sources. YAGO3-10 knows
more than 123K entities and contains 37 relations
about these entities. To language models, we con-
struct the natural language by facts in YAGO3-10



Statistics

Corpus Relation Facts Rel
Place-of-Birth 2937 1
Date-of-Birth 1852 1
Google-RE Place-of-Death 796 1
Total 5527
T-REx Total 31051 41
YAGO3-10 Total 5000 37

Table 1: Statistics for the test data

and mask the object tokens. For example, when
querying the fact (Kobe Bryant, plays.for, Los An-
geles Lakers), it will be transformed into sentence
“Kobe Bryant plays for [MASK]” for language mod-
els. The statistics for the test data of our experiment
are listed in Table 1.

4.2 Baseline

LAMA (Petroni et al., 2019) defines a cloze-
style question answering task that answer queries
structured as “fill-in-the-blank™ cloze statements.
LAMA presents an in-depth analysis of the re-
lational knowledge already present (without fine-
tuning) in a wide range of state-of-art pre-trained
language models. To compare with the results in
LAMA, we consider the following baselines.

Freq: For a subject and relation pair, this base-
line ranks words based on how frequently they ap-
pear as an entity of the object argument for the
given relation in the test data.

RE: For the relation-based knowledge sources,
we consider the pre-trained Information Extraction
(IE) model of Sorokin and Gurevych (2017). This
model was trained on a subcorpus of Wikipedia
annotated with Wikidata relations. It extracts rela-
tion triples from a given sentence using an LSTM
based encoder and an attention mechanism. Based
on the alignment information from the knowledge
sources, we provide the relation extractor to con-
structs a knowledge graph of triples. At test time,
we query this graph by finding the subject entity
and then rank all entities in the correct relation
based on the confidence scores returned by RE.

DrQA: Chen et al. (2017) introduce DrQA, a
popular system for open-domain question answer-
ing. There are two parts in the DrQA pipeline, the
retriever and the reader. The retriever finds top K
related documents and the neural reading compre-
hension model then extracts answers. The reader
is a machine comprehension component, which

is trained with supervision on SQuAD (Rajpurkar
et al., 2016).

BERT-based models: In LAMA, the bidirec-
tional language model outperforms in query. BERT
proposes to sample positions in the input sequence
randomly and to learn to fill the word at the masked
position. They employ a Transformer architecture
and train it on the BookCorpus (Zhu et al., 2015) as
well as a crawl of English Wikipedia. Besides the
largest BERT model (BERT-large) from (Devlin
et al., 2019), Petroni et al. (2020) propose using
retrieved paragraphs to predict the masked words in
cloze-style question answering. It uses the retriever
of DrQA to search related documents from the
Wikipedia, and concat the retrieved context with
queries to predict masked tokens. Compared with
BERT-large, this method contains more contextual
information when predicting masked tokens. It dra-
matically improves BERT’s zero-shot cloze-style
question-answering performance. ROBERTa (Liu
et al., 2019) propose a replication study of BERT
pretraining that carefully measures the impact of
many key hyperparameters and training data size.
We take the three BERT-based methods as base-
lines.

4.3 Evaluation

4.3.1 Evaluation on Knowledge Graph

To build the knowledge graph, we extract binary
relations with the Graph Parser from the Wikipedia
corpus. AIDALight (Hoffart et al., 2011) is used as
the entity linking tool in our experiment. We only
take the binary relations with name entities that are
linked to Wikipedia. The nodes in the knowledge
graph are labeled with entity names. The edges are
labeled with relation names, which are extracted
predicates from sentences. There are 15M nodes
and 138M edges in our knowledge graph.

In our evaluation, we use the Graph Parser to
extract triples from the cloze-style questions. For
example, an instance in evaluation corpus is “Steve
Jobs was born in [MASK]”, we extract (Steve
Jobs, bear.in, [Target]) and query it in our knowl-
edge graph. Our knowledge graph is trained on
the whole Wikipedia corpus. We also construct a
knowledge graph on retrieved documents to com-
pare the results of dynamical methods.

4.3.2 Evaluation on Entailment Graph

In order to compare different entailment graphs,
we construct distinct entailment graphs based on
different corpora and methods in our evaluation.



The entailment graphs built by Javad Hosseini et al.
(2018) method contain BInc scores. Another entail-
ment graphs are constructed by CNCE (Hosseini
et al., 2021) model. Both methods contain local
scores and global scores.

In the Google-RE corpus, there are three re-
lations, “Place-of-Birth” (PoB), “Date-of-Birth”
(DoB) and “Place-of-Death” (PoD), so we search
for predicates in the entailment graph with two
entity-pair types: (person, location) and (person,
time). In evaluation, if there is no fact (e;, p, e;)
in the knowledge graph, where e means entity and
p means predicate, then we query the typed en-
tailment graph and get a candidate predicates list
q. Every predicate in ¢ entails predicate p. The
g contains n predicates ranked by score. In order
to compare the local score and the global score,
we created two entailment graphs separately. We
choose the predicate in g to replace p for querying.
The new query will be (e;, g, ej), 1 <k< n.

For example, when there is no fact (Tim Cook,
study.in, [MASK]) stored in our knowledge graph,
we search the entailment graph. In entailment
graph, the predicate (accept.offer.from) and pred-
icate (graduate.from) entails (study.in). We add
(accept.offer.from) and predicate (graduate.from)
in a candidate list and rank it by global/local
scores. First, we replace the (study.in) by (ac-
cept.offer.from), the query will be (Tim Cook, ac-
cept.offerfrom, [MASK]). If it still has no facts
in the knowledge graph, we query the knowledge
graph with the next predicate, (Tim Cook, gradu-
ate.from, [MASK]), and it will return an answer
“Duke University”.

We also consider types order when choosing
the predicates. For example, The typed predicate
“die.at” with types order (person, location) entails
“dead.found” with types order (location, person),
they have different orders so the “dead.found” will
not be added candidate for querying.

5 Results

We summarize the main result in Table 2, which
shows the F-score for different models across the
set of corpora. In the remainder of this section, we
discuss the results and analyze errors.

In Table 2, the knowledge graphs built by se-
mantic parsing outperform the BERT-large and
RoBERTa. The language models based on retrieved
paragraph, DrQA performs better in Google-RE.
The language models on retrieved contexts (DrQA

and BERT-ret) outperforms in Google-RE. After
adding the entailment graph, the F-score of en-
hanced knowledge graphs improve significantly. In
T-REx dataset, the enhanced knowledge graph per-
forms better than DrQA, reaching performance that
is on par with BERT-ret. Compared with the knowl-
edge graph on the whole Wikipedia corpus, the dy-
namical knowledge graph trained on retrieved doc-
uments occupies less memory with little F-score
down.

To analyze the effect of contexts, we compare the
results on YAGO3-10 in Table 3. Not like Google-
RE and T-REx contain contextual tokens in sen-
tences, the YAGO3-10 only contains facts from a
knowledge base. We calculate the hit@5 of dif-
ferent methods and find our methods perform best.
In cloze-style question answering, the language
models can get contextual information of the sen-
tence. If query facts, the results of BERT-based
models will be limited by lacking contexts. The
experiments show our methods outperform in this
context-free situation.

In Table 4, We compare the entailment graphs
trained on different corpora. The results show that
the knowledge graphs outperform in mean average
precision at one but the recall is low. The entail-
ment graphs can be used to predict latent facts and
improve the recall and F-score. The entailment
graphs on NewsSpike outperform other corpora
in F-score. Compared with the Wikipedia corpus,
the predicates in the NewsSpike have stronger rele-
vance. The articles in the NewsSpike corpus mainly
describe news events by multiple authors so it is
efficient to extract entailment between predicates.
It may explain why EG,,; performs better. It also
means we don’t need to train knowledge graphs and
entailment graphs on the same corpus, we could use
the pre-trained entailment graphs as a plug-in. We
also construct the entailment graphs by different
score functions (BInc and CNCE), the results are
shown in appendix B. Javad Hosseini et al. (2018)
propose global scores and local scores for entail-
ment graphs. To compare the entailment graph
based on different scores, we train the entailment
graphs on both local and global scores. Table 6 in
appendix B shows the result of different scores.

To analyze the recall changes with different
entailment graph sizes, we run experiments on
Google-RE with different sizes of entailment
graphs. The result is shown in Figure 3. The re-
call increase with the entailment graph size. When



Corpus Relation KB LM LM on retrieved doc Our Method
Freq | RE | BERT-large RoBERTa | DrQA  BERT-ret | KG KG,.; KG+EG,s KG;e +EGy;
birth-place 4.6  13.8 16.1 - 48.6 43.5 199 20.1 27.7 31.5
Google-RE birth-date 1.9 1.9 14 429 43.1 7.7 7.8 8.5 8.5
death-place 6.8 7.2 14.0 - 384 35.8 146 135 26.0 24.0
Total 44 7.6 10.5 4.8 433 40.8 14.0 13.8 20.7 21.3
T-REx Total 22.0 3338 32.3 27.1 25.8 43.1 33.3 320 39.0 37.7

Table 2: F-score for a frequency basline, a information extraction with entity linking (RE), BERT-large, RoOBERTa.
the BERT-ret is BERT based on retrieved context. The knowledge graph (KG) is built on whole wikipedia corpus
and KG,..; means KG trained on retrieved documents. The entailment graph (EG,, ;) is trained on NewsSpike.

BERT-large BERT-ret DrQA KG KG+EG
Hit @ 5 38.0 59.5 453 412 62.7
Table 3: Hit@5 in YAGO3-10 dataset.
P@1 R F
KG 588 85 14.0
KG+EG;z; 43.8 123 174
KG+EG,,s 41.7 15.0 20.7
KG+EG,,. 426 14.6 19.6

Table 4: Results of different entailment graphs. This
table shows the mean average precision at one (P@1),
recall and F-score of Google-RE. The result shows the
average per number of relations in Google-RE. In this
table, EG means entailment graph and the subscripts wk,
ns and nc means the entailment graphs are trained on
Wikipedia, NewsSpike and NewsCrawl.

Recall with entailment graph size

EY] 1M 20M 26M 32M 38M aam

—€6_wiki —EG_ns EG_nc

Figure 3: The recall changed with entailment graph size

the training corpus is small, the entailment graph
based on Wikipedia corpus performs better. But
with the entailment graph size gradually increasing,
the recall of entailment graphs based on NewsSpike
corpus will perform better. The Google-RE is ex-
tracted from Wikipedia, the EG,,;; contains more
predicates for events in Wikipedia than EG,,;. With
the size of entailment graphs increasing, the EG, ¢
will perform better because it contains more multi-
ple documents for the same event.

The errors analysis is shown in Table 5. We
manually analyze 100 queries. About 40% of them
are caused by graph parser and are cases where it
returns wrong relations from text. Most of them
are caused by non-standard sentences in Wikipedia
documents. For example, “Normand MacLeod (c.
1731 — 1796) was a British army officer, merchant,
and official of the British Indian Department.”,
the parser can’t extract fact (Normand MacLeod,
bear.in, 1731) from the sentence because the parser
can’t analyze the “(c. 1731 — 1796)”.

31% of the errors in the knowledge graph are due
to entity linking in evaluation, it may be caused by
ambiguity in Google-RE. For example, a sentence
in Googe-RE is “Jason then continued to Sparta,
where he died and was buried” and the fact in
Google-RE is (Jason, death-place, Sparta). But in
evaluation, the “Jason” is linked to “Jason Hu”,
who is a modern politician.

About 11% of errors are caused by the mismatch
between train corpus and test corpus, e.g. fact in
Google-RE is (Arthur Kinnaird, bear.in, Kensing-
ton), the output of the object from KG is “London”,
both of them should be correct.

The errors in the entailment graph are
mainly caused by the ambiguity of some high-
frequency predicates. For example, predicate
(bear.2,bear.in.2) entails predicate (from.1,from.2).
These predicates, like (from.I,from.2), are com-
mon in sentences. If the relation of the query
contains these predicates, the knowledge graph



Error-Type Example Describe Rate
semantic parsing error “Normand MacLeod (c. 1731 — 1796) was a British army officer, | parser extracts wrong relations 40%
P g merchant, and official of the British Indian Department.” because of not standard sentences structure °
e “Jason” is mapped to entity “Jason Hu”, . . - .
Entity linking errors which should be “Jason Mraz” It is caused by aidalight wrong outputs 31%
Mismatch Truth in test dataset: Kensington It is ?asued by mismatch between 1%
Knowledge graph output: London training dataset and test dataset
Table 5: The errors in knowledge graph
will return wrong answers easily. When we use  References
the (fr qm. ]_’f rom.2) for querying in the knowledgf: Manzoor Ali, Muhammad Saleem, and Axel-
graph, it will return false results because the predi- Cyrille Ngonga Ngomo. 2021.  Unsupervised

cate has too many meanings. e.g. In the sentence
“Shane Doan is from Arizona” may mean “Shane
comes from Arizona”, not the birth-place. In our ex-
periment, some entailment graphs errors are caused
by the content of documents. For example, there
are many documents in Wikipedia like “Steve Jobs
was born on February 24, 1955, in California, ...,
Jobs died at his Palo Alto, California home around
3 p.m.”. From these sentences, we may extract facts
like (Steve Jobs, (bear. 1,bear.in.2), California) and
(Steve Jobs, (die.l,die.in.2), California). These
predicates link the same entities. It is likely to in-
correctly give the entailment relationship between
the two predicates.

6 Conclusion

This paper has demonstrated a method to construct
a large knowledge graph by semantic network and
use the entailment graph to enhance the knowl-
edge graph. Parsing technology can extract rela-
tions from unstructured text to build open-domain
knowledge graphs in an efficient method. Tradi-
tional knowledge graph based on semantic parsing
is limited, they can not infer a result if there is no
matching relations in the training corpus. We use
the entailment graph to extract more latent rela-
tions between entities. The entailment graphs dra-
matically improve the recall and F-score in cloze-
style question answering and outperform the BERT-
large. When a query lacks context information, the
enhanced knowledge graphs perform better than
the methods based on retrieved documents, like
BERT-ret and DrQA. In future work, we plan to
test our method on more corpus sources, such as
documents in tweets. The Wikipedia corpus has
more actual events but some events in other sources
are only discussed or not happened. It will be chal-
lenging.
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KGret | KG + Ekaibinc KG + EGnsibinc KG + EGncﬁbznc
local global local ‘ global | local | global
P@1 588 432 43.8 42.0 41.7 41.7 42.6
R 8.5 12.3 12.3 13.7 15.0 14.3 14.6
F 140 169 17.4 18.0 20.7 19.1 19.6

Table 6: knowledge graph combined with different en-
tailment graphs. global means the entailment graph is
based on global Blnc score, local means the entaiment
graph with local BInc score.

A Results of different Entailment Graphs

To compare the entailment graph based on different
scores functions, we train the entailment graphs on
both local and global scores. Table 6 shows the
result of different scores. We aslo compare the en-
tailment graphs based on different score functions
(BInc and CNCE), the result is shown in Table
7. Our knowledge graphs outperform BERT-large,
BERT-ret, and DrQA in mean average precision
at one. The knowledge graph on retrieved docu-
ments reach higher precision than the knowledge
graph on the whole wiki corpus. However, the re-
call of knowledge graph is low. The results show
entailment graphs can predict latent facts, these
latent facts enhance the raw knowledge graph by
adding missed edges. The entailment graphs dra-
matically improve the recall and F-score. The en-
tailment graphs on CCNE perform better than the
Blnc score. The entailment graphs on NewsSpike
outperform other corpora in recall and F-score.

B Samples of predicates in entailment
graph

When query with “Place-of-Birth”, “Date-
of-Birth”,  “Place-of-Death”, we choose
(bear.2,bear.in.2) and (die.l,die.in.2) as the target
predicates. When ranked by the BInc score, the top
five predicates in the entailment graphs are shown
in Table 8.



P@I R F

KG 588 85 140
KG+EGy) pine  43.8 123 174
KG+EG,, pine 417 150 207

KG  KG+EGn, e 407 162 210
KG+EG,. pine  42.6 146 19.6
KG+EGp. e 449 151 207

KGret 683 79 138
KG,et+EGu_pine 462 134 17.1

G KGre#EGu, pine 530 153 213

"t KGpet+EGns nce 560 131 21.6
KG,et+EGpe pine 472 119 162
KG,et+EGne_cnce 537 116 172
BERT large 105 - 105

LM BERT-ret 408 - 408

DrQA 433 - 433

Table 7: Results of different entailment graphs on Google-RE. This table shows the mean average precision at one
(P@1), recall and F-score of Google-RE. The result shows the average per number of relations in Google-RE. In
this table, EG means entailment graph and the subscripts wk, ns and nc means the entailment graphs are trained on
Wikipedia, NewsSpike amd NewsCrawl corpus. Subscripts binc amd cnce means the entailment graphs are trained
on BInc score and CNCE.

Target Top 5 predicate in EG, Top 5 predicate in EG,

Predicates Types ranked by global score  ranked by local score
(bear.2,bear.in.2) (bear.2,bear.in.2)
(bear.1,bear.in.2) (native.of.1,native.of.2)
(bear.2,bear.in.2) person-location (in.1,in.2) (grow.1,grow.in.2)
(be.1,be.in.2) (in.1,in.2)
(live.1,live.in.2) (raise.2,raise.in.2)
(bear.2,bear.in.2) (bear.2,bear.in.2)
(name.1,name.in.2) (give.in.2,give.to0.2)
(bear.2,bear.in.2) person-time (address.1,address.in.2) (in.1,in.2)
(have.1,have.in.2) (be.1,be.in.2)
(in.1,in.2) (live.1,live.in.2)
(die.1,die.in.2) (die.1,die.in.2)
(die.1,die.at.home.in.2) (kill.2,kill.in.2)
(die.1,die.in.2)  person-location (dead.found.1,dead.in.2) (in.1,in.2)
(die.1,die.at.2) (dead.1,dead.in.2)

(dead.1,dead.in.2) (dead.found.1,dead.in.2)

Table 8: Top 5 predicates in entailment graphs
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