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ABSTRACT

Genomic foundation models increasingly adopt large language model architec-
tures, yet almost all rely on fixed tokenization schemes such as k-mers or BPE.
These approaches impose arbitrary sequence boundaries and risk discarding bi-
ologically relevant signals. Recent work introduced dynamic hierarchical tok-
enization in an autoregressive setup, demonstrating the feasibility of adaptive tok-
enization but leaving masked language modeling and downstream evaluation un-
explored. We present LDARNet, a 120M-parameter hierarchical genomic foun-
dation model that adapts hierarchical compression to the masked language mod-
eling paradigm. LDARNet combines BiMamba-2 state-space layers with selec-
tive attention and uses ratio-based regularization to learn stable token boundaries
without supervised segmentation. We evaluate LDARNet through comprehen-
sive fine-tuning across 27 diverse tasks from the Genomics Benchmarks and Nu-
cleotide Transformer suites, comparing against state-of-the-art models spanning
8M-2.5B parameters. LDARNet achieves 11 of 18 wins among compact models
(<300M parameters) – a 5.5-fold improvement over the next-best alternatives –
and establishes overall best performance on 5 challenging histone modification
tasks, surpassing even 2.5B-parameter competitors. Notably, LDARNet wins 7 of
10 histone modification benchmarks, demonstrating that learnable compression
boundaries effectively capture the long-range dependencies critical for epigenetic
regulation modeling. These findings provide evidence that adaptive tokenization
under masked language modeling yields biologically meaningful representations,
and highlight hierarchical compression as a promising direction for efficient and
scalable genomic foundation models.

1 INTRODUCTION

The success of large language models (LLMs) has motivated the development of foundation mod-
els for genomics, where large-scale pretraining can transfer across diverse predictive tasks. Recent
models such as DNABERT and Nucleotide Transformer (Ji et al., 2021; Lopez et al., 2023) demon-
strate that pretrained encoders can generalize effectively to promoters, enhancers, and splice sites.
However, most approaches rely on fixed tokenization, such as k-mers or byte-pair encoding (BPE).
While these schemes are effective for text, they impose arbitrary boundaries on genomic data and
lack clear biological grounding, raising the question of whether adaptive tokenization can capture
functional signals more faithfully.

A recent line of work has begun to address this. H-Net (Hwang et al., 2025b) introduced dynamic
hierarchical tokenization in an AR setup, showing that adaptive segmentation of the genome is
feasible at scale. While impactful, H-Net focused primarily on demonstrating the modeling principle
and did not systematically evaluate downstream biological utility. In particular, it remains unknown
whether adaptive tokenization yields embeddings that are competitive with established genomic
foundation models under MLM paradigm.

We address this gap with LDARNet (Learnable DNA Adaptive Representation Network), a hierar-
chical model that adapts the H-Net architecture to MLM pretraining. Our main contributions are:
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• We adapt the H-Net dynamic tokenization architecture (Hwang et al., 2025b) from autore-
gressive generation to masked language modeling. Full code and model weights will be
released upon publication.

• We demonstrate that hierarchical compression with dynamic boundary prediction enables
compact models (120M parameters) to match or surpass models 10-20-fold larger, achiev-
ing best overall performance on 5 histone modification tasks against 2.5B-parameter com-
petitors through comprehensive fine-tuning evaluation across 27 diverse genomic tasks.

• We establish that architectural generality – through learnable multi-scale compression –
outperforms domain-specific optimization for general-purpose foundation models, with
LDARNet achieving 11/18 wins on cross-species tasks versus 1-2 wins for human-genome-
specialized alternatives of comparable scale.

2 RELATED WORKS

2.1 TECHNICAL FOUNDATIONS

A central challenge for foundation models in genomics and other non-linguistic domains lies in to-
kenization. Transformers (Vaswani et al., 2017) achieved remarkable success in NLP by operating
over subword vocabularies, but this design presumes the existence of semantically meaningful and
human-interpretable units such as words. For DNA and raw byte sequences, where no such seg-
mentation exists, tokenization remains an open problem: fixed schemes such as k-mers introduce
arbitrary boundaries, while byte-level encodings dramatically inflate sequence length.

Several works attempted to bypass tokenization through isotropic byte-level modeling. Mam-
baByte (Wang et al., 2024) applied Mamba-2 layers directly to characters, while LlamaByte ex-
tended Transformers to raw sequences. Although these approaches eliminate external preprocessing,
flat byte-level models typically underperform tokenized counterparts of comparable scale, suggest-
ing that meaningful intermediate units are still needed. SpaceByte (Slagle, 2024) partially addressed
this by introducing hand-crafted boundary heuristics (e.g., space delimiters) to form chunks, but such
strategies remain domain-specific and inflexible.

The Hierarchical Network (H-Net) framework (Hwang et al., 2025b) reframed tokenization as a
learnable problem. H-Net introduced dynamic chunking, jointly optimizing boundary detection
and representation learning in a multi-stage hierarchy. This design replaced the traditional tok-
enization–LM–detokenization pipeline with an end-to-end architecture, demonstrating that adaptive
chunking can outperform tokenized Transformers at comparable scale and improve data efficiency
in settings with weak or arbitrary tokenization heuristics.

These developments establish the technical foundations for moving beyond fixed or handcrafted
vocabularies. They highlight tokenization not as a preprocessing choice but as a central modeling
challenge, motivating architectures that can learn biologically meaningful units directly from raw
sequences.

2.2 DNA FOUNDATION MODELS

Large-scale self-supervised pretraining has been rapidly adopted in genomics, giving rise to a fam-
ily of DNA foundation models. Early contributions such as DNABERT (Ji et al., 2021) demon-
strated the utility of BERT-style masked language modeling on genomic data using fixed k-mer
tokenization, establishing a strong baseline for sequence-based prediction tasks. Subsequent works
such as the Nucleotide Transformer (NT) (Lopez et al., 2023) and its successor NTv2 (Dalla-Torre
et al., 2025) scaled Transformer encoders from hundreds of millions to billions of parameters trained
across multi-species genomes, demonstrating strong transferability of genomic embeddings but fac-
ing the quadratic context-length bottleneck inherent to attention. To mitigate this limitation, several
works integrated more efficient sequence architectures. GENA-LM (Fishman et al., 2025) employed
sparse attention to extend receptive fields, while Caduceus (Schiff et al., 2024) introduced BiMamba
blocks with shared weights, leveraging state-space recurrence for efficient long-context modeling.
HyenaDNA (Nguyen et al., 2023) proposed implicit long convolutions that support substantially
longer contexts, and JanusDNA (Duan et al., 2025) combined AR efficiency with the bidirection-
ality of masked modeling in a hybrid Mamba–Attention Mixture-of-Experts design, enabling pre-
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training on million-base sequences. Together, these architectures illustrate the trade-off gap between
capacity, efficiency, and context length that continues to shape genomic foundation model design.

2.3 TOKENIZATION IN GENOMIC MODELS

Tokenization remains a critical yet unresolved challenge in genomic modeling, as DNA lacks the nat-
ural segmentation cues of language. Fixed k-mer approaches, exemplified by DNABERT (Ji et al.,
2021) and the Nucleotide Transformer (Lopez et al., 2023), provided early baselines but rely on
arbitrary and biologically unmotivated boundaries. Byte-level models such as HyenaDNA (Nguyen
et al., 2023), Caduceus (Schiff et al., 2024), and JanusDNA (Duan et al., 2025) preserve nucleotide-
level fidelity but suffer from excessive sequence length, high computational cost, and limited ability
to capture higher-order motifs. Subword strategies using BPE, as in DNABERT-2 (Zhou et al., 2023)
and GENA-LM (Fishman et al., 2025), introduce flexible variable-length units yet generate vocabu-
laries that reflect statistical co-occurrence rather than biological semantics, limiting interpretability.
More recent approaches aim for adaptive tokenization: MxDNA (Qiao et al., 2024) learns discontin-
uous and overlapping units through a mixture-of-experts convolutional design, while VQDNA (Li
et al., 2024) employs vector quantization to induce hierarchical vocabularies that capture genomic
motifs at multiple scales. While these methods demonstrate improved adaptability and often strong
performance, open challenges remain: MxDNA involves more complex training dynamics, and
VQDNA introduces additional computational requirements. Collectively, existing methods high-
light both the centrality of tokenization in genomic foundation models and the lack of a principled,
biologically grounded solution, motivating further exploration of adaptive strategies.

3 LDARNET ARCHITECTURE

We introduce LDARNet, a hierarchical foundation model for genomic sequences that extends the H-
Net design (Hwang et al., 2025b) with several architectural innovations. While H-Net was originally
developed for AR language modeling, our modifications adapt the framework to MLM and introduce
bidirectional mechanisms that better align with the bidirectional nature of DNA.

At a high level, LDARNet retains the hierarchical encoder–main–decoder organization of H-Net but
incorporates four major changes: (i) Mamba layers are replaced with BiMamba-2 blocks with shared
weights same as Caduceus model, (ii) attention mechanisms are non-causal, (iii) encoder/decoder
stacks use BiMamba-2 while the main backbone uses Transformer layers, and (iv) both router and
dechunking modules are extended to bidirectional variants. This design preserves H-Net’s efficiency
while improving both expressivity and stability for genomic modeling.

3.1 OVERVIEW

Like H-Net, LDARNet consists of stacked stages of encoders, a central backbone, and decoders, as
figure 1 illustrates. Each stage compresses the sequence through a content-aware chunking opera-
tion, processes it at a reduced resolution, and restores fine-grained information through dechunking.

For an S-stage hierarchy, we denote encoders and decoders by Es and Ds (1 ≤ s ≤ S), and the
central backbone by M. The overall forward process is:

x̂s+1 = Es(xs), ẑS = M(xS), ẑs−1 = Ds(zs) (1)

where compression and decompression are performed by Chunk and Dechunk modules. Unlike
H-Net, all layers in LDARNet are trained with non-causal masking, enabling bidirectional context
modeling required by the MLM objective.

3.2 SEQUENCE PROCESSING BLOCKS

3.2.1 ENCODER AND DECODER BLOCKS: BIMAMBA-2

We extend the H-Net backbone by replacing its causal Mamba layers with a bidirectional, non-causal
variant of Mamba-2, which we term BiMamba-2. This design preserves the linear-time recurrence
of state-space models while enabling full-context conditioning, which is essential for MLM and
other non-autoregressive objectives.
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Figure 1: Model overview. Left: the LDARNet architecture with BiMamba outer layers and a
Transformer backbone operating in a compressed latent space. Right: the internal structure of a
BiMamba-2 block used in the outer networks.

Mamba-2 as selective state-space layers. Mamba-2 (Dao & Gu, 2024) instantiates a selective
state-space layer whose dynamics are conditioned on the input. The model admits both a linear
recurrent formulation and a quadratic dual representation via structured semiseparable (SS) matrices,
a property referred to as SSD duality. For input xt ∈ RD and hidden state ht ∈ RN :

ht+1 = Ātht + B̄txt, yt = Ctht +Dxt (2)

Āt, B̄t = discretize
(
A, Bt, ∆t

)
, (3)

Bt = WBxt, Ct = WCxt, ∆t = softplus(W∆xt) (4)

Efficient GPU kernels implement block-SS decompositions and fused projections, supporting large
N with stable training and favorable wall-clock efficiency.

Bidirectional construction with mean fusion. To enable bidirectional context aggregation, we
apply a Mamba-2 (M2) cell both in the forward and reversed temporal order, fusing the outputs by
mean-pooling. Given input X ∈ RB×T×D and padding mask M ∈ {0, 1}B×T :

Y = 1
2

[
M2(X ⊙M) + flipT

(
M2(flipT (X ⊙M))

) ]
(5)

Here ⊙ applies masking across features and flipT denotes temporal reversal. The mean fusion avoids
introducing additional parameters while preserving symmetry across directions.

Parameter tying. A naive bidirectional construction would double the number of parameters,
since separate forward and reverse Mamba-2 modules would each maintain their own projections.
However, most parameters reside in the input and output projection layers rather than in the con-
volution or SSM submodules (Gu & Dao, 2024). To avoid this overhead, BiMamba-2 shares these
dominant weights across directions:

{Win, bin,Wout, bout}→ = {Win, bin,Wout, bout}←. (6)
This weight tying ensures that the forward and reverse passes instantiate a single shared Mamba-2
definition, yielding a parameter-efficient block that also respects reverse-complement symmetry in
genomic sequences.

Comparison to Transformers. Whereas Transformers rely on quadratic attention to obtain bidi-
rectional context, BiMamba-2 attains the same global conditioning in linear time via structured re-
currence. This yields a more scalable encoder block, retaining expressivity while offering efficiency
gains for long-context genomic modeling.
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3.2.2 MAIN BACKBONE.

The core backbone M operates over compressed representations (LS ≪ L0), where tokens encode
higher-level semantic abstractions. We instantiate M with Transformer layers for two reasons:
(i) self-attention provides an effective mechanism for modeling long-range dependencies among
compressed tokens, and (ii) it enables direct comparability with established BPE-based Transformer
baselines in genomics (Ji et al., 2021; Lopez et al., 2023). This hybrid design – BiMamba modules
in the outer stages and Transformers at the core – yields a principled balance between efficiency and
expressivity, combining the scalability of state-space models with the representational flexibility of
attention.

3.3 DYNAMIC CHUNKING AND DECHUNKING

A central innovation of our architecture lies in adapting the dynamic chunking mechanism of H-
Nets (Hwang et al., 2025b) to a bidirectional MLM setting. We introduce two key modifications: (i)
the router employs bidirectional similarity to detect boundaries symmetrically, and (ii) the dechun-
ker incorporates a bidirectional exponential moving average (EMA) smoother for more stable re-
construction.

Bidirectional Routing. Given encoder outputs x̂t ∈ RD, the router projects them into query–key
pairs,

qt = Wqx̂t, kt = Wkx̂t, (7)

with Wq,Wk ∈ RD×D initialized as identity matrices to ensure numerical stability at early training.
Unlike the unidirectional formulation in H-Net, we compute both forward and backward cosine
similarities:

sfwd
t = cos(qt, kt+1), sbwd

t = cos(qt, kt−1), (8)

which are then averaged to produce a symmetric similarity score. Boundary probabilities are defined
as

pt =
1
2

(
1− 1

2 (s
fwd
t + sbwd

t )
)
, (9)

with pt ∈ [0, 1]. High discontinuity between neighbors (low cosine similarity) yields a strong
boundary signal. From these probabilities we derive a hard boundary mask bt = 1{pt≥0.5}. Padding
positions are forced to pt = 1.0 to ensure proper chunk alignment. This router produces both soft
probabilities (for differentiable training) and hard masks (for inference).

Chunking. The chunking operator compresses the sequence by retaining only tokens marked as
boundaries:

xs+1 = {x̂t | bt = 1}, ps+1 = {pt | bt = 1}. (10)

This implements a hierarchical downsampling mechanism where chunk selection is data-dependent
rather than fixed.

Bidirectional Dechunking with EMA. Reconstruction from compressed tokens is inherently un-
stable due to discrete boundary decisions. We therefore extend H-Net’s dechunker with a bidirec-
tional EMA smoother.

Let zj denote compressed representations and pj their boundary probabilities. We compute decay
factors as

∆j = − log(1− pj), (11)

and propagate states with EMA dynamics:

z̄fwd
t = ptzt + (1− pt) z̄

fwd
t−1, z̄bwd

t = ptzt + (1− pt) z̄
bwd
t+1. (12)

The final reconstruction averages forward and backward passes,

z̄t =
1
2 (z̄

fwd
t + z̄bwd

t ), (13)

ensuring symmetry and robustness. For efficient sequence propagation, we leverage the fused selec-
tive scan kernel (mamba chunk scan combined).
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Upsampling. To restore the sequence to its original length Ls, we assign each position t the rep-
resentation of its corresponding compressed token. Specifically, let j(t) =

∑t
k=1 bk denote the cu-

mulative boundary count up to position t, which serves as the index into the compressed sequence.
The upsampled representation is then:

z̃t = z̄j(t), where j(t) =

t∑
k=1

bk. (14)

This operation broadcasts each compressed token across its corresponding span in the original se-
quence, providing a differentiable approximation of discrete boundary expansion.

3.4 TRAINING OBJECTIVE

Unlike H-Net’s AR training, LDARNet is optimized under a MLM loss, which is more appropriate
for bidirectional DNA modeling. The overall objective is:

L = LMLM + α

S−1∑
s=0

Ls
ratio, (15)

where the first term is the standard cross-entropy loss for MLM, and the second term regularizes the
compression ratio at each stage to avoid degenerate chunking solutions.

Ratio Loss. We adopt the ratio loss from H-Net (Hwang et al., 2025b), originally introduced to
prevent trivial compression behavior:

Lratio =
N

N − 1
((N − 1)FG+ (1− F )(1−G)) , F =

1

L

L∑
t=1

bt, G =
1

L

L∑
t=1

pt, (16)

where F is the fraction of vectors actually selected, G is the average boundary probability, and N is
the target compression ratio. By construction, the minimum of Lratio occurs when F = G = 1/N ,
yielding Lratio = 1. However, as noted in Hwang et al. (2025b), the loss can in principle fall below
1 when F ̸= G (e.g. F = 1/N + ϵ, G = 1/N − ϵ), which we also observe empirically.

In practice, this regularizer effectively guides the model toward balanced compression while preserv-
ing adaptivity to biologically meaningful regions. Combined with the MLM loss, it enables LDAR-
Net to learn non-trivial, context-dependent segmentations rather than collapsing to fixed heuristics.

3.5 MODEL IMPLEMENTATION AND PRETRAINING

We instantiate LDARNet as a 120M-parameter single-stage hierarchical model with compression
ratio N = 4. The architecture follows an encoder-main backbone-decoder structure [m3t1,
[M10], m4]: three BiMamba-2 layers and one local attention layer in the encoder, ten BiMamba-
2 layers in the main backbone, and four BiMamba-2 layers in the decoder. Model dimensions scale
across the hierarchy with dmodel = 512 in outer stages and dmodel = 768 in the main backbone,
following the principle that compressed representations benefit from greater channel capacity. The
vocabulary comprises seven byte-level tokens: {A, C, G, T, N, [PAD], [MASK]}.

Training. We employ masked language modeling (MLM) with 15% masking probability, com-
bining reconstruction loss with a ratio-based regularizer (α = 0.03) that encourages the boundary
predictor to maintain the target compression ratio. Models are optimized using AdamW Loshchilov
& Hutter (2017) with base learning rate 5×10−4 and a warmup-stable-decay (WSD) schedule: 10%
warmup, 70% plateau, 20% decay. Following Hwang et al. (2025b), we apply stage-wise learning
rate scaling to outer layers (3× multiplier) to compensate for gradient attenuation through compres-
sion boundaries. Training uses effective batch size 512 on sequences of length 4096.

Corpus. The pretraining data combines the human reference genome with the multispecies collec-
tion from Nucleotide Transformer (Dalla-Torre et al., 2025), ensuring both in-species fidelity and
cross-species diversity. Each sequence is sampled in forward and reverse orientations with equal
probability to promote reverse–complement invariance.

Complete training details are provided in Appendix A, with ablation studies in Appendix B.
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Task Enformer DNABERT-2 HyenaDNA Caduceus-Ph Caduceus-PS GROVER LdarNet NT-multi NT-v2 Generator Generator-All
252M 117M 55M 8M 8M 87M 120M 2.5B 500M 1.2B 1.2B

# Wins 0 2 2 1 2 1 11 - - - -
H3 72.4 ± 1.8 78.5 ± 1.2 78.1 ± 1.5 79.4 ± 1.2 77.2 ± 2.2 76.8 ± 0.8 78.2 ± 1.2 79.3 ± 1.3 78.8 ± 1.0 80.6 ± 0.5 80.3 ± 0.7
H3K14ac 28.4 ± 2.4 51.5 ± 0.9 60.8 ± 2.0 56.4 ± 3.3 59.6 ± 3.8 54.8 ± 2.0 58.9 ± 3.6 53.8 ± 0.9 53.8 ± 1.5 60.5 ± 0.8 58.0 ± 3.8
H3K36me3 34.5 ± 1.9 59.1 ± 0.5 61.4 ± 1.4 59.0 ± 1.8 61.1 ± 4.8 56.3 ± 1.7 62.4 ± 0.7 61.8 ± 1.1 61.8 ± 1.5 65.7 ± 0.7 63.1 ± 1.3
H3K4me1 29.1 ± 1.6 51.2 ± 0.8 51.2 ± 0.8 46.8 ± 1.5 48.7 ± 2.9 46.1 ± 1.8 58.3 ± 1.2 54.1 ± 0.5 54.4 ± 0.9 55.3 ± 0.9 54.9 ± 1.8
H3K4me2 20.7 ± 2.1 33.3 ± 1.3 45.5 ± 2.8 33.2 ± 3.4 43.1 ± 1.6 40.3 ± 4.2 49.6 ± 1.4 32.4 ± 1.4 30.2 ± 2.0 42.4 ± 1.3 40.0 ± 1.5
H3K4me3 15.6 ± 2.2 35.3 ± 2.1 55.0 ± 1.5 49.0 ± 4.2 52.8 ± 3.3 45.8 ± 2.2 57.6 ± 4.3 40.8 ± 1.1 43.7 ± 2.8 51.2 ± 0.9 47.3 ± 4.7
H3K79me3 49.8 ± 1.3 61.5 ± 1.0 66.9 ± 1.4 64.1 ± 2.8 68.2 ± 1.8 62.6 ± 2.6 68.7 ± 2.5 62.3 ± 1.0 62.1 ± 1.2 67.0 ± 1.1 63.1 ± 2.1
H3K9ac 41.5 ± 2.0 54.5 ± 0.9 58.6 ± 2.1 57.5 ± 2.4 56.4 ± 1.8 58.1 ± 1.5 60.3 ± 2.1 54.7 ± 1.1 56.7 ± 2.0 61.2 ± 0.6 60.3 ± 1.9
H4 73.5 ± 2.3 79.7 ± 0.8 76.3 ± 1.2 78.8 ± 1.0 79.9 ± 1.0 76.9 ± 1.7 81.3 ± 1.1 80.8 ± 0.7 79.5 ± 0.8 81.5 ± 0.8 80.8 ± 1.0
H4ac 27.5 ± 2.2 46.5 ± 1.3 56.4 ± 1.1 54.8 ± 2.7 58.5 ± 1.8 53.0 ± 1.7 62.3 ± 1.4 49.2 ± 1.4 50.2 ± 2.5 59.2 ± 1.5 56.5 ± 3.5
Enhancer 45.4 ± 2.9 52.5 ± 2.6 52.0 ± 3.1 52.2 ± 2.4 51.1 ± 2.6 51.6 ± 1.8 57.7 ± 1.4 54.5 ± 2.8 56.1 ± 2.9 58.0 ± 1.5 54.0 ± 2.6
Enhancer type 31.2 ± 4.3 42.3 ± 1.8 40.3 ± 5.6 40.3 ± 2.8 41.0 ± 2.6 43.3 ± 2.9 42.0 ± 2.7 44.4 ± 2.2 44.4 ± 3.6 47.7 ± 1.7 46.3 ± 2.3
Promoter all 91.0 ± 0.4 94.5 ± 0.3 91.9 ± 0.3 93.7 ± 0.2 94.1 ± 0.3 92.6 ± 0.4 93.9 ± 0.3 95.1 ± 0.4 95.2 ± 0.2 96.2 ± 0.2 95.5 ± 0.2
Promoter non-TATA 91.0 ± 0.6 94.4 ± 0.3 91.9 ± 0.4 93.5 ± 0.7 94.0 ± 0.2 92.5 ± 0.6 94.4 ± 0.5 95.5 ± 0.3 95.2 ± 0.3 96.2 ± 0.1 95.5 ± 0.2
Promoter TATA 92.0 ± 1.2 91.1 ± 1.1 88.1 ± 2.0 89.5 ± 1.0 90.3 ± 1.0 89.1 ± 0.9 92.3 ± 0.5 91.9 ± 0.8 93.3 ± 0.9 94.8 ± 0.8 93.1 ± 0.7
Splice acceptor 77.2 ± 0.7 90.9 ± 0.4 93.5 ± 0.5 91.8 ± 1.7 90.7 ± 1.5 91.2 ± 1.0 92.7 ± 0.9 97.3 ± 0.2 97.3 ± 0.4 98.1 ± 0.2 95.7 ± 0.9
Splice site all 83.1 ± 1.2 95.0 ± 0.3 91.7 ± 0.6 93.5 ± 1.1 95.3 ± 0.5 91.9 ± 0.5 94.2 ± 1.6 97.4 ± 0.4 97.5 ± 0.2 97.8 ± 0.1 97.3 ± 0.2
Splice donor 81.3 ± 1.5 92.7 ± 0.3 89.4 ± 1.3 91.2 ± 0.9 93.0 ± 1.0 88.8 ± 1.2 92.8 ± 1.9 97.4 ± 0.2 97.7 ± 0.7 97.8 ± 0.2 96.7 ± 0.5

Table 1: Nucleotide Transformer tasks comparison. Models are grouped by size: < 300M pa-
rameters (left) and ≥ 300M parameters (right). Bold indicates the best result overall, underlined
indicates the best result among models < 300M. Best performing model < 300M: LDARNet (11/18
wins). Values shown as mean ± std across folds.

Benchmark DNABERT-2 HyenaDNA Caduceus-Ph Caduceus-PS GROVER LDarNet NT-v2 Generator Generator-All
117M 55M 8M 8M 87M 120M 500M 1.2B 1.2B

# Wins 3 0 2 2 0 3 - - -
Coding vs. Intergenomic 95.1 ± 0.2 90.2 ± 0.4 93.3 ± 0.1 94.4 ± 0.2 91.9 ± 0.2 95.5 ± 0.1 95.5 ± 0.1 96.3 ± 0.0 95.9 ± 0.1
Drosophila Enhancers Stark 77.4 ± 1.1 77.0 ± 1.6 82.7 ± 1.0 81.6 ± 1.5 76.1 ± 1.1 81.0 ± 0.8 79.7 ± 0.9 82.1 ± 0.5 76.8 ± 1.5
Human Enhancers Cohn 75.8 ± 0.5 72.5 ± 0.9 74.7 ± 0.3 74.9 ± 0.3 73.8 ± 0.3 75.2 ± 0.3 75.6 ± 0.6 76.3 ± 0.2 75.4 ± 0.6
Human Enhancers Ensembl 91.8 ± 0.3 90.1 ± 0.3 92.4 ± 0.2 92.3 ± 0.2 91.1 ± 0.4 90.6 ± 0.7 92.1 ± 0.4 91.7 ± 0.2 91.2 ± 0.2
Human Ensembl Regulatory 87.4 ± 0.7 93.2 ± 0.1 93.8 ± 0.4 94.1 ± 0.2 89.7 ± 0.1 94.1 ± 0.1 94.1 ± 0.1 92.8 ± 0.1 92.6 ± 0.1
Human non-TATA Promoters 95.7 ± 0.8 89.4 ± 2.3 96.1 ± 0.3 96.1 ± 0.2 95.0 ± 0.5 96.3 ± 0.4 93.2 ± 0.6 95.8 ± 0.1 95.5 ± 0.5
Human OCR Ensembl 80.6 ± 0.3 77.4 ± 0.4 82.5 ± 0.4 82.6 ± 0.3 78.9 ± 0.2 79.8 ± 0.3 81.3 ± 0.1 82.3 ± 0.2 81.2 ± 0.3
Human vs. Worm 97.7 ± 0.1 95.8 ± 0.4 97.5 ± 0.1 97.6 ± 0.1 96.6 ± 0.1 97.6 ± 0.0 97.6 ± 0.1 98.0 ± 0.0 97.8 ± 0.1
Mouse Enhancers Ensembl 86.5 ± 1.4 75.6 ± 3.0 78.8 ± 2.8 82.6 ± 2.1 74.2 ± 2.5 78.2 ± 2.6 85.5 ± 1.8 87.1 ± 1.5 78.4 ± 2.7

Table 2: Genomic Benchmarks comparison. Models are grouped by size: <300M parameters
(left) and ≥300M parameters (right). Bold indicates the best result overall, underlined indicates
the best result among models <300M. Best performing model <300M: DNABERT-2 (3/9 wins).
Values shown as mean ± std across folds.

3.6 DOWNSTREAM EVALUATION

To rigorously assess LDARNet’s learned representations, we evaluate on two comprehensive bench-
mark suites: the Nucleotide Transformer (NT) tasks (Dalla-Torre et al., 2025) with 18 diverse
datasets spanning histone modifications, regulatory elements, and splice sites, and Genomic Bench-
marks (GB) (Grešová et al., 2023) with 9 classification tasks focused on regulatory genomics. These
benchmarks probe a wide range of genomic functions across varying sequence lengths and biologi-
cal contexts.

Evaluation setup. We adopt the rigorous experimental protocol from Generator (Wu et al., 2025),
which provides the most comprehensive comparison framework to date. Specifically, we uniformly
fine-tune all models with 10-fold cross-validation on all datasets. For each model-task pair, we
conduct exhaustive hyperparameter search over 9 learning rates and 4 batch sizes (36 configurations
total), select the best-performing configuration on validation data, then report test metrics from
10-fold cross-validation using this optimal configuration. This two-stage procedure ensures both
optimal performance and statistical robustness. Details are in Appendix A.4.

Models compared. We benchmark LDARNet against state-of-the-art genomic foundation models,
grouping them by scale: compact models (<300M parameters) include Enformer (252M) (Avsec
et al., 2021), DNABERT-2 (117M) (Zhou et al., 2023), HyenaDNA (55M) (Nguyen et al., 2023),
Caduceus-Ph and Caduceus-PS (8M each) (Schiff et al., 2024), GROVER (87M) (Sanabria et al.,
2024), and LDARNet (120M); large-scale models (≥300M) include NT-multi (2.5B) and NT-v2
(500M) (Dalla-Torre et al., 2025), and Generator variants (1.2B) (Wu et al., 2025). Model details
are in Appendix A.6.
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Results. Table 1 shows NT task results. Among compact models, LDARNet achieves state-of-
the-art performance with 11 out of 18 wins – a 5.5× improvement over the next-best compact
alternatives (DNABERT-2, HyenaDNA, Caduceus-PS: 2 wins each). LDARNet’s superiority is par-
ticularly pronounced on histone modification tasks, winning 7 out of 10 tasks. Remarkably, on five
tasks (H3K4me1, H3K4me2, H3K4me3, H3K79me3, H4ac), LDARNet achieves the best overall
result, surpassing even models 20× larger. This exceptional performance on chromatin-related
tasks suggests that hierarchical compression effectively captures the long-range dependencies and
multi-scale patterns critical for modeling epigenetic regulation.

Table 2 shows GB results. GB tasks exhibit high baseline performance (most models >90%, many
>95%), making differentiation challenging. Nevertheless, LDARNet ties with DNABERT-2 for
best compact model performance (3/9 wins each). Notably, on Human non-TATA Promoters,
LDARNet achieves 96.3% accuracy – the best overall result across all models, including those 10×
larger. Caduceus models (8M) show surprisingly strong GB performance (2 wins each), attributable
to their exclusive training on human genome. However, this specialization limits cross-species gen-
eralization, as evidenced by weaker NT performance.

Summary. Across 27 diverse genomic tasks, LDARNet establishes itself as the leading compact
genomic foundation model with 11/18 NT wins and 3/9 GB wins (tied for best among compact mod-
els). Critically, LDARNet frequently achieves overall best results even against models with 10-20×
more parameters, validating that hierarchical compression with dynamic width scheduling enables
efficient modeling of multi-scale genomic patterns without sacrificing representational capacity. De-
tailed per-task analysis is provided in Appendix A.7.

4 RESULTS

Nucleotide Transformer Tasks. On the 18-task NT benchmark (Table 1), LDARNet achieves 11
wins among compact models (<300M parameters) – representing a 5.5-fold improvement over
the next-best alternatives. Notably, LDARNet secures 7 of 10 histone modification tasks and estab-
lishes overall best performance on 5 tasks (H3K4me1, H3K4me2, H3K4me3, H3K79me3, H4ac),
surpassing even 2.5B-parameter models. These results demonstrate that hierarchical compression
with dynamic boundary selection effectively captures the long-range dependencies and multi-scale
patterns essential for epigenetic regulation modeling. On regulatory element and splice site predic-
tion, LDARNet attains the best compact-model performance on Enhancer classification (57.7 MCC)
while maintaining competitive results on promoter identification.

Genomic Benchmarks. On the 9-task GB suite (Table 2), LDARNet achieves parity with
DNABERT-2 for best compact model performance (3 wins each). GB tasks are characterized by
high baseline accuracies (>90-95%), creating a ceiling effect that limits performance differentia-
tion. Nevertheless, on Human non-TATA Promoters, LDARNet achieves 96.3% accuracy – the
highest result across all evaluated models, exceeding Generator-1.2B (95.8%) and NT-v2-500M
(93.2%). Caduceus models (8M parameters) exhibit competitive GB performance attributable to
human-genome-specific training, yet this specialization constrains cross-species generalization, ev-
idenced by only 1-2 NT wins compared to LDARNet’s 11 – illustrating the fundamental trade-off
between domain specialization and architectural generality.

Parameter Efficiency. With 120M parameters, LDARNet consistently matches or exceeds the
performance of models containing 500M-2.5B parameters. On 5 NT tasks, it establishes best over-
all results despite 4-20-fold parameter disadvantages. These findings validate that strategic architec-
tural innovations – hierarchical compression, dynamic width scheduling, and reversible embeddings
– achieve performance parity with naive parameter scaling while requiring substantially reduced
computational resources.

5 CONCLUSION

We present LDARNet, a hierarchical genomic foundation model integrating learnable sequence
compression with dynamic width scheduling for efficient multi-scale sequence modeling. Compre-
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hensive evaluation across 27 downstream tasks establishes LDARNet as the state-of-the-art compact
model (<300M parameters), achieving 11/18 wins on NT tasks and 3/9 wins on GB tasks.

Key contributions: (1) Hierarchical compression with dynamic boundary prediction enables com-
pact models to match or surpass models 10-20-fold larger, achieving best overall performance on 5
histone modification tasks against 2.5B-parameter competitors. (2) Adaptation of hierarchical net-
work architecture (Hwang et al., 2025b) for masked language modeling, providing the community
with an efficient alternative to autoregressive pretraining that will be released with full code upon
publication. (3) Comprehensive evaluation across 27 diverse genomic tasks demonstrating that ar-
chitectural generality – through learnable multi-scale compression – outperforms domain-specific
optimization for general-purpose foundation models, with 11/18 cross-species wins versus 1-2 wins
for human-specialized alternatives.

LDARNet’s superior histone modification performance (7/10 wins) provides empirical evidence
that learnable compression boundaries align with biologically meaningful sequence segmentation.
The performance dichotomy between NT and GB benchmarks is informative: on multi-species
NT tasks requiring cross-species generalization, LDARNet’s architecture-driven generality domi-
nates (11 wins); conversely, on human-centric GB tasks, genome-specialized models like Caduceus
achieve competitive performance (2 wins each) at the cost of limited transferability (1-2 NT wins).
For general-purpose genomic foundation models, architectural generality demonstrates greater value
than task-specific optimization.

Future directions: Extension to multi-stage hierarchical compression would enable ultra-long ge-
nomic context processing (>100kb) while preserving computational tractability. Zero-shot and few-
shot evaluation protocols would complement supervised fine-tuning assessments, providing deeper
characterization of learned representation transferability. Multimodal integration with orthogonal
genomic measurements (RNA-seq, ATAC-seq, Hi-C) could exploit hierarchical structure for cross-
modal dependency modeling at multiple biological scales.

Broader impact: LDARNet establishes that compact, efficiently-designed models achieve perfor-
mance parity with substantially larger alternatives, lowering barriers to genomic AI adoption and en-
abling deployment in resource-constrained and latency-sensitive applications. These results indicate
that continued progress in genomic foundation models need not depend exclusively on parameter
count escalation – principled architectural innovation offers a complementary and more sustainable
development trajectory as genomic datasets scale and application diversity increases.

6 LIMITATIONS

While LDARNet establishes state-of-the-art performance among compact genomic foundation mod-
els, several limitations warrant discussion.

Performance on specific task categories. Large-scale models (Generator-1.2B, NT-v2-500M)
maintain advantages on splice site prediction tasks, where local pattern memorization may be more
critical than long-range dependency modeling. This suggests that certain genomic functions ben-
efit more from parameter count than from architectural innovation, indicating potential limits to
efficiency gains through compression alone.

Single-stage compression. Our implementation employs single-stage 4× compression. Multi-stage
hierarchical compression could enable processing of ultra-long genomic contexts (¿100kb), which
are essential for modeling large-scale chromatin interactions and structural variants. However, main-
taining gradient flow and representational capacity across multiple compression stages requires care-
ful architectural design that we leave to future work.

Evaluation scope. Our assessment focuses on supervised fine-tuning for classification tasks. Zero-
shot and few-shot evaluation protocols would provide complementary insights into representation
transferability and generalization. Additionally, we evaluated sequences up to 4096bp; systematic
evaluation on longer contexts would better characterize the efficiency advantages of hierarchical
compression at scale.

Interpretability of learned boundaries. While LDARNet’s strong histone modification perfor-
mance suggests that learned compression boundaries align with biologically meaningful segmen-
tation, we have not systematically analyzed these boundaries. Correlating learned token bound-
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aries with experimentally validated genomic features (e.g., transcription factor binding sites, chro-
matin accessibility peaks) would provide deeper mechanistic insights into what the model learns and
strengthen biological interpretability.

IMPACT STATEMENT

This work demonstrates that strategically designed compact models can achieve performance parity
with substantially larger alternatives in genomic sequence modeling. By establishing that 120M-
parameter models can match or exceed 2.5B-parameter models on challenging tasks, we lower bar-
riers to genomic AI adoption, enabling researchers with limited computational resources to deploy
competitive foundation models. The 10-20× reduction in computational requirements has practical
implications for resource-constrained environments and real-time applications, from clinical diag-
nostics to high-throughput functional genomics. We will release full model weights and training
code upon publication.

However, as with all advances in genomic AI, our work carries potential for dual use. While LDAR-
Net can accelerate beneficial applications in precision medicine and biological discovery, the same
capabilities could theoretically be misapplied for designing harmful biological sequences. We em-
phasize the importance of responsible development practices, including appropriate access controls
and ongoing dialogue between the ML and biosecurity communities to mitigate potential risks while
preserving the substantial benefits of genomic AI for human health and scientific understanding.

LLM USAGE

LLMs were employed to assist with the preparation of this manuscript. Specifically, we used Ope-
nAI’s GPT models to improve the clarity, coherence, and grammar of the text, and to help rephrase
sections for consistency with academic writing standards. All technical content, experimental de-
sign, data analysis, and results interpretation were conceived, implemented, and validated by the
authors. The LLM was not used to generate novel scientific ideas, design experiments, or analyze
results. Final responsibility for the accuracy and integrity of the content rests entirely with the
authors.

ETHICS STATEMENT

This work focuses on the development and evaluation of machine learning models for genomic se-
quence modeling. All datasets used are publicly available reference genomes or previously released
benchmark collections; no private, identifiable, or clinical human data were used. Our methods are
intended for basic research in machine learning and genomics, and do not directly provide medi-
cal diagnoses or clinical recommendations. We acknowledge that advances in genomic foundation
models could have dual-use implications, including both positive applications (e.g., improved under-
standing of gene regulation, variant effect prediction) and potential risks if misapplied. To mitigate
risks, we release models and code under a research license and encourage responsible use aligned
with scientific and biomedical research goals.

REPRODUCIBILITY STATEMENT

We provide comprehensive documentation to ensure full reproducibility of our results. All architec-
tural specifications, including layer configurations, dimensional parameters, and attention settings,
are detailed in Section 3.5 with complete hyperparameter listings in Appendix A. Training proce-
dures, including optimizer configuration, learning rate schedules, stage-wise scaling factors, and
infrastructure details (6× NVIDIA A100 80GB GPUs), are fully specified in Appendix A.

Downstream evaluation protocols, including the exhaustive 36-configuration hyperparameter search
and 10-fold cross-validation procedure, are described in Section 3.6 with implementation details
in Appendix A.4. Complete results are presented in Tables 1 and 2, with per-task analysis in Ap-
pendix A.7.
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Upon publication, we will publicly release: (1) full model architecture and training code, (2) pre-
trained model checkpoints, (3) fine-tuning scripts for all evaluated tasks, and (4) evaluation pipelines
with exact hyperparameter configurations used for each model-task pair. These resources will en-
able researchers to replicate our results, compare against LDARNet on new benchmarks, and extend
the architecture to additional genomic applications.
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A TRAINING DETAILS

A.1 ARCHITECTURE SPECIFICATION

LDARNet is instantiated with approximately 120M parameters following the hierarchical layout
[m3t1, [M10], m4]. The encoder comprises three BiMamba-2 layers followed by one local
attention layer, the main backbone contains ten BiMamba-2 layers, and the decoder consists of
four BiMamba-2 layers. This asymmetric design prioritizes efficient sequence processing at full
resolution while concentrating representational capacity in the compressed domain.

Model dimensions increase across the hierarchy to account for the reduced sequence length in com-
pressed space. Outer stages (encoder and decoder) use dmodel = 512, while the main backbone
operates with dmodel = 768. The feed-forward network in the backbone employs hidden dimension
dff = 2560. BiMamba-2 state-space modules are configured with chunk size 256, convolutional
kernel width 4, state dimension dstate = 128, and expansion factor 2.

Attention layers use 16 heads with rotary position embeddings of dimension 32 in outer stages
and 48 in the main backbone. We employ local windowed attention with window size 1023 in outer
stages to maintain computational efficiency, while the main backbone uses global attention to enable
full-context reasoning over compressed representations. The vocabulary comprises seven byte-level
tokens ({A, C, G, T, N, [PAD], [MASK]}) with untied input and output embeddings.

A.2 TRAINING OBJECTIVE AND OPTIMIZATION

The pretraining objective combines masked language modeling with compression regularization:

L = LMLM + α · Lratio, (17)
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where LMLM is the standard reconstruction loss over masked positions, and Lratio is a ratio-based
loss that encourages the boundary predictor to select approximately 1/N positions for retention. We
set α = 0.03 to balance reconstruction quality with compression consistency. Tokens are masked
with 15% probability during training.

Models are optimized using AdamW Loshchilov & Hutter (2017) with β1 = 0.9, β2 = 0.95,
ϵ = 10−8, and weight decay 0.01. Gradients are clipped to maximum norm 1.0. We employ a
warmup-stable-decay (WSD) learning rate schedule with base rate 5 × 10−4: linear warmup over
the first 10% of training, constant plateau for 70%, followed by inverse square-root decay over the
final 20% to 5% of the peak value.

Following prior work on hierarchical models Hwang et al. (2025b), we apply stage-wise learning
rate scaling to account for gradient magnitude differences across compression boundaries. Outer-
stage parameters (encoder and decoder) receive scaled learning rate ηouter = ηbase·

√
N ·(dback/douter),

which compensates for gradient attenuation through the compressed backbone. For our configura-
tion with N = 4, douter = 512, and dback = 768, this yields a 3× multiplier for outer layers relative
to the backbone.

Training uses gradient accumulation over 16 steps with micro-batch size 32, yielding an effective
batch size of 512 sequences per iteration. All sequences are of length 4096 tokens.

A.3 TRAINING INFRASTRUCTURE

Training is performed using PyTorch DistributedDataParallel (DDP) with NCCL backend across
multiple GPUs. We enable hardware-accelerated matrix operations (TF32 on Ampere-generation
GPUs) and memory-efficient attention kernels (FlashAttention Dao et al. (2022)) when available.
Mixed-precision training uses bfloat16 on compatible hardware with automatic fallback to
float16 with gradient scaling on older architectures.

Input sequences are sampled from human genomic coordinates specified in BED format, with data
distributed across workers using stratified sampling to ensure balanced epoch coverage. The pre-
training corpus combines the human reference genome (GRCh38/hg38) with the multispecies col-
lection from Nucleotide Transformer (Dalla-Torre et al., 2025), ensuring both in-species fidelity and
cross-species diversity. To promote reverse–complement invariance, each sequence is sampled in
forward and reverse orientations with equal probability.

A.4 DOWNSTREAM EVALUATION SETUP

Following the comprehensive evaluation protocol established by Generator (Wu et al., 2025),
we uniformly fine-tune all models using 10-fold cross-validation on all benchmark tasks. For
each model on each dataset, we conduct an exhaustive hyperparameter search over learning rates
in {1e−5, 2e−5, 5e−5, 1e−4, 2e−4, 5e−4, 1e−3, 2e−3, 5e−3} and batch sizes in {64, 128, 256, 512}.
Early stopping is applied based on validation loss with patience of 5 epochs. This exhaustive search
ensures that each model achieves its optimal performance on every task, making the comparison
particularly fair.

For each task, we select the hyperparameter configuration that achieves the best validation perfor-
mance, then report test metrics averaged over all cross-validation folds with standard deviation com-
puted across folds. This protocol ensures statistical robustness and eliminates potential confounds
from suboptimal hyperparameter selection.

A.5 OPTIMAL HYPERPARAMETERS PER TASK

After exhaustive hyperparameter search over 36 configurations (9 learning rates × 4 batch sizes) per
model-task pair, we identified the optimal configuration for LDARNet on each downstream task.
Tables A.5 and A.5 report the learning rate and effective batch size that achieved best validation
performance for each task. These configurations were then used for 10-fold cross-validation to
produce the final test results reported in the main text.

Task-specific observations. Several patterns emerge from the optimal configurations. Histone
modification tasks generally prefer moderate learning rates (1e−3 to 2e−3) with smaller to medium
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Task Learning Rate Batch Size
Histone Modifications
H3 1× 10−3 64
H3K4me1 5× 10−3 128
H3K4me2 5× 10−3 512
H3K4me3 1× 10−3 64
H3K9ac 1× 10−3 128
H3K14ac 1× 10−3 128
H3K36me3 5× 10−4 64
H3K79me3 2× 10−3 128
H4 2× 10−3 64
H4ac 1× 10−3 64
Regulatory Elements
Enhancer 2× 10−4 128
Enhancer type 2× 10−3 64
Promoter all 1× 10−3 128
Promoter non-TATA 5× 10−3 256
Promoter TATA 1× 10−3 128
Splice Sites
Splice acceptor 1× 10−3 128
Splice donor 2× 10−3 64
Splice site all 5× 10−3 128

Table 3: Optimal hyperparameters for Nucleotide Transformer tasks. Learning rate (LR) and
effective batch size (BS) selected from exhaustive search over 36 configurations.

Task Learning Rate Batch Size
Coding vs. Intergenomic 1× 10−3 64
Drosophila Enhancers Stark 2× 10−3 128
Human Enhancers Cohn 2× 10−3 64
Human Enhancers Ensembl 1× 10−3 128
Human Ensembl Regulatory 2× 10−3 64
Human non-TATA Promoters 1× 10−3 128
Human OCR Ensembl 2× 10−3 64
Human vs. Worm 1× 10−3 64
Mouse Enhancers Ensembl 1× 10−3 128

Table 4: Optimal hyperparameters for Genomic Benchmarks tasks. Learning rate (LR) and
effective batch size (BS).

batch sizes (64-128), except H3K4me2 which benefits from larger batches (512). Regulatory ele-
ment tasks show more diversity: enhancer classification requires conservative learning (2e−4), while
promoter tasks span the full range from 1e−3 to 5e−3. Splice site tasks consistently prefer aggressive
learning rates (1e−3 to 5e−3) with moderate to large batches (64-128), possibly reflecting their more
localized signal patterns. GB tasks predominantly cluster around 1e−3 to 2e−3 with batch sizes
64-128, consistent with their focus on human regulatory elements with strong baseline performance.

A.6 MODEL ARCHITECTURES AND TRAINING DETAILS

This section provides detailed specifications for all baseline models evaluated in our downstream
benchmarks.
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Compact Models (< 300M parameters). Enformer (252M) (Avsec et al., 2021) is a
Transformer-based model originally trained in a supervised manner specifically for chromatin pro-
file and gene expression prediction tasks. Unlike other baselines that use unsupervised pretraining,
Enformer was directly optimized on ENCODE and Roadmap Epigenomics data. This task-specific
training may explain its continued competitiveness on chromatin-related benchmarks despite its ear-
lier release. The model employs standard absolute positional encodings and processes sequences up
to 196kb with convolutional downsampling.

DNABERT-2 (117M) (Zhou et al., 2023) employs Byte-Pair Encoding (BPE) tokenization with a
learned vocabulary, combined with ALiBi (Attention with Linear Biases) positional encoding for
extrapolation to longer sequences. The model was pretrained on a multi-species genome corpus us-
ing masked language modeling. BPE tokenization allows the model to learn subword units that may
capture biologically meaningful motifs, though at the cost of losing single-nucleotide granularity.

HyenaDNA (55M) (Nguyen et al., 2023) represents a departure from Transformer architectures,
utilizing implicit long convolutions inspired by state-space models. The model employs single-
nucleotide tokenization and was pretrained on the human reference genome. Its convolutional
nature enables efficient processing of very long sequences (up to 1M bp during pretraining) with
subquadratic complexity.

Caduceus-Ph and Caduceus-PS (8M each) (Schiff et al., 2024) are bidirectional Mamba models
– the smallest models in our comparison by a substantial margin. Both variants employ single-
nucleotide tokenization and were trained exclusively on the human reference genome (GRCh38).
The ”Ph” variant uses a phase-based bidirectional architecture, while ”PS” uses a parallel scan ap-
proach. Their compact size and human-specific training make them particularly efficient for human
genomic tasks, though potentially limiting cross-species generalization.

GROVER (87M) (Sanabria et al., 2024) combines BPE tokenization with specialized pretraining
objectives beyond standard masked language modeling. The model incorporates domain-specific
inductive biases for genomic sequences and was pretrained on a diverse genomic corpus.

Large-Scale Models (≥300M parameters). NT-multi (2.5B) and NT-v2 (500M) (Dalla-Torre
et al., 2025) employ k-mer tokenization with masked language modeling. Both models were pre-
trained on a comprehensive multi-species genomic corpus. Notably, NT-v2, despite being 5× smaller
than NT-multi, demonstrates enhanced performance on many benchmarks, suggesting that recent ar-
chitectural improvements can substantially improve parameter efficiency.

Generator (1.2B) and Generator-All (1.2B) (Wu et al., 2025) are autoregressive models trained
on comprehensive genomic data with next-token prediction. Generator was trained on a curated
genomic corpus, while Generator-All incorporated additional data sources.

A.7 DETAILED RESULTS ANALYSIS

Nucleotide Transformer Tasks: Histone Modifications. The NT benchmark includes 10 histone
modification prediction tasks, which are particularly challenging due to the long-range dependencies
involved in chromatin organization. LDARNet achieves remarkable performance on these tasks,
winning 7 out of 10 benchmarks and achieving overall best results on 5 tasks.

On H3K4me1 (58.3), H3K4me2 (49.6), H3K4me3 (57.6), H3K79me3 (68.7), and H4ac (62.3),
LDARNet not only leads among compact models but achieves the best overall result across all
models, including those with 2.5B parameters. This is particularly noteworthy given that these
models have 20× more parameters. The consistent excellence on H3K4 methylation marks (me1,
me2, me3) suggests that LDARNet’s hierarchical architecture is especially well-suited for capturing
the multi-scale patterns associated with active promoter and enhancer regions.

On H3K9ac (60.3) and H4 (81.3), LDARNet achieves the best compact-model results and comes
within 1-2 MCC points of the best large-scale models (Generator: 61.2 and 81.5, respectively). On
H3K36me3, LDARNet (62.4) ranks as the best compact model, though Generator (65.7) achieves
a more substantial lead. The only histone task where LDARNet does not lead among compact
models is H3K14ac, where HyenaDNA achieves a remarkable 60.8 MCC – actually the best overall
result across all models, demonstrating that even much smaller models can occasionally achieve
breakthrough performance on specific tasks.
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The strong performance on histone modification tasks validates our hypothesis that hierarchical
compression with dynamic boundary selection enables effective modeling of long-range chromatin
interactions. These tasks require understanding dependencies spanning thousands of base pairs,
which conventional models struggle to capture efficiently.

Nucleotide Transformer Tasks: Regulatory Elements and Splice Sites. On regulatory element
prediction (Enhancer, Enhancer type, Promoter variants), LDARNet demonstrates consistent com-
petitiveness. It achieves the best compact-model result on Enhancer (57.7 MCC), closely approach-
ing Generator (58.0). DNABERT-2 shows particular strength on promoter tasks, winning on Pro-
moter all (94.5) and Promoter non-TATA (94.4), likely benefiting from its BPE tokenization which
may better capture promoter-specific motifs.

Splice site prediction tasks (Splice acceptor, Splice donor, Splice site all) are dominated by large-
scale models, with Generator achieving >97.5% on all three. Among compact models, Caduceus-
PS shows strength on these tasks (winning Splice site all and Splice donor), possibly due to its
bidirectional architecture being well-suited for the highly localized patterns around splice junctions.
HyenaDNA achieves the best compact-model result on Splice acceptor (93.5), demonstrating its
effectiveness on tasks requiring precise local pattern recognition.

Genomic Benchmarks: Saturation Effects and Specialized Models. GB tasks present a differ-
ent challenge than NT tasks due to performance saturation. On 6 out of 9 tasks, the best-performing
model achieves >92% accuracy, and on 4 tasks, even compact models exceed 95%. This narrow
margin makes it difficult to demonstrate clear architectural advantages.

Nevertheless, LDARNet achieves competitive performance with 3 wins. On Coding vs. Interge-
nomic task (95.5%), LDARNet ties with NT-v2 for the best compact-model result, approaching
Generator (96.3%). On Human Ensembl Regulatory task (94.1%), LDARNet achieves a three-way
tie for the overall best result with Caduceus-PS and NT-v2, demonstrating that compact models
can match large-scale performance in certain regimes. Most impressively, on Human non-TATA
Promoters task (96.3%), LDARNet achieves the single best result across all models, outperforming
Generator (95.8%) and NT-v2 (93.2%).

Caduceus models show surprisingly strong GB performance despite being 15× smaller than LDAR-
Net, achieving 2 wins each and several overall best results (Drosophila Enhancers Stark task: 82.7%,
Human Enhancers Ensembl task: 92.4%, Human OCR Ensembl task: 82.6%). This performance
can be directly attributed to their exclusive training on the human genome – they are effectively
specialist models for human genomic tasks. However, this specialization comes at the cost of gen-
eralization: on NT tasks, which include cross-species data, Caduceus models achieve only 1-2 wins
each, substantially underperforming LDARNet’s 11 wins.

DNABERT-2 demonstrates well-balanced performance across both benchmarks, achieving 2 NT
wins and 3 GB wins. Its strength on enhancer and cross-species tasks (Human Enhancers Cohn,
Human vs. Worm, Mouse Enhancers Ensembl) suggests that BPE tokenization with multi-species
pretraining produces robust, generalizable representations.

Performance-Parameter Efficiency Analysis. A key finding from our evaluation is that LDAR-
Net achieves exceptional parameter efficiency. Across both benchmarks, LDARNet (120M) fre-
quently matches or exceeds models with 500M-2.5B parameters. On 5 NT tasks, LDARNet achieves
the overall best result despite being 4-20× smaller than its closest competitors. This efficiency vali-
dates our architectural approach: rather than simply scaling up parameter count, strategic architec-
tural innovations – hierarchical compression, dynamic width scheduling, reversible embeddings –
can achieve comparable or superior performance at a fraction of the computational cost.

The contrast between Caduceus and LDARNet is particularly instructive. Caduceus models (8M)
achieve strong GB performance through domain specialization (human-only training), while LDAR-
Net (120M) achieves strong performance across both human-centric GB and multi-species NT
through architectural generality. This suggests two distinct paths to efficiency: specialization (nar-
row but deep optimization for specific domains) versus generalization (broad competence through
architectural innovation). For genomic foundation models intended for diverse downstream applica-
tions, the generalist approach appears more promising.
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A.8 COMPUTATIONAL BUDGET

Pretraining. LDARNet (120M parameters) was pretrained on 6× NVIDIA A100 80GB GPUs
with mixed-precision training (bfloat16). The corpus combines human reference genome
(GRCh38) and multispecies data from Nucleotide Transformer (Dalla-Torre et al., 2025) (∼300B
base pairs). Training used sequences of length 4096, effective batch size 512, and required 7 days
wall-clock time, totaling 1,008 GPU-hours (42 GPU-days).

Downstream Evaluation. For each task, we performed exhaustive hyperparameter search over
36 configurations (9 learning rates × 4 batch sizes) followed by 10-fold cross-validation with the
optimal configuration. Training time per configuration ranged from 30 minutes to 6 hours depending
on task complexity and dataset size, averaging 2 hours.

• Hyperparameter search: 27 tasks × 36 configs × 2h = 1,944 GPU-hours (81 GPU-days)

• Cross-validation: 27 tasks × 10 folds × 2h = 540 GPU-hours (22.5 GPU-days)

• Downstream total: 2,484 GPU-hours (103.5 GPU-days)

Total Cost. Complete experimental pipeline required 3,492 GPU-hours (145.5 GPU-days) on
A100 80GB hardware. For comparison, pretraining a 2.5B-parameter model (NT-multi scale) re-
quires approximately 1,000-1,500 GPU-days, demonstrating that LDARNet achieves competitive
performance at <10% of large-scale model training costs. At 400W TDP per A100 with datacenter
PUE 1.2, total energy consumption is approximately 1,680 kWh, corresponding to ∼670 kg COe at
US grid average carbon intensity.

B ABLATION STUDIES

To systematically evaluate design choices while conserving computational resources, all ablation ex-
periments were conducted using 2M-parameter models with identical architectural configurations.
Each model was trained for 10 epochs on the same data splits, enabling direct comparison across
experimental conditions. We evaluate downstream performance using Matthews Correlation Coef-
ficient (MCC) on two benchmark suites: Nucleotide Transformer (NT) tasks and Genomic Bench-
marks (GB). For interpretability, we partition NT tasks into histone modification prediction (NT
Histones) and regulatory element classification comprising enhancers, promoters, and splice sites
(NT Regulatory).

Training Setup. All ablation models were trained on human genomic sequences using byte-level
tokenization with MLM at 15% masking probability. We employed a composite loss function com-
bining MLM loss with a ratio-based ratio loss weighted by α. Models were optimized using AdamW
(β1 = 0.9, β2 = 0.95, ϵ = 10−8) with a base learning rate of 5×10−4 and weight decay of 0.01. We
applied a warmup-stable-decay (WSD) learning rate schedule comprising 10% warmup, 70% stable
training, and 20% decay phases, with the final learning rate reaching 5% of the peak value. Training
utilized automatic mixed precision (bfloat16 on Ampere GPUs, float16 otherwise), gradient accu-
mulation over 16 steps yielding an effective batch size of 256, and gradient clipping at maximum
norm 1.0. Distributed training was performed using PyTorch DistributedDataParallel with NCCL
backend, with TF32 operations and FlashAttention enabled for computational efficiency.

Downstream Evaluation Setup. To assess the quality of learned representations, we employ a
linear probing protocol following established practices in genomic foundation model evaluation. For
each pretrained model, we extract embeddings by performing a forward pass through the encoder
and applying mean pooling over the sequence length dimension, weighted by the attention mask
to exclude padding tokens. The resulting fixed-dimensional representations are then used to train
a logistic regression classifier (L-BFGS solver, maximum 1000 iterations) without fine-tuning the
encoder weights.

We evaluate on two benchmark suites: Nucleotide Transformer (NT) downstream tasks and Ge-
nomic Benchmarks (GB). For NT tasks, we employ 10-fold stratified cross-validation on the train-
ing set with evaluation on the held-out test split. For GB datasets, we use 5-fold stratified cross-
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Figure 2: Training loss curves across compression ratios N ∈ {2, 4, 8, 16, 32}. Higher compression
ratios consistently yield elevated loss values, reflecting the fundamental trade-off between compres-
sion efficiency and information preservation.

validation. We report Matthews Correlation Coefficient (MCC) as the primary metric, which pro-
vides a balanced measure for potentially imbalanced classification tasks. Confidence intervals (95%)
are computed using the Student’s t-distribution across folds. All experiments use identical hyperpa-
rameters and random seeds to ensure fair comparison.

B.1 COMPRESSION RATIO

The compression ratio N determines the degree of sequence compression, directly affecting the
information throughput of the model. We evaluated compression ratios N ∈ {2, 4, 8, 16, 32} to
characterize the trade-off between compression efficiency and representational capacity.

Figure 2 illustrates the relationship between compression ratio and training loss. As expected, higher
compression ratios yield increased loss values, reflecting the reduced information capacity of more
aggressive compression. This behavior is consistent with rate-distortion theory: stronger compres-
sion necessarily discards information, manifesting as degraded reconstruction fidelity.

Downstream evaluation reveals a more nuanced pattern (Tables 5–7). While N = 32 achieves the
highest average MCC on histone modification tasks (39.75%), N = 2 leads on NT Regulatory tasks
(50.93%), and N = 4 achieves the best performance on Genomic Benchmarks (52.07%). This task-
dependent variation suggests that optimal compression depends on the characteristic length scales of
regulatory features: histone modifications may benefit from aggressive compression that emphasizes
global patterns, while promoter and splice site recognition requires finer-grained local information.

We selected N = 4 for the main experiments as it achieves the best balance across benchmark
suites, with competitive performance on all task categories (average ranks: 2.0 on NT Histones, 2.0
on NT Regulatory, 1.0 on GB) while maintaining moderate compression that preserves both local
and long-range dependencies.

B.2 RATIO LOSS WEIGHT

The ratio loss, weighted by α, regularizes the learned compression toward the target ratio N . We
investigated α ∈ {0.0, 0.03, 0.1, 0.3} at fixed N = 4, and additionally evaluated α ∈ {0.0, 0.03} at
N = 8 to examine the interaction between ratio loss weight and compression ratio.
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Task ratio 2 ratio 4 ratio 8 ratio 16 ratio 32
Average 39.16 39.24 39.41 38.22 39.75
# Wins 2 1 1 1 5
H3 66.48 ± 0.20 67.69 ± 0.17 67.68 ± 0.23 66.36 ± 0.28 66.88 ± 0.19
H3K14ac 27.23 ± 0.31 27.03 ± 0.25 27.71 ± 0.26 25.16 ± 0.22 28.88 ± 0.13
H3K36me3 38.04 ± 0.17 38.77 ± 0.27 39.31 ± 0.21 35.64 ± 0.25 39.81 ± 0.26
H3K4me1 30.36 ± 0.26 29.56 ± 0.20 29.44 ± 0.16 32.00 ± 0.23 30.10 ± 0.21
H3K4me2 26.69 ± 0.20 24.23 ± 0.22 24.89 ± 0.31 24.53 ± 0.22 24.44 ± 0.14
H3K4me3 20.09 ± 0.36 19.37 ± 0.26 18.28 ± 0.17 18.89 ± 0.22 20.73 ± 0.33
H3K79me3 50.76 ± 0.16 51.22 ± 0.13 51.99 ± 0.18 48.80 ± 0.14 49.69 ± 0.15
H3K9ac 39.61 ± 0.19 38.40 ± 0.16 39.22 ± 0.17 38.36 ± 0.12 39.30 ± 0.25
H4 67.99 ± 0.17 69.42 ± 0.27 70.62 ± 0.26 67.68 ± 0.10 70.75 ± 0.21
H4ac 24.39 ± 0.21 26.74 ± 0.31 24.95 ± 0.21 24.79 ± 0.12 26.90 ± 0.17

Table 5: Compression ratio ablation: NT Histones (MCC). Performance on histone modification
prediction tasks across compression ratios N ∈ {2, 4, 8, 16, 32}. Values represent mean ± 95%
confidence interval across cross-validation folds. Bold indicates the best result per task. Although
N = 32 achieves the highest average MCC (39.75%) and the most per-task wins (5/10), intermediate
ratios remain competitive, suggesting that aggressive compression may emphasize global chromatin
patterns at the cost of local resolution.

Task ratio 2 ratio 4 ratio 8 ratio 16 ratio 32
Average 50.93 50.74 49.12 48.40 49.24
# Wins 1 4 0 0 3
enhancers 50.40 ± 0.23 44.32 ± 0.42 45.33 ± 0.51 41.57 ± 0.60 46.10 ± 0.37
enhancers types 32.83 ± 0.80 32.91 ± 0.50 28.93 ± 0.72 27.67 ± 0.57 28.84 ± 0.64
promoter all 80.96 ± 0.07 83.77 ± 0.03 80.52 ± 0.06 79.80 ± 0.10 78.35 ± 0.07
promoter no tata 81.01 ± 0.06 83.82 ± 0.08 81.23 ± 0.10 80.14 ± 0.07 79.14 ± 0.11
promoter tata 78.48 ± 0.22 78.86 ± 0.32 75.47 ± 0.23 75.00 ± 0.34 72.88 ± 0.24
splice sites acceptors 31.08 ± 0.27 31.96 ± 0.26 30.07 ± 0.19 31.30 ± 0.22 34.01 ± 0.20
splice sites all 22.64 ± 0.23 20.97 ± 0.25 21.75 ± 0.28 23.05 ± 0.15 24.03 ± 0.15
splice sites donors 30.01 ± 0.16 29.36 ± 0.32 29.65 ± 0.25 28.69 ± 0.15 30.55 ± 0.25

Table 6: Compression ratio ablation: NT Regulatory (MCC). Performance on regulatory ele-
ment classification tasks (enhancers, promoters, and splice sites) across compression ratios. Lower
compression (N = 2) achieves the highest average MCC (50.93%), while N = 4 obtains the most
per-task wins (4/8), particularly dominating promoter recognition. This pattern indicates that fine-
grained local sequence information is critical for accurate regulatory element discrimination.

Figure 3 presents training dynamics at N = 4. The ratio loss component exhibits expected be-
havior: it decreases throughout training for α > 0, indicating successful regularization toward the
target compression. Notably, even at α = 0.03, the model effectively learns the target ratio while
maintaining low MLM loss.

A critical finding emerges from the N = 8, α = 0.0 condition (Figure 4): without ratio loss
supervision, the model’s effective compression ratio diverges during training, with the ratio loss
exhibiting unstable behavior. This confirms that the ratio loss is essential for maintaining the target
compression – without explicit regularization, the model gravitates toward an empirically preferred
compression of approximately N ≈ 4, suggesting this ratio represents a natural equilibrium between
compression and reconstruction for genomic sequences at this model scale.

Downstream performance (Tables 8–10) shows α = 0.1 achieving the highest average on NT Hi-
stones (40.36%) and NT Regulatory (51.19%), while α = 0.03 leads on Genomic Benchmarks
(52.84%). We adopt α = 0.03 for main experiments as it provides stable training dynamics with
strong cross-benchmark performance, avoiding potential over-regularization at higher α values.
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Task ratio 2 ratio 4 ratio 8 ratio 16 ratio 32
Average 51.73 52.07 51.41 50.49 50.14
# Wins 4 3 1 0 1
demo coding vs intergenomic seqs 74.82 ± 0.04 75.29 ± 0.12 74.37 ± 0.07 73.82 ± 0.10 71.64 ± 0.07
demo human or worm 79.28 ± 0.08 85.34 ± 0.05 80.84 ± 0.20 77.38 ± 0.04 76.69 ± 0.05
drosophila enhancers stark 35.87 ± 0.81 36.54 ± 0.93 38.44 ± 0.34 38.75 ± 0.54 38.91 ± 0.92
dummy mouse enhancers ensembl 56.97 ± 2.61 56.55 ± 2.53 54.60 ± 1.99 53.74 ± 0.50 55.38 ± 1.57
human enhancers cohn 45.98 ± 0.27 44.61 ± 0.23 44.91 ± 0.31 43.60 ± 0.40 43.58 ± 0.17
human enhancers ensembl 43.29 ± 0.07 41.57 ± 0.09 41.95 ± 0.05 41.28 ± 0.15 40.90 ± 0.08
human ensembl regulatory 36.78 ± 0.10 35.30 ± 0.07 34.11 ± 0.04 34.46 ± 0.12 34.13 ± 0.05
human nontata promoters 65.70 ± 0.09 66.31 ± 0.25 66.25 ± 0.09 65.71 ± 0.19 63.49 ± 0.24
human ocr ensembl 26.85 ± 0.03 27.08 ± 0.07 27.23 ± 0.19 25.61 ± 0.10 26.54 ± 0.09

Table 7: Compression ratio ablation: Genomic Benchmarks (MCC). Performance across diverse
genomic classification tasks under varying compression ratios. N = 4 achieves the highest average
MCC (52.07%) with strong performance on species discrimination and promoter tasks, while N = 2
wins on more individual tasks (4/9). The consistent degradation at N ≥ 16 confirms that excessive
compression impairs the model’s ability to capture task-relevant sequence features.

Figure 3: Training dynamics across ratio loss weights α at compression ratio N = 4. The ratio loss
component (right) confirms effective regularization for α > 0.

B.3 CONTEXT LENGTH

Genomic regulatory elements operate across multiple length scales, from local motifs spanning tens
of nucleotides to distal regulatory interactions exceeding kilobases. We evaluated context lengths
L ∈ {1024, 2048, 4096, 8192} byte pairs to determine the optimal receptive field for our architec-
ture.

Training dynamics (Figure 5) reveal minimal loss differences across context lengths, with longer
contexts providing marginal improvements. Downstream evaluation (Tables 11–13) presents a het-
erogeneous pattern: L = 8192 achieves the highest average on NT Histones (38.60%) and GB
(53.30%), while L = 4096 leads on NT Regulatory tasks (49.96%).

The absence of consistent performance gains at L = 8192 despite increased computational cost
suggests that, at the 2M parameter scale, the model’s representational capacity may be the limiting
factor rather than context length. We select L = 4096 for main experiments as it provides a favorable
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Task alpha 0.0 alpha 0.0 ratio 8 alpha 0.03 alpha 0.03 ratio 8 alpha 0.1 alpha 0.3
Average 39.23 38.71 38.46 38.26 40.36 39.05
# Wins 2 0 0 0 8 0
H3 66.01 ± 0.17 67.85 ± 0.16 66.66 ± 0.12 66.32 ± 0.18 68.13 ± 0.16 67.25 ± 0.25
H3K14ac 28.66 ± 0.24 27.38 ± 0.16 25.61 ± 0.21 24.95 ± 0.35 30.63 ± 0.32 27.13 ± 0.16
H3K36me3 38.15 ± 0.21 37.66 ± 0.17 36.94 ± 0.20 38.20 ± 0.17 39.43 ± 0.30 37.83 ± 0.15
H3K4me1 31.12 ± 0.35 29.98 ± 0.21 30.43 ± 0.15 28.91 ± 0.23 29.71 ± 0.30 30.79 ± 0.28
H3K4me2 23.44 ± 0.24 24.71 ± 0.15 24.92 ± 0.23 24.46 ± 0.21 25.09 ± 0.22 24.25 ± 0.23
H3K4me3 19.60 ± 0.15 18.40 ± 0.29 18.82 ± 0.25 18.59 ± 0.15 20.17 ± 0.25 18.74 ± 0.29
H3K79me3 50.92 ± 0.15 48.70 ± 0.14 50.72 ± 0.13 51.14 ± 0.14 52.33 ± 0.18 50.39 ± 0.14
H3K9ac 39.56 ± 0.18 38.90 ± 0.10 36.35 ± 0.20 37.80 ± 0.12 39.47 ± 0.16 38.99 ± 0.24
H4 69.44 ± 0.18 69.80 ± 0.19 70.37 ± 0.19 67.39 ± 0.31 71.34 ± 0.12 70.27 ± 0.24
H4ac 25.43 ± 0.15 23.76 ± 0.09 23.74 ± 0.13 24.85 ± 0.26 27.31 ± 0.17 24.86 ± 0.24

Table 8: Ratio Loss Weight Ablation: NT Histones (MCC). Comparison across α values at N =
4 and N = 8. The α = 0.1 configuration achieves strongest average performance on histone
modification prediction.

Task alpha 0.0 alpha 0.0 ratio 8 alpha 0.03 alpha 0.03 ratio 8 alpha 0.1 alpha 0.3
Average 50.36 49.16 50.83 50.47 51.19 50.53
# Wins 0 0 2 2 3 1
enhancers 48.11 ± 0.50 46.41 ± 0.37 45.73 ± 0.38 48.87 ± 0.56 46.01 ± 0.45 47.23 ± 0.35
enhancers types 30.32 ± 0.38 29.17 ± 0.45 33.15 ± 0.32 30.90 ± 0.43 29.81 ± 0.52 26.98 ± 0.37
promoter all 81.92 ± 0.05 79.86 ± 0.08 81.34 ± 0.08 81.07 ± 0.05 83.39 ± 0.07 82.65 ± 0.10
promoter no tata 82.15 ± 0.09 80.05 ± 0.08 81.41 ± 0.05 81.28 ± 0.07 83.57 ± 0.06 82.91 ± 0.09
promoter tata 77.48 ± 0.33 77.17 ± 0.31 76.59 ± 0.34 74.30 ± 0.25 82.35 ± 0.33 79.17 ± 0.22
splice sites acceptors 29.91 ± 0.18 31.25 ± 0.21 33.20 ± 0.32 33.88 ± 0.19 31.74 ± 0.23 33.17 ± 0.36
splice sites all 22.31 ± 0.21 20.96 ± 0.26 24.88 ± 0.16 22.36 ± 0.18 22.11 ± 0.25 19.98 ± 0.23
splice sites donors 30.72 ± 0.27 28.43 ± 0.33 30.30 ± 0.30 31.10 ± 0.32 30.55 ± 0.27 32.12 ± 0.28

Table 9: Ratio Loss Weight Ablation: NT Regulatory (MCC). Moderate ratio loss weights (α ∈
{0.03, 0.1}) consistently outperform extreme values on regulatory element tasks.

Task alpha 0.0 alpha 0.0 ratio 8 alpha 0.03 alpha 0.03 ratio 8 alpha 0.1 alpha 0.3
Average 51.71 51.93 52.84 51.62 51.76 52.44
# Wins 1 1 3 1 1 2
demo coding vs intergenomic seqs 75.43 ± 0.13 74.96 ± 0.07 74.72 ± 0.06 74.14 ± 0.06 74.98 ± 0.10 74.22 ± 0.07
demo human or worm 83.27 ± 0.08 79.44 ± 0.06 83.83 ± 0.08 80.50 ± 0.07 78.47 ± 0.04 81.18 ± 0.12
drosophila enhancers stark 39.64 ± 0.56 39.50 ± 0.66 41.01 ± 0.79 39.36 ± 0.52 38.69 ± 0.42 37.80 ± 0.78
dummy mouse enhancers ensembl 55.13 ± 1.49 58.24 ± 2.05 59.69 ± 2.92 54.89 ± 3.59 59.00 ± 2.30 62.29 ± 1.67
human enhancers cohn 44.53 ± 0.35 45.80 ± 0.19 45.76 ± 0.20 45.60 ± 0.17 45.32 ± 0.19 45.29 ± 0.27
human enhancers ensembl 41.82 ± 0.09 42.41 ± 0.09 43.01 ± 0.09 41.81 ± 0.08 42.14 ± 0.09 42.83 ± 0.12
human ensembl regulatory 34.05 ± 0.03 34.31 ± 0.08 35.20 ± 0.06 35.16 ± 0.03 34.85 ± 0.04 35.74 ± 0.07
human nontata promoters 65.35 ± 0.20 65.98 ± 0.23 66.19 ± 0.10 66.69 ± 0.32 65.45 ± 0.06 65.95 ± 0.20
human ocr ensembl 26.19 ± 0.09 26.70 ± 0.14 26.16 ± 0.12 26.42 ± 0.15 26.95 ± 0.15 26.66 ± 0.09

Table 10: Ratio Loss Weight Ablation: Genomic Benchmarks (MCC). α = 0.03 achieves the
highest average (52.84%), representing the configuration used in main experiments.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 4: Training dynamics at N = 8 comparing α = 0.0 versus α = 0.03. Without ratio loss
(α = 0.0), the ratio loss diverges, indicating the model fails to maintain the target compression ratio.

Figure 5: Training loss across context lengths L ∈ {1024, 2048, 4096, 8192}. Longer contexts yield
marginally lower loss, though differences diminish beyond L = 4096.

trade-off between computational efficiency and performance, achieving the best results on regulatory
element classification while remaining competitive across all benchmarks.

B.4 ARCHITECTURE

We compare three architectural variants to assess the contribution of each component: (1) Hybrid:
interleaved Mamba-2 and Transformer layers, (2) Pure Mamba: exclusively BiMamba-2 layers,
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Task context 1024 context 2048 context 4096 context 8192
Average 38.29 37.28 38.03 38.60
# Wins 3 2 1 4
H3 65.63 ± 0.21 67.38 ± 0.16 67.18 ± 0.23 65.97 ± 0.13
H3K14ac 25.11 ± 0.18 24.22 ± 0.21 25.84 ± 0.26 26.28 ± 0.21
H3K36me3 35.70 ± 0.25 34.56 ± 0.11 35.97 ± 0.13 37.50 ± 0.25
H3K4me1 28.23 ± 0.22 28.26 ± 0.32 29.30 ± 0.15 28.92 ± 0.14
H3K4me2 24.59 ± 0.22 24.53 ± 0.23 24.85 ± 0.30 26.01 ± 0.21
H3K4me3 19.88 ± 0.34 16.11 ± 0.27 19.71 ± 0.46 20.39 ± 0.27
H3K79me3 50.54 ± 0.17 48.68 ± 0.18 49.37 ± 0.12 49.79 ± 0.15
H3K9ac 38.36 ± 0.19 38.42 ± 0.15 37.70 ± 0.24 37.75 ± 0.14
H4 68.43 ± 0.16 67.42 ± 0.17 65.90 ± 0.16 67.49 ± 0.18
H4ac 26.48 ± 0.16 23.22 ± 0.28 24.53 ± 0.21 25.94 ± 0.31

Table 11: Context Length Ablation: NT Histones (MCC). Extended context (L = 8192) provides
modest improvements on histone tasks, potentially capturing longer-range chromatin dependencies.

Task context 1024 context 2048 context 4096 context 8192
Average 47.76 49.57 49.96 48.38
# Wins 0 4 2 2
enhancers 45.53 ± 0.29 46.01 ± 0.34 45.40 ± 0.28 47.11 ± 0.37
enhancers types 28.21 ± 0.35 30.35 ± 0.61 30.47 ± 0.32 30.78 ± 0.44
promoter all 79.26 ± 0.06 81.29 ± 0.06 81.00 ± 0.08 78.68 ± 0.06
promoter no tata 79.73 ± 0.09 81.64 ± 0.10 81.31 ± 0.08 79.04 ± 0.08
promoter tata 71.45 ± 0.30 73.31 ± 0.33 76.31 ± 0.20 73.04 ± 0.19
splice sites acceptors 29.47 ± 0.29 32.36 ± 0.21 31.51 ± 0.38 30.88 ± 0.23
splice sites all 20.01 ± 0.19 21.68 ± 0.23 24.12 ± 0.29 20.66 ± 0.21
splice sites donors 28.43 ± 0.22 29.93 ± 0.29 29.56 ± 0.26 26.84 ± 0.24

Table 12: Context Length Ablation: NT Regulatory (MCC). L = 4096 achieves optimal perfor-
mance on regulatory element tasks, suggesting this length captures the relevant sequence context for
promoter and splice site recognition.

and (3) Pure Transformer: exclusively attention layers. All configurations maintain approximately
2M parameters through adjusted layer counts.

The architectural configurations are defined as follows:

• Hybrid: Two-stage architecture with layout [m2t1, [M8], m3], combining 2 Mamba
layers and 1 Transformer layer in the first stage, 8 Mamba layers in the main backbone,
and 3 Mamba layers in the final stage. Model dimensions are dmodel = [64, 128] with
intermediate FFN dimension 384 in the main backbone.

• Pure Mamba: Layout [m3, [M8], m3] replacing all Transformer layers with
BiMamba-2 blocks while maintaining identical dimensionality (dmodel = [64, 128],
dintermediate = 384).

• Pure Transformer: Layout [t3, [T8], t3] substituting all Mamba layers with multi-
head attention blocks. Attention configurations use [2, 4] heads with rotary embeddings of
dimension [8, 16].

Results (Tables 14–16) reveal architecture-dependent performance patterns. The hybrid model
achieves the best average on NT Histones (38.66%) and GB (52.82%), while pure Mamba excels on
NT Regulatory tasks (51.12%). Pure Transformer consistently underperforms, with average MCC
reductions of 2.95%, 4.51%, and 5.10% on NT Histones, NT Regulatory, and GB respectively, com-
pared to the hybrid architecture.
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Task context 1024 context 2048 context 4096 context 8192
Average 51.78 52.53 51.39 53.30
# Wins 1 3 1 4
demo coding vs intergenomic seqs 75.69 ± 0.02 75.46 ± 0.05 74.83 ± 0.05 75.39 ± 0.06
demo human or worm 83.75 ± 0.06 82.45 ± 0.14 80.74 ± 0.11 83.76 ± 0.11
drosophila enhancers stark 39.14 ± 0.24 41.07 ± 0.63 38.05 ± 0.33 38.81 ± 0.47
dummy mouse enhancers ensembl 50.14 ± 1.33 55.20 ± 0.83 50.54 ± 0.75 60.39 ± 1.74
human enhancers cohn 45.34 ± 0.30 46.22 ± 0.22 45.79 ± 0.13 45.95 ± 0.12
human enhancers ensembl 42.68 ± 0.08 42.85 ± 0.13 43.37 ± 0.06 42.92 ± 0.06
human ensembl regulatory 35.68 ± 0.06 34.94 ± 0.06 35.42 ± 0.07 37.14 ± 0.08
human nontata promoters 65.52 ± 0.22 67.10 ± 0.18 65.52 ± 0.09 66.49 ± 0.19
human ocr ensembl 28.09 ± 0.19 27.41 ± 0.06 28.28 ± 0.07 28.82 ± 0.14

Table 13: Context Length Ablation: Genomic Benchmarks (MCC). Longer contexts generally
improve performance, with L = 8192 achieving the highest average (53.30%).

Figure 6: Training loss comparison across architectural variants. The hybrid architecture achieves
competitive loss while combining the strengths of both SSM and attention mechanisms.

The strong performance of pure Mamba on regulatory element tasks – particularly enhancers
(49.61% vs. 43.26% for hybrid) and promoters (81.72% vs. 79.95%) – suggests that SSM’s efficient
long-range modeling is particularly beneficial for these tasks. However, the hybrid architecture’s
superior performance on tasks requiring precise local pattern recognition (e.g., splice site donors:
32.24% vs. 29.28%) indicates that attention mechanisms contribute complementary capabilities.

We adopt the hybrid architecture for main experiments following prior work Hwang et al. (2025a)
demonstrating the efficacy of Mamba-Transformer hybrids for sequence modeling. However, these
results indicate that pure Mamba architectures represent a promising direction for future investi-
gation, potentially offering improved performance with reduced computational complexity for ge-
nomic applications.
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Task hybrid pure mamba pure transformer
Average 38.66 38.23 35.71
# Wins 5 4 1
H3 68.47 ± 0.17 67.11 ± 0.17 66.59 ± 0.19
H3K14ac 27.07 ± 0.13 25.42 ± 0.19 23.17 ± 0.18
H3K36me3 37.52 ± 0.13 38.27 ± 0.20 31.92 ± 0.32
H3K4me1 30.05 ± 0.11 27.45 ± 0.17 27.70 ± 0.31
H3K4me2 24.26 ± 0.18 24.92 ± 0.13 22.70 ± 0.22
H3K4me3 17.88 ± 0.27 18.49 ± 0.18 17.65 ± 0.18
H3K79me3 50.52 ± 0.20 49.83 ± 0.16 42.23 ± 0.18
H3K9ac 37.22 ± 0.08 37.63 ± 0.14 38.64 ± 0.22
H4 68.01 ± 0.09 66.42 ± 0.16 63.16 ± 0.17
H4ac 25.61 ± 0.14 26.75 ± 0.14 23.31 ± 0.35

Table 14: Architecture Ablation: NT Histones (MCC). The hybrid architecture achieves the high-
est average (38.66%) with balanced performance across histone modification tasks.

Task hybrid pure mamba pure transformer
Average 48.48 51.12 46.61
# Wins 2 6 0
enhancers 43.26 ± 0.42 49.61 ± 0.26 47.75 ± 0.46
enhancers types 25.26 ± 0.35 33.18 ± 0.52 31.21 ± 0.60
promoter all 79.95 ± 0.09 81.72 ± 0.06 75.94 ± 0.05
promoter no tata 80.08 ± 0.13 82.27 ± 0.11 76.92 ± 0.12
promoter tata 74.95 ± 0.31 77.95 ± 0.37 66.42 ± 0.15
splice sites acceptors 30.88 ± 0.19 30.68 ± 0.30 26.57 ± 0.21
splice sites all 21.20 ± 0.17 24.29 ± 0.16 20.65 ± 0.21
splice sites donors 32.24 ± 0.23 29.28 ± 0.24 27.43 ± 0.28

Table 15: Architecture Ablation: NT Regulatory (MCC). Pure Mamba achieves substantially
higher performance (51.12%) on regulatory element classification, suggesting SSM’s long-range
modeling is particularly effective for these tasks.

Task hybrid pure mamba pure transformer
Average 52.82 52.46 47.72
# Wins 6 3 0
demo coding vs intergenomic seqs 75.14 ± 0.07 74.57 ± 0.09 68.45 ± 0.03
demo human or worm 84.62 ± 0.11 80.35 ± 0.11 63.37 ± 0.14
drosophila enhancers stark 40.12 ± 0.69 40.06 ± 0.31 37.31 ± 0.30
dummy mouse enhancers ensembl 57.57 ± 2.89 61.09 ± 2.32 55.03 ± 2.68
human enhancers cohn 46.09 ± 0.05 45.50 ± 0.19 43.61 ± 0.33
human enhancers ensembl 42.08 ± 0.11 42.50 ± 0.05 40.74 ± 0.10
human ensembl regulatory 35.55 ± 0.04 34.57 ± 0.04 32.04 ± 0.06
human nontata promoters 66.20 ± 0.19 66.21 ± 0.14 62.86 ± 0.21
human ocr ensembl 28.03 ± 0.06 27.25 ± 0.09 26.11 ± 0.16

Table 16: Architecture Ablation: Genomic Benchmarks (MCC). The hybrid architecture
(52.82%) marginally outperforms pure Mamba (52.46%), while pure Transformer lags substantially
(47.72%).
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