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Abstract

Numerous studies have demonstrated that the Transformer architecture possesses
the capability for in-context learning (ICL). In scenarios involving function approx-
imation, context can serve as a control parameter for the model, endowing it with
the universal approximation property (UAP). In practice, context is represented by
tokens from a finite set, referred to as a vocabulary, which is the case considered
in this paper, i.e., vocabulary in-context learning (VICL). We demonstrate that
VICL in single-layer Transformers, without positional encoding, does not possess
the UAP; however, it is possible to achieve the UAP when positional encoding is
included. Several sufficient conditions for the positional encoding are provided.
Our findings reveal the benefits of positional encoding from an approximation
theory perspective in the context of ICL.

1 Intruduction

Transformers have emerged as a dominant architecture in deep learning over the past few years.
Thanks to their remarkable performance in language tasks, they have become the preferred framework
in the natural language processing (NLP) field. A major trend in modern NLP is the development
and integration of various black-box models, along with the construction of extensive text datasets.
In addition, improving model performance in specific tasks through techniques such as in-context
learning (ICL) [1, 2], chain of thought (CoT) [3, 4], and retrieval-augmented generation (RAG) [5]
has become a significant research focus. While the practical success of these models and techniques
is well-documented, the theoretical understanding of why they perform so well remains incomplete.

To explore the capabilities of Transformers in handling ICL tasks, it is essential to examine their
approximation power. The universal approximation property (UAP) [6–9] has long been a key topic
in the theoretical study of neural networks (NNs), with much of the focus historically on feed-forward
neural networks (FNNs). Yun et al. [10] was the first to investigate the UAP of Transformers,
demonstrating that any sequence-to-sequence function could be approximated by a Transformer
network with fixed positional encoding. Luo et al. [11] highlighted that a Transformer with relative
positional encoding does not possess the UAP. Meanwhile, Petrov et al. [12] explored the role of
prompting in Transformers, proving that prompting a pre-trained Transformer can act as a universal
functional approximator.

However, one limitation of these studies is that, in practical scenarios, the inputs to language models
are derived from a finite set embedded in high-dimensional Euclidean space – commonly referred to
as a vocabulary. Whether examining the work on prompts in [12] or the research on ICL in [13, 14],
these studies assume inputs from the entire Euclidean space, which differs significantly from the
discrete nature of vocabularies used in real-world applications.
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1.1 Contributions

Starting with the connection between FNNs and Transformers, we turn to the finite restriction of
vocabularies and study the benefits of positional encoding. Leveraging the UAP of FNNs, we explore
the UAP of Transformers for ICL tasks in two scenarios: one where positional encoding is used and
one where it is not. In both cases, the inputs are from a finite vocabulary. More specifically:

1. We first establish a connection between FNNs and Transformers in processing ICL tasks
(Lemma 3). Using this lemma, we show that Transformers can function as universal
approximators (Lemma 4), where the context serves as control parameters, while the weights
and biases of the Transformer remain fixed.

2. When the vocabulary is finite and positional encoding is not used, we prove that single-layer
Transformers cannot achieve the UAP for ICL tasks (Theorem 6).

3. However, when positional encoding is used, it becomes possible for single-layer Transform-
ers to achieve the UAP (Theorem 7). In particular, for Transformers with ReLU or softmax
activation functions, the conditions on the positional encoding are relaxed (Theorem 8).

1.2 Related Works

Universal approximation property. NNs, through multi-layer nonlinear transformations and
feature extraction, are capable of learning deep feature representations from raw data. As neural
networks gain prominence, theoretical investigations—especially into their UAP – have intensified.
Related studies typically fall into two categories: those allowing arbitrary width with fixed depth [6–
9], and those allowing arbitrary depth with bounded width [15–19]. Since our study builds on existing
results regarding the approximation capabilities of FNNs, we focus on investigating the approximation
abilities of single-layer Transformers in modulating context for ICL tasks. Consequently, our work
relies more on the findings from the first category of research. The realization of the UAP depends on
the architecture of the network itself, providing constructive insights for exploring the connection
between FNNs and Transformers. Recently, Petrov et al. [12] also explored UAP in the context of
ICL, but without considering vocabulary constraints or positional encodings.

Transformers. The Transformer is a widely used neural network architecture for modeling se-
quences [20–25]. This non-recurrent architecture relies entirely on the attention mechanism to capture
global dependencies between inputs and outputs [20]. The neural sequence transduction model is
typically structured using an encoder-decoder framework [26, 27].

Without positional encoding, the Transformer can be viewed as a stack of N blocks, each consisting
of a self-attention layer followed by a feed-forward layer with skip connections. In this paper, we
focus on the case of a single-layer self-attention sequence encoder.

In-context learning. The Transformer has demonstrated remarkable performance in the field of
NLP, and large language models (LLMs) are gaining increasing popularity. ICL has emerged as a
new paradigm in NLP, enabling LLMs to make better predictions through prompts provided within
the context [2, 28–31]. ICL delivers high performance with high-quality data at a lower cost [32–34].
It enhances retrieval-augmented methods by prepending grounding documents to the input [35] and
can effectively update or refine the model’s knowledge base through well-designed prompts [36].

Positional Encoding. The following explanation clarifies the significance of incorporating posi-
tional encoding into the Transformer architecture. RNNs capture sequential order by encoding the
changes in hidden states over time. In contrast, for Transformers, the self-attention mechanism is
permutation equivariant, meaning that for any model f , any permutation matrix π, and any input x,
the following holds: f(π(x)) = π(f(x)).

We aim to explore the impact of positional encoding on the performance of a single-layer Transformer
when performing ICL tasks with a finite vocabulary. Therefore, we focus on analyzing existing
positional encoding methods. There are fundamental methods for encoding positional information
in a sequence within the Transformer: absolute positional encodings (APEs), e.g. [37, 25, 38, 39],
relative positional encodings (RPEs), e.g. [40, 41, 39] and rotary positional embedding (RoPE) [42].
The commonly used APE is implemented by directly adding the positional encodings to the word
embeddings, and we follow this implementation.
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UAP of ICL. To understand the mechanism of ICL, various explanations have been proposed,
including those based on Bayesian theory [43, 44] and gradient descent theory [45]. Fine-tuning the
Transformer through ICL alters the presentation of the input rather than the model parameters, which
is driven by successful few-shot and zero-shot learning [46, 47]. This success raises the question of
whether we can achieve the UAP through context adjustment.

Yun et al. [10] demonstrated that Transformers can serve as universal sequence-to-sequence approx-
imators, while Alberti et al. [48] extended the UAP to architectures with non-standard attention
mechanisms. However, their implementations allow the internal parameters of the Transformers to
vary, which does not fully capture the nature of ICL. In contrast, Likhosherstov et al. [49] showed that
while the parameters of self-attention remain fixed, various sparse matrices can be approximated by
altering the inputs. Fixing self-attention parameters aligns more closely with practical scenarios and
provides valuable insights for our work. However, this approach has the limitation of excluding the
full Transformer architecture. Furthermore, Deora et al. [50] illustrated the convergence and general-
ization of single-layer multi-head self-attention models trained using gradient descent, supporting the
feasibility of our research by emphasizing the robust generalization of Transformers. Nevertheless,
Petrov et al. [51] indicated that the presence of a prefix does not alter the attention focus within the
context, prompting us to explore variations in input context and introduce flexibility in positional
encoding.

1.3 Outline

We will introduce the notations and background results in Section 2. Section 3 addresses the case
where the vocabulary is finite and positional encoding is not used. Section 4 discusses the benefits of
using positional encoding. A summary is provided in Section 5. All proofs of lemmas and theorems
are provided in the Appendix.

2 Background Materials

We consider the approximation problem as follows. Given a fixed Transformer network, for any
target continuous function f : K → Rdy with a compact domain K ⊂ Rdx , we aim to adjust the
content of the context so that the output of the Transformer network can approximate f . First, we
present the concrete forms and notations for the inputs of ICL, FNNs, and Transformers.

2.1 Notations

Input of in-context learning. In the ICL task, the given n demonstrations are denoted as z(i) =
(x(i), y(i)) for i = 1, 2, ..., n, where x(i) ∈ Rdx and y(i) ∈ Rdy . Unlike the setting in [13, 14] where
y(i) was related to x(i) (for example y(i) = ϕ(x(i)) for some function ϕ), we do not assume any
correspondence between x(i) and y(i), i.e., x(i) and y(i) are chosen freely. To predict the target at a
query vector x ∈ Rdx or z = (x, 0) ∈ Rdx+dy , we define the input matrix Z as follows:

Z =
[
z(1) z(2) · · · z(n) z

]
:=

[
x(1) x(2) · · · x(n) x
y(1) y(2) · · · y(n) 0

]
∈ R(dx+dy)×(n+1). (1)

Furthermore, let P : N+ → Rdx+dy represent a positional encoding function, and define P(i) :=

P(i). Denote the demonstrations with positional encoding as z(i)P := z(i)+P(i) and zP := z+P(n+1).
The context with positional encoding can then be represented as:

ZP =
[
z
(1)
P z

(2)
P · · · z

(n)
P zP

]
:=

[
x
(1)
P x

(2)
P · · · x

(n)
P xP

y
(1)
P y

(2)
P · · · y

(n)
P yP

]
∈ R(dx+dy)×(n+1). (2)

Additionally, we denote:

X =
[
x(1) x(2) · · · x(n)

]
∈ Rdx×n, XP =

[
x
(1)
P x

(2)
P · · · x

(n)
P

]
∈ Rdx×n, (3)

Y =
[
y(1) y(2) · · · y(n)

]
∈ Rdy×n, YP =

[
y
(1)
P y

(2)
P · · · y

(n)
P

]
∈ Rdy×n. (4)
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Feed-forward neural networks. One-hidden-layer FNNs have sufficient capacity to approximate
continuous functions on any compact domain. In this article, all the FNNs we refer to and use are
one-hidden-layer networks. We denote a one-hidden-layer FNN with activation function σ as Nσ,
and the set of all such networks is denoted as N σ , i.e.,

N σ =
{
Nσ := Aσ(Wx+ b)

∣∣ A ∈ Rdy×k, W ∈ Rk×dx , b ∈ Rk, k ∈ N+
}

=

{
Nσ :=

k∑
i=1

aiσ(wi · x+ bi)

∣∣∣∣ (ai, wi, bi) ∈ Rdy × Rdx × R, k ∈ N+

}
.

(5)

For element-wise activations, such as ReLU, the above notation is well-defined. However, for non-
element-wise activation functions, which are not widely used but considered in this article, especially
the softmax activation, we need to give more details for the notation:

N softmax =

Nsoftmax =

k∑
i=1

aie
wi·x+bi

k∑
i=1

ewi·x+bi

∣∣∣∣∣∣∣∣∣ (ai, wi, bi) ∈ Rdy × Rdx × R, k ∈ N+

 . (6)

Transformers. We define the general attention mechanism following [13, 14] as:

AttnσQ,K,V (Z) := V ZMσ
(
(QZ)⊤KZ

)
, (7)

where V, Q, K are the value, query, and key matrices in R(dx+dy)×(dx+dy), respectively. M =
diag(In, 0) is the mask matrix in R(n+1)×(n+1), and σ is the activation function. Note that the context
vectors z(i) are asymmetric and do not include the query vector z itself; therefore, we introduce a
mask matrix M following the design of [13, 14]. Here the softmax activation of a matrix G ∈ Rm×n

is defined as: (
softmax(G)

)
i,j

:=
exp

(
Gi,j

)
m∑
l=1

exp
(
Gl,j

) . (8)

With this formulation of the general attention mechanism, we can define a single-layer Transformer
without positional encoding as:

Tσ(x;X,Y ) := (Z + V ZMσ((QZ)⊤KZ))dx+1:dx+dy,n+1, (9)

where [a : b, c : d] denotes the submatrix from the a-th row to the b-th row and from the c-th column
to the d-th column. If a = b (or c = d), the row (or column) index is reduced to a single number.
Similarly to the notation for FNNs, T σ denotes the set of all Tσ with different parameters.

Vocabulary. In the above notations, the tokens in context of ICL are general and unrestricted. When
we refer to a “vocabulary”, we mean that the tokens are drawn from a finite set. More specifically, we
refer to it as VICL if all input vectors z(i) come from a finite vocabulary V = Vx ×Vy ⊂ Rdx ×Rdy .
In this case, we use subscript ∗, i.e., Tσ

∗ (x;X,Y ), to represent the Transformer Tσ(x;X,Y ) defined
in equation (9), and denote the set of such Transformers as T σ

∗ :

T σ
∗ =

{
Tσ

∗ (x;X,Y ) := Tσ(x;X,Y )
∣∣ z(i) ∈ V, i ∈ {1, 2, · · · , n}, n ∈ N+

}
. (10)

To facilitate the simplification of VICL analysis, we denote a FNN with a finite set of weights as Nσ
∗ ,

and the corresponding set of such networks as N σ
∗ . More specifically, when the activation function is

an elementwise activation, we denote:

N σ
∗ =

{
Nσ

∗ :=

k∑
i=1

aiσ(wi · x+ bi)

∣∣∣∣ (ai, wi, bi) ∈ A×W ×B, k ∈ N+

}
, (11)

where A ⊂ Rdy , W ⊂ Rdx , and B ⊂ R are finite sets. When the activation function is softmax, we
denote:

N softmax =

Nsoftmax =

k∑
i=1

aie
wi·x+bi

k∑
i=1

ewi·x+bi

∣∣∣∣∣∣∣∣∣ (ai, wi, bi) ∈ A×W ×B, k ∈ N+

 , (12)

where A,W and B are defined as in the previous context.

4



Positional encoding. When positional encoding P is involved, we add the subscript P , i.e.,

T σ
∗,P =

{
Tσ

∗,P(x;X,Y ) := Tσ(xP ;XP , YP)
∣∣ z(i) ∈ V, i ∈ {1, 2, ..., n}, n ∈ N+

}
. (13)

Note that the context length n in Tσ , Tσ
∗ and Tσ

∗,P are unbounded.

We present all our notations in Table 1 in Appendix A for easy reference.

2.2 Universal Approximation Property

The vanilla form of the UAP for FFNs plays a crucial role in our study. Before we state this property
as a formal lemma, we put forward the following assumption first, which is similar to the one in [14]
and is used to simplify the analysis of Transformers.

Assumption 1. The matrices Q, K, V ∈ R(dx+dy)×(dx+dy) have the following sparse partition:

Q =

[
B 0
0 0

]
, K =

[
C 0
0 0

]
, V =

[
D E
F U

]
, (14)

where B, C, D ∈ Rdx×dx , E ∈ Rdx×dy , F ∈ Rdy×dx and U ∈ Rdy×dy . Furthermore, the
matrices B, C and U are non-singular, and the matrix F = 0.

In addition, we assume the element-wise activation σ is non-polynomial, locally bounded, and
continuous. It is worth noting that a randomly initialized n×n matrix is non-singular with probability
one, so it is acceptable to assume that the matrices B,C and U are non-singular. Moreover, the
assumption F = 0 can be relaxed, which will be discussed in Appendix F. Here, we have slightly
strengthened it for the sake of computational convenience.
Lemma 2 (UAP of FNNs [9]). Let σ : R → R be a non-polynomial, locally bounded, piecewise
continuous activation function. For any continuous function f : Rdx → Rdy defined on a compact
domain K, and for any ε > 0, there exist k ∈ N+, A ∈ Rdy×k, b ∈ Rk, and W ∈ Rk×dx such that

∥Aσ(Wx+ b)− f(x)∥ < ε, ∀x ∈ K. (15)

The theorem presented above is well-known and primarily applies to activation functions operating
element-wise. However, it can be readily extended to the case of the softmax activation function. In
fact, this can be achieved using NNs with exponential activation functions. The specific approach for
this generalization is detailed in Appendix B.

2.3 Feed-forward neural networks and Transformers

It is important to emphasize the connection between FNNs and Transformers, which will be repre-
sented in the following lemmas and are crucial for establishing our main theory.
Lemma 3. Let σ : R → R be a non-polynomial, locally bounded, piecewise continuous activation
function, and Tσ be a single-layer Transformer satisfying Assumption 1. For any one-hidden-layer
network Nσ : Rdx−1 → Rdy ∈ N σ with n hidden neurons, there exist matrices X ∈ Rdx×n and
Y ∈ Rdy×n such that

Tσ (x̃;X,Y ) = Nσ(x), ∀x ∈ Rdx−1. (16)

There is a difference in the input dimensions of Tσ and Nσ, as the latter includes a bias dimension
absent in the former. To connect the two inputs, x̃ and x, we use a tilde, where x̃ is formed by
augmenting x with an additional one appended to the end.

By employing the structure of K, Q and V in equation (14), the output forms of the Transformer
Tσ
(
x̃;X,Y

)
can be simplified as follows:

Tσ
(
x̃;X,Y

)
=

([
X x̃
Y 0

]
+

[
DX + EY 0
FX + UY 0

]
σ

([
X⊤B⊤CX X⊤B⊤Cx̃
x̃⊤B⊤CX x̃⊤B⊤Cx̃

]))
dx+1:dx+dy,n+1

= (FX + UY )σ(X⊤B⊤Cx̃) = UY σ(X⊤B⊤Cx̃). (17)

Comparing this with the output form of FNNs, i.e., Nσ(x) = Aσ(Wx+ b), it becomes evident that
setting X = (C⊤B)−1 [W b]

⊤ and Y = U−1A is sufficient to finish the proof.
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It can be observed that the form in equation (17) exhibits the structure of an FNN. Consequently,
Lemma 3 implies that single-layer Transformers Tσ in the context of ICL and FNNs Nσ are equivalent.
However, this equivalence does not hold for the case of softmax activation due to differences in the
normalization operations between FNNs and Transformers. Therefore, in the subsequent sections of
this article, we employ different analytical methods to address the two types of activation functions.

Moreover, the equivalence in equation (16) suggests that the context in Transformers can act as a
control parameter for the model, thereby endowing it with the UAP.

2.4 Universal Approximation Property of In-context Learning

We now present the UAP of Transformers in the context of ICL.
Lemma 4. Let σ : R → R be a non-polynomial, locally bounded, piecewise continuous activation
function or softmax function, and Tσ be a single-layer Transformer satisfying Assumption 1, and
K be a compact domain in Rdx−1. Then for any continuous function f : K → Rdy and any ε > 0,
there exist matrices X ∈ Rdx×n and Y ∈ Rdy×n such that∥∥Tσ

(
x̃;X,Y

)
− f(x)

∥∥ < ε, ∀x ∈ K. (18)

For the case of element-wise activation, the result follows directly by combining Lemma 2 and
Lemma 3. However, for the softmax activation, the normalization operation requires an additional
technique in the proof. The core idea is to construct an FNN with exponential activation func-
tions, incorporating an additional neuron to handle the normalization effect. Detailed proofs are
provided in Appendix B. Similar results have been obtained in recent work [12], though via different
methodologies.

3 The Non-Universal Approximation Property of N σ
∗ and T σ

∗

One key aspect of ICL is that the context can act as a control parameter for the model. We now
consider the case where the tokens in context are restricted to a finite vocabulary. A natural question
arises: can single-layer Transformers with a finite vocabulary, i.e., T σ

∗ , still achieve the UAP via
ICL? We first analyze N σ

∗ for simplicity, and then use the established connection between FNNs and
Transformers to extend the result to T σ

∗ . The answer is that N σ
∗ cannot achieve the UAP because of

the restriction of finite parameters.

For element-wise activations, the span of N σ
∗ , span{N σ

∗ }, forms a finite-dimensional function space.
According to results from functional analysis, span{N σ

∗ } is closed under the function norm (see
e.g. Theorem 1.21 of [52] or Corollary C.4 of [53]). This implies that the set of functions that can
be approximated by span{N σ

∗ } is precisely the set of functions within span{N σ
∗ }. Consequently,

any function not in span{N σ
∗ } cannot be arbitrarily approximated, meaning that the UAP cannot be

achieved.

For softmax networks, the normalization operation introduces further limitations. Even though
Nsoftmax

∗ consists of weighted units drawn from a fixed finite collection of basic units, normalization
prevents these networks from being simple linear combinations of one another. While the span of
N softmax

∗ might theoretically have infinite dimensionality, its expressive power remains constrained.

To better understand the functional behavior of N softmax
∗ , we introduce the structural Proposition 12

whose details are provided in Appendix C. The proposition characterizes the maximum number of
zero points that functions in this class can exhibit, and the result can be established via mathematical
induction. This observation motivates the following lemma, which formally states the non-universal
approximation property of N σ

∗ .
Lemma 5. The function class N σ

∗ , with a non-polynomial, locally bounded, piecewise continuous
element-wise activation function or softmax activation function σ, cannot achieve the UAP. Specifi-
cally, there exist a compact domain K ⊂ Rdx , a continuous function f : K → Rdy , and ε0 > 0 such
that

max
x∈K

∥∥f(x)−Nσ
∗ (x̃)

∥∥ ≥ ε0, ∀ Nσ
∗ ∈ N σ

∗ . (19)

In the proof of Lemma 5, we demonstrated through Proposition 12 that the number of zeros of
Nsoftmax

∗ depends solely on a finite set of parameters and constitutes a bounded quantity. Functions
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can be explicitly constructed whose number of zeros exceeds this bound, thereby preventing their
approximation within N softmax

∗ .

By leveraging the connection between FNNs and Transformers, we establish Theorem 6 to demon-
strate that T σ

∗ cannot achieve the UAP.
Theorem 6. The function class T σ

∗ , with a non-polynomial, locally bounded, piecewise continuous
element-wise activation function or softmax activation function σ and every Tσ ∈ T σ

∗ satisfies
Assumption 1, cannot achieve the UAP. Specifically, there exist a compact domain K ⊂ Rdx , a
continuous function f : K → Rdy , and ε0 > 0 such that

max
x∈K

∥∥f(x)− Tσ
∗ (x̃)

∥∥ ≥ ε0, ∀ Tσ
∗ ∈ T σ

∗ . (20)

The result for element-wise activations follows directly from the application of Lemma 3 and
Lemma 5. However, the case of the softmax activation requires additional techniques to account for
the normalization effect. The proof, which utilizes Proposition 12 once again, is presented in the
Appendix C. It is worth noting that Theorem 6 holds even without imposing any constraints on the
V , Q and K (e.g., the sparse partition described in equation (14)). Further details can be found in
Appendix F.

4 The Universal Approximation Property of T σ
∗,P

After establishing that neither N σ
∗ nor T σ

∗ can achieve the UAP, we aim to leverage a key feature of
Transformers: their ability to incorporate APEs during token input. This motivates us to investigate
whether T σ

∗,P can realize the UAP.

The answer is affirmative. To support our constructive proof, we invoke the Kronecker Approximation
Theorem as a key auxiliary tool, which will be stated as Lemma 13. This result ensures the density of
certain structured sets in Rn under mild arithmetic conditions. The formal statement and discussion
of this theorem are provided in Appendix D.
Theorem 7. Let T σ

∗,P be the class of functions Tσ
∗,P satisfying Assumption 1, with a non-polynomial,

locally bounded, piecewise continuous element-wise activation function σ, the subscript refers the
finite vocabulary V = Vx ×Vy, P = Px ×Py represents the positional encoding map, and denote a
set S as:

S := Vx + Px =
{
xi + P(j)

x

∣∣∣ xi ∈ Vx, i, j ∈ N+
}
. (21)

If S is dense in Rdx , {1, −1,
√
2, 0}dy ⊂ Vy and Py = 0, then T σ

∗,P can achieve the UAP. More
specifically, given a network Tσ

∗,P , then for any continuous function f : Rdx−1 → Rdy defined on a
compact domain K and ε > 0, there always exist X ∈ Rdx×n and Y ∈ Rdy×n from the vocabulary
V , i.e., x(i) ∈ Vx, y

(i) ∈ Vy , with some length n ∈ N+ such that∥∥Tσ
∗,P (x̃;X,Y )− f(x)

∥∥ < ε, ∀x ∈ K. (22)

We provide a constructive proof in Appendix C, and here we only demonstrate the proof idea by
considering the specific case of dy = 1 and assuming the matrice U in the Transformer Tσ

∗,P is an
identity matrice. In this case, the Transformer can be simplified to an FNN Nσ

∗ , that is

Tσ
∗,P(x;X,Y ) = YPσ

(
X⊤

PB⊤Cx̃
)
=

n∑
j=1

y(j)σ

((
x(j) + P(j)

x

)
B⊤C · x̃

)
, (23)

which is similar to the calculation in equation (17). The UAP of FNNs shown in Lemma 2 implies
that the target function f can be approximated by an FNN with k hidden neurons, that is

Nσ(x) = Aσ(Wx̃+ b) =

k∑
i=1

aiσ(wi · x+ bi) =

k∑
i=1

aiσ(w̃i · x̃). (24)

Since we are considering a continuous activation function σ, we can conclude that slightly perturb-
ing the parameters A and W will lead to new FNN that can still approximate f . This motivates
us to construct a proof using the property that each w̃i ∈ Rdx can be approximated by vectors
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xPB
⊤C, xP ∈ S = Vx + Px, and each ai ∈ R can be approximated by qi

√
2 ± li, with positive

integers qi and li.

For ease of exposition, we will first show how to construct X and Y , so as to approximate the first
term in the summation in equation (24), namely a1σ

(
w̃1 · x̃

)
. By Lemma 13, we may choose positive

integers q and l such that q
√
2± l is sufficiently close to a1. Consider the first token in the context,

since the positional encoding is fixed, i.e., Vx + P(1) is a finite set, then one of two cases must occur:

1. if there exists a token x(1) ∈ Vx for which x(1) + P(1) is sufficiently close to w̃1, then we
declare this position “valid”;

2. otherwise, we declare the position “invalid”, and choose any x(1) ∈ Vx, and set y(1) = 0 so
as to nullify its contribution in the sum.

We then proceed inductively: having handled the first token, we construct the second token in exactly
the same manner, then the third, and so on, until we have identified q+ l valid positions. Because S is
dense in Rdx and q, l are finite, this selection process necessarily terminates after finitely many steps.
Finally, we assign y(i) =

√
2 for q of the valid positions and y(i) = ±1 for other l valid positions. Up

to now, we have built a partial context that enables the output of Tσ
∗,P to approximate a1σ

(
w̃1 · x̃

)
with arbitrarily small error. Once we have approximated a1σ

(
w̃1 · x̃

)
, we can then approximate

a2σ
(
w̃2 · x̃

)
, · · · , akσ

(
w̃k · x̃

)
in finitely many steps, thereby completing the construction of the full

context X and Y . In the proof idea above, we take the density of the set S in Rdx as a fundamental
assumption. Vx contains only finitely many elements, rendering it bounded. For S to be dense in the
entire space, Px must be unbounded. We further extend the above approach to discuss whether other
forms of positional encoding can also achieve the UAP in Appendix E.4.

Next, we relax this requirement, eliminating the need for Px to be bounded, making the conditions
more aligned with practical scenarios. Particularly, we consider the specific activation function in
the following theorem, where the notations not explicitly mentioned remain consistent with those in
Theorem 7. We present an informal version, and the formal version is provided in Appendix E.
Theorem 8 (Informal Version). If the set S is dense in [−1, 1]dx , then T ReLU

∗,P is capable of achieving
the UAP. Additionally, if S is only dense in a neighborhood B(w∗, δ) of a point w∗ ∈ Rdx with
radius δ > 0, then the class of transformers with exponential activation, i.e., T exp

∗,P , is capable of
achieving the UAP.

The density condition on S is significantly refined here, which we will discuss in the later remark.
This improvement is possible because the proof of Theorem 7 relies directly on the UAP of FNNs,
where the weights take values from the entire parameter space. However, for FNNs with specific
activations, we can restrict the weights to a small set without losing the UAP.

For ReLU networks, we can use the positive homogeneity property, i.e., AReLU(Wx̃) =
λ−1AReLU

(
λWx̃

)
for any λ > 0, to restrict the weight matrix W . In fact, the restriction that

all elements of W take values in the interval [−1, 1] does not affect the UAP of ReLU FNNs because
the scale of W can be recovered by adjusting the scale of A via choosing a proper λ.

For exponential networks, the condition on S is much weaker than in the ReLU case. This relaxation
is nontrivial, and the proof stems from a property of the derivatives of exponential functions. Consider
the exponential function exp(w · x) as a function of w ∈ B(w∗, δ), and denote it as h(w),

h(w) = exp(w · x) = ew1x1+···+wdxd , w, x ∈ Rd, d = dx, (25)
where wi and xi ∈ R are the components of w and x, respectively. Calculating the partial derivatives
of h(w), we observe the following relations:

∂αh

∂wα
:=

∂|α|h

∂wα1
1 · · · ∂wαd

d

= xα1
1 · · ·xαd

d h(w), (26)

where α = (α1, . . . , αd) ∈ Nd is the index vector representing the order of partial derivatives, and
|α| := α1 + · · ·+ αd. This relationship allows us to link exponential FNNs to polynomials since any
polynomial P (x) can be represented in the following form:

P (x) = exp
(
− w∗ · x

)(∑
α∈Λ

aα
∂|α|h

∂wα

)∣∣∣∣∣
w=w∗

, (27)
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where aα are the coefficients of the polynomials, Λ is a finite set of indices, and the partial derivatives
can be approximated by finite differences, which are FNNs. For example, the first-order partial
derivative ∂h

∂w1

∣∣
w=w∗ = x1h(w

∗) can be approximated by the following difference with a small
nonzero number λ ∈ (0, δ),

h(w∗ + λe1)− h(w∗)

λ
= λ−1 exp((w∗ + λe1) · x)− λ−1 exp(w∗ · x). (28)

This is an exponential FNN with two neurons. Finally, employing the well-known Stone-Weierstrass
Theorem, which states that any continuous function f on compact domains can be approximated by
polynomials, and combining the above relations between FNNs and polynomials, we can establish the
UAP of exponential FNNs with weight constraints. When y(i) = f(x(i)) (referred to as meaningfully
related), the conclusion still holds in standard ICL, provided that Vy satisfies certain conditions. A
brief proof is provided in Theorem 15.
Remark 9. When discussing density, one of the most immediate examples that comes to mind is
the density of rational numbers in R. How can we effectively enumerate rational numbers? The
work by [54] introduces an elegant method for enumerating positive rational numbers, synthesizing
ideas from [55] and [56]. It demonstrates the computational feasibility of enumeration through an
effective algorithm. Thus, we assume that positional encodings can be implemented using computer
algorithms, such as iterative functions. Furthermore, since positional encodings vary across different
positions, they encapsulate semantic information concerning both position and order.

5 Conclusion

In this paper, we establish a connection between FNNs and Transformers through ICL. By leveraging
the UAP of FNNs, we demonstrate that the UAP of ICL holds when the context is selected from
the entire vector space. When the context is drawn from a finite set, we explore the approximation
power of VICL, showing that the UAP is achievable only when appropriate positional encodings are
incorporated, highlighting their importance.

In our work, we consider Transformers with input sequences of arbitrary length, implying that the
positional encoding Px consists of a countably infinite set of elements. In Theorem 7, we assume a
strong density condition, which is later relaxed in Theorem 8. However, in practical applications,
input sequences are finite and are typically truncated for computational feasibility. This shift allows
our conclusions to be interpreted through an approximation lens, where the objective is to approximate
functions within a specified error margin, rather than achieving infinitesimal precision. Additionally,
to achieve the UAP, it is insightful to compare the function approximation capabilities of our approach
(outlined in Lemma 4) with the direct use of FNNs, particularly when the Transformer parameters
are trainable.

It is important to note that this paper is limited to single-layer Transformers with APEs, and the main
results (Theorem 7 and Theorem 8) focus on element-wise activations. Future research should extend
these findings to multi-layer Transformers, general positional encodings (such as RPEs and RoPE),
and softmax activations. For softmax Transformers, our analysis in Sections 2 and 3 highlighted their
connection to Transformers with exponential activations. However, extending this connection to the
scenario in Section 4 proves challenging and requires more sophisticated techniques.

Although this paper primarily addresses theoretical issues, we believe our results provide valuable
insights for practitioners. In Remark 9, we observe that algorithms using function composition to
enumerate dense numbers in R could inspire positional encodings via compositions of fixed functions,
similar to RNN approaches. RNNs capture the sequential nature of information by integrating word
order. However, existing research on RNNs has not explored the denseness of the sets formed by
their hidden states, which we hope will inspire future experimental research. Lastly, our construction
for Theorem 7 relies on the sparse partition assumption in equation (14), whose practical validity
remains uncertain and requires future exploration.

In fact, Tack et al. [57], Hao et al. [58] on continuous CoTs and continuous states are closely related
to our work – specifically, leveraging positional encoding to enable Transformers to achieve the
UAP for functions whose domain is a finite set while the range covers the entire Euclidean space.
Moreover, Xiao et al. [59] propose an approach for automatically adjusting prompts for function
fitting, which is also related to our theoretical findings. Therefore, with further research, our theory
holds practical significance.
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A Table of Notations

We present all our notations in Table 1 for easy reference.

Table 1: Table of Notations

Notations Explanations

dx, dy Dimensions of input and output.
P Positional encoding.

X,Y Context without positional encoding.
XP , YP Context with positional encoding P .

Z Input without positional encoding.
ZP Input with positional encoding P .
V Vocabulary.

Vx, Vy Vocabulary of x(i) and y(i).
σ Activation function.
# Cardinality of a set.

Nσ, N σ One-hidden-layer FNN and its collection.
Tσ, T σ Single-layer Transformer and its collection.
Nσ

∗ , N σ
∗ One-hidden-layer FNN with a finite set of weights and its collection.

Tσ
∗ , T σ

∗ Single-layer Transformer with vocabulary restrictions and its collection.

Tσ
∗,P , T σ

∗,P
Single-layer Transformer with positional encoding, vocabulary restrictions,
and its collection.

∥ · ∥ The uniform norm of vectors, i.e., a shorthand for ∥ · ∥∞.

x̃ Append a one to the end of x, i.e., x̃ =

[
x
1

]
.

B Proofs for Section 2

We provide detailed proofs of lemmas in Section 2. We will first directly prove Lemma 3 using
Lemma 2. Next, by a similar method together with an additional technical refinement, we will
establish Lemma 11. Finally, leveraging Lemma 11, we will prove Lemma 4.

B.1 Proof of Lemma 3

Lemma 3. Let σ : R → R be a non-polynomial, locally bounded, piecewise continuous activation
function, and Tσ be a single-layer Transformer satisfying Assumption 1. For any one-hidden-layer
network Nσ : Rdx−1 → Rdy ∈ N σ with n hidden neurons, there exist matrices X ∈ Rdx×n and
Y ∈ Rdy×n such that

Tσ (x̃;X,Y ) = Nσ(x), ∀x ∈ Rdx−1. (29)

Proof. The output of Tσ can be computed directly as

Tσ(x̃, X, Y ) =
(
Z +AttnσQ,K,V (x̃, X, Y )

)
dx+1:dx+dy,n+1

=
(
Z + V ZMσ(Z⊤Q⊤KZ))dx+1:dx+dy,n+1

=

(
Z +

[
DX + Ey 0

UY 0

] [
σ(X⊤B⊤CX) σ(X⊤B⊤Cx̃)
σ(x̃⊤B⊤CX) σ(x̃⊤B⊤Cx̃)

])
dx+1:dx+dy,n+1

= UY σ(X⊤B⊤Cx̃).
(30)

One can easily observe that the output closely resembles that of a single-layer FNN. Suppose
Nσ(x) = Aσ(Wx + b) : Rdx−1 → Rdy is an arbitrary single-layer FNN with k hidden neurons,
where W ∈ Rk×(dx−1), A ∈ Rdy×k and b ∈ Rk. We construct the context by setting its length to k,
i.e., X ∈ Rdx×k, Y ∈ Rdy×k. A straightforward calculation shows that choosing

X = (C⊤B)−1 [W b]
⊤
, Y = U−1A, (31)
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suffices to guarantee Tσ (x̃;X,Y ) = Nσ(x) for all x ∈ Rdx−1.

Remark 10. It is worth noting that in the above proof, the matrix F was set to zero in accordance
with Assumption 1. However, we emphasize that this is not a strict requirement. In fact, one can
accommodate an arbitrary F by choosing Y = U−1(A−FX). The choice F = 0 is made purely for
computational convenience under our current assumptions, which is also discussed in Appendix F.

B.2 Proof of the UAP of Softmax FNNs

Before proving Lemma 4, we demonstrate the UAP of softmax FNNs as a supporting lemma.

Lemma 11 (UAP of Softmax FNNs). For any continuous function f : Rdx → Rdy defined on a
compact domain K, and for any ε > 0, there exists a network Nsoftmax(x) : Rdx → Rdy satisfying

∥Nsoftmax(x)− f(x)∥ < ε, ∀x ∈ K. (32)

Proof. We first build a bridge connecting softmax FNNs and target function f using Lemma 2. We
can construct a network

Nexp(x) = A exp(Wx+ b) =

k∑
i=1

aie
wi·x+bi , (33)

with k hidden neurons such that

max
x∈K

∥Nexp(x)− f(x)∥ <
ε

2
, (34)

where ai ∈ Rdy , wi ∈ Rdx , bi ∈ R. It therefore suffices to construct a softmax FNN Nsoftmax(x)
that approximates Nexp(x). This task amounts to eliminating the effect of the normalization in the
softmax output.

Consider a softmax FNN

Nsoftmax(x) = A′ softmax
(
W ′x+ b′

)
=

k+1∑
i=1

a′ie
w′

i·x+b′i

k+1∑
j=1

ew
′
j ·x+b′j

, (35)

with k + 1 hidden neurons, where w′
k+1 = b′k+1 = 0, b′i = b′i(ε) is sufficiently small such that

ew
′
i·x+b′i <

ε

2k
(
1 + maxx∈K ∥Nexp(x)∥

) , ∀x ∈ K, i = 1, 2, · · · , k, (36)

and w′
i = wi for i = 1, 2, · · · , k. This arrangement ensures that, in the denominators of each term in

Equation (35), the first k entries are arbitrarily small, while the (k + 1)-th entry is exactly one. We
then simply adjust A′ so that the numerators coincide with those in Equation (33), and this can be

done by setting a′i =

{
aie

bi−b′i , i = 1, 2, · · · , k
0, i = k + 1

. With the formal construction now complete, we

present a more precise estimate of the approximation error as follows.
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∥Nexp(x)−Nsoftmax(x)∥ = max
x∈K

∥∥∥∥∥∥∥∥∥
k∑

i=1

aie
wi·x+bi −

k+1∑
i=1

a′ie
w′

i·x+b′i

k+1∑
j=1

ew
′
j ·x+b′j

∥∥∥∥∥∥∥∥∥
= max

x∈K

∥∥∥∥∥∥∥∥∥
k∑

i=1

aie
wi·x+bi −

k∑
i=1

aie
wi·x+bi

k∑
j=1

ew
′
j ·x+b′j + 1

∥∥∥∥∥∥∥∥∥
= max

x∈K
∥Nexp(x)∥ ·max

x∈K

∥∥∥∥∥∥∥∥∥1−
1

k∑
j=1

ew
′
j ·x+b′j + 1

∥∥∥∥∥∥∥∥∥
≤ max

x∈K
∥Nexp(x)∥ ·max

x∈K

∥∥∥∥ k∑
j=1

ew
′
j ·x+b′j

∥∥∥∥
≤ ε

2
.

(37)

This leads to the conclusion that ∥Nsoftmax(x) − f(x)∥ < ε for all x ∈ K, thus completing the
proof.

B.3 Proof of Lemma 4

Lemma 4. Let σ : R → R be a non-polynomial, locally bounded, piecewise continuous activation
function or softmax function, and Tσ be a single-layer Transformer satisfying Assumption 1, and
K be a compact domain in Rdx−1. Then for any continuous function f : K → Rdy and any ε > 0,
there exist matrices X ∈ Rdx×n and Y ∈ Rdy×n such that∥∥Tσ

(
x̃;X,Y

)
− f(x)

∥∥ < ε, ∀x ∈ K. (38)

Proof. For element-wise activation case, with the help of Lemma 2 and Lemma 3, the conclusion
follows trivially.

Then we handle the softmax case. Similarly, for any ε > 0, we can construct a softmax FNN
Nsoftmax(x) with k hidden neurons, using Lemma 11 such that

max
x∈K

∥Nsoftmax(x)− f(x)∥ <
ε

2
. (39)

We need to approximate this softmax FNN with a softmax Transformer. The computation proceeds
as follows:

Tsoftmax(x̃, X, Y )

=

(
Z +

[
DX + EY 0

UY 0

]
softmax

([
X⊤B⊤CX X⊤B⊤Cx̃
x̃⊤B⊤CX x̃⊤B⊤Cx̃

]))
dx+1:dx+dy,n+1

= UY

(
softmax

([
X⊤B⊤Cx̃
x̃⊤B⊤Cx̃

]))
1:n

.

(40)

By comparing the output with that of the exponential FNN, we find that there is an additional bounded
positive term t(x) := exp

(
x̃⊤B⊤Cx̃

)
arising from the normalization process.

Choose the length of the context n = k + 1 and matrices X,Y such that

X⊤B⊤C =

[
W b+ s1
0 s

]
, UY = [A 0] , (41)
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where 1 is all-ones vector and s is big enough, making

ex̃
⊤B⊤Cx̃−s <

ε

2
(
1 + maxx∈K ∥Nsoftmax(x)∥

) , ∀x ∈ K. (42)

Then X⊤B⊤Cx̃ =

[
W b+ s1
0 s

] [
x
1

]
=

[
Wx+ b+ s1

s

]
, and we can compute the explicit form

of Tsoftmax(x̃;X,Y ) as:

Tsoftmax(x̃;X,Y ) =

k∑
i=1

ai exp(wi · x+ bi + s)

k∑
j=1

exp(wj · x+ bj + s) + exp(s) + exp(x̃⊤B⊤Cx̃)

=

k∑
i=1

ai exp(wi · x+ bi)

k∑
j=1

exp(wj · x+ bj) + 1 + exp(x̃⊤B⊤Cx̃− s)

.

(43)

We estimate the upper bound of the distance between Nsoftmax and Tsoftmax, that is

max
x∈K

∥Nsoftmax(x)− Tsoftmax(x̃;X,T )∥

= max
x∈K

∥∥∥∥∥∥∥∥∥
k∑

i=1

ai exp(wi · x+ bi)

k∑
j=1

exp(wj · x+ bj) + 1

−

k∑
i=1

ai exp(wi · x+ bi)

k∑
j=1

exp(wj · x+ bj) + 1 + exp(x̃⊤B⊤Cx̃− s
)
∥∥∥∥∥∥∥∥∥

= max
x∈K

∥Nsoftmax(x)∥ ·max
x∈K

∥∥∥∥∥∥∥∥∥1−
k∑

j=1

exp(wj · x+ bj) + 1

k∑
j=1

exp(wj · x+ bj) + 1 + exp(x̃⊤B⊤Cx̃− s
)
∥∥∥∥∥∥∥∥∥

= max
x∈K

∥Nsoftmax(x)∥ ·max
x∈K

∥∥∥∥∥∥∥∥∥
exp(x̃⊤B⊤Cx̃− s

)
k∑

j=1

exp(wj · x+ bj) + 1 + exp(x̃⊤B⊤Cx̃− s
)
∥∥∥∥∥∥∥∥∥

≤ max
x∈K

∥Nsoftmax(x)∥ ·max
x∈K

∥∥ exp(x̃⊤B⊤Cx̃− s
)∥∥

≤ ε

2
.

(44)

As a consequence, we have
∥∥Tσ

(
x̃;X,Y

)
− f(x)

∥∥ < ε for all x ∈ K, which finishes the proof.

C Proofs for Section 3

In this appendix, we provide detailed proofs of Proposition 12, Lemma 5, and Theorem 6 presented
in Section 3. We will first use induction to prove Proposition 12, and then employ this proposition
together with a proof by contradiction to establish Lemma 5 and Theorem 6.

Proposition 12. The scalar function hk(x) =
k∑

i=1

aie
bix, with ai, bi, x ∈ R, where the exponents bi

are pairwise distinct, and at least one ai is nonzero, has at most k − 1 zero points.

Proof. We prove this statement by induction. When k = 1 or 2, this can be proven easily. We
suppose hN (x) has at most N − 1 zero points. Now consider the case k = N + 1. Let hN+1(x) =
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∑N+1
i=1 aie

bix. Without loss of generality, assume that aN+1 ̸= 0. Thus, we can rewrite hN+1(x) as

hN+1(x) = aN+1e
bN+1x

(
1 +

N∑
i=1

ai
aN+1

e(bi−bN+1)x
)
:= aN+1e

bN+1xg(x).

Then we process by contradiction. Suppose hN+1(x) has more than N zero points, which implies
g(x) has more than N zero points. Then, according to Rolle’s Theorem, g′(x) must have more than
N − 1 zero points, which contradicts our assumption. Thus, hN+1 have at most N zero points, and
the proof is complete.

Lemma 5. The function class N σ
∗ , with a non-polynomial, locally bounded, piecewise continuous

element-wise activation function or softmax activation function σ, cannot achieve the UAP. Specifi-
cally, there exist a compact domain K ⊂ Rdx , a continuous function f : K → Rdy , and ε0 > 0 such
that

max
x∈K

∥∥f(x)−Nσ
∗ (x̃)

∥∥ ≥ ε0, ∀ Nσ
∗ ∈ N σ

∗ . (45)

Proof. For any element-wise activation σ, span{N σ} forms a finite-dimensional function space.
span{N σ} is closed under the uniform norm as established by Theorem 2.1 from [52] and Corollary
C.4 from [53]. This implies that the set of functions approximable by span{N σ} is precisely the set
of functions within span{N σ}. Consequently, any function not in span{N σ} cannot be arbitrarily
approximated, meaning that the UAP cannot be achieved.

Then we prove the softmax case. First, we simplify the problem to facilitate the construction of a
function that cannot be approximated. We observe that it suffices to prove the UAP fails when the
first input coordinate ranges over [0, 1] and all other coordinates are held fixed. Indeed, we can find
the compact set K ⊂ Rdx containing

∏dx

i=1[li, ri]. If we can show that N softmax does not achieve
the UAP on [l1, r1]×

∏dx

i=2{li}, then, by applying a suitable affine change of variables, it follows
that UAP also fails on [0, 1]×

∏dx

i=2{li}. Consider a continuous target function

f : [0, 1]×
dx∏
i=2

{li} → R, (x1, x2, · · · , xdx
) 7→ f1(x1). (46)

The reason why we consider such a target function is that every vector-valued function f(x1, · · · , xdx)
can be represented as f(x1, · · · , xdx

) =
(
f1(x1, · · · , xdx

), · · · , fdy
(x1, · · · , xdx

)
)
. If the UAP fails

for f , it must fail for at least one of its scalar components. Hence it suffices to consider the one-
dimensional (scalar) case. Moreover, since the values of x2, · · · , xdx

are fixed, the above reduction
to a single-variable scalar function is justified. We only need to demonstrate that there exists at least
one such function that cannot be approximated arbitrarily well by any Nsoftmax

∗ ∈ N softmax
∗ .

Then we will use Proposition 12 to complete the remainder of this proof. Before that, we need to
rewrite the form of the output of Nsoftmax, which is

Nsoftmax
∗ (x) =

k∑
i=1

aie
wi·x+bi

k∑
j=1

ewj ·x+bj

, (47)

where (ai, wi, bi) ∈ A×W ×B is a finite set and k is the number of hidden neurons. Consequently,
the set W ×B is finite, and we denote it as N := #(W ×B). By regrouping identical terms in the
numerator, we can rewrite the equation as

Nsoftmax
∗ (x) =

N∑
i=1

ãie
wi·x+bi

k∑
j=1

ewj ·x+bj

. (48)

It is important to note that this transformation applies to any Nsoftmax
∗ ∈ N softmax

∗ , ensuring that the
number of summation terms in the numerator remains strictly bounded by N .
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Finally, we construct a function which cannot be approximated by such softmax networks. Assume a
continuous target function

g : [0, 1]×
dx∏
i=2

{li} → R, (x1, x2, · · · , xdx) 7→ cos
(
(N + 1)πx1

)
, (49)

which has (N + 1) zero points. If N softmax
∗ achieves the UAP, we assume that Nsoftmax

∗ ∈ N softmax
∗

which satisfies ∥Nsoftmax
∗ − g∥ ≤ ε < 1

10 . We denote zi =
i

N+1 for i = 0, 1, · · · , N + 1. It is easy
to verify that g(zi) = 1 if i is even, and g(zi) = −1 if i is odd, which means Nsoftmax

∗ (zi) > 0.9 for
even i and Nsoftmax

∗ (zi) < −0.9 for odd i. According to the Intermediate Value Theorem, Nsoftmax
∗

has at least N + 1 zero points, which contradicts Proposition 12. And we finish our proof.

We will use Figure 1 to provide readers with an intuitive illustration of why a class of functions whose
number of zeros is bounded cannot achieve universal approximation.

x

1

2

3

4 N + 1

N + 2

Figure 1: An illustration of non-approximability. The black curve represents the target function,
which has N + 1 zero points. The red curve represents a sum of exponentials, which has no more
than N zero points. If the UAP holds, then the red curve must pass near the N + 2 marked extrema
in the figure. By the Intermediate Value Theorem, the function represented by the red curve would
then have N + 1 zeros, which contradicts its intrinsic properties.

C.1 Proof of Theorem 6

Theorem 6. The function class T σ
∗ , with a non-polynomial, locally bounded, piecewise continuous

element-wise activation function or softmax activation function σ and every Tσ ∈ T σ
∗ satisfies

Assumption 1, cannot achieve the UAP. Specifically, there exist a compact domain K ⊂ Rdx , a
continuous function f : K → Rdy , and ε0 > 0 such that

max
x∈K

∥∥f(x)− Tσ
∗ (x̃)

∥∥ ≥ ε0, ∀ Tσ
∗ ∈ T σ

∗ . (50)

Proof. For cases of element-wise activation, since Tσ
∗ has a similar structure to Nσ

∗ , we find that
span{Tσ

∗} is also a finite-dimensional function space. Hence, the same argument from Lemma 5 can
be applied here to complete the proof.

Then we prove the softmax case. Recall equation (40), the output of Tsoftmax
∗ (x̃;X,Y ) can be viewed

as

Tsoftmax
∗ (x̃;X,Y ) =

n∑
i=1

aie
wi·x+bi

n∑
j=1

ewj ·x+bj + ex̃⊤B⊤Cx̃

, (51)

where n denotes the context length and ai ∈ A, wi ∈ W, bi ∈ B for some finite sets A, W, B.
This allows us to apply the same approach as in the proof of Lemma 5, which leads to the conclusion
that T σ

∗ cannot achieve the UAP.
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D Kronecker Approximation Theorem

To facilitate our constructive proof, we introduce the Kronecker Approximation Theorem as an
auxiliary tool to support the main theorem.

Lemma 13 (Kronecker Approximation Theorem [60]). Given real n-tuples α(i) =

(α
(i)
1 , α

(i)
2 , · · · , α(i)

n ) ∈ Rn for i = 1, · · · ,m and β = (β1, β2, · · · , βn) ∈ Rn, the following
condition holds: for any ε > 0, there exist qi, lj ∈ Z such that∥∥∥∥∥βj −

m∑
i=1

qiα
(i)
j + lj

∥∥∥∥∥ < ε, j = 1, · · · , n, (52)

if and only if for any r1, · · · , rn ∈ Z, i = 1, · · · ,m with
n∑

j=1

α
(i)
j rj ∈ Z, i = 1, · · · ,m, (53)

the number
n∑

j=1

βjrj is also an integer. In the case of m = 1 and n = 1, for any α, β ∈ R with α

irrational and ε > 0, there exist integers l and q with q > 0 such that |β − qα+ l| < ε.

Lemma 13 indicates that if the condition in equation (53) is satisfied only when all ri are zeros, then
the set {Mq + l | q ∈ Zm, l ∈ Zn} is dense in Rn, where the matrix M ∈ Rn×m is assembled with
vectors α(i), i.e., M = [α(1), α(2), · · · , α(m)]. In the case of m = 1 and n = 1, let α =

√
2, then

Lemma 13 implies that the set {q
√
2± l | l ∈ N+, q ∈ N+} is dense in R. We will build upon this

result to prove one of the main theorems in this article.

E Proofs for Section 4

In this appendix, we lay the groundwork for the proof of Theorem 7 by first introducing Lemma 14.
We then present Theorem 7 and provide its complete proof, demonstrating that T σ

∗,P can realize the
UAP. To facilitate understanding of Theorem 7, we provide a simple illustrative example. While
the theorem assumes dense positional encodings, we relax this condition under specific activation
functions, as formalized in Lemma 16 and Theorem 8.

E.1 Lemma 14

Lemma 14. For a network with a fixed width and a continuous activation function, it is possible
to apply slight perturbations within an arbitrarily small error margin. For any network Nσ

1 (x)
defined on a compact set K ⊂ Rdx , with parameters A ∈ Rdy×k,W ∈ Rk×dx , b ∈ Rk×1, there
exists M > 0,M1 > 0 (∥x∥ < M and ∥ai∥ < M1, i = 1, · · · , k ) , and for any ε > 0, there exists
0 < δ < ε

2M1k
and a perturbed network Nσ

2 (x) with parameters Ã ∈ Rdy×k, W̃ ∈ Rk×dx , b̃ ∈ Rk×1

(
∥∥∥σ(w̃i · x+ b̃i)

∥∥∥ < M1, i = 1, · · · , k), such that if max{∥ai − ãi∥,M∥wi − w̃i∥+ ∥b− b̃∥ | i =
1, · · · , k} < δ, then

∥Nσ
1 (x)−Nσ

2 (x)∥ < ε, ∀x ∈ K, (54)

where ai, ãi are the i-th column vectors of A, Ã, respectively, wi, w̃i are the i-th row vectors of W, W̃
, and bi, b̃i are the i-th components of b, b̃, respectively, for any i = 1, · · · , k.

Proof. We have Nσ
1 (x) =

k∑
i=1

aiσ(wi · x + bi), where ai ∈ Rdy , wi ∈ Rdx , bi ∈ R, and Ñσ
2 (x) =

k∑
i=1

ãiσ(w̃i · x+ b̃i), where ãj ∈ Rdy , w̃i ∈ Rdx , b̃i ∈ R. For any x ∈ K, ∥x∥ < M . There exists a

constant M1 > 0 such that for any i = 1, · · · , k, the following inequalities hold: ∥ai∥ < M1 and∥∥∥σ(w̃i · x+ b̃i)
∥∥∥ < M1.
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Due to the continuity of the activation function, for any ε > 0, there exists 0 < δ < ε
2M1k

, such that
if ∥wi · x+ bi − (w̃i · x+ b̃i)∥ ≤ ∥wi − w̃i∥∥x∥+ ∥bi − b̃i∥ < M∥wi − w̃i∥+ ∥b− b̃∥ < δ, then
∥σ(wi · x+ bi)− σ(w̃i · x+ b̃i)∥ < ε

2M1k
, and ∥ai − ãi∥ < δ, for any i = 1, · · · , k.

Combining all these inequalities, we can further derive:

∥Nσ
1 (x)−Nσ

2 (x)∥

∥∥∥∥∥
k∑

i=1

aiσ(wi · x+ bi)−
k∑

i=1

ãiσ(w̃i · x+ b̃i)

∥∥∥∥∥
≤

∥∥∥∥∥
k∑

i=1

aiσ(wi · x+ bi)−
k∑

i=1

aiσ(w̃i · x+ b̃i)

∥∥∥∥∥+
∥∥∥∥∥

k∑
i=1

aiσ(w̃i · x+ b̃i)−
k∑

i=1

ãiσ(w̃i · x+ b̃i)

∥∥∥∥∥
≤ max

i
∥ai∥

∥∥∥∥∥
k∑

i=1

σ(wi · x+ bi)−
k∑

i=1

σ(w̃i · x+ b̃i)

∥∥∥∥∥+max
i

∥∥∥σ(w̃i · x+ b̃i)
∥∥∥∥∥∥∥∥

k∑
i=1

ai −
k∑

i=1

ãi

∥∥∥∥∥
≤ max

i
∥ai∥

k∑
i=1

∥∥∥σ(wi · x+ bi)− σ(w̃i · x+ b̃i)
∥∥∥+max

i

∥∥∥σ(w̃i · x+ b̃i)
∥∥∥ k∑

i=1

∥ai − ãi∥

< M1k
ε

2M1k
+M1k

ε

2M1k
= ε.

.

(55)
The proof is complete.

E.2 Proof of Theorem 7

Theorem 7. Let T σ
∗,P be the class of functions Tσ

∗,P satisfying Assumption 1, with a non-polynomial,
locally bounded, piecewise continuous element-wise activation function σ, the subscript refers the
finite vocabulary V = Vx ×Vy, P = Px ×Py represents the positional encoding map, and denote a
set S as:

S := Vx + Px =
{
xi + P(j)

x

∣∣∣ xi ∈ Vx, i, j ∈ N+
}
. (56)

If S is dense in Rdx , {1, −1,
√
2, 0}dy ⊂ Vy and Py = 0, then T σ

∗,P can achieve the UAP. More
specifically, given a network Tσ

∗,P , then for any continuous function f : Rdx−1 → Rdy defined on a
compact domain K and ε > 0, there always exist X ∈ Rdx×n and Y ∈ Rdy×n from the vocabulary
V , i.e., x(i) ∈ Vx, y

(i) ∈ Vy , with some length n ∈ N+ such that∥∥Tσ
∗,P (x̃;X,Y )− f(x)

∥∥ < ε, ∀x ∈ K. (57)

Proof. Our conclusion holds for all element-wise continuous activation functions in T σ
∗,P . We now

assume dy = 1 for simplicity, and the case dy ̸= 1 will be considered later.

We are reformulating the problem. Using Lemma 3, we have

Tσ
∗,P (x̃;X,Y ) = UYP σ

(
(X + P)

⊤
B⊤Cx̃

)
= UYP σ

(
X⊤

PB⊤Cx̃
)
. (58)

Since Py = 0, it follows that YP = Y . For any continuous function f : Rdx−1 → Rdy defined on a
compact domain K and for any ε > 0, we aim to show that there exists Tσ

∗,P ∈ T σ
∗,P such that:∥∥∥∥Tσ

∗,P

([
x
1

]
;X,Y

)
− Uf(x)

∥∥∥∥ < ∥U∥ε, ∀x ∈ K,

⇔
∥∥Y σ

(
X⊤

PB⊤Cx̃
)
− f(x)

∥∥ < ε, ∀x ∈ K.

(59)

In the main text, for illustrative purposes, we consider the special case where U is the identity matrix
to simplify the exposition. In the present analysis, we dispense with this assumption. We already
have the Lemma 2 ensuring the existence of a one-hidden-layer network Nσ (with activation function
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σ satisfying the required conditions) that approximates f(x). Our proof is divided into four steps,
serving as a bridge built upon the Lemma 2:

Y σ
(
X⊤

PB⊤Cx̃
) Lemma 2−−−−−→ Nσ

∗ (x)
step (3)−−−−→ N′(x)

step (2)−−−−→ Nσ(x)
step (1)−−−−→ f(x). (60)

We present the specific details at each step.

Step (1): Approximating f(x) Using Nσ(x). Supported by Lemma 2, there exists a neural network

Nσ(x) = Aσ(Wx+b) =
k∑

i=1

ai σ(wi ·x+bi) ∈ N σ , with parameters k ∈ N+, A ∈ Rdy×k, b ∈ Rk,

and W ∈ Rk×(dx−1),
∥Aσ(Wx+ b)− f(x)∥ <

ε

3
, ∀x ∈ K. (61)

Step (2): Approximating Nσ(x) Using N′(x). Using Lemma 13 and Lemma 14, a neural network

Nσ(x) =
k∑

i=1

aiσ(wi · x + bi) ∈ N σ can be perturbed into N′(x) =
k∑

i=1

(q
√
2 ± l)i σ(w̃i · x + b̃i)

(with qi ∈ N+ and li ∈ N+, i = 1, · · · , k), such that for any ε > 0, there exists 0 < δ < ε
6M1k

satisfying:

max{∥ai − (q
√
2± l)i∥,M∥wi − w̃i∥+ ∥b− b̃∥ | i = 1, · · · , k} < δ, (62)

ensuring:

∥Nσ(x)−N′(x)∥ =

∥∥∥∥∥
k∑

i=1

ai σ(wi · x+ bi)−
k∑

i=1

(q
√
2± l)i σ(w̃i · x+ b̃i)

∥∥∥∥∥ <
ε

3
, ∀x ∈ K.

(63)

Step (3): Approximating N′(x) Using Nσ
∗ (x). Next, we show that Nσ

∗ (x) =
n∑

i=1

y(i) σ(R̃i · x̃) ∈

N σ
∗ can approximate N′(x) =

k∑
i=1

(q
√
2± l)i σ(w̃i · x̃). As a demonstration, we approximate a single

term (q
√
2± l)1 σ(w̃1 · x̃). Since the positional encoding is fixed, i.e., Vx + P(1) is a finite set, one

of two cases must occur:

1. Valid Position: If there exists x(1) ∈ Vx where (x(1) + P(1))⊤B⊤C ≈ w̃1;

2. Invalid Position: Set y(1) = 0 to nullify contribution.

Since S is dense in Rdx and B⊤C is non-singular, the set G := {R̃ | R̃ = X⊤
PB⊤C,XP ⊂ 2S}

remains dense. Let K1 denote the set of indices corresponding to all "valid" positions for w̃1. Since
y(i) ∈ {1,−1,

√
2, 0}, we require q1 + l1 elements from G that approximate w̃1, such that∥∥∥∥∥∥
∑
j∈K1

y(j) σ(R̃j · x̃)− (q
√
2± l)1 σ(w̃1 · x̃)

∥∥∥∥∥∥
= ∥

√
2
∑
j∈Q1

σ(R̃j · x̃)±
∑
j∈L1

σ(R̃j · x̃)− (q
√
2± l)1 σ(w̃1 · x̃)∥

<
ε

3k
, ∀x ∈ K.

(64)

Here, #(K1) = q1 + l1 and K1 = Q1

⋃
L1, where Q1, L1 are disjoint subsets of positive integer

indices satisfying #(Q1) = q1 and #(L1) = l1. For this construction, we assign y(j) =
√
2 for

j ∈ Q1 and y(j) = ±1 for j ∈ L1. For j ∈ {1, 2, 3, · · · ,max
i

{i ∈ K1}}\K1, i.e., for the Invalid

Position, we set y(j) = 0.
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The multi-term approximation employs parallel construction via disjoint node subsets Ki = Qi ∪ Li,

where Qi (qi nodes) and Li (li nodes) implement
√
2 and ±1 coefficients respectively. For j /∈

k⋃
l=1

Kl,

we set y(j) = 0. Each term achieves:∥∥∥∥∥∥
∑
j∈Ki

y(j)σ(R̃j · x̃)− (q
√
2± l)iσ(w̃i · x̃)

∥∥∥∥∥∥ <
ε

3k
. (65)

We then define n = max{j | j ∈
k⋃

l=1

Kl}. The complete network combines these approximations

through:

∥Nσ
∗ (x)−N′(x)∥ =

∥∥∥∥∥
n∑

i=1

y(i) σ(R̃i · x̃)−
k∑

i=1

(q
√
2± l)i σ(w̃i · x̃)

∥∥∥∥∥ <
ε

3
, ∀x ∈ K. (66)

Step (4): Combining Results. Combining all results, we have:

∥Y σ
(
X⊤

PB⊤Cx̃
)
− f(x)∥ = ∥Nσ

∗ (x)− f(x)∥
< ∥Nσ

∗ (x)−N′(x)∥+ ∥N′(x)−Nσ(x)∥+ ∥Nσ(x)− f(x)∥
< ε, ∀x ∈ K.

(67)

The scalar-output results (dy = 1) extend naturally to vector-valued functions via component-
wise approximation. For any continuous f : Rdx−1 → Rdy on a compact domain K, uniform
approximation is achieved by independently approximating each coordinate function fj with scalar
networks Nσ

∗,j(x) satisfying ∥∥Nσ
∗,j(x)− fj(x)

∥∥ <
ε√
dy

, ∀x ∈ K. (68)

The full approximator is then obtained by concatenating the component networks.

Nσ
∗ (x) =

 Nσ
∗,1(x)

...
Nσ

∗,dy
(x)

 , ∥Nσ
∗ (x)− f(x)∥ < ε, (69)

Nσ
∗,j(x) =

n∑
i=1

y
(i)
j σ(R̃i · x̃), (70)

where y
(i)
j is the j-th row of the y(i). We require that the index sets satisfy K

(o)
i ∩K

(u)
j = ∅ for all

o, u, i, j ∈ N+, where K
(o)
i denotes the index set constructed for the i-th term approximation in the

o-th output dimension. Furthermore, each y(j) must have at most one non-zero element across its
dimensions. This ensures we achieve uniform approximation by independently handling each output
dimension. The proof is complete.

E.3 Example of Theorem 7

We present a concrete example with 2D input (dx = 2) and 2D output (dy = 2) to illustrate the
universal approximation capability of our architecture. Consider a continuous function f : [0, 1]2 →
R2 defined by

f(x1, x2) =

[
f1(x1, x2)
f2(x1, x2)

]
. (71)

Our goal is to construct a module Tσ
∗,P such that∥∥∥∥∥Tσ

∗,P

([
x1

x2

1

]
;X,Y

)
− f(x1, x2)

∥∥∥∥∥ < ε. (72)
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Step (1): Component-wise Approximation. For each component fi, there exists a single-hidden-
layer neural network Nσ

i (x) = Aiσ(Wix+ bi) such that

sup
x∈[0,1]2

∥fi(x)−Nσ
i (x)∥ <

ε

6
√
2
, i = 1, 2. (73)

Step (2): Rational Perturbation. We approximate each Nσ
i by a rational network N′

i:

N′
1(x) = (3

√
2− 2)σ(w̃⊤

1 x̃), (74)

N′
2(x) = (2

√
2 + 1)σ(w̃⊤

2 x̃), (75)

where x̃ = [x1 x2 1]
⊤, satisfying

sup
x∈[0,1]2

∥Nσ
i (x)−N′

i(x)∥ <
ε

6
√
2
, i = 1, 2. (76)

Step (3): Architecture Realization. We define a Transformer-like module Nσ
∗ (x) with shared

representation:

R̃ ≈ [w̃1 w̃1 w̃1 w̃1 w̃1 w̃2 w̃2 w̃2]
⊤
, (77)

Y =

[√
2

√
2

√
2 −1 −1 0 0 0

0 0 0 0 0
√
2

√
2 1

]
, (78)

such that

Nσ
∗ (x) =

[∑8
i=1 y

(i)
1 σ(R̃⊤

i x̃)∑8
i=1 y

(i)
2 σ(R̃⊤

i x̃)

]
, sup

x∈[0,1]2
∥N′

i(x)−Nσ
∗,i(x)∥ <

ε

6
√
2
. (79)

Step (4): Error Analysis. The total approximation error satisfies

∥f(x)−Nσ
∗ (x)∥ ≤

√√√√ 2∑
i=1

(
∥fi −Nσ

i ∥+ ∥Nσ
i −N′

i∥+ ∥N′
i −Nσ

∗,i∥
)2

(80)

≤

√
2 ·
(

ε

2
√
2

)2

=
ε

2
< ε. (81)

We argue that in standard ICL, when y(i) = f(x(i)) (referred to as meaningfully related) and Vy

satisfies certain conditions, the UAP conclusion still holds. This conclusion relies on the density of S,
and we provide a concise argument based on Theorem 7.

Theorem 15. Let T σ
∗,P be the class of functions Tσ

∗,P satisfying Assumption 1, with a non-polynomial,
locally bounded, piecewise continuous element-wise activation function σ, the subscript refers the
finite vocabulary V = Vx ×Vy, P = Px ×Py represents the positional encoding map, and denote a
set S as:

S := Vx + Px =
{
xi + P(j)

x

∣∣∣ xi ∈ Vx, i, j ∈ N+
}
. (82)

If S is dense in Rdx , and there exists a subset Y0 ⊆ Vy whose (finite) columnwise additive combina-
tions contain the block-diagonal pattern in


√
2 1 −1 0 0 0 0 0 0 · · ·
0 0 0

√
2 1 −1 0 0 0 · · ·

0 0 0 0 0 0
√
2 1 −1 · · ·

...
...

...
...

...
...

...
...

... · · ·

 (83)
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and Py = 0, then T σ
∗,P can achieve the UAP. More specifically, for any network Tσ

∗,P , and for any
continuous function f : Rdx−1 → Rdy defined on a compact domain K and any ε > 0, there exist
X ∈ Rdx×n and Y ∈ Rdy×n from the vocabulary V , i.e., x(i) ∈ Vx, y

(i) ∈ Vy, with some length
n ∈ N+ such that

∥∥Tσ
∗,P (x̃;X,Y )− f(x)

∥∥ < ε, ∀x ∈ K. (84)

We reuse Steps (1)−(2) from the proof of Theorem 7, focusing on understanding the third step. There
exists a subset Y0 ⊆ Vy whose additive combinations of columns contain the pattern in Eq. (83). The
role of this structure is to enable cumulative approximation through additive combinations.

E.4 Feasibility of UAP under Different Positional Encodings

We also pay attention to more dynamic positional encodings such as RoPE, and are currently
exploring appropriate analytical methods for them. Our recent progress on APEs has given us greater
confidence in studying RPEs. Our analytical framework mainly relies on achieving density of the set
σ(X⊤B⊤Cx̃), in particular, on the richness of the term X⊤B⊤C. (See Lemma 3 and Theorem 7
for supporting arguments).

For RoPE, whose basic formulation is given by equation (16) in [42]

q⊤mkn = (Rd
Θ,mWqxm)⊤(Rd

Θ,nWkxn), (85)

applying our approach yields

Tσ(x̃, X, Y ) = UY σ(X⊤B⊤(Rd
Θ,1:n)

⊤Cx̃). (86)

However, since the rotation operation in RoPE acts on distinct two-dimensional subspaces of dx, the
induced family {B⊤(Rd

Θ,j)
⊤C} does not generate a dense subset; hence our density-based argument

does not directly apply to RoPE. Consequently, our current method cannot be directly applied to
prove that RoPE possesses similar approximation properties.

Likewise, other RPEs, such as the one defined in equation (4) of [40],

eij =
xiW

Q(xjW
K + aKij )

⊤
√
dz

, (87)

cannot be analyzed using this approach either. Nevertheless, the encoding formulation in [41],

Arel
i,j = E⊤

xi
W⊤

q Wk,EExj︸ ︷︷ ︸
(a)

+E⊤
xi
W⊤

q Wk,RRi−j︸ ︷︷ ︸
(b)

+u⊤Wk,EExj︸ ︷︷ ︸
(c)

+ v⊤Wk,RRi−j︸ ︷︷ ︸
(d)

,
(88)

can be accommodated within our framework and is compatible with the UAP result.

E.5 Proof of Theorem 8

Before proving Theorem 8, we need to prove the following lemma with the help of the well-known
Stone-Weierstrass theorem.
Lemma 16. For any continuous function f : Rdx → Rdy defined on a compact domain K, and for
any ε > 0, there exists a network Nexp(x) : Rdx → Rdy satisfying

∥Nexp(x)− f(x)∥ < ε, ∀x ∈ K, (89)

where b = 0 and all row vectors of W are restricted in a neighborhood B(ω∗, δ) with any fixed
w∗ ∈ Rdx and radius δ > 0.

Proof. Assume f(x) = (f1(x), · · · , fdx
(x)). According to Stone-Weierstrass theorem, for any

ε > 0, there exist polynomials Pi(x) satisfying

max
x∈K

∥Pi(x)− fi(x)e
−w∗·x∥ <

ε

2maxx∈K ∥ew∗·x∥
,

⇒ max
x∈K

∥Pi(x)e
w∗·x − fi(x)∥ <

ε

2
, i = 1, 2, · · · , dx.

(90)
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Then we construct a single-layer FNN with exponential activation function to approximate Pi(x)e
w∗·x.

The multiple derivatives of h(w) := ew·x = exp(w1x1+ · · ·+wdxxdx) with respect to w1, · · · , wdx

are
∂|α|h

∂wα
=

∂|α|h

∂wα1
1 · · · ∂wαdx

dx

, (91)

where α ∈ Ndx represents the index and |α| := α1 + · · · + αdx
. Actually, the form of multiple

derivative ∂|α|h
∂wα is a polynomial of |α| degree with respect to x1, · · · , xdx

times h(w). Hence, each
target term Pi(x)e

w∗·x can be written as a linear combination of such multiple derivatives of h(w),
which allows us to approximate the required partials and thus complete the proof. Moreover, each
mixed derivative can be approximated by a finite-difference scheme, which can be implemented using
a single hidden layer.

Remark 17. We give two examples of approximating multiple derivatives of h(w) below.

x1h(w) =
∂h

∂w1

∣∣∣∣
w=w∗

=
h(w∗ + λe1)− h(w∗)

λ
+R1(λ,w

∗)

= λ−1h(w∗ + λe1)− λ−1h(w∗) +R1(λ,w
∗),

(92)

and

x1x2h(w) =
∂2h

∂w1∂w2

∣∣∣∣
w=w∗

=
h(w∗ + λ(e1 + e2))− h(w∗ + λe1)− h(w∗ + λe2) + h(w∗)

λ
+R2(λ,w

∗)

= λ−1h((w∗ + λ(e1 + e2)) · x)− λ−1h((w∗ + λe1) · x)−
λ−1h((w∗ + λe2) · x) + λ−1h(w∗ · x) +R2(λ,w

∗),

(93)

where e1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0) are unit vectors and R1(λ,w
∗), R2(λ,w

∗) are
error terms with respect to λ and w∗. According to Taylor’s theorem, the error terms R1(λ,w

∗) =

λ ∂2h
∂w2

1

∣∣
w=ξ

for some ξ between w∗ and w∗ + λe1. It is obvious that the partial differential term is
uniformly bounded, so the resulting error can be made arbitrarily small by a suitable choice of the
parameter λ. The argument for R2(λ,W

∗)is entirely analogous and is therefore omitted; see [61]
for further details.

Since λ is very small and the exponential term ew
∗·x only involves the parameters w∗, w∗ + e1 and

w∗ + e2, which all lie within a small neighborhood of w∗, the desired conclusion can be drawn, and
this means we can in fact restrict all row vectors of W to lie within B(W, δ).
Theorem 8 (Formal Version). Let T σ

∗,P be the class of functions Tσ
∗,P satisfying Assumption 1, with

a non-polynomial, locally bounded, piecewise continuous element-wise activation function σ, the
subscript refers to the finite vocabulary V = Vx × Vy, P = Px × Py represents the positional
encoding map, and denote a set S as:

S := Vx + Px =
{
xi + P(j)

x

∣∣∣ xi ∈ Vx, i, j ∈ N+
}
. (94)

If the set S is dense in [−1, 1]dx , then T ReLU
∗,P is capable of achieving the UAP. Additionally, if S is

only dense in a neighborhood B(w∗, δ) of a point w∗ ∈ Rdx with radius δ > 0, then the class of
transformers with exponential activation, i.e., T exp

∗,P , is capable of achieving the UAP.

Proof. For the proof of the ReLU case, we follow the same reasoning as in the previous one, noting
that ReLU(ax) = aReLU(x) holds for any positive a. In the proof of Theorem 7, we construct a
TReLU

∗,P (x̃;X,Y ) ∈ T ReLU
∗,P to approximate a FNN AReLU(Wx + B). Here we can do a similar

construction to find another T̃ReLU
∗,P (x̃;X,Y ) ∈ T ReLU

∗,P to approximate λAReLU
(
λ−1(Wx+ b)

)
as the Step (2)−(4) in Theorem 7, where λ is chosen sufficiently large such that the row vectors of
λ−1W become small enough to ensure that S = {xi + P | xi ∈ V, i, j ∈ N+} is dense in [−1, 1]dx

and sufficient for our construction.
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For exponential Transformers, by using Lemma 16, we can do the Step (2)−(4) in Theorem 7 again,
which is similar to ReLU case.

F Weakened Assumption and Generalized Conclusions

It is important to note that most of our conclusions remain valid even if Assumption 1 is weakened.
Below we outline the reasoning.

In general, we decompose the matrices as follows:

Q⊤K =

[
O11 O12

O21 O22

]
, V =

[
D E
F U

]
, (95)

where O11, D ∈ Rdx×dx , O12, E ∈ Rdx×dy , O21, F ∈ Rdy×dx , and O22, U ∈ Rdy×dy . The
attention mechanism can then be computed as:

AttnσQ,K,V (Z) = V ZMσ(Z⊤Q⊤KZ)

=

[
D E
F U

] [
X x
Y 0

] [
In

0

]
σ

([
X⊤ Y ⊤

x⊤ 0

] [
O11 O12

O21 O22

] [
X x
Y 0

])

=

[
DX + EY 0
FX + UY 0

]
σ

([
O

(
X⊤O11 + Y ⊤O21

)
x

x⊤(O11X +O12Y
)

x⊤O11x

])
,

(96)

where O represents the matrix X⊤O11X+X⊤O12Y +Y ⊤O21X+Y ⊤O22Y . As a result, we have:

Tσ (x̃;X,Y ) = (FX + UY )σ

((
X⊤O11 + Y ⊤O21

)
x̃

)
, (97)

for the case of element-wise activations, and:

Tsoftmax(x̃;X,Y ) = (FX + UY )

(
softmax

([
(X⊤O11 + Y ⊤O21)x̃

x̃⊤O11x̃

]))
1:n

, (98)

for the case of softmax activation.

By revisiting the definition of Tσ and Tσ
∗ , and comparing Tσ presented here with those in the

preceding section, it is clear that the only distinction lies in the specific matrices involved, and
matrix O11 and U are non-singular are the only conditions we need. Notably, the proof process for
Theorem 6 does not rely on any assumptions, which means the conclusion stated in Section 3 can be
further strengthened.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA] .
Justification: This paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA] .
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA] .
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: This research is theoretical in nature and does not involve human subjects, per-
sonal data, or potentially harmful applications. All results are derived through mathematical
analysis and do not raise ethical concerns as outlined in the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on the theoretical expressivity of Transformers under
ICL and provides approximation results from a mathematical perspective. We believe that
discussing societal impact falls outside the scope of this foundational contribution.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release any data, models, or tools that pose risks of misuse
or dual use. The work is purely theoretical and focuses on the UAP in VICL with single-layer
Transformers.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use any external assets such as datasets, models, or third-
party code. The research is purely theoretical and does not rely on pre-existing software or
data resources.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper is theoretical in nature and does not introduce or release any new
datasets, models, or software assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve any crowdsourcing or experiments with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: The core method development in this research does not involve LLMs
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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