
Under review as a conference paper at ICLR 2022

OFFLINE PRE-TRAINED MULTI-AGENT
DECISION TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning leverages static datasets to learn optimal policies
with no necessity to access the environment. This is desirable for multi-agent
systems due to the expensiveness of agents’ online interactions and the demand
for sample numbers. Yet, in multi-agent reinforcement learning (MARL), the
paradigm of offline pre-training with online fine-tuning has never been reported,
nor datasets or benchmarks for offline MARL research are available. In this paper,
we intend to investigate whether offline training is able to learn policy represen-
tations that elevate performance on downstream MARL tasks. We introduce the
first offline dataset based on StarCraftII with diverse quality levels and propose a
multi-agent decision transformer (MADT) for effective offline learning. MADT
integrates the powerful temporal representation learning ability of Transformer into
both offline and online multi-agent learning, which promotes generalisation across
agents and scenarios. The proposed method demonstrates superior performance
than the state-of-the-art algorithms in offline MARL. Furthermore, when applied
to online tasks, the pre-trained MADT largely improves sample efficiency, even
in zero-shot task transfer. To our best knowledge, this is the first work to demon-
strate the effectiveness of pre-trained models in terms of sample efficiency and
generalisability enhancement in MARL.

1 INRTODUCTION

Multi-Agent reinforcement learning (MARL) plays an essential role for solving complex decision-
making tasks by learning from the interaction data between machine or autonomous agents and
simulated physical environments. It typically applies to self-driving (Shalev-Shwartz et al., 2016),
traffic control (Bazzan, 2009), and recommendation system (Xian et al., 2019), and, to specifically
mention, surpasses human beings on some video games (Bellemare et al., 2013; Wang et al., 2020).
However, the experience-based policy learning scheme requires the algorithms with high sample
efficiency because of the limited computing resources and high cost resulting from the data collec-
tion (Haarnoja et al., 2018; Munos et al., 2016; Espeholt et al., 2019; 2018). Furthermore, even
in domains where the online environment is feasible, we might still prefer to utilize previously
collected data instead, for example, if the domain’s complex requires large datasets for effective
generalization. In addition, a policy trained on one scenario usually cannot perform well on another
even though under the same task. Therefore, a universal policy is critical for saving the training
time of general reinforcement learning. Offline RL (Levine et al., 2020) attracts more researchers
motivated by improving online reinforcement learning with offline datasets (Fu et al., 2020). Those
methods like CQL (Kumar et al., 2020), BEAR (Kumar et al., 2019), and BCQ (Fujimoto et al., 2019)
conventionally leverage the current off-policy RL algorithms, e.g., DQN (Mnih et al., 2015), with
provable constraints (Rashidinejad et al., 2021). They mainly focus on solving the overestimation of
Q values learned in offline datasets and the distribution shift between offline and online. However,
those constraints limit the performance with insufficiently offline dataset exploitation (Kumar et al.,
2019). Recently, the transformer shows its advantage of representing the sequential data for the
classification or prediction tasks. Most related to our work, Chen et al. (2021) replace the constrained
Q networks in conventional offline RL algorithms with causal transformer and demonstrate the
superiority comparing with baselines such as Behavior Cloning (BC) and state-of-the-art offline
algorithms in single-agent offline RL. Nevertheless, the overestimation problems emerge in the offline
multi-agent RL when one directly applies the sequential modeling method. We propose leveraging

1



Under review as a conference paper at ICLR 2022

Dataset

Online Env

Offline dataset

Trainer MADT

SOTA Policy/

Demonstration

Buffer

S
h

ared
 D

ata S
tru

ctu
re

Offline

Online
rollout

collect data

data

store data

load 

data

train

Figure 1: Overview of the pipeline for pre-training the general policy and fine-tuning it online.

the representation capability of the transformer and then load the pre-trained model as part of the
policy in the fine-tuning phase.

This paper proposes Multi-Agent Decision Transformers (MADT) for pre-training the general policy
on offline datasets, capable of generalizing onto other seen/unseen environments. Firstly, we collect
the offline datasets from the well-known, challenging MARL environment, StarCraft Multi-Agent
Challenge (SMAC) (Samvelyan et al., 2019), interacting with the state-of-the-art algorithm, multi-
agent PPO (Yu et al., 2021). Then we construct transformer variants for multiple agents with parameter
sharing or acing as a part. We give the paradigm of pre-training a model with the transformer and
fine-tuning it with MARL. We conclude the main contribution as follows:

• We propose a series of transformer variants for offline MARL via leveraging the sequential
modeling of the attention mechanism.

• We derive a framework with offline pretraining and online fine-tuning to improve sample
efficiency and generality across different scenarios.

• We are the first to apply the pre-trained model across different multi-agent scenarios to
validate the transferring ability. Experimental results show fast adaptation and superior
performance.

• We build a dataset with different skill-level covering all SMAC scenarios for benchmarking
progress in MARL pre-training.

2 PRELIMINARY

Multi-Agent Reinforcement Learning. For the Markov Game, which is a multi-agent extension
from the Markov Decision Process (MDP), there is a tuple representing the essential elements
< S,A, R, P, n, γ >, where S denotes the state space of n agents : S1 × S2 . . . Sn → S. Ai is the
action space of each agent i, P : Si × Ai → PD(Si) denotes the transition function emiting the
distribution over the state space and A is the joint action space, Ri : S × Ai → R is the reward
function of each agent and takes action following their policies π(a|s) ∈ Πi : S→ PD(A) from the
policy space Πi, where Πi denotes the policy space of agent i, a ∼ Ai, and s ∼ Si. Each agent aims
to maximize its long-term reward

∑
t γ

trt, where rti ∈ Ri denotes the reward of agent i in time t and
γ denotes the discount factor.

Attention-based Model. Attention-based model has shown its stable and strong representation
capability. The scale dot-production attention uses the self-attention mechanism demonstrated
in (Vaswani et al., 2017). Let Q ∈ Rtq×dq be the quries, K ∈ Rtk×dk be the keys, and V ∈ Rtv×dv
be the values, where t∗ are the element numbers of different inputs and d∗ are the corresponding
element dimensions. Normally, tk = tv and dq = dk. The outputs of self-attention are computed as:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (1)

where the scalar 1/
√
dk is used to prevent the softmax function into regions that has very small

gradients. Then we introduce the multi-head attention process as follows:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO (2)

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

2



Under review as a conference paper at ICLR 2022

The position-wise feed-forward network is another core module of the transformer. It consists of two
linear transformations with a ReLU activation in between. The dimensionality of inputs and outputs
is dmodel, and that of the feef forward layer is dff . Specially,

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

where W1 ∈ Rdmodel×dff and W2 ∈ Rdff×dmodelare the weights, and b1 ∈ Rdff and b2 ∈ Rdmodel
are the biases. Across different positions are the same linear transformations. Note that the position
encoding for leveraging the order of the sequence as follows:

PE(pos, 2i) = sin pos/100002i/dmodel

PE(pos, 2i+ 1) = cos pos/100002i/dmodel
(5)

3 METHODOLOGY

In this section, we demonstrate how the transformer is applied to our offline pre-training MARL
framework. Firstly, we introduce an offline MARL method, in which the transformer maps be-
tween the local observations and actions of each agent in the offline dataset via parameter sharing
sequentially. Then we leverage the hidden representation as the input of the multi-agent decision
transformer (MADT) to minimize the cross-entropy loss. Furthermore, we introduce how to integrate
the online MARL with MADT in constructing our whole framework to train a universal MARL
policy. To accelerate the online learning, we load the pre-trained model as a part of MARL algorithms
and learn the policy based on experience in the latest buffer stored from the online environment. To
train a universal MARL policy quickly adapting to other tasks, we bridge the gap between different
scenarios from observations, actions, and available actions, respectively. Figure 1 overviews our
method from the perspective of offline pre-training with supervised learning and online fine-tuning
with MARL algorithms.

3.1 MULTI-AGENT DECISION TRANSFORMER

Algorithm 1 shows the training process of Multi-Agent Decision Transformer (MADT), in which we
autoregressively encode the trajectories from the offline datasets in offline pre-trained MARL and train
the transformer-based network with supervised learning. We carefully reformulate the trajectories as
the inputs of the causal transformer different from those in the Decision Transformer (Chen et al.,
2021). Denote that we deprecate the reward-to-go and actions that are encoded with states together in
the single-agent DT. We will interpret the reason for this in the next section. Similar to the seq2seq
models, MADT is based on the autoregressive architecture with the reformulated sequential inputs
across timescale. The left part of Figure 2 shows the architecture. The causal transformer encodes the
agent i’s trajectory sequence τ ti at the time step t to a hidden representation hti = (h1, h2, . . . , hl)
with a dynamic mask. Given ht, the output at the time step t only based on the previous data then
consumes the previously emitted actions as additional inputs when predicting a new action.

Algorithm 1: MADT-Offline: Multi-Agent Decision Transformer

Input: Offline dataset D : {τi : 〈sti, oti, ati, vti , dti, rti〉Tt=1}ni=1, vti denotes the available action
Initialize θ for the Causal Transformer;
Initialize α as the learning rate, C as the context length, and n as the maximize agent number
for τ = {τ1, . . . , τi, . . . , τn} in D do

Chunk the trajectory into τi = {rti , sti, ati}t∈1:C as the ground truth samples, where C is the
context length, and mask the trajectory when dti is true
for τ ti = {τ1i . . . τ ti . . . τTi } in τi do

Mask illegal actions via P (aj |τi, â<j ; θ
′
) = 0 if vti is True

Predict the action ât = arg maxa P (a|τi, â<t; θ
′
)

Update θ with θ = arg max
θ′

1
C

∑C
j=1 P (aj) logP (âj |τi, â<j ; θ

′
)

end
end
return θ

Trajectories Reformulation as Input. We model the lowest granularity at each time step as a
modeling unit xt from the static offline dataset for the concise representation. MARL has many

3



Under review as a conference paper at ICLR 2022

Offline Datasets

N x

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

𝒂 𝒐 𝒂 𝒐

𝒂 𝒂

𝒕 − 𝟏 𝒕 𝒕 𝒕 + 𝟏

… …

𝒂𝒗𝒂𝒍
𝒕 − 𝟏

Actor Network

𝒐𝒂

Padded Agent Observation Embedding

Padded Agent Padded Action Embedding

𝒂𝒗𝒂𝒍

𝒕 𝒕 + 𝟏

Critic Network

𝒕𝒕 − 𝟏

𝒂

𝒂𝒗𝒂𝒍

𝒕

Actor Loss
e.g., PPO Loss

Critic Loss
e.g., Huber Loss

𝒔𝑨
𝒕𝒕 − 𝟏

𝒐

𝒂 𝑨

𝒔Local Observation

Agent’s Action

Global State

All Agents’ Actions

Causal Transformer

𝒕 + 𝟏

✖ n agent

𝒕

Figure 2: The detailed model structure for offline and online MADT.

elements such as 〈global_state, local_observation〉, different from the single agent. It
is reasonable for sequential modeling methods to model them in Markov Decision Process (MDP).
Therefore, we formulate the trajectory as follows:

τ i = (x1, . . . xt . . . , xT ) where xt = (st, o
i
t, a

i
t)

where sit denotes the global shared state, oit denotes the individual observation for agent i at time step
t, and ait denotes the action. We take xt as a token similar to the input of natural language processing.

Output Sequence Constructing. To bridge the gap between training with the whole context trajec-
tory and testing with only previous data, we mask the context data to autoregressively output in the
time step t with previous data in 〈1 . . . t− 1〉. Therefore, MADT predicts the sequential actions at
each time step using the decoder as follows:

y = at = arg max
a

pθ(a|τ, a1, . . . , at−1) (6)

where θ denotes the parameter of MADT and τ denotes the trajectory including the global state s,
local observation o before the time step t, pθ is the distribution over the legal action space under the
available action v.

Core Module Description. MADT differs from the transformers in conventional sequence modeling
tasks that take inputs with position encoding and decode the encoded hidden representation autore-
gressively. We use the masking mechanism with a lower triangular matrix to compute the attention:

Attention(Q,K,V) = softmax(
QKT

√
dk

+M)V (7)

where M is the mask matrix which ensures the input at the time step t can only correlate with the
input from 〈1, . . . , t− 1〉. We employ the Cross-entropy (CE) as the total sequential prediction loss
and utilize the available action v to ensure agents taking those illegal actions with probability zero.
The CE loss can be represented as follows:

LCE(θ) =
1

C

C∑
t=1

P (at) logP (ât|τt, â<t; θ), where C is the context length (8)

where at is the ground truth action, τt includes {s1:t, o1:t}. â denotes the output of MADT. The
cross-entropy loss shown above aims to minimize the distribution distance between the prediction
and the ground truth.

3.2 MULTI-AGENT DECISION TRANSFORMER WITH PPO

The method above can fit the data distribution well resulting from the sequential modeling capacity
of the transformer. But it fails to work well when pre-training on the offline datasets and improving
continually by interacting with the online environment. The reason originates from the mismatch
between the objective in MADT and ignore the value of each action. When the pre-trained model

4



Under review as a conference paper at ICLR 2022

is loaded to interact with the online environment, the buffer will only collect actions conforming to
the distributions of the offline datasets rather than those corresponding to high reward at this state.
That means the pre-trained policy is regarded as good once the selected action is identical to that in
the dataset, even though it leads to a low reward. Therefore, we need to design another paradigm,
MADT-PPO, to integrate RL and supervised learning for fine-tuning continually in Algorithm 2.
Figure 2 shows the pre-training and fine-tuning framework. A direct method is to share the pre-trained
model across each agent and implement the REINFORCE algorithm (Williams, 1992). However,
only actors result in higher variance, and the employment of a critic to assess state values is necessary.
Therefore, in online MARL, we leverage an extension of PPO, the state-of-the-art algorithm on tasks
of StarCraft, MPE, and even return-based game Hanabi (Mordatch & Abbeel, 2018).

Algorithm 2: MADT-Online: Multi-Agent Decision Transformer with PPO
Input: Offline dataloader D, Pretrained MADT Policy with parameter θ
Initialize θ and φ are the parameters of an actor πθ(ai|oi) and critic Vφ(s) respectively, which
could be inherited directly from pre-trained models.
Initialize n as the agent number, γ as the discount factor, and ε as clip ratio
for τ = {τ1, . . . , τi, . . . , τn} in D do

Sample τi = {st, oti, ati}t∈1:T as the ground truth, where T is the context length
Compute the advantage function A(s, ai) =

∑
t γ

tr(s, ai)− Vφ(s)
Computing the important weight w = πθ(oi, ai)/πθold(oi, ai)
Update θi for i ∈ 1 . . . n via:

θi = arg maxEs∼ρθold ,a∼πθold [clip(w, 1− ε, 1 + ε)A(s, ai)]

Compute the MSE loss Lφ = 1
2 [
∑
t γ

tr − Vφ(s)]2

Update the critic network via φ = arg min
φ
Lφ

end
return θ, φ

3.3 UNIVERSAL MODEL ACROSS SCENARIOS

To train a universal policy for each of the scenarios in the SMAC which might be vary in agent
number, feature space, action space and reward ranges, we consider the modification list below.

Parameters Sharing Across Agents. When offline examples are collected from multiple tasks or
the test phase owns the different agent numbers from the offline datasets, the difference of agent
number across tasks is an intractable problem for deciding the number of actors. Thus, we consider
sharing the parameters across all actors with one model as well as attaching one-hot agent IDs into
observations, for compatibility with a variable number of agents.

Feature Encoding. When the policy needs to generalize to new scenarios that arises from different
feature shapes, We propose encoding all features into a universal space by padding zero at the end
and mapping to a low-dimensional space with fully connected networks.

Action Masking. Another issue is the different action space across scenarios. For example, less
enemies in a scenario means less potential attack options as well as available actions. Therefore,
an extra vector is utilized to mute the unavailable actions so that their probabilities are always zero
during both learning and evaluating process.

Reward Scaling. Different scenarios might be vary in reward ranges and lead to unbalanced models
during multi-task offline learning. To balance the influence of examples from different scenarios, we
scale their rewards into the same range to ensure the output models have comparable performance
between different tasks.

4 EXPERIMENTS

We show three experimental settings: offline MARL, online MARL by loading the pre-trained model,
and few-shot or zero-shot offline learning. For the offline MARL, we expect to verify the performance
of our method in pre-training the policy and directly testing on the corresponding maps. For the
fine-tuning in the online environment, we aim to demonstrate the capacity of the pre-trained policy
on the original or new scenarios. Experimental results in offline MARL shows our MADT-offline

5



Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e3

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Av
er

ag
e 

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e2

2

4

6

8

10

12

14

Av
er

ag
e 

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e2

1

2

3

4

5

6

Av
er

ag
e 

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e2

2

4

6

8

10

Av
er

ag
e 

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e3

0

5

10

15

20

Av
er

ag
e 

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e 

Re
tu

rn
0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e2

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e 

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e2

2

4

6

8

10

12

14

Av
er

ag
e 

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e3

8

10

12

14

16

18

20

Av
er

ag
e 

Re
tu

rn

MADT
BC
BCQ-MA
CQL-MA
ICQ-MA

(a) 2s3z (easy)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e2

5

10

15

20

Av
er

ag
e 

Re
tu

rn

(b) 3s5z (hard)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e2

0

5

10

15

20

Av
er

ag
e 

Re
tu

rn

(c) 3s5z vs. 3s6z (super hard)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e2

5

10

15

20

Av
er

ag
e 

Re
tu

rn

(d) corridor (super hard)

Figure 3: Performance of offline MADT comparing with baselines on four easy or (super-)hard SMAC
maps. The dotted lines represent the mean values in the training set. Columns (a-d) are average
returns from (poor, medium, good) datasets from top to the bottom.

in 3.1 outperforms the state-of-the-art methods. Furthermore, MADT-online in 3.2 can improve the
sample efficiency across multiple scenarios. Besides, the universal MADT trained from multi-task
data with MADT-online generalize well in each scenario in few-shot even zero-shot setting.

4.1 OFFLINE DATASETS

The offline datasets are collected from the running policy, MAPPO (Yu et al., 2021), on the well-
known SMAC task (Samvelyan et al., 2019). Each dataset contains a large number of trajectories:
τ := (st, ot, at, rt, donet, vt)

T
t=1. Different from D4RL (Fu et al., 2020), our datasets consider the

property of DecPOMDP, which owns local observations and available actions for each agent. In
Appendix, we list the statistical properties of the offline datasets in Table 2 and Table 3.

4.2 OFFLINE MULTI-AGENT REINFORCEMENT LEARNING

In this experiment, we aim to validate the effectiveness of MADT offline version in Section 3.1
as a framework for offline MARL on the static offline datasets. We train a policy on the offline
datasets with various qualities and then apply it to an online environment, StarCraft (Samvelyan
et al., 2019). There are also baselines under this setting, such as Behavior Cloning (BC) as a
kind of imitation learning method showing stable performance on single-agent offline RL. Besides,
we employ the conventional effective single-agent offline RL algorithms, BCQ (Fujimoto et al.,
2019), CQL (Kumar et al., 2020), and ICQ (Yang et al., 2021), then add the mixing network for
multi-agent setting, denoting as “xx-MA”. To verify the quality of our collected datasets, we choose
data from different level and train the baselines as well as our MADT. Figure 3 shows the overall
performance on various quality datasets. The baseline methods enhance their performance stably,
indicating the quality of our offline datasets. The results also show that our MADT outperforms the
offline MARL baselines and converges faster across easy, hard, and super hard maps (2s3z, 3s5z,
3s5z_vs_3s6z, corridor).

4.3 OFFLINE PRE-TRAINING AND ONLINE FINE-TUNING

The experiment designed in this subsection intends to answer the question: Is the pre-training pro-
cess is necessary for online MARL? Firstly we compare the online version of MADT in Section 3.2
with and without loading the pre-trained model. If training MADT only by online experience, we can
view it as a transformer-based MAPPO replacing the actor and critic backbone networks with the

6



Under review as a conference paper at ICLR 2022

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e 

Re
tu

rn

Online MARL w/ pretrained model
Online MARL w/o pretrained model

(a) so many baneling (easy)

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps 1e6

2

0

2

4

6

8

10

12

14

Av
er

ag
e 

Re
tu

rn

Online MARL w/ pretrained model
Online MARL w/o pretrained model

(b) 5m vs. 6m (hard)

0.0 0.5 1.0 1.5 2.0
Timesteps 1e6

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e 

Re
tu

rn

Online MARL w/ pretrained model
Online MARL w/o pretrained model

(c) 3s5z vs. 3s6z (super hard)

Figure 4: The average returns with and without the pre-trained model..

transformer. Furthermore, we validate that our framework MADT with the pre-trained model can
improve sample efficiency on most easy, hard, and super hard maps.

Necessity of Pretrained Model. We train our MADT based on the datasets collected from a map
and fine-tune it on the same map online with the MAPPO algorithm. For comparison fairness, we use
the transformer as both actor and critic networks with and without the pre-trained model. Primarily,
we choose three maps from Easy, Hard, and Super Hard maps to validate the effectiveness of the
pre-trained model in Figure 4. Experimental results show that the pre-trained model converges faster
than the algorithm trained from scratch, especially in the challenging maps.
Improving Sample Efficiency. For validating the improvement of the sample efficiency via loading
our pre-trained MADT and fine-tuning it with MAPPO, we compare the overall framework with the
state-of-the-art algorithm, MAPPO (Yu et al., 2021), without the pre-training phase. We measure the
number of interactions with the environment in Table 1, and our pre-trained model needs much less
than the traditional MAPPO to access the same win rate.

Maps # Samples to Acess the Win Rate Maps # Samples to Acess the Win Rate

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

2m vs. 1z (Easy) 8e4/- 1e5/- 1.3e5/- 1.5e5/- 1.6e5/- 3s vs. 5z (Hard) 8e5/- 8.5e5/- 8.7e5/1.5e4 9e5/5e4 2e6/1.5e5

3m (Easy) 3.2e3/- 8.3e4/- 3.2e5/- 4e5/- 7.2e5/- 2c vs. 64 zg (Hard) 2e5/- 3e5/- 4e5/8e4 5e5/1e5 1.8e6/5e5

2s vs 1sc (Easy) 1e4/- 2.5e4/- 3e4/- 8e4/4e4 3e5/1.2e5 8m vs. 9m (Hard) 3e5/- 6e5/- 1.4e6/2e4 2e6/8e4 ∞/2.2e6

3s vs. 3z (Easy) 2.5e5/- 3e5/- 6.2e5/1e4 7.3e5/1.5e5 8e5/2.9e5 5m vs. 6m (Hard) 1.5e6/2e5 2.5e6/8e5 5e6/2e6 ∞/∞ ∞/∞

3s vs. 4z (Easy) 3e5/- 4e5/- 5e5/- 6.2e5/- 1.5e6/1.8e5 3s5z (Hard) 8e5/6.3e4 1.3e6/1e5 1.5e6/4e5 1.9e6/1e6 2.5e6/2e6

so many baneling (Easy) 3.2e4/8e3 1e5/4e4 3.2e5/7e4 5e5/8e4 1e6/6.4e5 10m vs. 11m (Hard) 2e5/- 3.5e5/- 4e5/2.8e4 1.7e6/1.2e5 4e6/2.5e5

8m (Easy) 4e5/- 5e6/- 5.6e5/- 5.6e5e5/1.6e5 8.8e5/2.4e5 MMM2 (Super Hard) 1e6/ 1.8e6/ 2.3e6/ 4e6/ ∞/∞

MMM (Easy) 5.2e4/- 8e4/- 3e5/- 4.5e5/- 1.8e6/6e5 3s5z vs. 3s6z (Super Hard) 1.8e6/- 2.5e6/- 3e6/8e5 5e6/1e6 ∞/∞

bane vs. bane (Easy) 3.2e3/- 3.2e3/- 3.2e5/- 4e5/- 5.6e5/- corridor (Super hard) 1.5e6/- 1.8e6/- 2e6/- 2.8e6/- 7.8e6/4e5

Table 1: The sample numbers needed to access the win rate 20%, 40%, 60%, 80%, and 100% with
(MAPPO/pre-trained MADT). “-” represents that no more samples is needed to reach the target win
rate. “∞” represents that policies cannot reach the target win rate.

4.4 GENERALIZTION WITH MULTI-TASK PRE-TRAINING

Experiments in this section are to explore the transferability of the universal MADT mentioned
in Section 3.3, which is pre-trained with mixed data from multiple tasks. According to whether
the downstream tasks have been seen or not, the few-shot experiments are designed to validate the
adaptibilty on seen tasks, while the zero-shot experiments are designed for the held-out maps.

Few-shot Learning. The results in Figure 5a shows that our method can utilize multi-task datasets to
train a universal policy and generalize to all tasks well. Pre-trained MADT can achieve higher return
than the model trained from scratch when we limit the interactions with environment.

Zero-shot Learning. Figure 5b shows that our universal MADT can surprisingly improve perfor-
mance on downstream task even if it has not been seen before. (3 stalkers vs. 4 zealots).

7



Under review as a conference paper at ICLR 2022

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Av
er

ag
e 

Re
tu

rn

Universal MADT (ours)
Train from scratch

(b)

Figure 5: Few-shot and Zero-shot validation results. (a) shows the average returns of the universal MADT
pre-trained from all five tasks data and the policy trained from scratch, individually. We limit the environment
interaction to 2.5M steps. (b) shows the average returns of a held-out map (3s_vs_4z), where the universal
MADT is trained from data on (2m_vs_1z, 2s_vs_1sc, 3m, 3s_vs_3z).

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

2

4

6

8

10

12

14

Av
er

ag
e 

Re
tu

rn

MADT with MAPPO
MADT with REINFORCE

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Av
er

ag
e 

Re
tu

rn

state_only
state & action
reward-to-go & state & action

(b)

0 1 2 3 4 5 6 7 8
Timesteps 1e5

2

4

6

8

10

12

14

Av
er

ag
e 

Re
tu

rn

MADT with MAPPO for fine-tuning
Pure MADT for fine-tuning

(c)

Figure 6: Ablation results on a hard map, 5m_vs_6m, for validating the necessity of (a) MAPPO in MADT-
Online, (b) input formulation, (c) online version of MADT.

4.5 ABLATION STUDY

The experiments in this subsection are designed to answer the following research questions: RQ1:
Why we choose MAPPO for online phase? RQ2: Which kind of input shall we use to make the
pre-trained model beneficial for the online MARL? RQ3: Why cannot the offline version of MADT
be improved in the online fine-tune period after pre-training?

Suitable Online Algorithm. Although the selection of MARL algorithm for online phase should
be flexible according to specific task, we design experiments to answer RQ1 here. As discussed in
Section 3, we can train Decision Transformer for each agent and online fine-tune it with a MARL
algorithm. An intuitive method is to load the pre-trained transformer and take it as the policy network
for fine-tuning with the policy gradient method, e.g. REINFORCE (Williams, 1992). However, for
the reason of high variance mentioned in Section 3.2, we choose MAPPO as the online algorithm and
compare their performance in improving sample efficiency during the online period in Figure 6a.

Dropping Reward-to-go in MADT. To answer RQ2, we compare different inputs embedded into
the transformer, including the combination of state, reward-to-go, and action. We find the reward-to-
go harmful to online fine-tuning performance, as shown in Figure 6b. We suppose the distribution
of reward-to-go is mismatch between offline data and online samples. That is, rewards of online
samples are usually lower than offline data due to stachastic exploration at the beginning of the online
phase. It deteriorates the fine-tuning capability of the pre-trained model, and based on Figure 6b, we
only choose states as our inputs for pre-training and fine-tuning.

Integrating Online MARL with MADT. To answer RQ3, we directly apply the offline version of
MADT for pre-training and fine-tune it online. However, Figure 6c shows that it cannot be improved
during the online phase. We analyze the results from the absence of motivation for chasing higher
rewards, and conclude that offline MADT is in fact supervised learning and tends to fit its collected
experience even with unsatisfactory reward.

8



Under review as a conference paper at ICLR 2022

5 RELATED WORK

Offline Deep Reinforcement Learning. Conventionally, offline RL trains a policy based on the static
and previously collected data without any environmental interaction (Levine et al., 2020). This policy
is then leveraged to interact with the online environment to obtain promising results. A straightforward
method for the current reinforcement learning is to use the off-policy algorithm and regard the offline
datasets as a replay buffer to learn a policy with good performance. However, experience existing
in offline datasets and interaction with online environment have different distributions which cause
the overestimation in the off-policy (value-based) method (Kumar et al., 2019). Substantial works
presented in offline RL aim at resolving the distribution shift between the static offline datasets and the
online environment interaction (Kumar et al., 2020; Fujimoto et al., 2019; Kumar et al., 2019). Yang
et al. (2021); Jiang & Lu (2021) constrain off-policy algorithms in offline MARL. Related to our work
for the improvement of sample efficiency, Nair et al. (2020) load the pretrained model to generate a
weight for actor-critic online RL algorithms. Recently, the Decision Transformer outperforms many
state-of-the-art offline RL algorithms via regarding the training process as a sequential modeling
phase and test on the online environment (Chen et al., 2021; Janner et al., 2021). In contrast, we show
a transformer-based method in the multi-agent field, attempting to transfer across many scenarios
without extra constraints.

Multi-Agent Reinforcement Learning. As a natural extension from single-agent RL, MARL
attracts much attention to solve more complex problems under Markov Games (Zhang et al., 2021).
Related algorithms conventionally enforce multiple agents to interact with the environment online
and collect the experience to train the joint policy from scratch (Rashid et al., 2018; Sunehag et al.,
2017; Son et al., 2019; Mahajan et al., 2019; Yu et al., 2021). The framework of traditional multi-
agent learning employs the centralized training and decentralized execution framrwork due to local
observation and increasing action space. We build offline datasets by collecting elements from the
DecPOMDP and train the general policy with parameter sharing. We utilize transformer to learn a
policy with previously collected data from the golden policy in advance and fine-tune it online.

Transformer. Transformer (Vaswani et al., 2017) has achieved a great breakthrough to model
relations between the input and output sequence with variable length, for the sequence-to-sequence
problems (Sutskever et al., 2014), especially on machine translation (Wang et al., 2019) and speech
recognition (Dong et al., 2018). Recent works even reorganize the vision problems as the sequential
modeling process and construct the SOTA model with pretraining, named ViT (Han et al., 2020;
Dosovitskiy et al., 2020; Liu et al., 2021). Due to the Markovian property of trajectories in offline
datasets, we can utilize Transformer as that in language modeling. Therefore, Transformer can bridge
the gap between supervised learning in the offline setting and reinforcement learning in the online
interaction because of the representation capability. We claim that the components under Markov
Games are sequential then utilize the transformer for each agent to fit a transferable MARL policy.
Furhtermore, we fine-tune the learned policy under via trial-and-error.

6 CONCLUSIONS

In this work, we propose MADT, an offline pre-trained model for MARL, which integrates the
transformer to improve sample efficiency and generalizability. We build an offline MARL dataset
based on SMAC. Our method outperforms the state-of-the-art methods in offline MARL, including
BC, BCQ, CQL, and ICQ. Our whole framework can also drastically improve the sample efficiency of
online MARL via loading pre-trained model. Furthermore, we apply our method to train a universal
policy over the multi-task datasets and fine-tune it under the few-shot and zero-shot settings. Results
demonstrate that this universal policy adapts fast to new tasks and promises performance on different
level maps.

To our best knowledge, we are the first to pre-train the multi-agent model with offline datasets and
fine-tune it under the few-shot and zero-shot settings. Future research will pre-train a more general
policy, which can transfer across more diverse tasks.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Ana LC Bazzan. Opportunities for multiagent systems and multiagent reinforcement learning in
traffic control. Autonomous Agents and Multi-Agent Systems, 18(3):342, 2009.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: a no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5884–5888. IEEE, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International Conference on Machine Learning, pp.
1407–1416. PMLR, 2018.

Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scalable
and efficient deep-rl with accelerated central inference. In International Conference on Learning
Representations, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on visual transformer. arXiv preprint
arXiv:2012.12556, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Reinforcement learning as one big sequence modeling
problem. arXiv preprint arXiv:2106.02039, 2021.

Jiechuan Jiang and Zongqing Lu. Offline decentralized multi-agent reinforcement learning. arXiv
preprint arXiv:2108.01832, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32:11784–11794, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021.

10



Under review as a conference paper at ICLR 2022

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in Neural Information Processing Systems, 32:7613–7624, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. In Thirty-second AAAI conference on artificial intelligence, 2018.

Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. Advances in Neural Information Processing Systems, 29:1054–1062, 2016.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learning, pp. 4295–4304. PMLR, 2018.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. arXiv preprint arXiv:2103.12021,
2021.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 5887–5896. PMLR, 2019.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. arXiv preprint arXiv:1906.01787,
2019.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
Rode: Learning roles to decompose multi-agent tasks. arXiv preprint arXiv:2010.01523, 2020.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Yikun Xian, Zuohui Fu, S Muthukrishnan, Gerard De Melo, and Yongfeng Zhang. Reinforcement
knowledge graph reasoning for explainable recommendation. In Proceedings of the 42nd Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
285–294, 2019.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. arXiv preprint arXiv:2106.03400, 2021.

11



Under review as a conference paper at ICLR 2022

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of mappo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of Reinforcement Learning and Control, pp.
321–384, 2021.

12



Under review as a conference paper at ICLR 2022

A PROPERTIES OF DATASETS

We list the properties of our offline datasets in Tables 2 and 3.

Maps Difficulty Data Quality # Samples
Reward Distribution

(mean (±std))

3m Easy
3m-poor 62528 6.29 (±2.17)

3m-medium - -

3m-good 1775159 19.99 (±0.18)

8m Easy
8m-poor 157133 6.43 (±2.41)

8m-medium 297439 11.95 (±0.94)

8m-good 2781145 20.00 (±0.16)

2s3z Easy
2s3z-poor 147314 7.69 (±1.77)

2s3z-medium 441474 12.85 (±1.37)

2s3z-good 4177846 19.93 (±0.67)

2s_vs_1sc Easy
2s_vs_1sc-poor 12887 6.62 (±2.74)

2s_vs_1sc-medium 33232 11.70 (±0.73)

2s_vs_1sc-good 1972972 20.23 (±0.02)

3s_vs_4z Easy
3s_vs_4z-poor 216499 7.58 (±1.45)

3s_vs_4z-medium 335580 12.13 (±1.38)

3s_vs_4z-good 3080634 20.19 (±0.40)

MMM Easy
MMM-poor 326516 7.64 (±2.05)

MMM-medium 648115 12.23 (±1.37)

MMM-good 2423605 20.08 (±1.67)

so_many_baneling Easy
so_many_baneling-poor 1542 9.08 (±0.66)

so_many_baneling-medium 59659 13.31 (±1.14)

so_many_baneling-good 1376861 19.46 (±1.29)

3s_vs_3z Easy
3s_vs_3z-poor 52807 8.10 (±1.37)

3s_vs_3z-medium 80948 11.87 (±1.19)

3s_vs_3z-good 149906 20.02 (±0.09)

2m_vs_1z Easy
2m_vs_1z-poor 25333 5.20 (±1.66)

2m_vs_1z-medium 300 11.00 (±0.01)

2m_vs_1z-good 120127 20.00 (±0.01)

bane_vs_bane Easy
bane_vs_bane-poor 63 1.59 (±3.56)

bane_vs_bane-medium 3507 14.00 (±0.93)

bane_vs_bane-good 458795 19.97 (±0.36)

1c3s5z Easy
1c3s5z-poor 52988 8.10 (±1.65)

1c3s5z-medium 180357 12.68 (±1.42)

1c3s5z-good 2400033 19.88 (±0.69)

Table 2: The properties for our offline dataset collected from the experience of multi-agent PPO on
the easy maps of SMAC.

13



Under review as a conference paper at ICLR 2022

Maps Difficulty Data Quality # Samples
Reward Distribution

(mean (±std))

5m_vs_6m Hard
5m_vs_6m-poor 1324213 8.53 (±1.18)

5m_vs_6m-medium 657520 11.03 (±0.58)

5m_vs_6m-good 503746 20 (±0.01)

10m_vs_11m Hard
10m_vs_11m-poor 140522 7.64 (±2.39)

10m_vs_11m-medium 916845 12.72 (±1.25)

10m_vs_11m-good 895609 20 (±0.01)

2c_vs_64zg Hard
2c_vs_64zg-poor 10830 8.91 (±1.01)

2c_vs_64zg-medium 97702 13.05 (±1.37)

2c_vs_64zg-good 2631121 19.95 (±1.24)

8m_vs_9m Hard
8m_vs_9m-poor 184285 8.18 (±2.14)

8m_vs_9m-medium 743198 12.19 (±1.14)

8m_vs_9m-good 911652 20 (±0.01)

3s_vs_5z Hard
3s_vs_5z-poor 423780 6.85 (±2.00)

3s_vs_5z-medium 686570 12.12 (±1.39)

3s_vs_5z-good 2604082 20.89 (±1.38)

3s5z Hard
3s5z-poor 365389 8.32 (±1.44)

3s5z-medium 2047601 12.61 (±1.32)

3s5z-good 1448424 18.45 (±2.03)

3s5z_vs_3s6z Super Hard
3s5z_vs_3s6z-poor 594089 7.92 (±1.77)

3s5z_vs_3s6z-medium 2214201 12.56 (±1.37)

3s5z_vs_3s6z-good 1542571 18.35 (±2.04)

27m_vs_30m Super Hard
27m_vs_30m-poor 102003 7.18 (±2.08)

27m_vs_30m-medium 456971 13.19 (±1.25)

27m_vs_30m-good 412941 17.33 (±1.97)

MMM2 Super Hard
MMM2-poor 1017332 7.87 (±1.74)

MMM2-medium 1117508 11.79 (±1.28)

MMM2-good 541873 18.64 (±1.47)

corridor Super Hard
corridor-poor 362553 4.91 (±1.71)

corridor-medium 439505 13.00 (±1.32)

corridor-good 3163243 19.88 (±0.99)

Table 3: The properties for our offline dataset collected from the experience of multi-agent PPO on
the hard and super hard maps of SMAC.

14



Under review as a conference paper at ICLR 2022

B DETAILS OF HYPER-PARAMETERS

Details of hyper-parameters used for MADT experiments are listed from Table 4 to 8.

Hyper-parameter Value Hyper-parameter Value Hyper-parameter Value

offline_train_critic True max_timestep 400 eval_epochs 32

n_layer 2 n_head 2 n_embd 32

online_buffer_size 64 model_type state_only mini_batch_size 128

Table 4: Common hyper-parameters for all MADT experiments

Maps offline_episode_num offline_lr

2s3z 1000 1e-4

3s5z 1000 1e-4

3s5z_vs_3s6z 1000 5e-4

corridor 1000 5e-4

Table 5: Hyper-parameters for MADT experiments in Figure 3

Maps offline_episode_num offline_lr online_lr online_ppo_epochs

2c_vs_64zg 1000 5e-4 5e-4 10

10m_vs_11m 1000 5e-4 5e-4 10

8m_vs_9m 1000 1e-4 5e-4 10

3s_vs_5z 1000 1e-4 5e-4 10

3s5z 1000 1e-4 5e-4 10

3m 1000 1e-4 5e-4 15

2s_vs_1sc 1000 1e-4 5e-4 15

MMM 1000 1e-4 1e-4 5

so_many_baneling 1000 1e-4 1e-4 5

8m 1000 1e-4 1e-4 5

3s_vs_3z 1000 1e-4 1e-4 5

3s_vs_4z 1000 1e-4 1e-4 5

bane_vs_bane 1000 1e-4 1e-4 5

2m_vs_1z 1000 1e-4 1e-4 5

2c_vs_64zg 1000 1e-4 1e-4 5

5m_vs_6m 1000 1e-4 1e-4 10

corridor 1000 1e-4 1e-4 10

3s5z_vs_3s6z 1000 1e-4 1e-4 10

Table 6: Hyper-parameters for MADT experiments in Figure 4, 6 and Table 1

15



Under review as a conference paper at ICLR 2022

Hyper-parameter value

offline_map_lists [3s_vs_4z, 2m_vs_1z, 3m, 2s_vs_1sc, 3s_vs_3z]

offline_episode_num [200, 200, 200, 200, 200]

offline_lr 5e-4

online_lr 1e-4

online_ppo_epochs 5

Table 7: Hyper-parameters for MADT experiments in Figure 5a

Hyper-parameter value

offline_map_lists [2m_vs_1z, 3m, 2s_vs_1sc, 3s_vs_3z]

offline_episode_num [250, 250, 250, 250]

offline_lr 5e-4

online_lr 1e-4

online_ppo_epochs 5

Table 8: Hyper-parameters for MADT experiments in Figure 5b

16


	Inrtoduction
	Preliminary
	Methodology
	Multi-Agent Decision Transformer
	Multi-Agent Decision Transformer with PPO
	Universal Model across Scenarios

	Experiments
	Offline Datasets
	Offline Multi-Agent Reinforcement Learning
	Offline Pre-training and Online Fine-tuning
	Generaliztion with Multi-Task Pre-training
	Ablation Study

	Related Work
	Conclusions
	Properties of datasets
	Details of hyper-parameters

