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Abstract
Constructing knowledge graphs from open-001
domain corpora is a crucial stage in question002
answering. Most previous works are based on003
open information extraction methods, which ex-004
tract relations by parsing sentences into triples005
<e1, r, e2>. These methods lack inference abil-006
ity and are limited by corpus. When the query007
is different from the relations in the text-based008
knowledge graph, it is hard to return correct009
answers. In this paper, we propose a method010
to enhance knowledge graphs by using typed011
entailment graphs to add missing links. We012
construct the enhanced knowledge graph in013
both dynamical and offline ways. The experi-014
ment shows that our method outperforms the015
pre-trained language models in zero-shot cloze-016
style question answering. Furthermore, we find017
entailment graphs can significantly improve the018
recall and F-score of knowledge graphs.019

1 Introduction020

Recently, Knowledge graphs are widely used021

in question answering and information querying.022

Building knowledge graphs from unstructured text023

is a crucial task in Natural Language Processing,024

which aims at extracting (subject, relation, object)025

triples such as (Google, buy, YouTube) to construct026

knowledge graphs.027

Supervised methods mainly concentrate on clas-028

sifying relational facts into pre-defined relation029

types (Mintz et al., 2009; Su et al., 2018). However,030

these methods require collecting and annotating031

labeled data, which is time-consuming and human-032

intensive for practical applications. Open-domain033

knowledge graphs can be constructed from corpora034

by applying unsupervised open information extrac-035

tion methods. Open information extraction meth-036

ods are mainly based on semantic parsing, which is037

fast to deal with large corpora but lacks inference038

ability. If the corresponding triple was not found in039

the text by parsers, the relation edges will be miss-040

ing in the knowledge graph. Petroni et al. (2019)041

prove that language models such as ELMo (Peters 042

et al., 2018) and BERT (Devlin et al., 2019) may 043

also be storing relational knowledge present in the 044

training corpus too. These models could work as 045

knowledge graphs to answer queries structured as 046

“fill-in-the-blank” cloze statements. 047

In this paper, we propose a method for enhanc- 048

ing open-domain knowledge graphs by using en- 049

tailment graphs as a plug-in. Typed entailment 050

graphs (Berant et al., 2010) are used to store the 051

entailment between predicates, which could be an 052

excellent fit for alleviating the above problem. We 053

construct knowledge graphs from large corpora in 054

low time-consuming by semantic analysis. We pro- 055

pose two ways to enhance the knowledge graph: 056

enhancing the knowledge graph offline and using 057

the entailment graph dynamically. The experiments 058

show entailment graphs can improve F-score sig- 059

nificantly in question answering tasks. Compared 060

with the state-of-art language models, the enhanced 061

knowledge graph also achieves higher F-score in 062

context-free situation. In addition, we analyze the 063

effects of entailment graphs based on different cor- 064

pora and score functions. 065

2 Related Work 066

Knowledge is expressed as a collection of “facts”, 067

represented in the form (subject, relation, object) 068

triples, where subject and object are entities and 069

relations between those entities. Open-domain 070

knowledge graphs aim at extracting these facts 071

from large open-domain corpora. 072

In Petroni et al. (2019) work, language models 073

could extract relational knowledge present in texts 074

and perform well in cloze-style question answering. 075

Language models encode the sentence between 076

entities. They are optimized to either predict the 077

next words in a sequence or some masked words 078

anywhere in a given sequence. Ali et al. (2021) 079

proposed a method for facts extraction based on 080

BERT, using the BERT sentence-encoding algo- 081
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rithm on a corpus already annotated for named082

entities(NE). Petroni et al. (2020) find the context083

information could improve BERT’s zero-shot cloze-084

style question-answering performance.085

Another approach is using open-domain infor-086

mation extraction (Etzioni et al., 2011), which is087

based on semantic parsing. Harrington and Clark088

(2007) propose an efficient pipeline to extract facts089

by using a localized update algorithm. Each sen-090

tence will be transferred into a syntax structure and091

added in knowledge graphs incrementally. How-092

ever, these knowledge graphs lack inference ability093

and the quality is limited by training corpus. Et-094

zioni et al. (2011) use link prediction to add relation095

edges that are missing from the graph because the096

corresponding triple was not found in the text. For097

example, by semantic analysis, we extract a fact098

(Google, buy, YouTube) from the sentence “Ten099

years ago this week, Google bought YouTube for100

1.65 billion dollars.”. However, when we query101

“Which company owns YouTube now?”, the knowl-102

edge graph can’t get the correct answer, because103

there is no sentence like “Google owns YouTube”104

in our training corpus. It will limit the practical105

value of the knowledge graph.106

In this paper, we propose to use contextual en-107

tailment to solve the problem. We construct typed108

entailment graphs to enhance the knowledge graph109

in both dynamical and offline ways. After being110

combined with the entailment graphs, the experi-111

ments show that our methods significantly improve112

the F-score in cloze-style question-answering tasks.113

Compared with the pre-trained language models,114

our enhanced knowledge graph performs better115

than the context-free BERT.116

3 Method117

In this section, we present our method for building118

knowledge graphs and entailment graphs on text.119

The method contains two parts: building a knowl-120

edge graph in 3.1 and 3.2 is building entailment121

graphs to enhance our knowledge graph. There are122

two methods for constructing knowledge graphs123

and enhancing knowledge graphs: offline method124

and dynamic method.125

3.1 Knowledge Graph126

3.1.1 Build knowledge graph offline:127

We extract facts from sentences by semantic pars-128

ing. In order to improve semantic parsing preci-129

sion, we use the Lee et al., 2018 proposed coref-130

erence resolution tools to filter sentences. After 131

pre-processing the text, we use the Graph Parser 132

(Reddy et al., 2014) to extract binary relations from 133

documents. Graph parser converts sentences to se- 134

mantic graphs using combinatory categorial gram- 135

mar (CCG) (Clark and Curran, 2007) and subse- 136

quently grounds them to Freebase. We only extract 137

the triples contain binary relations, the triples are 138

represented in the form < ei, r, ej >, ei, ej means 139

entity i,j and r means the relation name. With 140

extracted facts, we build a directed graph as the 141

knowledge graph. Our offline knowledge graph is 142

trained on whole Wikipedia corpus. To construct 143

the knowledge graph on large corpora in low time- 144

consuming, we use Aidalight (Hoffart et al., 2011) 145

tools to link the extracted mentions to named en- 146

tities in Wikipedia, which have little ambiguity. 147

Figure 1 shows an example of changes from raw 148

sentences to knowledge. The knowledge graph

Figure 1: Example of changes from raw sentence to
knowledge.

149
is constituted by a set of facts. The nodes in the 150

knowledge graph are labeled with entity names 151

from the original document. The edges are labeled 152

with extracted relation names. Due to the tokens 153

having been transferred into entity names in the 154

Wikipedia namespace. It means querying the entity 155

and relations in the knowledge graph just needs to 156

search the keys in Hash maps of entities. Not like 157

ASKNet (Harrington and Clark, 2007) calculating 158

nouns similarity matrix, our method is more effi- 159

cient and accurate. When adding a new fact (ei, r, 160

ej), we only query the knowledge graph and see if 161

the knowledge graph already has the facts (ei, r, ej). 162

If the entities or relations are already in the knowl- 163

edge graph, we just need to update the frequency 164

of the relation. 165

3.1.2 Build knowledge graph dynamically: 166

We also create a pipeline to build the knowledge 167

graph dynamically. We trained a documents re- 168

triever based on the DrQA (Chen et al., 2017). 169

Each query, like (Google, buy, [MASK]), can be 170
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transferred into a natural sentence to retrieve re-171

lated documents. We build the knowledge graph172

on the retrieved documents dynamically. Not like173

the large pre-trained offline knowledge graph, it174

doesn’t need large memories and runs faster for a175

query.176

3.2 Build Typed Entailment Graph177

3.2.1 Typed entailment graph:178

Textual entailment between predicates is common179

in natural language. The typed entailment graphs180

aim at learning entailment rules between typed181

predicates. For example, the sentence “Google182

bought YouTube for 1.65 billion dollars.” entails183

“Google owns YouTube”. With arguments of entity-184

pair types (Company, Company), the predicate185

“buy” entails “own”.186

Entailment needs to calculate a directed simi-187

larity score function between the typed predicates188

based on the distributional inclusion hypothesis,189

which states that a predicate p entails another pred-190

icate q if in any context that p can be used, q can be191

used in the same place (Geffet and Dagan, 2005).192

Fig 2b shows an example of a simple typed entail-193

ment graph. An entailment graph defines a score

Figure 2: (a) shows an example of knowledge graphs,
which relation “own” is missing. The missing edge
could be added by using the entailment “buy” entails

“own”. (b) shows an examples of typed entailment graphs
for arguments of types (company, company).

function between the typed predicates. The similar- 194

ity score function is used to describe how likely a 195

predicate entails other predicates. The local score 196

function is used to compute local distributional 197

similarity scores to learn entailments between pred- 198

icates with typed arguments. Previous work com- 199

pute local similarity scores (both symmetric and 200

directional) between typed predicates: Weeds sim- 201

ilarities (Weeds and Weir, 2003), Lin similarities 202

(Lin et al., 2016) and Balanced Inclusion (BInc) 203

similarities (Szpektor and Dagan, 2008). Hosseini 204

et al. (2021) propose a model, named Contextual- 205

ized and Non-Contextualized Embeddings (CNCE). 206

The model uses contextual link prediction to calcu- 207

late a new relation entailment score, which could 208

be used to produce high-quality entailment graphs. 209

Based on the local score, Javad Hosseini et al. 210

(2018) propose a novel method to build high- 211

quality entailment graphs, the global score, based 212

on new soft constraints that consider both the struc- 213

tures across typed entailment graphs and inside 214

each graph. This method performs well in large 215

corpora, we use the global score function to build 216

entailment graphs. 217

3.2.2 Enhance the knowledge graphs: 218

The entailment graph is used to predict missing re- 219

lations in the knowledge graph. We add latent facts 220

in the knowledge graph for querying. The knowl- 221

edge graph is enhanced in two ways: enhancing 222

the knowledge graph offline or using the entail- 223

ment graph dynamically. In the offline method, if 224

the predicate p entails the predicate q, it means 225

in any fact (ei, p, ej) in the knowledge graph, q 226

can be used in the same place. We will add a 227

new fact (ei, q, ej) in the knowledge graph. Fig 228

2 shows an example, the predicate “buy” entails 229

“own” with arguments of types (company, company) 230

in our entailment graph. There is a fact (Google, 231

buy, YouTube) stored in our raw knowledge graph, 232

we could add fact (Google, own, YouTube) in our 233

knowledge graph for querying. If the query is 234

“Which company owns YouTube?”, it will return 235

a correct answer, even if there is no fact (Google, 236

own, YouTube) in the raw knowledge graph. 237

We also use the entailment graph dynamically 238

during querying. When querying, we run both 239

knowledge graph and typed entailment graph at 240

the same time. If query (entity, p, [target entity]) 241

returns “Not found” in the knowledge graph (p 242

means a predicate), we query the typed entailment 243

graph and get a candidate list of predicates q = [q1, 244
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q2, ... , qn], qi (1 ≤ i ≤ n) means a predicate in245

candidate list q. ∀qi ∈ q, qi entails p. We rank246

the list q by global score. Then we choose the247

predicate in q to replace predicate p for the query.248

The new query will be (entity, qi, [target entity]).249

In our experiments, we found the entailment graph250

can improve F-score in question answering tasks.251

4 Experiment252

In this section, we present our experimental set-253

tings for comparing the baselines in the LAMA254

probe dataset (Petroni et al., 2019). We present the255

datasets in 4.1 and the baselines in 4.2. The details256

of the evaluation settings are presented in 4.3.257

4.1 Data258

We use the Wikipedia corpus, NewsSpike corpus,259

and NewsCrawl corpus as the training dataset to260

build the knowledge graph and entailment graphs.261

The LAMA probe dataset requires the language262

model to answer cloze-style questions about rela-263

tional facts under a zero-shot setting. We focus on264

Google-RE and T-REx in LAMA for evaluation,265

which are aimed at factual knowledge.266

4.1.1 training data267

Wikipedia: We use the Wikipedia corpus to train268

the knowledge graph and entailment graphs. To269

include all wiki entities in the training set, we use270

the whole Wikipedia corpus to train the knowl-271

edge graph. The Wikipedia data is extracted from272

Wikipedia articles and the corpus contains 5.4M273

documents. We extract about 158M binary rela-274

tions using the semantic parser of (Reddy et al.,275

2014), Graph Parser. For the same type of entities,276

the documents of wikipedia describs similar events.277

For example, most documents of type person in278

Wikipedia contain a description of the person’s279

birth event, it means the corpus contains many dif-280

ferent descriptions of the same event. It works281

for training entailment graphs. In our experiment,282

we find that with the size of the entailment graph283

growth, the rate of increase in retrieval F-score284

will gradually decrease. Considering the millions285

of documents in Wikipedia, it will take up a lot286

of impractical calculations for training entailment287

graphs on the whole Wikipedia corpus. Our entail-288

ment graph is trained on 33 % Wikipedia corpus.289

NewsSpike: To analyze the effects of entailment290

graphs from different corpus sources and make291

a fair comparison. We use the multiple-source292

NewsSpike (Zhang and Weld, 2013) corpus to train293

the entailment graph. In NewsSpike, the corpus 294

was deliberately built to include different articles 295

from different sources describing identical news 296

events. It contains RSS news and linked news to 297

full stories collected through a Web search. The 298

corpus contains 550K articles (20M sentences). We 299

extracted 29M binary relations using the same se- 300

mantic parser, Graph Parser. We use the NewsSpike 301

corpus to train an entailment graph and compare 302

the results with entailment graphs based on the 303

Wikipedia corpus. 304

NewsCrawl: The NewsCrawl (Bojar et al., 305

2017) extracts newspaper articles from multiple 306

sources, in order to obtain separately authored de- 307

scriptions of the same events. The NewsCrawl is 308

much larger than the NewsSpike. It contains 160M 309

sentences. 310

4.1.2 test data 311

Google-RE: Google-RE corpus is used in the 312

LAMA probe (Petroni et al., 2019) for evaluation. 313

The Google-RE corpus is manually extracted from 314

Wikipedia. It covers five relations and three of them 315

are used in the LAMA probe. To fair compare the 316

results of LAMA (Petroni et al., 2019, 2020), we 317

use relations “Place-of-Birth”, “Date-of-Birth”, 318

“Place-of-Death” in our experiment. 319

In the LAMA probe, the Google-RE contains 320

5.5K facts and the relation template is defined man- 321

ually. e.g., “[S] was born in [O]” for “Place-of- 322

Birth”. Each fact in the Google-RE is, by design, 323

manually aligned to short pieces of Wikipedia text 324

supporting it. We run the experiment on it with the 325

three relations above. 326

T-REx: The T-REx knowledge source is a subset 327

of Wikidata triples. It is derived from the T-REx 328

dataset (Elsahar et al., 2018) and is much larger 329

than Google-RE with a broader set of relations. 330

There are 41 relations and subsample at most 1000 331

facts per relation in our test dataset. In contrast to 332

the Google-RE knowledge source, which is defined 333

manually, the facts in T-REx were automatically 334

aligned to Wikipedia. 335

YAGO3-10: In order to compare with the lan- 336

guage models without context, we add the test set 337

of YAGO3-10 (Rebele et al., 2016) in our experi- 338

ments. YAGO3-10 is a large semantic knowledge 339

base, derived from Wikipedia, WordNet, GeoN- 340

ames, and other data sources. YAGO3-10 knows 341

more than 123K entities and contains 37 relations 342

about these entities. To language models, we con- 343

struct the natural language by facts in YAGO3-10 344
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Corpus Relation Statistics
Facts Rel

Google-RE

Place-of-Birth 2937 1
Date-of-Birth 1852 1

Place-of-Death 796 1
Total 5527 3

T-REx Total 31051 41
YAGO3-10 Total 5000 37

Table 1: Statistics for the test data

and mask the object tokens. For example, when345

querying the fact (Kobe Bryant, plays.for, Los An-346

geles Lakers), it will be transformed into sentence347

“Kobe Bryant plays for [MASK]” for language mod-348

els. The statistics for the test data of our experiment349

are listed in Table 1.350

4.2 Baseline351

LAMA (Petroni et al., 2019) defines a cloze-352

style question answering task that answer queries353

structured as “fill-in-the-blank” cloze statements.354

LAMA presents an in-depth analysis of the re-355

lational knowledge already present (without fine-356

tuning) in a wide range of state-of-art pre-trained357

language models. To compare with the results in358

LAMA, we consider the following baselines.359

Freq: For a subject and relation pair, this base-360

line ranks words based on how frequently they ap-361

pear as an entity of the object argument for the362

given relation in the test data.363

RE: For the relation-based knowledge sources,364

we consider the pre-trained Information Extraction365

(IE) model of Sorokin and Gurevych (2017). This366

model was trained on a subcorpus of Wikipedia367

annotated with Wikidata relations. It extracts rela-368

tion triples from a given sentence using an LSTM369

based encoder and an attention mechanism. Based370

on the alignment information from the knowledge371

sources, we provide the relation extractor to con-372

structs a knowledge graph of triples. At test time,373

we query this graph by finding the subject entity374

and then rank all entities in the correct relation375

based on the confidence scores returned by RE.376

DrQA: Chen et al. (2017) introduce DrQA, a377

popular system for open-domain question answer-378

ing. There are two parts in the DrQA pipeline, the379

retriever and the reader. The retriever finds top K380

related documents and the neural reading compre-381

hension model then extracts answers. The reader382

is a machine comprehension component, which383

is trained with supervision on SQuAD (Rajpurkar 384

et al., 2016). 385

BERT-based models: In LAMA, the bidirec- 386

tional language model outperforms in query. BERT 387

proposes to sample positions in the input sequence 388

randomly and to learn to fill the word at the masked 389

position. They employ a Transformer architecture 390

and train it on the BookCorpus (Zhu et al., 2015) as 391

well as a crawl of English Wikipedia. Besides the 392

largest BERT model (BERT-large) from (Devlin 393

et al., 2019), Petroni et al. (2020) propose using 394

retrieved paragraphs to predict the masked words in 395

cloze-style question answering. It uses the retriever 396

of DrQA to search related documents from the 397

Wikipedia, and concat the retrieved context with 398

queries to predict masked tokens. Compared with 399

BERT-large, this method contains more contextual 400

information when predicting masked tokens. It dra- 401

matically improves BERT’s zero-shot cloze-style 402

question-answering performance. RoBERTa (Liu 403

et al., 2019) propose a replication study of BERT 404

pretraining that carefully measures the impact of 405

many key hyperparameters and training data size. 406

We take the three BERT-based methods as base- 407

lines. 408

4.3 Evaluation 409

4.3.1 Evaluation on Knowledge Graph 410

To build the knowledge graph, we extract binary 411

relations with the Graph Parser from the Wikipedia 412

corpus. AIDALight (Hoffart et al., 2011) is used as 413

the entity linking tool in our experiment. We only 414

take the binary relations with name entities that are 415

linked to Wikipedia. The nodes in the knowledge 416

graph are labeled with entity names. The edges are 417

labeled with relation names, which are extracted 418

predicates from sentences. There are 15M nodes 419

and 138M edges in our knowledge graph. 420

In our evaluation, we use the Graph Parser to 421

extract triples from the cloze-style questions. For 422

example, an instance in evaluation corpus is “Steve 423

Jobs was born in [MASK]”, we extract (Steve 424

Jobs, bear.in, [Target]) and query it in our knowl- 425

edge graph. Our knowledge graph is trained on 426

the whole Wikipedia corpus. We also construct a 427

knowledge graph on retrieved documents to com- 428

pare the results of dynamical methods. 429

4.3.2 Evaluation on Entailment Graph 430

In order to compare different entailment graphs, 431

we construct distinct entailment graphs based on 432

different corpora and methods in our evaluation. 433
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The entailment graphs built by Javad Hosseini et al.434

(2018) method contain BInc scores. Another entail-435

ment graphs are constructed by CNCE (Hosseini436

et al., 2021) model. Both methods contain local437

scores and global scores.438

In the Google-RE corpus, there are three re-439

lations, “Place-of-Birth” (PoB), “Date-of-Birth”440

(DoB) and “Place-of-Death” (PoD), so we search441

for predicates in the entailment graph with two442

entity-pair types: (person, location) and (person,443

time). In evaluation, if there is no fact (ei, p, ej)444

in the knowledge graph, where e means entity and445

p means predicate, then we query the typed en-446

tailment graph and get a candidate predicates list447

q. Every predicate in q entails predicate p. The448

q contains n predicates ranked by score. In order449

to compare the local score and the global score,450

we created two entailment graphs separately. We451

choose the predicate in q to replace p for querying.452

The new query will be (ei, qk, ej), 1 ≤k≤ n.453

For example, when there is no fact (Tim Cook,454

study.in, [MASK]) stored in our knowledge graph,455

we search the entailment graph. In entailment456

graph, the predicate (accept.offer.from) and pred-457

icate (graduate.from) entails (study.in). We add458

(accept.offer.from) and predicate (graduate.from)459

in a candidate list and rank it by global/local460

scores. First, we replace the (study.in) by (ac-461

cept.offer.from), the query will be (Tim Cook, ac-462

cept.offer.from, [MASK]). If it still has no facts463

in the knowledge graph, we query the knowledge464

graph with the next predicate, (Tim Cook, gradu-465

ate.from, [MASK]), and it will return an answer466

“Duke University”.467

We also consider types order when choosing468

the predicates. For example, The typed predicate469

“die.at” with types order (person, location) entails470

“dead.found” with types order (location, person),471

they have different orders so the “dead.found” will472

not be added candidate for querying.473

5 Results474

We summarize the main result in Table 2, which475

shows the F-score for different models across the476

set of corpora. In the remainder of this section, we477

discuss the results and analyze errors.478

In Table 2, the knowledge graphs built by se-479

mantic parsing outperform the BERT-large and480

RoBERTa. The language models based on retrieved481

paragraph, DrQA performs better in Google-RE.482

The language models on retrieved contexts (DrQA483

and BERT-ret) outperforms in Google-RE. After 484

adding the entailment graph, the F-score of en- 485

hanced knowledge graphs improve significantly. In 486

T-REx dataset, the enhanced knowledge graph per- 487

forms better than DrQA, reaching performance that 488

is on par with BERT-ret. Compared with the knowl- 489

edge graph on the whole Wikipedia corpus, the dy- 490

namical knowledge graph trained on retrieved doc- 491

uments occupies less memory with little F-score 492

down. 493

To analyze the effect of contexts, we compare the 494

results on YAGO3-10 in Table 3. Not like Google- 495

RE and T-REx contain contextual tokens in sen- 496

tences, the YAGO3-10 only contains facts from a 497

knowledge base. We calculate the hit@5 of dif- 498

ferent methods and find our methods perform best. 499

In cloze-style question answering, the language 500

models can get contextual information of the sen- 501

tence. If query facts, the results of BERT-based 502

models will be limited by lacking contexts. The 503

experiments show our methods outperform in this 504

context-free situation. 505

In Table 4, We compare the entailment graphs 506

trained on different corpora. The results show that 507

the knowledge graphs outperform in mean average 508

precision at one but the recall is low. The entail- 509

ment graphs can be used to predict latent facts and 510

improve the recall and F-score. The entailment 511

graphs on NewsSpike outperform other corpora 512

in F-score. Compared with the Wikipedia corpus, 513

the predicates in the NewsSpike have stronger rele- 514

vance. The articles in the NewsSpike corpus mainly 515

describe news events by multiple authors so it is 516

efficient to extract entailment between predicates. 517

It may explain why EGns performs better. It also 518

means we don’t need to train knowledge graphs and 519

entailment graphs on the same corpus, we could use 520

the pre-trained entailment graphs as a plug-in. We 521

also construct the entailment graphs by different 522

score functions (BInc and CNCE), the results are 523

shown in appendix B. Javad Hosseini et al. (2018) 524

propose global scores and local scores for entail- 525

ment graphs. To compare the entailment graph 526

based on different scores, we train the entailment 527

graphs on both local and global scores. Table 6 in 528

appendix B shows the result of different scores. 529

To analyze the recall changes with different 530

entailment graph sizes, we run experiments on 531

Google-RE with different sizes of entailment 532

graphs. The result is shown in Figure 3. The re- 533

call increase with the entailment graph size. When 534
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Corpus Relation
KB LM LM on retrieved doc Our Method

Freq RE BERT-large RoBERTa DrQA BERT-ret KG KGret KG + EGns KGret + EGns

Google-RE

birth-place 4.6 13.8 16.1 - 48.6 43.5 19.9 20.1 27.7 31.5
birth-date 1.9 1.9 1.4 - 42.9 43.1 7.7 7.8 8.5 8.5

death-place 6.8 7.2 14.0 - 38.4 35.8 14.6 13.5 26.0 24.0
Total 4.4 7.6 10.5 4.8 43.3 40.8 14.0 13.8 20.7 21.3

T-REx Total 22.0 33.8 32.3 27.1 25.8 43.1 33.3 32.0 39.0 37.7

Table 2: F-score for a frequency basline, a information extraction with entity linking (RE), BERT-large, RoBERTa.
the BERT-ret is BERT based on retrieved context. The knowledge graph (KG) is built on whole wikipedia corpus
and KGret means KG trained on retrieved documents. The entailment graph (EGns) is trained on NewsSpike.

BERT-large BERT-ret DrQA KG KG+EG
Hit @ 5 38.0 59.5 45.3 41.2 62.7

Table 3: Hit@5 in YAGO3-10 dataset.

P@1 R F
KG 58.8 8.5 14.0

KG+EGwiki 43.8 12.3 17.4
KG+EGns 41.7 15.0 20.7
KG+EGnc 42.6 14.6 19.6

Table 4: Results of different entailment graphs. This
table shows the mean average precision at one (P@1),
recall and F-score of Google-RE. The result shows the
average per number of relations in Google-RE. In this
table, EG means entailment graph and the subscripts wk,
ns and nc means the entailment graphs are trained on
Wikipedia, NewsSpike and NewsCrawl.

Figure 3: The recall changed with entailment graph size

the training corpus is small, the entailment graph 535

based on Wikipedia corpus performs better. But 536

with the entailment graph size gradually increasing, 537

the recall of entailment graphs based on NewsSpike 538

corpus will perform better. The Google-RE is ex- 539

tracted from Wikipedia, the EGwiki contains more 540

predicates for events in Wikipedia than EGns. With 541

the size of entailment graphs increasing, the EGns 542

will perform better because it contains more multi- 543

ple documents for the same event. 544

The errors analysis is shown in Table 5. We 545

manually analyze 100 queries. About 40% of them 546

are caused by graph parser and are cases where it 547

returns wrong relations from text. Most of them 548

are caused by non-standard sentences in Wikipedia 549

documents. For example, “Normand MacLeod (c. 550

1731 – 1796) was a British army officer, merchant, 551

and official of the British Indian Department.”, 552

the parser can’t extract fact (Normand MacLeod, 553

bear.in, 1731) from the sentence because the parser 554

can’t analyze the “(c. 1731 – 1796)”. 555

31% of the errors in the knowledge graph are due 556

to entity linking in evaluation, it may be caused by 557

ambiguity in Google-RE. For example, a sentence 558

in Googe-RE is “Jason then continued to Sparta, 559

where he died and was buried” and the fact in 560

Google-RE is (Jason, death-place, Sparta). But in 561

evaluation, the “Jason” is linked to “Jason Hu”, 562

who is a modern politician. 563

About 11% of errors are caused by the mismatch 564

between train corpus and test corpus, e.g. fact in 565

Google-RE is (Arthur Kinnaird, bear.in, Kensing- 566

ton), the output of the object from KG is “London”, 567

both of them should be correct. 568

The errors in the entailment graph are 569

mainly caused by the ambiguity of some high- 570

frequency predicates. For example, predicate 571

(bear.2,bear.in.2) entails predicate (from.1,from.2). 572

These predicates, like (from.1,from.2), are com- 573

mon in sentences. If the relation of the query 574

contains these predicates, the knowledge graph 575

7



Error-Type Example Describe Rate

semantic parsing error “Normand MacLeod (c. 1731 – 1796) was a British army officer,
merchant, and official of the British Indian Department.”

parser extracts wrong relations
because of not standard sentences structure

40%

Entity linking errors “Jason” is mapped to entity “Jason Hu”,
which should be “Jason Mraz”

It is caused by aidalight wrong outputs 31%

Mismatch Truth in test dataset: Kensington
Knowledge graph output: London

It is casued by mismatch between
training dataset and test dataset

11%

Table 5: The errors in knowledge graph

will return wrong answers easily. When we use576

the (from.1,from.2) for querying in the knowledge577

graph, it will return false results because the predi-578

cate has too many meanings. e.g. In the sentence579

“Shane Doan is from Arizona” may mean “Shane580

comes from Arizona”, not the birth-place. In our ex-581

periment, some entailment graphs errors are caused582

by the content of documents. For example, there583

are many documents in Wikipedia like “Steve Jobs584

was born on February 24, 1955, in California, ...,585

Jobs died at his Palo Alto, California home around586

3 p.m.”. From these sentences, we may extract facts587

like (Steve Jobs, (bear.1,bear.in.2), California) and588

(Steve Jobs, (die.1,die.in.2), California). These589

predicates link the same entities. It is likely to in-590

correctly give the entailment relationship between591

the two predicates.592

6 Conclusion593

This paper has demonstrated a method to construct594

a large knowledge graph by semantic network and595

use the entailment graph to enhance the knowl-596

edge graph. Parsing technology can extract rela-597

tions from unstructured text to build open-domain598

knowledge graphs in an efficient method. Tradi-599

tional knowledge graph based on semantic parsing600

is limited, they can not infer a result if there is no601

matching relations in the training corpus. We use602

the entailment graph to extract more latent rela-603

tions between entities. The entailment graphs dra-604

matically improve the recall and F-score in cloze-605

style question answering and outperform the BERT-606

large. When a query lacks context information, the607

enhanced knowledge graphs perform better than608

the methods based on retrieved documents, like609

BERT-ret and DrQA. In future work, we plan to610

test our method on more corpus sources, such as611

documents in tweets. The Wikipedia corpus has612

more actual events but some events in other sources613

are only discussed or not happened. It will be chal-614

lenging.615
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KGret KG + EGwk_binc KG + EGns_binc KG + EGnc_binc
local global local global local global

P@1 58.8 43.2 43.8 42.0 41.7 41.7 42.6
R 8.5 12.3 12.3 13.7 15.0 14.3 14.6
F 14.0 16.9 17.4 18.0 20.7 19.1 19.6

Table 6: knowledge graph combined with different en-
tailment graphs. global means the entailment graph is
based on global BInc score, local means the entaiment
graph with local BInc score.

A Results of different Entailment Graphs 776

To compare the entailment graph based on different 777

scores functions, we train the entailment graphs on 778

both local and global scores. Table 6 shows the 779

result of different scores. We aslo compare the en- 780

tailment graphs based on different score functions 781

(BInc and CNCE), the result is shown in Table 782

7. Our knowledge graphs outperform BERT-large, 783

BERT-ret, and DrQA in mean average precision 784

at one. The knowledge graph on retrieved docu- 785

ments reach higher precision than the knowledge 786

graph on the whole wiki corpus. However, the re- 787

call of knowledge graph is low. The results show 788

entailment graphs can predict latent facts, these 789

latent facts enhance the raw knowledge graph by 790

adding missed edges. The entailment graphs dra- 791

matically improve the recall and F-score. The en- 792

tailment graphs on CCNE perform better than the 793

BInc score. The entailment graphs on NewsSpike 794

outperform other corpora in recall and F-score. 795

B Samples of predicates in entailment 796

graph 797

When query with “Place-of-Birth”, “Date- 798

of-Birth”, “Place-of-Death”, we choose 799

(bear.2,bear.in.2) and (die.1,die.in.2) as the target 800

predicates. When ranked by the BInc score, the top 801

five predicates in the entailment graphs are shown 802

in Table 8. 803
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P@1 R F

KG

KG 58.8 8.5 14.0
KG+EGwk_binc 43.8 12.3 17.4
KG+EGns_binc 41.7 15.0 20.7
KG+EGns_cnce 40.7 16.2 21.0
KG+EGnc_binc 42.6 14.6 19.6
KG+EGnc_cnce 44.9 15.1 20.7

KGret

KGret 68.3 7.9 13.8
KGret+EGwk_binc 46.2 13.4 17.1
KGret+EGns_binc 53.0 15.3 21.3
KGret+EGns_cnce 56.0 13.1 21.6
KGret+EGnc_binc 47.2 11.9 16.2
KGret+EGnc_cnce 53.7 11.6 17.2

LM
BERT-large 10.5 - 10.5
BERT-ret 40.8 - 40.8

DrQA 43.3 - 43.3

Table 7: Results of different entailment graphs on Google-RE. This table shows the mean average precision at one
(P@1), recall and F-score of Google-RE. The result shows the average per number of relations in Google-RE. In
this table, EG means entailment graph and the subscripts wk, ns and nc means the entailment graphs are trained on
Wikipedia, NewsSpike amd NewsCrawl corpus. Subscripts binc amd cnce means the entailment graphs are trained
on BInc score and CNCE.

Target
Predicates Types Top 5 predicate in EG,

ranked by global score
Top 5 predicate in EG,
ranked by local score

(bear.2,bear.in.2) person-location

(bear.2,bear.in.2)
(bear.1,bear.in.2)

(in.1,in.2)
(be.1,be.in.2)

(live.1,live.in.2)

(bear.2,bear.in.2)
(native.of.1,native.of.2)

(grow.1,grow.in.2)
(in.1,in.2)

(raise.2,raise.in.2)

(bear.2,bear.in.2) person-time

(bear.2,bear.in.2)
(name.1,name.in.2)

(address.1,address.in.2)
(have.1,have.in.2)

(in.1,in.2)

(bear.2,bear.in.2)
(give.in.2,give.to.2)

(in.1,in.2)
(be.1,be.in.2)

(live.1,live.in.2)

(die.1,die.in.2) person-location

(die.1,die.in.2)
(die.1,die.at.home.in.2)
(dead.found.1,dead.in.2)

(die.1,die.at.2)
(dead.1,dead.in.2)

(die.1,die.in.2)
(kill.2,kill.in.2)

(in.1,in.2)
(dead.1,dead.in.2)

(dead.found.1,dead.in.2)

Table 8: Top 5 predicates in entailment graphs

11


