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Abstract

Argument mining (AM) involves extracting ar-
gument components and predicting relations
between them to create argumentative graphs,
which are essential for applications requiring ar-
gumentative comprehension. To automatically
provide high-quality graphs, previous works
require a large amount of human-annotated
training samples to train AM models. Instead,
we leverage a large language model (LLM) to
assign pseudo-labels to training samples for
reducing reliance on human-annotated train-
ing data. However, the training data weakly-
labeled by the LLM are too noisy to develop
an AM model with reliable performance. In
this paper, to improve the model performance,
we propose a center-based component detector
that refines the boundaries of the detected com-
ponents and a relation denoiser to deal with
noise present in the pseudo-labels when classi-
fying relations between detected components.
Experimentally, our AM model improves the
boundary detection obtained from the LLM by
up to 16% in terms of IoUss and of the rela-
tion classification obtained from the LLM by
up to 12% in terms of macro-F1 score. Our
AM model achieves new state-of-the-art perfor-
mance in weakly-supervised AM, showing up
to a 6% improvement over the state-of-the-art
component detector and up to a 7% improve-
ment over the state-of-the-art relation classi-
fier. Additionally, our model uses less than
20% of human-annotated data to match the per-
formance of state-of-the-art fully-supervised
AM models.

1 Introduction

Argumentative graphs extracted from argumenta-
tive text can enhance users’ understanding of the
text (Palau and Moens, 2009; Lawrence and Reed,
2019). Consequently, argument mining (AM) tech-
niques have widespread applications in various do-
mains, including patient-generated content analy-
sis (Mayer et al., 2020; Stylianou and Vlahavas,

2021; Yeginbergenova and Agerri, 2023), legal rea-
soning (Wyner et al., 2010; Poudyal et al., 2020),
and opinion mining (Niculae et al., 2017).

Building an argumentative graph requires two
models: (1) a component detector to identify and
label the components of an argument, and (2) re-
lation classifier that identifies argument relations
between the found argument components and de-
termines their head or tail function. Previous work
has considered AM for different domains such as
clinical trials (Mayer et al., 2020) and electronic
rulemaking (Niculae et al., 2017). Moreover, it
considered data on varying granularity such as doc-
uments (Stab and Gurevych, 2017; Poudyal et al.,
2020) and paragraphs (Niculae et al., 2017; Mayer
et al., 2020). Some works adopted plain text as
input (Mayer et al., 2020; Stylianou and Vlahavas,
2021), while others (Niculae et al., 2017; Bao et al.,
2021; Galassi et al., 2023) use argument compo-
nents as input. In this paper, we follow the ap-
proach of predicting argumentative graphs from
the plain text of a paragraph.

The state-of-the-art AM model for this line of
work combines a BIO sequence tagger! (which
detects argument components) and a text classi-
fier (which classifies relations between compo-
nents) (Mayer et al., 2020). However, this approach
has two drawbacks. First, the BIO sequence tagger
frequently mislabels B-tokens as I-tokens, leading
to detection errors for the boundaries of argument
components. We address this problem by design-
ing a center-based argument detector that assigns
probabilistic labels (as opposed to hard labels). Sec-
ond, training a argument relation classifier often
requires access to significant quantities of human
annotated data. Unfortunately, using weak labels
provided by an LLM are too noisy to solely rely on
when training the relation classifier. Therefore, we
propose a relation denoiser that further improves

'The BIO tagger assigns Beginning, Inside or Outside
labels to the tokens (i.e., sub-words) of a sequence.



the relation classification obtained from the LLM.
Specially, the relation denoiser dynamically adjusts
the contributions between two weakly labeled train-
ing sets, one obtained by an LLM annotation and
one by a model fine-tuned on the golden-annotated
benchmark development data (Zhu et al., 2023).
As a result, the combination of the boundary re-
finement of argument components and the relation
denoising yields a weakly supervised approach that
matches the performance of fully supervised AM.
We evaluate the proposed methods on four stan-
dard, publicly available AM datasets (AbstRCT-
neoplasm, AbstRCT-glaucoma, AbstRCT-mixied,
and CDCP) (Niculae et al., 2017; Mayer et al.,
2020; Bao et al., 2021; Galassi et al., 2023). Our
contributions are the following.

* A novel weakly supervised AM model that
matches state-of-the-art fully-supervised AM
using under 20% human-annotated data.

* The novel center-based component detector
refines argument components’ boundaries by
using soft probabilistic BIO labels rather than
hard labels.

* The relation denoiser improves the perfor-
mance of argument relation classification by
blending two types of weakly labeled training
data.

2 Related Work

Stab and Gurevych (2017) propose a feature-based
Integer Linear Programming model to jointly pre-
dict extracted argument components’ labels and
the relations between them in persuasive essays
and introduces a constraint unique to the persua-
sive essays dataset: the number of parents of each
claim does not exceed one. Stab and Gurevych
(2017) and Eger et al. (2017) design an end-to-end
AM model to extract argumentative graphs in the
persuasive essays dataset. However, Mayer et al.
(2020) and Stylianou and Vlahavas (2021) point out
that the TreeLSTM-based models used do not per-
form well on long texts, necessitating the imposing
of distance constraints. The above models jointly
learn argument component and argument relation
identification and impose additional constraints on
the shape of the argumentative graph, which we re-
strain from in our work. ResAttARG (Galassi et al.,
2023) employs a multi-objective residual network
to identify the labels of argument components and

the argument relations between them assuming that
both tasks rely on similar features, an assumption
which might not always be correct.

As a pipeline model, Mayer et al. (2020) lever-
age transformer-based language models with a
RNN to identify argument components from text,
and a classifier predicts relations between compo-
nents. This model is a baseline in our experiments.
TransforMed (Stylianou and Vlahavas, 2021) is
also a combination of a sequence tagger and a
text classifier, but it implements a domain-specific
mechanism for extracting external medical knowl-
edge, so we exclude it for fair comparison.

Although fully supervised AM models have been
proposed, expensive manual annotation remains
a challenge (Miller et al., 2019; Iskender et al.,
2021). The semi-supervised AM model of Haber-
nal and Gurevych (2015) assigns pseudo-labels to
unlabeled data by determining the similarity be-
tween labeled data points and unlabeled samples,
but does not focus on refining argument component
boundaries neither on denoising the weak labels,
as we propose.

3 Method

Fig. 1 shows the overall architecture of the pro-
posed framework. Firstly, our novel center-based
component detector refines the boundaries of the
argument components (see 3.1). Secondly, the re-
lation denoiser blends two weakly labeled training
sets to improve accuracy of classifying the relations
between the detected arguments(see 3.2).

3.1 Center-based Component Detector

Given N sentences of the text, the LLM generates
weakly labeled argument components where the
kp, sentence with m words is denoted as X, =
{k1, -+, Tkm}. Fig. 2 shows the working prin-
ciple of the center-based component detector. We
utilize a Gaussian Kernel to generate a mask over
the sentence. The peaks of the mask are the center
points of argument components. Similarly, we gen-
erate a mask for argument component’s boundaries.
We then classify the found argument components
into pre-defined argumentative labels.

More specifically, let Zy, .r; be the argument
component’s left boundary index and Ty, ;;gn: be
its right boundary index in the input text (ob-
tained by the LLLM). The coordinate of the center
point of this argument component i Ty, center =

Tk te fo--Th ri _
—hleftokrishl and we round-down the Ty center
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Figure 1: The overall architecture of our proposed framework. First, a LLM identifies argument components in
text (where "AC" refers to the argument components). The center-based component detector then refines these
boundaries to provide better component detection. Next, a LLM weakly labels pairs of argument components to
provide weakly labeled argument relation identification data. The relation denoiser enhances the performance of the
relation classifier by combining two weakly labeled training sets: LLLM annotation and model annotation from the
relation classifier trained on the gold-standard benchmark development set (the latter model is called "VM").
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BERT (Beltagy et al., 2019) as text encoder.
After sub-word tokenization, the input sentence
composed of m words is represented with d to-
kens, x; = {2}, - ,2} 4} The mask vec-
tor of the argument components’ center points
is g = {951, 94} the mask vector of
the argument 7componer71ts’ boundaries is s =
{8%.1:" " + Sk.4)> and the argumentative label vec-
toris cg = {c} 1, , ¢, 4} We encode the in-
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Figure 2: The figure shows the working principle of the
center-based component detector. We locate argument
components based on the peaks of the mask of center
points. Similarly, we determine the boundaries of the
argument components. Next, we segment the argument
components from the text based on the predicted masks
of center points and boundaries. After assigning argu-
mentative labels to the detected components, we obtain

put vector, and linear layers predict the mask of
the argument components’ center points é’ =
{9%.1> "+ 9p.4)> the mask of the argument compo-
nents’ boundaries s/, = {815+ 8%.q)> and the
argumentative labels ¢/, = {€h1r G gl Be-
cause tokenization of the encoder could distort the
shape of masks, it becomes challenging to extract
peaks from the predictions. Therefore, following
(Wang et al., 2020), we first generate an ignore
mask and then design a masked MSE loss function
to learn the model to predict the label of a word’s
first token.

The ignore mask ig’ is created by setting the first

the segmented argument components with their corre-
sponding labels.

token in a word to 1 and all its remaining tokens
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d
1 ~ 2.
oo = g 2o 20 @ = | )

N d
1 A ,
Loa = 75 > [(S/k,u - Sk,u)zigk,u'] ;@)



N d

1 “ .
L= 7 Z Z [Ck,u log(Ck,u)ng,u, )

k=1u=1

We train three sub-models separately on the data
weakly labeled by the LLM with Continuous Fine-
Tuning (CFT) (Zhu et al., 2023). CFT first fine-
tunes the model with the weakly annotated training
data and then further fine-tunes the model with the
golden-annotated benchmark development set.

During inference, we identify the argument com-
ponents’ center points and boundaries based on the
peaks of their predicted masks. Finally, we pre-
dict the argumentative labels of found argument
components.>

3.2 Relation Denoiser

We build the set of M argument component pairs.
The LLM generates the weak relation labels for
each pair (r pre-defined argument relation labels).
The weak labels produced by the LLM are too noisy
to rely on solely for training the relation classifier.
Therefore, we create an additional weakly-labeled
dataset by training the relation classifier using the
small golden-annotated benchmark development
set and using it to weakly annotate the training data.
We apply the fusion mechanism to dynamically
blend the weight assigned to each weakly labeled
dataset.

The weak labels of the LLM annotation and of
the model annotation - the latter trained on golden-
annotated benchmark development data - are de-
noted as label vectors y"™ € RM and y¢ € RM,
respectively. We utilize Sci-BERT as our encoder
and employ a linear layer as the classifier. The
logits of the relation classifier are represented by
the vector ¥. The fusion mechanism dynamically
controls the contributions of the two weakly la-
beled training data and its workflow is shown in
Algorithm 1. Line 4 in the algorithm states the pre-
diction y”. To calculate the overlapping labels of
two vectors, we define a element-wise comparison
function #(.), i.e., if two scalars are the same, the
function outputs 1; otherwise 0. Line 5 represents
the overlapping labels between y*¢ and y*"™, and
line 6 the overlapping labels between y““ and 7.
Line 7 states the logical conjunction between two
one-hot vectors. We obtain the score 7 in line 8.

2If the detector predicts the "None" label for a given com-
ponent, that component is considered as non-argumentative.

Algorithm 1 Algorithm for Fusion Mechanism

1: Input: Logits § € RM*? Label vectors y'™,
yY¢; Fusion confidence 7'; Maximum Epochs
E; Model Parameters ®; Learning rate n

2:
3: while ep < E do
4: P € RM < argmax(o(y))
5 hom ¢ RM «— H(yvc7 yllm)
6 homr e RM « H(yve, g7)
7 h™™ ¢ RM + ho™ o homp
M
5 T LM (hrm)
9:
10: if 7 < T then
d N
L: L=—g13 Y0 he™ S0 [yyS og (i )]
12: else
13: A & Zf‘%(h‘;mj)
14: L=—35 20 > i1 1AW} log(9i,5)]
+(1 = N[yl log(9:.4)]}
15: end if
16: ep=-ep+1

17: ® =0 —nVeLl(®)
18: end while
19: Output: ©

During training, in the early stages (line 10, 11),
we treat the overlapping labels of the two weakly
annotated data as the correct labels to train a re-
lation classifier. The relation classifier is initially
trained on these labels using a masking tensor h™”
to ignore irrelevant labels. Once the relation classi-
fier achieves a high score 7 on the assumed correct
labels, we allow the relation classifier to adjust the
fusion parameter () for the two weakly labeled
training data. A and 1 — A are the contributions of
two weakly labeled datasets, and the A is dynami-
cally updated in the algorithm. At inference time,
we use the trained relation classifier to provide pre-
dictions.

4 Experiments

In this section, we evaluate our AM model using
four AM datasets, perform an ablation study, and
conduct an in-depth analysis of the proposed meth-
ods.

4.1 Evaluation Datasets

AbstRCT is divided into three datasets based on
disease category: neoplasm, glaucoma, and mixed
(Mayer et al., 2020) The neoplasm dataset con-
tains 350 documents for training, 50 for develop-



ment, and 100 for testing. The neoplasm train
set is utilized as the training set for the glaucoma
and mixed datasets, each comprising 100 instances
for testing. The argument component identifica-
tion labels for the AbstRCT dataset are "Premise"
and "Claim" and argument relation identification
labels are "Support", "Attack" and "Not-related".
The CDCP dataset includes 731 user comments
about consumer debt collection practices from an
eRulemaking website, with 581 examples for train-
ing and 150 for testing. We selected 100 samples
from the training set for development. The argu-
ment component identification labels for the CDCP
dataset are "Value", "Policy", "Testimony", "Fact"
and "Reference" and the processed argument re-
lation identification labels are "Related" and and
"Not-related" (following (Bao et al., 2021; Wei
et al., 2024)).

4.2 Metrics and Parameter Setting

We evaluate the identified argument components
with the IoU75 (Wei et al., 2023; Guan et al., 2023)
metric and at the token-level by the macro-averaged
F1 (F1) and micro-average F1 (indicated as f1 in
the Tables). Following (Liu et al., 2020; Law and
Deng, 2018), we set the IoU threshold as 0.75. The
IoU measures the normalized overlap between the
tokens of a ground truth component and the tokens
of the prediction of that component with maximum
overlap. Argument relations are evaluated with the
macro-average F1 (F1) and micro-average F1 (f1)
(3). F1 scores and their variance are computed with
5 different seeds. All models are trained on an
NVIDIA GeForce RTX 3090 GPU. The AdamW
optimizer (Loshchilov and Hutter, 2019) has a
learning scheduler initialized at 2 x 107> and lin-
early decreased to 0. Hyperparameters 71" and ( are
selected by using grid search on the development
set. The batch size is set to 8.

4.3 Baselines

All weakly supervised AM baselines utilize the
weakly labeled AM datasets annotated by the
ChatGPT (using the same prompt defined in
Section A.1) and then are further fine-tuned on
the golden-annotated benchmark development set.
Fully supervised baselines utilize the golden-
annotated training set. All weakly-supervised com-
ponent detection baselines and relation classifi-
cation baselines leverage the Continuous Fine-
Tuning (CFT) technique, i.e., further fine-tune

baselines on golden-standard benchmark develop-
ment sets, for fair comparisons.

BioBERT,, (Mayer et al, 2020) uses
BioBERT (Lee et al., 2020) as text encoder
and subsequently applies a linear layer to predict
token-level labels for argument component
identification.

SciBERT y,p (Mayer et al., 2020) leverages SciB-
ERT as text encoder and then applies a linear layer
for argument component identification.

BioBERT gyt (Mayer et al., 2020) encodes text
using BioBERT, followed by a GRU network. A
Conditional Random Field (CRF) layer decodes
the outputs from the GRU network into argument
components.

SciBERT gpy.crf (Mayer et al., 2020) replaces the
encoder of the BioBERT-GRU-CRF by SciBERT
and then predicts argument components from tex-
tual inputs.

ChatGPT addresses both argument component
identification and argument relation identification
tasks through in-context learning.

SciBERT ¢ (Mayer et al., 2020) uses the SciB-
ERT model to encode pairwise argument compo-
nents, which constitute the outputs of the SCIBERT-
GRU-CRF model. Subsequently, a linear layer
decodes the outputs into argument relations.
RoBERTag, s (Mayer et al., 2020) replaces the
SciBERT-Senf model’s encoder by a RoOBERTa
model to predict argument relations.

SNet;q, inspired by (Zeng et al., 2019), conducts
the joint-learning over two weakly labeled data
where the contributions of the two weakly labeled
data are equal, i.e., A is fixed and A = 0.5.

4.4 Results

Tab. 1 and Tab. 2 display the results for the argu-
ment component identification and argument rela-
tion identification tasks, respectively. Each table
shows the model performance in two supervision
settings: fully-supervised and weakly-supervised,
across four datasets. To facilitate readability, we ab-
breviate the names of the four datasets as "Neo" for
AbstRCT-neoplasm, "Gla" for AbstRCT-glaucoma,
"Mix" for AbstRCT-mixed, and "CDCP" for CDCP.
Upon analyzing the tables, we observe that:

(1) In Tab 1, our center-based component detec-
tor outperforms all baseline models on four datasets
in both fully-supervised and weakly-supervised
modes. In the fully-supervised setting, when com-
pared with the state-of-the-art model SciBERT-



Model Neoplasm Glaucoma Mixed CDCP
odels
f1 F1 IoU7s| f1 F1 IoU7s| £l F1 IoU7s| f1 F1 IoU7s
Fully Supervised ACI
BioBERT 89.10 84.95 79.03] 91.04 89.71 84.15| 90.17 87.31 82.17| 74.01 5243 76.16
SciBERT 1p 89.48 85.74 81.22| 90.12 8941 83.53 89.09 86.21 80.02| 75.14 55.80 80.38
BioBERT gy o1t 89.38 86.15 80.34| 9197 9056 84.86/ 91.64 8897 82.98| 73.07 51.67 75.07
SciBERT gyt 89.63 86.77 8170 91.03 89.62 83.93] 89.86 8698 80.26] 75.28 55.95 80.89
90.77 88.00 85.07| 92.15 90.83 88.83| 91.88 89.61 85.33| 75.03 5476 84.09
Ours(BiOBERTm]p) +0.22 +0.34 +0.51 +0.16 +0.27 +0.55 +0.12 +0.20 +0.51 +0.37 +0.45 +0.69
90.83 88.43 84.80] 9195 90.66 89.06] 91.00 88.58 84.58| 76.58 56.64 83.63
Ours(SdBERTm]p) +0.31 +0.37 +0.53 +0.22 +0.24 +0.40 +0.11 +0.17 +0.47 +0.42 +0.47 +0.67
Weak ACI labels
ChatGPT 69.56 69.95 64.49| 76.72 76.63 71.10] 68.12 69.01 68.46| 5493 4494 72.64
Weakly Supervised ACI
BioBERT,;, 87.03 83.83 73.33] 90.26 88.60 82.10) 88.71 8598 76.56| 68.44 51.51 69.69
SciBERT 11p 87.84 68.45 7357 89.83 88.04 81.63] 8894 86.21 T77.58] 6592 56.32 66.92
BioBERT gyt 88.57 85.67 74.63] 90.35 89.04 82.54] 8920 86.69 77.78| 6897 5228 73.03
SciBERT gyt 88.16 8530 73.15| 90.04 88.28 79.84| 89.03 86.58 75.23| 70.04 59.33 77.26
89.13 86.01 80.29| 91.58 89.56 84.75| 89.74 87.02 81.88] 71.20 60.49 80.26
OUrS®BERTwy) | o33 yo4r  oss | +oo 1035 4047 4018 4023 4032 £051 1063 4087
88.91 8594 79.56 90.81 89.75 85.31| 89.25 87.17 82.21| 71.60 60.55 79.77
Ours(SCiBERT'“]p) +0.29 +0.35 +0.46 +0.33 +0.37 +0.51 +0.21 +0.27 +0.43 +0.44 +0.59 +0.79

Table 1: Results in terms of micro-averaged F1 (f1), macro-average F1 (F1), and IoUys for the supervised and
weakly-supervised argument component identification (ACI) task obtained on four datasets.

GRU-CREF, our approach achieves improvements
of 3.10, 5.13, 2.35, and 4.32 percentage points in
ToU75 scores on Neo, Gla, Mix, and CDCP datasets,
respectively. In the weakly-supervised setting, our
detector promote the IoU7s scores by 6.41, 5.53,
6.98, and 2.51 percentage points on Neo, Gla, Mix,
and CDCP datasets, respectively. The results in-
dicate a good refinement of the argument compo-
nents’ boundaries.

Models | Neo | Gla | Mix | cpcp
Fully Supervised ARI
SCiBERTwor | 60.78 | 5621 | 61.88 | 5521
ROBERTa,¢ | 61.19 | 55.13 | 60.23 | 54.72
Weak ARI labels
ChatGPT | 4429 | 4716 | 4676 | 5195
Weakly Supervised ARI
SCiBERT.r | 48.85 | 5223 | 4952 | 52.62
RoBERTau | 4923 | 5173 | 5023 | 52.17
SNetj 4920 | 53.59 | 54.06 | 53.52
Oursammmny | 5075 | 5755 | 3819 | 5495

b +1.86 +1.15 +1.58 +0.78

Table 2: Results in terms of macro-F1 for supervised
and weakly-supervised argument relation identifica-
tion (ARI) obtained on four datasets.

(2) In Tab. 2, our relation denoiser outperforms
all baseline relation classifier on four datasets in
the weakly-supervised setting.> Compared with the
state-of-the-art model, Denoiserjy, our approach
achieves improvements of 7.55, 3.96, 4.13, and
2.33 percentage points in macro-F1 scores on Neo,
Gla, Mix, and CDCP datasets, respectively.

(3) Our weakly-supervised AM model achieves
performance very close to those of the previous
fully supervised AM model. In the argument com-
ponent identification task (Tab. 1), the evaluation
results of our detector (in the weakly-supervised
setting) are only 1.41, —0.45, 0.77, and 0.63 per-
centage points less than the fully supervised state-
of-the-art model in terms of IoU75 on the Neo, Gla,
Mix, and CDCP datasets, respectively. For the argu-
ment relation identification task (Tab. 2), the fully-
supervised state-of-the-art model outperforms our
relation denoiser (in the weakly-supervised setting)
by only 5.59, —0.94, 5.01, and 0.26 percentage
points in terms of macro-F1. on the Neo, Gla, Mix,
and CDCP datasets, respectively. Moreover, our
weakly-supervised AM model uses only 12.5%,
12.5%, 12.5% and 17.1% of the human-annotated

3Errors in the component detectors propagate to the rela-
tion classifiers.



samples in the Neo, Gla, Mix, and CDCP datasets,
respectively. These numbers reflect the sizes of the
development sets of these benchmark datasets.

Models | Neo | Gla | Mix | cDCP
Fully Supervised ARI
SCiBERTeor | 9133 | 9173 | 91.66 | 47.13
RoBERTaww | 92.65 | 92.17 | 92.63 | 9457
Weak ARI labels
ChatGPT | 89.69 | 89.46 | 88.53 | 9471
Weakly Supervised ARI
SCiBERTeor | 9232 | 90.71 | 90.70 | 94.47
ROBERTass | 92.14 | 90.12 | 90.46 | 94.76
SNetj 92.17 | 91.13 | 91.16 | 94.22
Ourseperrg, | 91.10 | 91.87 | 9195 | 97.08

Table 3: Micro-F1 scores for supervised and weakly-
supervised ARI tasks on four datasets.

Models | Neo | Gla | Mix | cDCP
Weakly-supervised ACI

Ours 80.29 | 84.75 | 81.88 | 80.26

- CoD (center) | 79.57 | 84.32 | 81.38 79.56

- CoD 73.33 | 81.63 | 77.58 | 66.92
Weakly-supervised ARI

Ours 56.75 | 57.55 | 58.19 | 54.95

- FM (LLM) 5291 | 51.32 | 51.81 52.78

-FM (VO) 44.83 | 47.23 | 46.47 | 51.95

Table 4: Ablation results for weakly-supervised AM
obtained on four datasets. “FM (LLM)” is the relation
denoiser with only the LLM branch. “- FM (VC)” rep-
resents the relation denoiser with only the VC branch.
We represent the center-based component detector as
the “CoD”. “CoD (center)” is the CoD only with center-
point branch. "ACI" and "ARI" stand for the argument
component identification task and argument relation
identification task, respectively.

4.5 Ablation Study

This section studies how the center-based compo-
nent detector and relation denoiser affect model
performance, respectively (results are in Tab. 4).
(1) When not employing our center-based com-
ponent detector and instead using the previous
method (Mayer et al., 2020; Stylianou and Vla-
havas, 2021; Yeginbergenova and Agerri, 2023),
the IoU of the model experiences a notable drop by
5.20, 4.43, 4.30, and 7.91 percentage points on the
Neo, Gla, Mix, and CDCP datasets, respectively.

This result indicates that our center-based compo-
nent detector effectively contributes to improving
argument boundary detection. To study the effec-
tiveness of the center-point branch in our detector,
we only use the predicted boundary masks to ex-
tract arguments. The performance drops across the
four datasets ranges from 0.43 ~ 0.72 in term of
the IoU75 score.

(2) For the weakly-supervised argument relation
identification task, the removal of the LLM branch
or VC branch in the fusion mechanism (FM) leads
up to 6 and 12 points performance reduction in the
macro-F1 scores across all datasets, respectively.
The mechanism learns to blend the two branches,
making them complementary to achieve better re-
sults on the argument relation identification task.

4.6 Analysis

This section studies the properties of the proposed
models.
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(a) Working principle of the BIO sequence tagger.

Labels

[TTTTTTTITT] [T T 1Sequence

(b) Working principle of our detector.
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(d) The label distribu-
tion of our detector.
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(C) The label distribu-
tion of the BIO tagger.

Figure 3: (a) [llustrates the working principle of the BIO
tagger. (b) Shows the working principle of our detector
(c) Demonstrates the imbalanced label distribution ob-
tained by the BIO tagger. (d) Shows a better balanced
label distribution obtained by our method.

(1) First, we make comparison between our
novel center-based component detector and the
state-of-the-art detector in terms of the statistics
of the obtained BIO labels. Fig 3 shows how our
approach can obtain a better balanced label dis-
tributions compared to the BIO sequence tagger’s
label distribution. In order to demonstrate it, we
compute the imbalance ratio (Thabtah et al., 2020),
i.e., ratio of the number of samples in the major-
ity class to the number of samples in the minority
class, to measure the imbalance between argument



component B- and I-tokens on the AbstRCT-Neo
dataset. This needs a conversion of the masks of
center points and boundaries into B- and I-tokens.
We regard a token as an I-token if the value of the
predicted mask of center point in this position is
higher than its boundary’s value; otherwise this to-
ken is referred as a B-token. The imbalance ratio
of the BIO tagger is 22.38, and the ratio of our
detector is 1.189. Thus, the label distribution of
our detector is better balanced compared with the
distribution of the BIO tagger. To visualize the ar-
gumentative boundary detection of our detector, we
provide an example to make a comparison between
our detector and the state-of-the-art baseline, i.e.,
SciBERT gpy.orf (Mayer et al., 2020), in the Tab. 5
Our approach successfully segments the input into
two argument components, whereas the baseline
wrongly identifies the whole text as one argument.

Baseline: Although further studies may need to confirm
these data on a larger sample and to evaluate the side effect
of increased iris pigmentation on long-term follow-up, in
patients with pigmentary glaucoma, 0.005% latanoprost
taken once daily was well tolerated and more effective in
reducing IOP than 0.5% timolol taken twice daily.

Ours: Although further studies may need to confirm
these data on a larger sample and to evaluate the side effect
of increased iris pigmentation on long-term follow-up, in
patients with pigmentary glaucoma, 0.005% latanoprost
taken once daily was well tolerated and more effective in
reducing IOP than 0.5% timolol taken twice daily.

GT: Although further studies may need to confirm these
data on a larger sample and to evaluate the side effect
of increased iris pigmentation on long-term follow-up, in
patients with pigmentary glaucoma, 0.005% latanoprost
taken once daily was well tolerated and more effective in
reducing IOP than 0.5% timolol taken twice daily.

Table 5: The example shows the argumentative bound-
ary detection abilities of our method and the baseline.
Highlighted text with different color indicates different
argument components.

(2) Second, we explore the correspondences and
differences between predictions of the relation de-
noiser and the two weakly labeled data. Figure 4a
shows the changes of predictions from the labels
of LLM annotation to the predictions of our de-
noiser model. Figure 4b presents the changes of
predictions from the labels of VC annotation to the
predictions of our denoiser model. The flow from
correct pseudo label predictions to incorrect predic-
tions (red bars in both figures) helps us understand
if the denoising model introduces errors even when
the initial pseudo labels were correct. The flow
from incorrect pseudo label predictions to correct

predictions (blue bars in both figures) shows how
well the model improves the correctness of incor-
rect pseudo labels. In both figures we observe that
the flows of predictions from wrong to correct are
stronger than the flows from correct to wrong. This
shows our denoiser performs better by reducing
errors and label noise from pseudo labels assigned
by the LLM or VC annotation.

075 S 0075
B Correct — Wrong
I Wrong — Correct

B Correct — Wrong
I Wrong — Correct

Percentage
Percentage

Not-related “Support  Attack -0 0

Not-related Support ~ Attack

(a) Prediction changes of LLM annota{b) Prediction changes of VC annota-
tion and our denoiser. tion and our denoiser.

Figure 4: The figures illustrate the prediction changes
between the labels of weakly annotated resources (LLM
or VC) and after applying the relation denoiser.

5 Conclusion

In this paper, we propose a novel weakly-
supervised AM model to achieve performance com-
parable to fully-supervised AM models by leverag-
ing limited human-annotated data. We leverage a
LLM to provide weak labels for training samples of
the argument component identification task and the
argument relation identification task. Considering
that weak labels generated by the LLM are noisy,
we introduce two novel methods: a center-based
component detector and a relation denoiser, to re-
fine both the weak identification and weak label-
ing provided by the LLM. The center-based com-
ponent detector refines the argument components’
boundaries, and the relation denoiser reduces the
noise in weakly labeled argument relation identi-
fication data. Experimental results on four widely
used datasets indicate that our weakly supervised
AM framework achieves new state-of-the-art per-
formance in both AM tasks and significantly nar-
rows the gap with fully supervised models. We
believe our approach can be applied to other tasks,
such as medical image segmentation (Wang et al.,
2022) or nested named entity recognition (Lu et al.,
2022), that require accurate boundary detection or
face high annotation costs.



Limitation

The limitations of our paper are reflected as fol-
lows:

(1) Our models rely on the the weak labels provided
by a LLM. We assume that for detecting the argu-
mentative graph of a long document these labels
might be too noisy to start from (Poudyal et al.,
2020; Stab and Gurevych, 2017). In the future, we
plan to explore methods to enhance the LLM’s abil-
ity to provide effective weak labels for AM samples
when dealing with document-level argumentative
text.

(2) We only used few-shot in-context learning to
obtain weak labels. In future work, we will employ
more advanced ICL methods, such as CoT (Wei
et al., 2022), PS-CoT (Wang et al., 2023a), and
ToT (Yao et al., 2023), to obtain higher quality
weak labels.

Ethics Statement

The datasets utilized in this paper are publicly avail-
able, anonymized, and devoid of sensitive informa-
tion. An ethical concern arises from our depen-
dence on large language models to provide weak
labels for argument component and relation identifi-
cation. These models, trained on extensive corpora,
may potentially generate problematic or biased out-
puts.
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A Appendix

A.1 Prompt Construction

The prompt is constructed in three parts: the system
prompt, demonstration examples, and inputs.

(1) System Prompt The system prompts, de-
noted as psys, vary across different datasets. We
consider an AM task with a label space for the argu-
ment component identification sub-task consisting
of {"Claim", "Premise"}, and a label space for the
argument relation identification sub-task consisting
of {"Support", "Attack"}.

Argument Component Identification task de-
scription: You are an AM system for argument
detection. Find argument and classify them into,
Claim, or Premise. Below are several examples:
Argument Relation Identification task descrip-
tion: You are an AM system for argument rela-
tion classification. Classify relations between argu-
ments into, Support or Attack. Below are several
examples:

(2) Demonstration Prompts: Demonstration
prompts pgemo consists of n annotated samples:

{(pdemol ’ Qdem01)7 Tty (pdemona Qdemon)}a

where ggemo, represents the ground-truth label for
the iy, demonstration example. Both pgep,,0, and
Qdemo; Vvary across different tasks. Specifically,
in the argument component identification task,
Ddemo,; 18 plain text, while ggemo; consists of ex-
tracted argument components. Building on prior
research (Wang et al., 2023b), we employ " @ @" as
the text separator to differentiate between various
argument components within ggepmo,, as denoted
by:

QQAC! \ n@QACZ\ - -

where \n is the newline character. In argument
relation identification task, pgem,o, 18 the extracted
argument components and ggem,, 1S a pairwise ar-
gument relation. ggepmo, is referred to:

QQAC}@QQ < relation > QQAC? \n---

where < relation > represents the argument rela-
tion between AC} and AC?.

We select demonstration examples from a
golden-annotated benchmark development set. Re-
garding the criterion for example selection, we
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adhere to the methodology outlined in previous
work (Min et al., 2022) and choose demonstration
examples whose label space encompasses that of
the test set. To ensure similarity, we represent the
i-th demonstration example as the string <demo>;:

{\n; IHPUt: Pdemo; s \TL; OUtpuu ddemo; s \n}a

(3) Input: Input for LLMS p;yp.: are the con-
catenation of corresponding system prompt pys,
demonstration prompts Pgemo, and test se-
quence pyes¢- The input sequence is:

{Psys; <demo>1; ...; <demo>; Prest }-
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