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ABSTRACT

While video-generation-based embodied world models have gained increasing at-
tention, their reliance on large-scale embodied interaction data remains a key bot-
tleneck. The scarcity, difficulty of collection, and high dimensionality of embod-
ied data fundamentally limit the alignment granularity between language and ac-
tions and exacerbate the challenge of long-horizon video generation—hindering
generative models from achieving a "GPT moment" in the embodied domain.
There is a naive observation: the diversity of embodied data far exceeds the rela-
tively small space of possible primitive motions. Based on this insight, we propose
Primitive Embodied World Models (PEWM), which restricts video generation
to fixed shorter horizons, our approach /) enables fine-grained alignment between
linguistic concepts and visual representations of robotic actions, 2) reduces learn-
ing complexity, 3) improves data efficiency in embodied data collection, and 4) de-
creases inference latency. By equipping with a modular Vision-Language Model
(VLM) planner and a Start-Goal heatmap Guidance mechanism (SGG), PEWM
further enables flexible closed-loop control and supports compositional general-
ization of primitive-level policies over extended, complex tasks. Our framework
leverages the spatiotemporal vision priors in video models and the semantic aware-
ness of VLMs to bridge the gap between fine-grained physical interaction and
high-level reasoning, paving the way toward scalable, interpretable, and general-
purpose embodied intelligence.

1 INTRODUCTION

Embodied agents capable of planning and decision-making in complex environments rely heavily
on internal representations of the world, commonly referred to as world models. Recent advances
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Figure 1: While densely distributed data can enable broad generalization, embodied data often suffer from spar-
sity (Du & Kaelbling, 2024; Xue et al., 2025b). The rightmost schematic highlights how organizing embodied
data at the primitive level-along orthogonal dimensions such as action and object—supports compositional gen-
eralization even under limited data availability.
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in pretrained video generation models—powered by self-supervised learning on vast internet-scale
datasets—have demonstrated remarkable capabilities in synthesizing fine-grained, temporally coher-
ent visual sequences from natural language descriptions (Du et al., 2023).

These successes have inspired a growing body of work to leverage such models as world models for
embodied agents, casting policy learning as a video generation problem (Ko et al., 2023; Du et al.,
2023; Yang et al., 2023; Brooks et al., 2024; Black et al., 2024a; Xiang et al., 2024; Bruce et al.,
2024; Hu et al., 2024; Zhou et al., 2024; Dalal et al., 2025; Liang et al., 2024a; Clark et al., 2025; Hu
et al., 2024; Li et al., 2025; Team et al., 2025; Pertsch et al., 2025; Zhen et al., 2025b;c;a; Zhu et al.,
2025; Hafner et al., 2025): given a language-specified goal, the model generates a future video roll-
out, from which actions are subsequently extracted. This paradigm offers compelling advantages in
interpretability, generalization, and unified representation across diverse environments.

Despite this promise, two fundamental challenges remain largely unaddressed:

First, we should rethink alignment before scaling. Current approaches exhibit a trend toward ever-
larger models and longer generation horizons, under the assumption that extended prediction leads
to better planning. However, we argue that such scaling is fundamentally constrained by the
nature of embodied data: the high dimensionality, sparsity, and collection difficulty of real-world
interaction data severely limit the feasibility of long-horizon, high-fidelity video prediction. More-
over, fine-grained alignment between linguistic concepts and low-level actions becomes increasingly
ill-posed as the prediction window grows.

Second, data is the elepant in the room. Training embodied world models critically depends
on data—especially in a field where embodied intelligence itself lacks standardization, from sensor
configurations to ontologies. Yet, most existing work focuses heavily on model optimization while
largely overlooking the design of the underlying data. In practice, the gains from hastily training on
a few fragmented, open-source datasets with highly scattered distributions are often limited. A more
principled approach—co-designing the data strategy from the ground up in tandem with the model—
can yield significantly better results. Figure 1 illustrates this insight through a heuristic analysis.

In this work, we challenge the prevailing long-horizon paradigm and propose a shift toward a promis-
ing primitive-level modeling. We introduce Primitive Embodied World Models (PEWM), a new
paradigm that restricts video generation to short, fixed-length horizons.

By focusing on predicting immediate, primitive-scale transitions, PEWM enables (1) fine-grained
alignment between language and action, (2) reduced modeling complexity, (3) improved data effi-
ciency in collection and training, and (4) lower inference latency—effectively unlocking the world
models potential as a “cerebellum” for fast, reactive control.

Our framework bridges the gap between low-level “cerebellum”-like dynamics modeling and high-
level “cerebral cortex”-inspired planning, paving the way toward scalable, interpretable, and truly
general embodied intelligence. We demonstrate PEWMs effectiveness in simulation and real-robot
experiments, showing strong generalization to novel instructions, robustness to domain shifts, and
efficient adaptation with minimal task-specific data.

2  PRIMITIVE EMBODIED DATA PAVING THE WAY TOWARDS SCALABLE
EMBODIED LEARNING

2.1 THE MOTIVATION AND DEFINITION OF PRIMITIVE EMBODIED DATA

“What can be said at all can be said clearly, and what we cannot talk about we
must pass over in silence.”

—— Ludwig Josef Johann Wittgenstein

Collecting real-world embodied data is labor-intensive, and even large-scale datasets suffer from
sparsity, high dimensionality, and limited generalization beyond minor scene variations (Xue et al.,
2025b; Brohan et al., 2022; Collaboration et al., 2023; Khazatsky et al., 2024; Walke et al., 2023;
Dalal et al., 2025), making fine-grained language-action alignment especially challenging. To over-
come this, we propose organizing embodied experience at the level of primitives—short, language-
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Human Input: Pick the yellow tape measure = P1 — P2 — P3

P1: Move the gripper
to the

P2: Close the gripper
(directly execute)

P3: Lift the gripper

Figure 2: Illustration of primitive-level task execution for “Pick up the yellow tape measure.” 6-DoF motions
are meant to be rolled out via diffusion, while discrete gripper actions are handled directly through symbolic
execution. Note that this is a simple task, chosen for ease of illustration.

grounded action units that serve as atomic building blocks for complex behaviors, enabling denser
supervision and scalable compositional generalization.

Definition 2.1 (Primitive as Semantically Atomic Action Unit). A primitive is a finite-duration
embodied trajectory p = (xgo.T, ao.7—1), paired with a natural language instruction u, such that:

1. Semantic atomicity: u expresses a single, coherent manipulation intent that cannot be mean-
ingfully decomposed into shorter language-grounded sub-instructions without loss of task-level
meaning;

2. Temporal locality: T is short enough (e.g., < 2 seconds) to support high-fidelity video genera-
tion and precise 6-DoF trajectory extraction;

3. Generative feasibility: Given an initial observation and spatial guidance (e.g., startgoal
heatmaps), a diffusion-based world model can reliably generate a plausible visual rollout of p.

Crucially, a primitive is NOT defined by mechanical simplicity, but by semantic indivisibility under
language grounding. Thus, while pick cup qualifies, so does arrange flowers—provided it is executed
as a unified intent within a short horizon and describable by a single instruction.

Building on this notion, we posit that complex tasks are inherently compositional:

Assumption 2.2 (Compositional Decomposability of Embodied Tasks). Any long-horizon embod-
ied task can be decomposed into a finite sequence of one or more primitives, each satisfying Defini-
tion 2.1.

This leads to a key structural insight:

Corollary 2.3 (Compact Primitive Template Basis). The number of distinct primitive templates (e.g.,

“pick”, “open”, “arrange”) is vastly smaller than the total number of possible embodied trajectories,
due to the combinatorial explosion of object, scene, and embodiment configurations.

This disparity implies that primitive-centric data organization is not merely convenient—it is funda-
mentally more efficient and scalable. Specifically, it enables:

1. High data efficiency: A single long-horizon demonstration yields multiple labeled primitives,
dramatically increasing the effective sample count and mitigating data sparsity (Fig. 1);

2. Structured low-dimensional learning: Each primitive is short, visually coherent, and aligned
with a single linguistic concept, facilitating fine-grained alignment between language and action
in the video world model;

3. Direct action extraction: High-fidelity, short-horizon video generation enables zero-shot 6-DoF
trajectory extraction (Appendix Sec. B), eliminating the need for task-specific policy heads;

4. Plug-and-play compositional generalization: A trained primitive world model becomes a
reusable “skill library” that a high-level VLM planner can sequence on-the-fly (Fig. 2), sup-
porting zero-shot execution of novel long-horizon tasks without retraining.



Learning Primitive Embodied World Models: Towards Scalable Robotic Learning

In sum, primitive embodied data provides a principled interface between symbolic reasoning (lan-
guage) and continuous dynamics (video), turning the world model into a modular, interpretable, and
scalable cerebellum for embodied intelligence.

2.2 DATA COLLECTION

Enhancement in Efficiency, Density, and Quality = We construct a primitive-centric dataset

DPrim = {E;}, where each episode E; is} decomposed into primitives {’Pk}ff;l with P+ =
(s, Inste®, HE xS o0y ). Here, x7% is the initial image, Instr® the instruction, HY

im;

the start-goal heatmap, and future frames x tkil: o1

, are to be predicted.

To enhance data collection efficiency, density, and quality, we introduce improvements along both
temporal and spatial dimensions: 1) Spatially, five synchronized cameras capture each P¥ in paral-
lel, increasing data density and spatial coverage. All 10K+ episodes are collected by co-authors,
ensuring high quality and consistency. 2) Temporally, we encode primitive boundaries {t*} via
teleoperation device buttons, enabling on-the-fly segmentation. This yields 5.8 primitives per ses-
sion on average, together with spatial efficiency, boosting collection efficiency by up to 29x.

We use Qwen2.5-VL 7B for few-shot pre-annotation of Instr®, correct a 10% subset, then fine-tune
the model to annotate the remainder (see Appendix D.1). Unlike methods with fixed primitive gram-
mars, our approach is soft and on-the-fly, enabling flexibility, openness, and scalable annotation.

Full-Arm Shotting Facilitating Learning-Based Embodied World Simulator  Another notable
design choice in Dy is that the full robot arm—including the base and joint structures—is meant
to be visible in the field of view, in contrast to cropped, end-effector-only frames common in prior
datasets. This enables the diffusion model to internalize soft physical constraints such as reachability,
joint limits, and spatial feasibility during prediction.

This holistic visual representation, combined with multi-view observations, allows the world model
to function as a learning-based generative simulator. By observing the same robotic action from
multiple calibrated viewpoints, the model learns a more robust and view-invariant latent dynamics
space, where transitions are consistent across perspectives. This enables the model to implicitly align
action effects across views with natural language descriptions, capturing 3D spatial relationships and
occlusion patterns without explicit geometric supervision. As a result, the model not only simulates
plausible future states but also generalizes better to novel viewpoints and scene configurations—key
properties of a reliable, data-driven simulator.

The High Potential of Leveraging Action-Free Video Data for Scalable, Web-Scale Embodied
Learning It is worth noting that the LIBERO (Liu et al., 2024a) data we use not only includes the
original dataset’s multi-view replays but also videos generated through OpenVLA rollouts as train-
ing data. This directly demonstrates our methods ability to leverage any embodied video—whether
from rollouts of other policies or from web-scale data—to improve model performance, highlighting
one of the key advantages of using video as a universal representation.

3 LEARNING PRIMITIVE EMBODIED WORLD MODELS

3.1 DUAL-LEVEL COMPOSITIONAL GENERALIZATION

Our method enhances generalization along two orthogonal axes: (1) intra-primitive compositional
generalization, where diffusion models trained on densely annotated, semantically rich primitives
learn to recombine fine-grained visual and dynamic elements (e.g., shape, motion, spatial relations)
in novel ways; and (2) inter-primitive combinatorial generalization, achieved by flexibly sequenc-
ing primitives to generate complex, realistic behaviors that far exceed the complexity of individual
primitives.

Implicit Compositionality of Diffusion Video Generation Diffusion models are capable of gen-
erating photo-realistic images that combine elements which likely do not appear together in the
training set, demonstrating the ability to compositionally generalize (Liu et al., 2022a; Liang et al.,
2024b).
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Figure 3: An analogy to highlight the compositional generalization capability of our approach.

We draw an analogy to highlight the compositional generalization capability of our approach. On
the left side of Figure 3, we show a classic example from 2D vision: the well-known “astronaut
riding a horse” image, where a model combines two rarely co-occurring concepts into a coherent
and recognizable scene—demonstrating strong compositional understanding in static images. On the
right, we present a corresponding case in embodied video generation: although our model has only
observed “pick apple” and “open jar” separately during training, it can naturally generalize to the
unseen combination “pick jar”.

We ground this compositional generalization in an Energy-Based Model (EBM) perspective. EBMs
naturally support compositionality through additive energy decomposition: E(x) = . E;(x; ¢;),
where each term F; corresponds to a semantic factor (e.g., object, action, or spatial relation). Novel
combinations arise by recombining known factors via energy minimization.

Although our diffusion model learns the score function V log p(x), it implicitly defines an energy
landscape F(x) = — log p(x) with the same modular structure. During generation, activations from
previously disjoint patterns (e.g., pick and jar) combine to produce coherent, unseen behaviors—
enabling zero-shot generalization through factorized semantic priors.

Given the diverse and realistic co-occurrence of embodied concepts—such as shape, motion, and
spatial relations—in our training data, the model learns rich semantic priors within each 32-frame
primitive, enabling strong compositional generalization. Spatiotemporal coherence is inherited from

large-scale video pretraining, a key advantage over static image-based methods. We treat each prim-

itive as a distribution and use a heatmap as conditional input, formulating generation as: x11m§ ~

P(x" | H s—g,img, ). We adopt an 12V model as the world model WV : (Xp"8, Hyyy) > X2,
The base model is DynamiCrafter (Xing et al., 2024), which is pre-trained on data without robotic
arms. Our method performs well on robotic tasks, demonstrating effective zero-shot transfer. See
Appendix F.1 for details.

Explicit Compositionality by Sequentially Combining Primitives By sequentially composing
primitives, we treat the Primitive-Enabled World Model (PEWM) as a plug-and-play module for
constructing complex behaviors. Each primitive m; € P represents a reusable, low-level dy-
namic policy that maps a current image xy and a goal heatmap h; to a future video segment:
x1.1; ~ W(Xo, hi; 7;), where W is the world model. Chaining N primitives yields a full trajectory:
x1.7 = Compose({W(xy,_,,hi;m;)}X ), enabling long-horizon, high-level behaviors through ex-
plicit, interpretable composition. This design supports systematic generalization—novel sequences
can be formed from known primitives, even if never seen during training.

Notably, the mapping from instruction  to primitive sequence {7; }¥; is learned from data collected
during our annotation pipeline. The model implementing this mapping—denoted as Prora(u) —
{m;}—is shared with the LoRA-based planner in the VLM planner module, significantly reducing
training overhead. This same model is used to auto-label trajectories throughout our workflow:
we iteratively generate pseudo-labels with Ppra, refine them manually, and retrain Ppora on the
improved dataset—enabling continuous self-improvement.
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3.2 TRAINING STRATEGY

Sim-Real Hybrid Data Strategy In practice, we found that when training solely on real-world
data, the model struggles to capture fine details of fast-moving parts such as the gripper, due to the
reconstruction loss in the VAE. To enable the model to learn cleaner proprioceptive motion patterns,
we introduced simulation data, including data from RLBench (James et al., 2020a) and LIBERO (Liu
etal., 2024a), and adopt a sim-real hybrid data mixing strategy. For detailed data information, please
refer to Appendix D.1. This approach proves highly effective: the final model successfully combines
the rich, complex textures from real-world data with the precise and clear kinematic motions from
simulation, significantly enhancing the overall generation quality. Appendix 1.3 Figure 12 shows a
comprehensive comparison.

Three-Stage Finetuning Base Video Generation Model on Primitive Embodied Data We build
upon the strong pretraining of large-scale video generation models. In this work, we introduce a
three-stage fine-tuning strategy to adapt the model to primitive-based embodied tasks, balancing
simulation-to-reality transfer and semantic alignment: Stage 1: Simulation Pre-Finetuning. We first
fine-tune the model on simulated data with a low number of epochs and early stopping, halting
once generated videos exhibit plausible motion trends (e.g., arm movement toward an object). This
rapid adaptation injects embodied semantics—such as robot dynamics, spatial interactions, and ac-
tion semantics—into the model while avoiding premature convergence to simulation-specific modes.
Stage 2: Balanced Simulation-Real Mixing. We reduce the learning rate by half and train on a
1:1 mixture of real and simulated data. This stage encourages the model to align dynamics and
appearance across domains, producing videos with clear, consistent actions and object structures
in both settings. Stage 3: Reality-Centric Refinement. Finally, we shift the data ratio to 80% real
and 20% simulated, focusing the model on high-fidelity real-world generation while retaining the
broad coverage of simulation. This stage emphasizes precise primitive-level temporal structure and
fine-grained visual details. For further training details (e.g., hyperparameters, augmentation, and
evaluation criteria), please refer to Appendix F.2.

3.3 CAUSAL DISTILLATION AND ACCELERATION: REAL-TIME ON-THE-FLY FUTURE
FRAME PREDICTION

Real-time performance is critical in robotic learning—systems operating at low or irregular frequen-
cies struggle to react to dynamic environments. This poses a significant challenge for diffusion-
based video generation, where traditional models generate entire videos (or full latent sequences)
non-causally, denoising over many steps and producing all frames only after a long latency. Such
autoregressive-in-time but non-causal-in-context generation is incompatible with real-time deploy-
ment.

To address this, we adopt causal video generation via knowledge distillation, following Self Forc-
ing (Yin et al., 2025). We train a student model to predict future frames in a strictly causal manner—
each frame is generated based on past observations only, without access to future context. The stu-
dent performs only 4 denoising steps per chunk (with 4 frames), enabling low-latency inference. To
maintain generation quality under aggressive acceleration, we employ self-forcing—using the models
own past predictions as input for future steps, closing the loop between prediction and conditioning.

As a result, our system achieves real-time on-the-fly prediction at 12 FPS on standard hardware,
making it suitable for closed-loop robotic control. This enables the world model to provide timely
visual predictions that align with actual robot execution frequency.

4 APPLICATIONS

4.1 APPLICATION 1: HIGH-QUALITY EMBODIED VIDEO GENERATION FACILITATING
DIRECT 6-DOF TRAJECTORY EXTRACTION

By integrating the above techniques—curated data design, staged fine-tuning, causal distillation, and
closed-loop rollout—our approach achieves strong video generation performance using a relatively
small model (1.4B parameters).
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Prior methods (Du et al., 2023; Zhen et al., 2025a) often require a learning-based policy head or
inverse kinematics (IK) module—after video generation, due to insufficient spatiotemporal precision.
In contrast, we argue that our method is the first to make it practically feasible to directly extract
end-effector 6-DoF trajectories from generated videos without any task-specific adaptation, as
illustrated in Figure 4. This not only demonstrates the high spatiotemporal precision of our method,
but also eliminates the need for additional learning or task-specific configurations.

Transform to

base frame Execute

Figure 4: Direct 6-DoF end-effector trajectory extraction from generated videos.

We apply Gen6D (Liu et al., 2022b), an off-the-shelf, zero-shot 6-DoF pose estimator, to the gener-
ated video frames to recover the full 6-DoF motion trajectory of the robot end-effector. This enables
direct mapping from visual prediction to actionable control signals—bridging the gap between genera-
tive world models and real robot execution. Technical details of this extraction pipeline are provided
in Appendix B. The experimental results are provided in Appendix B.2.

4.2 APPLICATION 2: PLUG-AND-PLAY LONG-HORIZON COMPOSITIONAL GENERALIZATION

In the previous section, we described open-loop future prediction via single-step rollout. In this sec-
tion, we close the loop by feeding the models generated future frames back as input for subsequent
predictions, enabling iterative planning and execution: XE?LT ~ W (x4, B9, x; crop(xgk)),
where k denotes the current planning step, and the cropped latest frame from the generated rollout
becomes the new input x; for the next prediction. This autoregressive, closed-loop deployment al-
lows the world model to continuously adapt to the actual environment state, correcting for drift and
disturbances. Figure 5 presents the pipeline of this hierachical long-horizon compositional general-
ization. Appendix C presents a more detailed workflow.
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Figure 5: Closed-loop, autoregressive planning via iterative rollouts. The model feeds generated frames back
as input, enabling continuous adaptation and long-horizon control.

Table 1 presents a comprehensive comparison of overall success rates across nine manipulation tasks
from the RLBench benchmark . The performance of our method is assessed against several existing
baselines, including Image-BC, UniPi, and 4DWM, with success rates averaged over 100 episodes.

4.3  APPLICATION 3: AS DATA SYNTHESIS ENGINES

Beyond policy execution, our Primitive World Model serves as a scalable data synthesis engine.
By conditioning on language instructions and initial visual states, it generates physically plausible,
high-fidelity video rollouts with consistent robot dynamics—enabling data augmentation for rare in-
teractions, failure modes, or scene variations (e.g., lighting, background). Trained on hybrid sim-real
data and full-arm observations, the model internalizes soft embodiment constraints, yielding videos
with strong physical consistency (EPiCS: 11.45/13, Table 12). This makes the generated data more
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Table 1: Overall success rate on RLBench tasks. We compare our method against existing baselines on 9
manipulation tasks from the RLBench benchmark (James et al., 2020b), with success rates averaged over 100
episodes. Results for Image-BC (Jang et al., 2022), UniPi (Du et al., 2023), and 4DWM (Zhen et al., 2025a)
are directly cited from the 4DWM paper. Our method (bottom row) achieves the highest success rate on most
tasks, with consistent gains in articulated and contact-rich scenarios.

Methods close open open open put sweepto lid weighing water
box drawer jar  microwave knife dustpan  off off plants
Image-BC 53 4 0 5 0 0 12 21 0
UniPi 81 67 38 72 66 49 70 68 35
4DWM 88 80 44 70 70 56 73 62 41
Ours 93 84 43 78 72 63 67 58 56

effective for sim-to-real transfer than graphics-based simulation, turning the world model into a
force multiplier for imitation and reinforcement learning.

For more promising applications, please see Section 7 and Appendix L.

5 ANALYSIS

Performance 1) Planning. Our method achieves high planning accuracy on unseen tasks by de-
composing them into spatially grounded primitives. As shown in Table 2, it attains 18/20 primitive
accuracy on pick up cup, 16/20 on move cloth, and 15/20 on fold cloth. In contrast, OpenVLA
fails completely in zero-shot (0/20), underscoring its dependence on task-specific fine-tuning. Our
approach generalizes without retraining the video model, thanks to its modular design and explicit
spatial grounding. 2) Primitive Execution. The integration of planning and video generation trans-
lates into strong execution: our method achieves 16/20 task success on cup picking, versus 12/20
for OpenVLA; similarly, 14/20 vs. 10/20 for moving cloth, and 13/20 vs. 4/20 for folding cloth.
Success on these out-of-distribution tasks demonstrates robust generalization, enabled by precise
primitive segmentation and high-fidelity video rollouts. 3) Long-Horizon Tasks. We handle long-
horizon tasks by decomposing them into short-horizon, plug-and-play primitiveseach aligned with
the contextual scope of vision-language models (VLMs). This mitigates drift and inconsistency in
extended planning. As shown in Appendix [.4 (Fig. 13), generated video frames are projected to real-
world coordinates via camera intrinsics/extrinsics, enabling accurate pose estimation per primitive
while preserving global task coherence.

Table 2: Performance breakdown on three real-world tasks across planning, video generation, and prim-
itive execution. “Ours” denotes our method with frozen video diffusion; “OpenVLA” represents a strong end-
to-end baseline. We additionally report OpenVLA’s zero-shot performance without task-specific fine-tuning.

Task Stage Metric Ours OpenVLA OpenVLA (ZS)
Planning Primitive accuracy 18720 N/A N/A
Pickupcup  Video Generation  Frame realism (v'/total) 17 /20 N/A N/A
Primitive Execution Task success 16 /20 12720 0/20
Planning Primitive accuracy 16/20 N/A N/A
Move cloth Video Generation  Frame realism (v'/total) 15/20 N/A N/A
Primitive Execution Task success 14/20 10/20 0/20
Planning Primitive accuracy 15720 N/A N/A
Fold cloth Video Generation  Frame realism (v'/total) 14 /20 N/A N/A
Primitive Execution Task success 13/20 4/20 0/20

Primitive-level Compositional Generalization A core strength of our primitive-centric frame-
work is its ability to achieve conceptual compositional generalization (Figure 3)—the capacity to
succeed on novel tasks that were never explicitly demonstrated during training. We quantitatively
evaluate this capability in Table 3, which reports success rates for executing unseen (predicate, ob-
ject) combinations on a real robot. The results demonstrate strong generalization: for instance, the
"pick" primitive, trained on objects like cups and boxes, successfully generalizes to the novel com-
bination "pick jar" with an 80% success rate. Similarly, the "push" action generalizes effectively to
cups and jars, despite these pairings being absent from the training data. Even for the more com-
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plex "open" action, the model transfers successfully to the unseen "open cup” task (70% success),
showcasing its ability to adapt a skill to an object with significantly different geometry and affor-
dances. This generalization is enabled by two key factors. (1) Our video diffusion model, trained
on densely annotated primitive data, learns rich, disentangled representations of action dynamics
and object properties. This allows it to condition the generation of a "pick" motion on the visual
features of a previously unseen jar. (2) The VLM-based primitive planner provides semantic and
spatial grounding, correctly identifying the target object and generating a feasible subgoal configu-
ration even for unseen objects. The high success rates on these zero-shot combinations underscore
that our approach moves beyond simple imitation learning, instead capturing the underlying compo-
sitional structure of embodied manipulation, a crucial step toward truly flexible and scalable robotic
intelligence.

Table 3: Primitive-level compositional generalization: success rates (successes / 10) for unseen (predicate,
object) pairs. Rows = predicates, columns = objects. Bold cells indicate compositions that were not present
during training.

Predicate \ Object cup box drawer jar

pick 9/10  8/10 - 8/10
open - 9/10 9/10 7/10
push 7/10 8/10  8/10  6/10

Efficiency Our method is significantly more efficient than large diffusion baselines (e.g., Hunyuan
12V, Wan 2.1), achieving up to 75x faster inference and 67x lower VRAM usage (Appendix Table 9).
This enables real-time deployment without sacrificing video quality or task relevance.

Ablation Study We ablate two core components: (1) the VLM-based primitive planner, and (2)
simulation-augmented video training. Results in Table 4 show that removing Start-Goal Guidance
reduces success rates (e.g., from 16/20 to 12/20 on cup picking), confirming the value of explicit
spatial grounding. (3) Eliminating primitive decomposition entirelymapping instructions directly
to actionscauses severe drops (e.g., 3/20 on cloth folding), highlighting the necessity of structured
planning. Similarly, training the video model on real data alone (without simulation) degrades per-
formance across all tasks, verifying that simulated data enhances generalization to real-world object
configurations.

Table 4: Ablation study on model components. Task success rate is reported over 20 trials per setting. “Prim-
itive planner ablations” isolate the effect of VLM-based spatial grounding; “VideoGen ablations” evaluate the
impact of simulation-augmented training.

Ablation Group Pick up cup Move cloth Fold cloth
Full model 16/20 14/20 13/20
w/o SGG 12/20 10/20 71/20
w/o Primitive Planner 9/20 5720 3/20
w/o Sim data 12/20 9/20 5/20

6 RELATED WORK

Video Generation as World Models. Diffusion models have become dominant in image genera-
tion (Ho et al., 2020; Song et al., 2021; Rombach et al., 2022b), and their extension to videovia
3D convolutions, latent spaces, or spatiotemporal attentionhas yielded strong generative perfor-
mance (He et al., 2023; Blattmann et al., 2023; Singer et al., 2022; Chen et al., 2024a). The success
of Sora (Brooks et al., 2024; Liu et al., 2024e) has further established Transformer-based video
diffusion (e.g., DiT (Peebles & Xie, 2023)) as a leading paradigm, enabling improved temporal co-
herence and scalability (Zheng et al., 2024; Yang et al., 2024; Kong et al., 2024). These models
are increasingly viewed as pixel-level world modelssystems that predict future observations given
actions and context (Ha & Schmidhuber, 2018; Hafner et al., 2020; Micheli et al., 2022). Recent
works frame video generation itself as world modeling (Ko et al., 2023; Du et al., 2023; Bruce et al.,
2024; Zhou et al., 2024; Li et al., 2025), often using large DiT-based architectures trained under uni-
fied generative objectives. However, such models are computationally expensive and lack real-time
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responsiveness. Hierarchical alternatives (Ajay et al., 2023; Dalal et al., 2025; Zhou et al., 2024)
improve structure but suffer from error propagation and rigid cross-modal alignment. Crucially,
none integrate vision-language reasoning, planning, and grounding in a zero-shot policy execution
frameworkkey distinctions of our approach.

End-to-End Vision-Language-Action Learning. Vision-Language-Action (VLA) models bypass
explicit dynamics modeling by directly mapping multimodal inputs to actions (Brohan et al., 2023b;
Kim et al., 2024a; Bharadhwaj et al., 2023). Leveraging pre-trained vision-language models
(VLMs) (Chen et al., 2024c; Li et al., 2024; Beyer et al., 2024), they unify perception, grounding,
and control in a single architecture. Action prediction is typically implemented via regression (Bro-
han et al., 2023a; Liu et al., 2024c), diffusion (Black et al., 2024b; Liu et al., 2024d), or hybrid
schemes (Liu et al., 2025a; Ye et al., 2024). While effective on short-horizon tasks, these systems
struggle with long-horizon generalization and cross-domain transfer. Recent efforts introduce hier-
archyvia modular perception-policy stacks (Liu et al., 2024b; Bjorck et al., 2025) or skill decompo-
sition (Shi et al., 2025; Raj et al., 2024)to improve scalability and interpretability. Yet, nearly all
rely on in-domain demonstrations, limiting zero-shot adaptability. Our method circumvents this de-
pendency by generating task-agnostic, primitive-level trajectories in simulation, enabling zero-shot
policy execution without task-specific fine-tuning.

Datasets for Robotic Learning. Large-scale robotic datasetscollected via teleoperation (Bro-
han et al., 2022; Khazatsky et al., 2024), scripted policies (Collaboration et al., 2023; Gu et al.,
2023), or expert rollouts (Schiavi et al., 2023)have been consolidated in benchmarks like OpenX-
Embodiment (Collaboration et al., 2023). Despite scale, they remain costly to expand and limited
in semantic or morphological diversity. RH20T-p (Chen et al., 2024b) adds primitive annotations
but introduces noise; simulated environments (e.g., RLBench (James et al., 2020b), CALVIN (Mees
et al., 2022)) offer control but lack realism. Recent works augment data via simulation or generative
rendering (Mandlekar et al., 2023; Yang et al., 2025; Xue et al., 2025a), yet still depend on human
demonstrations. In contrast, our framework synthesizes diverse, primitive-level trajectories de novo
in simulationwithout human supervision or segmentationenabling efficient sim-to-real transfer when
paired with pre-trained VLMs.

7 CONCLUSION, LIMITATIONS, AND FURTHER VISION

We propose a novel perspective on embodied world modeling: using unlabeled action videos as a uni-
versal representation, we segment long-horizon trajectories into semantically indivisible primitives—
short clips aligned with atomic language instructions. This shift unlocks three key advantages: (1)
Fine-grained languagevision alignment enables high-fidelity, efficient video generation with lower
compute; (2) Primitive-centric data is lower-dimensional, denser, and easier to collect, while dif-
fusion models provide strong intra-primitive compositional generalization; (3) A VLM planner
can sequence these primitives via Start-Goal Heatmap Guidance (SGG), achieving inter-primitive
building-block generalization—turning the world model into both a data engine and a plug-and-play
policy backbone.

Our method outperforms imitation learning, vanilla video diffusion, VLAs, and state-of-the-art em-
bodied world models by combining modular, primitive-level modeling with self-forcing distillation
for real-time, low-step generation (12 FPS in 4 steps), zero-shot compositional generalization, and
sim-to-real scalability—all while remaining interpretable, adaptive, and free from costly demonstra-
tions or black-box policies, making it ideal for real-world robotic deployment.

While our framework marks a leap in real-time, interpretable robotic control, key frontiers remain:
evolving toward a unified perception-action system that plans in latent space without language, push-
ing latency below 4-step inference for high-frequency tasks, and scaling to multi-agent, deformable-
object, and dual-arm scenarios. Beyond model improvements, we call for standardized benchmarks
to advance the field—positioning our primitive-centric, sim-real hybrid approach as a foundational
paradigm for scalable, general-purpose embodied intelligence.
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APPENDIX

A THEORETICAL JUSTIFICATION FOR PRIMITIVE-CENTRIC EMBODIED
LEARNING

We provide a mathematically grounded justification for the feasibility and expressivity of modeling
embodied intelligence via a finite set of semantic primitives. Our derivation avoids pathological
assumptions about trajectory indecomposability and instead builds upon three empirically plausible
premises.

A.1 FOUNDATIONAL ASSUMPTIONS

Let X C R? be a compact metric space representing the robots observable state (e.g., RGB-D image,
proprioception). Let I/ be a countable set of natural language instructions describing manipulation

CEIT3

intents (e.g., “pick cup”, “arrange flowers”).

We assume:

Assumption A.1 (Semantic Grounding). There exists a surjective mapping ® : &/ — 7T, where
T ={m,..., 7K} is a finite set of semantic primitive templates, such that each 7, corresponds to a

99 <. 9%

reusable skill (e.g., “grasp”, “place”, “rotate”) that generalizes across objects and scenes.

Assumption A.2 (Temporal Locality). Each execution of a primitive template 75 under instruction
u = ®71(7;,) yields a trajectory p € C([0,T}], X) with bounded duration Ty < Thax (e.g., 2
seconds), and the mapping from initial state zy and goal g to p is continuous.

Assumption A.3 (Compositional Execution). Any long-horizon task U € U* (finite sequence of
instructions) induces a trajectory £ € C([0, 7], X) that can be written as a concatenation:

§=p1-p2-- PN,
where each p; is an instance of some 7, € 7, grounded via perception.
A.2 CONSTRUCTIVE APPROXIMATION THEOREM

Let M7 (X) ={£ € C([0,T],X) | T > 0} be the space of all finite-horizon continuous trajectories,
equipped with the uniform metric:

doo(§1,62) = sup [|€1(t) — &(1)]-

te[0,T)

17


https://arxiv.org/abs/2504.20995
https://arxiv.org/abs/2504.20995
https://arxiv.org/abs/2412.20404
https://arxiv.org/abs/2404.12377
https://arxiv.org/abs/2404.12377

Learning Primitive Embodied World Models: Towards Scalable Robotic Learning

Let C(T) C M(X) denote the set of all trajectories obtainable by finite composition of primitive
instances from 7.

Theorem A.4 (Density of Primitive Compositions). Under Assumptions A.1-A.3, for any £* €
My (X) and any € > 0, there exists a composed trajectory § € C(T) such that d(§,£*) < e.

Proof. Since X is compact and £* is continuous on [0, T'), it is uniformly continuous. Thus, for any
€ > 0, there exists 6 > 0 such that |t — s| < J = ||€*(¢) — £*(s)]| < €/2.

Partition [0, 7] into N intervals [t;,t;41] with ;41 — ¢; < min(d, Tyax). For each segment £ =
€*|[t:,t:41]> define a local intent u; that describes the transition from £*(;) to £*(¢;41) (e.g., “move
end-effector from A to B”).

By Assumption A.1, u; maps to some 7, € 7. By Assumption A.2, there exists a primitive instance
p; (grounded via SGG or VLM) such that p; (0) = £*(¢;) and ||p; (tit1 — ;) — " (tix1)]| < €/2. By
continuity of p; and &, and since both are defined on an interval of length < J, we have:

sup [|pi(t — ;) — €7 ()| <e.
tEti,tit1]

Concatenating {p; }}¥, yields ¢ € C(T) with do (&, £) < €. O

A.3 CARDINALITY DISPARITY AND DATA EFFICIENCY

Let |7| = K < oo. The number of possible composed trajectories of length N is at most K%V,
which is countable. However, M7(X) has cardinality 2% (uncountable). Despite this, Theo-
rem A.4 shows that a countable set C(7) is dense in an uncountable spaceexactly analogous to Q
being dense in R.

This implies:

1. Data efficiency: Learning K primitives yields coverage of a dense subset of behaviors.
2. Generalization: Novel tasks are approximated by novel compositions, not novel primitives.
3. Scalability: Adding new objects/scenes requires no new primitive templatesonly new grounding.

Thus, primitive-centric learning is not just practicalit is information-theoretically optimal for em-
bodied intelligence under semantic constraints.

B DETAILS FOR ZERO-SHOT 6-DOF END-EFFECTOR TRAJECTORY
EXTRACTION

B.1 THE GEN6D METHOD

The generated future rollout xllm% for a primitive ay, lacks spatial information. To bridge the gap
between pixel-space visual rollouts and real-world execution, we harness an off-the-shelf pose 6D
estimation mechanism that requires only the generated RGB video as input.

Specifically, given a generated video sequence V' = {Iy, I5,..., Ir} and a reference video V, =
{I}1, L2, ..., I} of the robotic gripper, we estimate the gripper’s 6-DoF pose using a model-free,
RGB-based pose estimator: R, T = PFE(V,V,.), where R and T denote the rotation and translation
matrices, respectively. In our implementation, we use Gen6D (Liu et al., 2022b) for its simplicity
and generalization capability.

The pose information of the robotic gripper, particularly its 6-DoF object pose, utilizing the gener-
ated video sequences directly for real-world robotic operations presents significant challenges.

After generating the future rollout x‘f“% for a primitive ay, we extract a 6-DoF end-effector trajectory
T = {p1,...,pr} using 6-DoF pose estimation Liu et al. (2022b) and geometric transformation.
These trajectories are then mapped into Cartesian control space and executed by the robot.

To project the estimated poses into real-world coordinates, we correct for the scale ambiguity inher-
ent in monocular depth predictions. Given the depth map D at the initial frame and known camera
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intrinsics (2c, Ye, fz, fy), we compute the 3D location of any pixel (z, y) using:

d d

X = T — X)) Y = — Yc) T
( ) T. (¥ = ve) T,
where d is the depth at pixel (x,y). Since the generated video lacks absolute depth scale, we align
the scale of the predicted trajectory using the ratio between the real-world depth do (from the first
frame of the depth camera) and the pixel-based depth d?™' (from COLMAP or Gen6D). This yields

a fixed correction factor A = dy /dgi"d, which is applied to all subsequent predicted translations:
Trea = A Tpixel-

Z =d, ey

The observed result of executing 7 is then captured and passed back to the planner P, enabling
feedback-driven refinement in subsequent primitives. This forms a semi-closed-loop execution
pipeline that mitigates error accumulation and enables task-aware adaptive control without end-to-
end backpropagation.

Together, this design enables zero-shot generalization to unseen tasks, objects, and morphologies,
using modular, interpretable, and resource-efficient world model components.

The process of mapping the generated video through the camera’s intrinsic and extrinsic parameters
to obtain real-world coordinates is illustrated in Figure 13.

B.2 EXPERIMENTAL RESULTS AND COMPREHENSIVE ANALYSIS ON GEN6D POSE
EXTRACTION

Robustness Enhancement To ensure reliable 6-DoF pose extraction from generated videos under
real-world conditions, we introduce a series of post-processing enhancements to the baseline Gen6D
pipeline. As shown in Table 5, the original Gen6D method achieves only 50% success under partial
occlusion and varying lighting. By incorporating motion masking, which isolates moving regions
to reduce background distraction, performance improves to 80%. Further adding outlier removal
based on pose consistency across frames increases robustness to 90%. Finally, integrating temporal
filtering (e.g., Kalman smoothing) to enforce motion smoothness results in a perfect 100% success
rate. This ablation demonstrates that our full pipeline effectively mitigates common challenges
such as visual clutter and illumination changes, enabling robust trajectory extraction for real robot
execution.

Table 5: Ablation on 6-DoF pose extraction success rate under partial occlusion and varying lighting. Each
entry is the number of successful extractions out of 10 trials.

Method Success Rate 1
Gen6D (baseline) 5/10
+ Motion Masking 8/10
+ Motion Masking + Outlier Removal 9/10
Full (All + Temporal Filtering) 10/10

Failure Case Study We further analyze failure modes in scenarios where the camera view is per-
pendicular to the primary motion plane, limiting depth cues. As summarized in Table 6, 7 out of
10 trials succeed, with Gen6D accurately capturing perspective scaling (e.g., end-effector shrinking
as it moves away from the camera). The two failures due to "EE Too Distant" occur when the end-
effector starts far from the camera, resulting in insufficient pixel-scale change to infer depth motion
reliably. The single "Motion Too Small" failure corresponds to sub-15-pixel depth displacement,
which falls below the effective resolution threshold of the pose estimator. These findings highlight
the importance of camera placement and minimum motion magnitude for successful 6-DoF extrac-
tion, while also confirming the method’s effectiveness under favorable viewing conditions.

C DETAILS FOR HIERACHICAL PLUG-AND-PLAY LONG-HORIZON
COMPOSITIONAL GENERALIZATION

text

Semantic Primitive Planning via Vision-Language Models Given a task instruction z'**' and
img

current observation frame x, -, we first employ a large vision-language model P to perform seman-
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Table 6: Gen6D extraction results on 10 perpendicular-camera demos.

Outcome Category Freq. Technical Explanation

Success 7 Gen6D accurately captured perspective scaling
(e.g., EE “shrinkage” during motion away from the
camera plane).

Failure (EE Too Distant) 2 EE is too far from the camera for the motion to yield
sufficient perspective scaling.

Failure (Motion Too 1 Displacement <15 px of depth.
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Figure 6: This workflow diagram illustrates a video generation framework structured into three stages: Stage 1
employs a VLM planner, comprising a VLM and two learnable LoRAs, along with a Reasoner and Verifier to
ensure the efficiency and accuracy of the planning process. Stage 2 utilizes CLIP and a VAE encoder to generate
predicted videos through the Video Generation World Model. Stage 3 focuses on pose estimation for the robotic
arm, executing coordinate transformations to produce executable commands for real-world implementation.

tic parsing and primitive planning:
Ary =P, zg®), @

where A;.ny denotes the sequence of N atomic primitives (e.g., “pick up object A”, “place on B”).
Each primitive is represented by an instruction ay, that is grounded locally in space and time.

For each primitive ag, the planner identifies two pixel-space locations:

(sk gx) = Glag, 70'®),

3)

where s, € R? and g, € R? are the start and goal positions of the gripper, expressed in pixel
coordinates (allowing sub-pixel precision). These are Gaussian-blurred to produce heatmaps H
and H,, forming spatial guidance signal H,_,, = H, — H.

We leverage LoRA-based adaptation to enable reasoning and spatial grounding, following a Chain-
of-LoRA (Liu et al., 2025b)-style architecture. The structure is detailed in Figure 8.

Primitive-Conditioned Video Diffusion Generation The video diffusion model D is conditioned
on the current frame ', the text description of the primitive ax, and the spatial heatmaps H_, .
The model learns to predict a rollout of 7" future frames:

xllmig‘ ~ D(mlomga ak, Hsﬂg)'

“

Unlike prior work that only observes cropped end-effector regions, D is trained to observe the entire
robot arm, allowing it to learn soft physical constraints such as reachability, base stability, and joint
configuration limits.
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The model is trained using a combination of pixel-level ¢5 reconstruction loss and perceptual simi-
larity loss Ly prps:

T
‘ 2 . .
o img  .img img .img
Lyig = E th — & H2 + A Lopwps(xy o, 3 0), (5)
=1

where ™ denotes the ground truth frame at time ¢.

Appendix Figure 2 provides a detailed overview of the video generation module and the process of
extracting 6-DoF end-effector trajectories. It should be explicitly noted that for primitives involving
binary gripper actions (e.g., open or close), we bypass the video generation module and execute the
action directly via symbolic control. This improves execution efficiency and enables a clean archi-
tectural decoupling between discrete grasping commands and continuous 6-DoF motion planning,
thereby enhancing modularity and interpretability.

D DATASET DESCRIPTION

D.1 DATASET DETAILS

Our dataset consists of 7,326 simulated and 11,465 real-world primitives collected using a 5-camera
synchronized setup with Deoxys (Zhu et al., 2022). By segmenting long-horizon tasks via keyframe
indices, we extracted on average 5.8 primitives per session, achieving up to 29 x collection efficiency.
As shown in Figure 14, cameras were arranged to maximize coverage of the workspace.

For annotation, 10% of the data was manually labeled, then used to fine-tune Qwen-VL 2.5-7B
for auto-labeling the remainder, followed by light manual correction. To enhance visual generation
quality, we mixed a small portion of diverse simulated data into the training set, including examples
generated from RLBench and LIBERO. This hybrid strategy improves model generalization and
dynamic realism, as confirmed in Section 5.

D.2 ANNOTATION INTERFACE

Our annotation interface is designed to maximize labeling efficiency and consistency for multi-view
robotic manipulation data. As shown in Figure 7 (see supplementary material), the system displays
five synchronized views of the same primitive action simultaneously—ensuring that annotators can
observe the full 3D context of each motion.

Crucially, only one textual description is required per primitive, regardless of the number of
camera angles. This design enables a 5x reduction in annotation effort, as the same label is
automatically associated with all five views, avoiding redundant description entry.

The interface includes several features to further accelerate the process:

1. A text input box where annotators describe the observed action (e.g., grasp the cup handle and
lift vertically);

2. An auto-updating vocabulary panel below, which tokenizes and records all previously entered
words, allowing annotators to click and insert common terms with a single click;

3. Support for keyboard-based navigation: left/right arrow keys allow quick pagination between
primitive clips, enabling rapid review and correction without mouse interaction.

These interaction optimizations significantly reduce cognitive load and typing overhead, leading to
faster, more consistent annotations. In practice, this pipeline enables annotators to label over 1000
primitives per hour with high semantic consistency, making large-scale, multi-view robotic dataset
curation feasible and cost-effective.

E MORE DETAILS ON VLM PLANNER

E.1 BASE MODEL CONFIGURATION

Our VLM planner is built upon the Qwen2.5-VL-7B-Instruct model (Team, 2025), a large-scale
vision-language model capable of understanding and reasoning over both visual and textual inputs.
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Figure 7: Data annotation interface for multi-view primitive labeling. The system displays five synchronized
camera views of the same primitive action, but requires only a single text description, reducing annotation effort
by 5x. As annotators type, words are tokenized and added to a candidate panel below for quick reuse. Keyboard
shortcuts (left/right arrows) enable fast navigation between clips, accelerating both labeling and review.

Qwen-VL integrates a vision encoder based on the Vision Transformer (ViT) architecture to extract
image features, which are then mapped into the language models embedding space via a cross-modal
projector. The underlying LLM, with approximately 7 billion parameters, enables rich semantic
understanding and multi-step reasoning, making it well-suited for complex task planning in robotic
manipulation.

The model supports high-resolution image input and is pre-trained on a diverse corpus of image-text
pairs, followed by supervised fine-tuning on instruction-following datasets. This training paradigm
equips Qwen-VL with strong generalization capabilities across domains, including object recogni-
tion, spatial reasoning, and action sequence prediction—key competencies required for grounding
high-level instructions into executable robotic plans.

In our framework, we leverage the frozen pre-trained Qwen2.5-VL-7B-Instruct as the backbone
of the planner, ensuring that the foundational vision-language understanding remains intact while
enabling modular adaptation through lightweight fine-tuning strategies. This design choice balances
parameter efficiency with effective downstream task specialization.

E.2 FINE-TUNING PROTOCAL

Figure 8 illustrates the high-fidelity simulation rollouts produced by our method. Each row depicts
a different fundamental manipulation task (such as "Open microwave" or "Pick telephone receiver"),
with the sequence of frames progressing from left to right to show the complete action. The gen-
erated videos display exceptionally smooth and realistic robot arm movements, accurate physical
interactions with objects (e.g., grasping, lifting, and opening), and stable, consistent environmental
dynamics. This vividly demonstrates that our approach can generate high-quality, physically realis-
tic robot manipulation videos, a critical capability for developing robust world models and enabling
effective, data-efficient robotic learning.

F MORE DETAILS ON THE VIDEO GENERATION MODEL

F.1 VIDEO GENERATION MODEL DETAILS

Our base model is DynamiCrafter (Xing et al., 2024), which has a 1.4B denoising network.
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Figure 8: This workflow diagram delineates the architecture of our VLM planner, which is based on the Qwen
2.5 VL-7B model. The Reasoner generates descriptions and reasoning for the input to facilitate the func-
tioning of subsequent components. The Planner (LoRA-P) and Grounder (LoRA-G) comprise two learnable
LoRA modules: the Planner produces a series of primitive chunks, delivering modular instructions, while the
Grounder provides specific descriptions of the end effector’s start and goal positions. The Verifier assesses the
executability of the plan, indicating approved or rejected statuses to ensure precision in planning.

DynamiCrafter is architected upon the foundation of the open-source Text-to-Video (T2V) model,
VideoCrafter (Chen et al., 2023; 2024a), and further integrates principles from the Text-to-Image
(T2I) model, Stable-Diffusion-v2.1 (Rombach et al., 2022a). This hybrid approach allows Dynam-
iCrafter to leverage the advanced capabilities of both text-conditioned video generation and stable
image diffusion, forming a robust framework for animating open-domain images.

Dual-Stream Image Injection Paradigm Central to DynamiCrafter’s methodology is its novel
dual-stream image injection paradigm, visually depicted in Figure 1. During the iterative denoising
process inherent to diffusion models, a video frame is stochastically selected to serve as the image
condition. This strategic injection enables the model to effectively inherit fine-grained visual details
from the input while simultaneously processing the image content in a highly context-aware manner.
This sophisticated mechanism is crucial for generating animations that maintain strong fidelity to
the source image’s appearance while exhibiting plausible and dynamic motion. During the inference
phase, the model is capable of generating diverse and temporally coherent animation clips directly
from a single input still image, which is conditioned by initial noise, effectively transforming static
imagery into dynamic video sequences.

F.2 FINE-TUNING PROTOCAL

We employ a structured, three-stage fine-tuning protocol to adapt a pre-trained text-to-video (T2V)
diffusion model for our embodied world modeling task. This progressive approach effectively
bridges the gap between generic video generation and the specific requirements of sim-to-real
robotic manipulation, balancing semantic understanding, dynamic plausibility, and visual fidelity.

Stage 1: Simulation Pre-Finetuning. The goal of this initial stage is to rapidly inject fundamen-
tal embodied intelligence concepts and robot kinematics into the pre-trained model. We fine-tune
the model on a large-scale dataset of synthetic demonstrations from simulation platforms (e.g., RL-
Bench, LIBERO). These data provide perfect motion trajectories and unambiguous physical inter-
actions, serving as a strong prior for the model to learn the semantics of manipulation, object af-
fordances, and basic robot motion. To prevent overfitting to the simulated domain and preserve the
model’s generalization capability, we use an underfitting strategy: training with a relatively high
learning rate but for a limited number of epochs, stopping early once the model generates videos
with plausible and consistent robot motions.

Stage 2: Domain Alignment and Adaptation. With a model now primed with embodied knowl-
edge, this stage focuses on aligning the visual and dynamic characteristics of the real and simulated
domains. We fine-tune the model on a balanced mixture of real-world teleoperation data and sim-
ulation data (1:1 ratio). This forces the model to learn a shared representation that reconciles the
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high visual fidelity and complex textures of real data with the perfect kinematics and dynamics of
simulation. The learning rate is halved compared to Stage 1 for more stable adaptation. This stage
is crucial for mitigating the sim-to-real gap; real data corrects the often-blurry appearance of fast-
moving parts (like grippers) in pure simulation, while simulation data ensures the generated motions
remain physically consistent and do not drift.

Stage 3: Reality-Centric Refinement. The final stage refines the model to be highly proficient at
generating realistic, high-fidelity videos conditioned on real-world observations. We shift the data
distribution to be heavily weighted towards real data (80% real, 20% simulation). This ensures
the model’s output distribution is dominated by the statistics of the real world. To further enhance
visual consistency, we introduce Visual Detail Guidance (VDG). VDG concatenates the original
input image with the initial noise of each video frame during training, providing a persistent visual
reference that guides the denoising process and significantly improves the preservation of fine details
(e.g., object textures, robot markings) in the generated video sequence.

This three-stage protocol enables our model to leverage the strengths of both simulation (perfect
supervision, diverse scenarios) and real-world data (visual realism, true dynamics) in a synergistic
manner, resulting in a world model capable of generating physically plausible and visually realistic
future predictions for robust robot planning.

G MORE DETAILS ON PRIMITIVE DATA COLLECTION, ANNOTATION, AND
CALIBRATION

G.1 EXAMPLES OF TRAINING VIDEO CLIPS

In this study, we utilize both real-world and simulated video clips capturing the operation of robotic
arms to train our model. The real-world data consists of videos collected from various robotic arm
tasks using a Franka Emika arm, remotely operated through a Space Mouse interface. These tasks
are performed in controlled environments, showcasing different motions and interactions with ob-
jects. These videos provide valuable information about how the arm operates in realistic conditions,
with varying lighting, camera angles, and object placements.

The simulated video clips, on the other hand, are generated from physics-based environments such as
RLBench and LIBERO. These simulations replicate the robotic arm’s movements in virtual settings,
allowing for the generation of large quantities of data under controlled conditions. This enables the
model to learn from a diverse range of scenarios that might be difficult or time-consuming to capture
in real life.

Examples of both real-world and simulated video clips are provided in Figure 9. These images
illustrate the types of data used to train the model, offering a glimpse into the varied nature of the
training set.

We compare our framework against OpenVLA (Kim et al., 2024a), a state-of-the-art end-to-end
vision-language-action model that maps raw instructions and observations directly to actions. We
evaluate OpenVLA under two settings: (1) Zero-shot: The pre-trained OpenVLA model is deployed
directly on our benchmark tasks without any task-specific finetuning. This setting evaluates its raw
generalization capability across unseen objects and scenes. (2) Finetune: The model is finetuned
on 100 task-specific demonstrations per task using supervised behavior cloning, following the same
protocol as in our system’s policy training. This setting represents an upper-bound of OpenVLAs
performance under favorable conditions. We note that OpenVLA performs poorly in the zero-shot
setting and fails completely on real-robot deployment, whereas our method maintains strong perfor-
mance even without task-specific finetuning or retraining of the video model.

H MORE QUANTITATIVE EXPERIMENTAL RESULTS

H.1 VIDEO GENERATION QUALITY

We evaluate visual fidelity using standard metrics on 32-frame action sequences. As shown in Ta-
ble 7, our method achieves the highest SSIM (0.8126) and PSNR (21.0644), and the lowest TVD
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Figure 9: Sample frames from the training dataset, which consists of three components: real-world data col-
lected using a Franka Emika robotic arm and Femto Bolt cameras, and two simulated datasets obtained from
RLBench and LIBERO.

(0.0018) and FVD (0.0002), outperforming larger models such as TesserAct (5B) and Hunyuan 12V
(13B). This indicates superior structural detail, temporal smoothness, and distributional realism. De-
spite a slightly higher LPIPS, our outputs exhibit sharper, more dynamic motions that better reflect
real robot behavior.

H.2 PHYSICALLY ACCURATE GENERATION

To provide a more comprehensive evaluation of physical fidelity in generated action sequences,
we extend our metrics beyond standard video quality indicators (e.g., SSIM, PSNR, LPIPS) to in-
clude task- and embodiment-aware measures. In particular, we adopt the evaluation philosophy of
PhysicsIQ (Motamed et al., 2025) and introduce the first Embodied Physical Consistency Score
(EPiCS) tailored for robotic manipulation tasks. EPiCS is a fine-grained, human-in-the-loop metric
that assesses whether generated motions respect fundamental physical and kinematic constraints in
embodied environments. See a detailed description of EPiCS in Appendix J.

Table 7: Physical fidelity and generation quality on 32-frame sequences (higher 1/lower |, is better). Best results
per metric are in bold.

Model (Size) SSIMt PSNR{ LPIPS, VIFt TVD) FVD| EPiCSt
Wan2.1 12V (14 B) 0.6211 157365 02867 02232 0.0040 0.0005  5.00
Hunyuan 12V (13 B) 0.7767 18.4264 0.1466 0.3529 0.0033 0.0004  9.65

TesserAct (CogVideoX 5 B) 0.8034 20.0823 0.1546  0.3317 0.0037 0.0004 10.15
Ours (DynamiCrafter 1.4 B) 0.8126 21.0644 0.1647 0.3188 0.0018 0.0002 11.45

H.3 SUPPLEMENTARY COMPARISONS

To further contextualize our method’s performance within the broader landscape of vision-based
robotic planning, we provide supplementary comparisons on the RLBench benchmark (James et al.,
2020b) against representative baselines from different paradigms. As shown in Table 8, our approach
achieves significantly higher success rates on both Close Box and Open Drawer tasks compared to
the VLM-based method VoxPoser (Huang et al., 2023) and the action-tokenization approach Per-
Act (Shridhar et al., 2022), where the performance of VoxPoser and PerAct are both extracted from
the Colosseum paper (Pumacay et al., 2024). This performance gap highlights the advantage of our
video diffusion-based policy generation, which produces temporally coherent and visually grounded
action sequences, in contrast to methods that rely on discrete action token prediction or direct VLM-
to-action mapping without explicit visual simulation. Notably, our method operates in a zero-shot
manner on these tasks—without task-specific fine-tuning of the video generation model—further un-
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derscoring its strong generalization capability. These results complement the comprehensive evalua-
tion in Table 1 and reinforce the effectiveness of our framework in handling common, yet non-trivial,
manipulation primitives in simulation.

Table 8: RLBench success rates (%) on two tasks.

Method Close Box (%) Open Drawer (%)

VoxPoser <10 <10
PerAct 30.4 35.6
Ours 93 84

H.4 EFFICIENCY COMPARISON

Table 9 presents a comprehensive efficiency comparison across state-of-the-art video generation
models for robotic manipulation. We evaluate along three key axes: computational speed, VRAM
footprint, and practical deployability on standard GPU hardware (A100). All results are measured
under comparable conditions using publicly available or officially released implementations, where
applicable.

Our method achieves a significant leap in end-to-end generation speed, producing 32 frames in
approximately 16 seconds—enabling near-real-time planning in robotic systems. This translates to
an effective throughput of 2.0 FPS, over 40x faster than the next best model (4DWM, 0.045 FPS)
and orders of magnitude faster than large-scale 12V systems like Hunyuan 12V and Wan 2.1 12V,
which require tens of minutes per sequence.

Crucially, our model operates within only 11 GB of VRAM, making it compatible with a single
consumer-grade or edge-deployable GPU. In contrast, Hunyuan 12V and Wan 2.1 12V demand over
60 GB and up to 77 GB, respectively, requiring multi-GPU setups and prohibitively high infrastruc-
ture costs. Even 4DWM, based on a distilled CogVideoX variant, uses nearly twice the memory.

This exceptional speed-VRAM trade-off stems from our compact architecture design, efficient latent-
space autoregressive modeling, and optimized inference pipeline. Unlike diffusion models requiring
50+ denoising steps, our distilled rollout uses a fixed, small step count without quality degradation,
enabling fast, deterministic generation.

The combination of low memory usage, high frame rate, and single-GPU compatibility makes our
approach uniquely suitable for real-world embodied agents, where latency, cost, and hardware con-
straints are critical. It bridges the gap between high-fidelity simulation and deployable robot control—
a key step toward scalable, real-time vision-to-action systems.

Table 9: Efficiency comparison of video generation models. We compare video generation speed, memory
footprint, and runtime on A100 GPUs. Ours achieves the best speed-VRAM trade-off under realistic deploy-
ment conditions.

Model Resolution VRAM (A100) Time / Frames FPS
Hunyuan 12V 480p 6079 GB 50 min / 81 frames (local)  0.027
4DWM (CogVideoX1.5-5B-12) 480p 20 GB 18m20s / 49 frames 0.045
Wan 2.1 12V (14B) 720p 76.7 GB 2715s / 81 frames 0.03
Ours 480p 11 GB 16s / 32 frames 2.0

H.5 DETAILED LATENCY ANALYSIS

We provide a fine-grained latency breakdown of our method across three representative tasks: pick
up cup, tea ceremony, and pick knife from drawer. As shown in Table 10, timing is decomposed into
key stages: VLM-based planning, diffusion policy rollout, pose estimation, and other overheads
(e.g., communication, action execution). All stage times are averaged per primitive, and the total
time is computed as the product of mean primitive time and the number of primitives in the task.

It is important to emphasize that these measurements reflect unoptimized inference performance:
no acceleration techniques such as reduced denoising steps, model distillation, tensor compilation,
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Table 10: Per-primitive latency breakdown for the three evaluated tasks. Stage times are averaged across
primitives within each task.

Stage / Time per Primitive Pick up cup Tea ceremony Pick knife from drawer

1. VLM Planning (s) 2.13 2.08 2.12
2. Diffusion Rollout (s) 15.7 16.2 15.9
3. Pose Estimation (s) 12.3 12.1 12.0
Other Latency (s) 0.9 0.8 0.9
Number of Primitives 3 5 6
Mean Primitive Time (s) 31.03 31.18 30.92
Total Time (s) 93.1 155.9 185.52

or hardware-specific optimization (e.g., GPU batching) have been applied. As such, the reported
latencies represent a conservative lower bound on execution speed—or, equivalently, an upper
bound on latency—under current implementation.

We note that the diffusion rollout and pose estimation stages dominate the runtime, both of which
are highly amenable to optimization. For instance:

1. Reducing the number of denoising steps in the diffusion policy from 50 to 5-10 via distillation
or consistency models (Song et al., 2023) could yield 5x—10x speedups.

2. Compiling the perception and policy networks using tools like TorchScript or ONNX Runtime
can significantly reduce kernel launch overhead.

3. Lightweight variants of the VLM or pose estimator can be deployed without sacrificing planning
accuracy in many cases.

Prior work has demonstrated that such techniques can lead to over 10x end-to-end latency improve-
ments in similar vision-to-action pipelines (Kim et al., 2024b; Brohan et al., 2023b). While we leave
the integration of these optimizations to future work, this analysis confirms that our methods current
runtime is not a fundamental limitation, but rather a starting point for efficient deployment. The
modular architecture—decoupling planning, perception, and control-further facilitates independent
optimization of each component, enhancing practical scalability.

H.6 PERFORMANCE ON ROTATION-INTENSIVE TASKS — AN ILLUSTRATION OF
SCALABILITY

While we acknowledge that our method’s performance on rotation-intensive tasks is slightly below
the current state of the art (SOTA), we argue that this gap can be effectively closed by increasing
coverage of relevant primitive behaviors in the training data. This observation highlights a key
strength of our approach: scalability through targeted data augmentation.

To validate this, we conduct a fine-tuning experiment by adding 100 new demonstrations focused on
rotational motions (e.g., twisting, unscrewing) to the original training set. These are mixed at a ratio
of 1:5 (new:original) and used for a lightweight fine-tuning phase without architectural changes or
full retraining.

As shown in Table 11, success rates on rotation-heavy tasks improve significantly—surpassing SOTA
levels—while performance on non-rotational tasks remains stable, with no significant degradation.

Table 11: Effect of fine-tuning with 100 additional rotational-motion demonstrations. Results are success rates
(%).

Task Original Success (%) Fine-tuned Success (%) A SOTA (%)
open jar 43 56 +13 54
lid off 67 75 +8 73
close box 93 91 -2 88
put knife 72 71 -1 70

Notably, the success rate for open jar increases by 13%, exceeding the prior SOTA, while lid off
reaches 75%, outperforming existing methods. In contrast, performance on non-rotational tasks
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(close box, put knife) remains largely unchanged, with only minor drops of 12%, indicating strong
retention of previously learned skills.

This experiment demonstrates that our method supports efficient incremental learning: perfor-
mance on challenging, underrepresented task families can be improved with minimal additional
data and compute, without catastrophic forgetting. Such scalability is critical for real-world deploy-
ment, where robots must adapt to new tools, user preferences, or long-tail task distributions over
time.

These results reinforce that our framework not only achieves competitive performance out-of-the-
box but also enables practical, data-efficient improvement—making it well-suited for lifelong learn-
ing in dynamic environments.

I MORE QUALITATIVE EXPERIMENTAL RESULTS

1.1 VIDEO GENERATION QUALITY

In addition to using recorded video data, we also generate synthetic video clips to enrich the training
dataset and enhance the models generalization capability. These generated clips simulate the Franka
robotic arm performing various manipulation tasks from multiple camera perspectives.

Specifically, each video sequence is rendered from five distinct viewpoints: Back, Left-front, Right,
Overhead, and Wrist. These perspectives are selected to comprehensively capture the arm’s kine-
matics, end-effector trajectories, and object interactions from both global and local contexts. The
Back and Overhead views provide an overall understanding of the workspace and arm configura-
tion, while Left-front and Right offer lateral angles that help reveal occluded motions. The Wrist
view, positioned close to the end-effector, offers detailed observation of grasping and manipulation
actions.

Representative frames from these generated clips are shown in Figure 10, illustrating how each
viewpoint contributes to a multi-faceted understanding of the robotic operation.

1.2 VIDEO GENERATION SAMPLES FOR SIMULATION CASES

Figure 11 illustrates the high-fidelity simulation rollouts produced by our method. Each row depicts
a different fundamental manipulation task (such as "Open microwave" or "Pick telephone receiver"),
with the sequence of frames progressing from left to right to show the complete action. The gen-
erated videos display exceptionally smooth and realistic robot arm movements, accurate physical
interactions with objects (e.g., grasping, lifting, and opening), and stable, consistent environmental
dynamics. This vividly demonstrates that our approach can generate high-quality, physically realis-
tic robot manipulation videos, a critical capability for developing robust world models and enabling
effective, data-efficient robotic learning.

1.3 EFFECTS OF SIM-REAL HYBRID DATA STRATEGY

To investigate the impact of our sim-real hybrid training strategy on real-world generalization, we
conduct a qualitative ablation study comparing video generation results with and without this strat-
egy. As shown in Figure 12, each pair of rows displays two rollouts for the same primitive and initial
state—the top row generated using the model trained with sim-real hybrid data, and the bottom row
using a model trained without simulation data (i.e., on real data only, but with reduced coverage).

The results clearly demonstrate that the sim-real hybrid strategy leads to more temporally coherent,
visually realistic, and semantically accurate rollouts. For example, in the pick primitive, the hybrid-
trained model generates smooth arm motion toward the target object with correct gripper timing,
while the ablated version exhibits erratic movement and fails to reach the object. Similarly, in open
drawer, the hybrid model produces consistent handle interaction and sliding motion, whereas the
baseline often generates unrealistic deformations or misaligned trajectories.

We attribute these improvements to the complementary strengths of simulation and real data: simu-
lation provides clean, diverse, and fully observed physical interactions, enriching the models under-
standing of dynamics; real data grounds the generation in authentic appearance, lighting, and sensor
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Figure 10: Sample frames from the generated video clips showing the Franka robotic arm performing manipula-
tion tasks from five distinct viewpoints: Back, Left-front, Right, Overhead, and Wrist. Each viewpoint provides
a unique perspective on the arm’s movements, enhancing the model’s ability to learn complex manipulation be-
haviors from diverse angles.

noise. By combining both in a staged fine-tuning pipeline (see Section 3.2), our approach effectively
bridges the sim-to-real gap and enhances generalization to unseen real-world scenarios.

This finding underscores the value of strategic data mixing—not merely for data augmentation, but
as a structured way to inject both diversity and realism into generative world models.

1.4 LONG-HORIZON TASKS

While our Primitive Embodied World Model (PEWM) operates on short-horizon primitives, its true
value lies in enabling robust and flexible long-horizon task execution. This is achieved through
a hierarchical, closed-loop architecture that composes primitive predictions into a complete task
plan. As illustrated in Figure 13, the process begins with a high-level Vision-Language Model
(VLM) planner that decomposes a natural language instruction (e.g., "Pick up the cup and place it
in the drawer") into a sequence of atomic action primitives (e.g., pick (cup), move-to (upper
drawer), open (upper drawer),place (cup)).

For each primitive in the sequence, the PEWM generates a short visual rollout conditioned on the
current observation and the Start-Goal heatmap Guidance (SGG) priors. The 6-DoF end-effector
trajectory is then extracted from this video using Gen6D and executed on the real robot. After
each primitive’s execution, the robot’s state is updated, and the latest observation is fed back into
the VLM planner. This creates an autoregressive loop where the planner can dynamically adjust
the subsequent primitive sequence based on the outcome of the previous step—correcting for errors,
handling unexpected disturbances (e.g., a moved object), or reacting to partial successes.

This modular composition avoids the error accumulation and brittleness typical of monolithic long-
horizon models. Each primitive acts as a self-contained "skill module" with built-in visual feedback,
ensuring high fidelity at the local level. The success of the overall task is thus the product of the
reliability of individual primitives and the robustness of the high-level planner. This approach allows
our system to tackle complex, multi-step tasks that require both precise manipulation and adaptive
decision-making, demonstrating a scalable pathway from primitive learning to full-task autonomy.
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Figure 11: High-fidelity simulation rollouts generated by our model. This figure presents a diverse set of
robotic manipulation tasks executed in simulation, demonstrating the model’s ability to generate high-quality,
physically plausible video sequences. Each row corresponds to a distinct primitive action (e.g., “Open mi-
crowave”, “Lid off”, “Pick telephone receiver”), with frames evolving from left to right. The generated videos
exhibit smooth and coherent robot arm motions, precise object interactions, and consistent scene dynamics,
underscoring the effectiveness of our sim-real hybrid training strategy in capturing complex manipulation be-
haviors.

J  EMBODIED PHYSICAL CONSISTENCY SCORE (EPICS).

EPiCS evaluates generated videos through structured human assessment over five categories and
twelve binary sub-criteria (each scored O or 1), resulting in a total score out of 13. The criteria are
grouped as in Table 12.
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Figure 12: Qualitative comparison of video generation with and without the Sim-Real Hybrid strategy. The
first row of each primitive shows results with Sim-Real Hybrid, which produces more coherent and realistic
frames than the second row (without Sim-Real Hybrid).
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Figure 13: 3D illustration for long-horizon tasks. Mapping the generated video frames through the camera’s
intrinsic and extrinsic parameters to visualize the corresponding 3D object poses in real-world coordinates.

Table 12: EPiCS: Criteria for embodied physical consistency evaluation. Each criterion is binary (0 or 1), total
score = 13.

Category Criterion Score
Robot Appearance Correct arm shape (e.g., 7-DoF manipulator structure preserved) 1
Correct end-effector shape (e.g., gripper geometry matches real robot) 1
Clear end-effector visibility (no occlusion or blurring during interaction) 1
Physical Plausibility =~ No impossible motion (e.g., teleportation, penetration) 1
Rigid-body constraint (objects do not stretch or deform unnaturally) 1
No flickering/disappearance (consistent object presence over time) 1
Plausible joint movement (smooth, biomechanically feasible articulation) 1
Task Accuracy Follows instruction (action matches textual description) 1
Completes task (goal state is reached, e.g., cup lifted off table) 1
Scene Consistency Stable background geometry (static elements remain fixed) 1
Consistent lighting and shadows (illumination does not flicker or shift abruptly) 1
Visual Quality Correct perspective and depth (3D structure is coherent) 1
Low noise and artifacts (minimal grain, blur, or hallucinated textures) 1

Annotators are shown randomized video pairs (generated vs. real) and asked to score each clip
independently. Inter-annotator agreement (measured via Fleiss’ x) was 0.78, indicating substantial
consistency.

K EXPERIMENTAL ENVIRONMENT

Our experimental setup is illustrated in Figure 14. The environment consists of a workstation, a FR3
(Franka Research 3) robotic arm, and five cameras. The specific configuration is as follows:

Workstation The workstation serves as a standard experimental platform, providing a stable area
to support various operational tasks.

FR3 Robotic Arm The FR3 robotic arm is a high-precision industrial robot equipped with flexible
movement capabilities and high repeatability. This robotic arm is responsible for executing various
tasks and can interact in real-time with the collected visual data.

Camera System Two Realsense Cameras: These cameras are mounted on the wrist of the robotic
arm and on the shelf of the workstation, respectively. They capture real-time depth information and
the arm’s movements, enabling a comprehensive understanding of the spatial context and enhancing
the accuracy and reliability of task execution. Three Femto Bolt Cameras: Positioned around the
workstation, these cameras are used to capture dynamic processes at high frame rates. They provide
additional visual perspectives, ensuring that comprehensive image data is collected during complex
tasks for subsequent analysis and processing.
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M .

Figure 14: The workstation for data collection and real-robotic evaluation.

In summary, the design of this experimental environment aims to provide comprehensive visual
support for robotic operations, facilitating the research and development of complex tasks. Through
the collaborative operation of a multi-camera system, we can obtain high-quality visual data, thereby
enhancing the performance of the robot in practical applications.

L OTHER PROMISING APPLICATIONS

The modular and explainable nature of our framework unlocks several other promising applications.

First, it enables Latent Action Prediction, where the generated video rollouts can be distilled into
compact, interpretable latent action codes that capture the essence of a manipulation primitive, facil-
itating efficient communication and storage.

Second, the framework can be extended towards Unified Generation of Action, Reward, or Camera
Parameters. For instance, by introducing auxiliary heads or conditioning mechanisms, the same
underlying model could potentially predict not only future frames but also estimate the expected re-
ward for a generated trajectory or suggest optimal camera viewpoints for better scene understanding,
creating a more holistic planning system.

Finally, the generated videos provide a natural medium for Human-in-the-Loop Interaction and AR-
based Planning. A human operator could view the predicted video sequence in an augmented reality
(AR) interface, provide real-time feedback to correct or refine the plan before execution, or even
interactively edit the video to specify desired outcomes, creating a more intuitive and collaborative
robotics interface. These applications highlight the framework’s potential as a foundational compo-
nent for next-generation, human-centered robotic systems.

M THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, large language models (LLMs) were used as an assistive tool to aid
in the polishing and refinement of written content. Specifically, LLMs were employed to: Improve
clarity, grammar, and fluency of draft text; Suggest rephrasings for complex or awkwardly worded
sentences; Assist in generating concise summaries or transitional phrases where needed.

The core research ideas, experimental design, data analysis, interpretation of results, and final struc-
turing of arguments were conceived and executed solely by the human authors. LLMs did not
contribute to the generation of novel research hypotheses, methodological decisions, or scientific
conclusions. All factual claims, citations, and technical content were verified and validated by the
authors.
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