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ABSTRACT

Inference in large-scale Markov Random Fields (MRFs) remains challenging,
with traditional approximate like belief propagation and exact methods such as
the Toulbar2 solver often struggling to balance efficiency and solution qual-
ity at scale. This paper presents NEUROLIFTING, a novel approach that uses
Graph Neural Networks (GNNs) to reparameterize MRF decision variables, en-
abling standard gradient descent optimization. By extending lifting techniques
through neural networks, NEUROLIFTING achieves efficient, parallelizable op-
timization with a smooth loss landscape. Empirical results show NEUROLIFT-
ING matches Toulbar2’s solution quality on moderate scales while outperform-
ing approximate methods. Notably, on large-scale MRFs, it demonstrates su-
perior solutions compared to baselines with linear computational complexity
growth, marking a significant advance in scalable MRF inference. The code
of our model can be accessed at https://anonymous.4open.science/
status/NeuroLifting-5BC0.

1 INTRODUCTION

Markov Random Fields stand as a fundamental computational paradigm for modeling complex de-
pendencies among a large collection of variables, permeating a variety of domains such as computer
vision (Wang et al., 2013; Su et al., 2021), natural language processing (Almutiri & Nadeem, 2022;
Ammar et al., 2014; Lin et al., 2020), and network analysis (Wu et al., 2020; Yunfei Ma & Razavi,
2022). MRF’s capacity to encode intricate probabilistic interactions underscores its widespread
utility. However, unraveling the optimal configurations in high-dimensional settings remains a
formidable task owing to the inherent computational complexity involved.

Traditional inference methodologies for MRFs bifurcate into approximate and exact strategies, each
with its own set of advantages and limitations. Approximate inference techniques, such as belief
propagation (Pearl, 2022; Wainwright et al., 2005) and mean field (Saito et al., 2012; Zhang, 1993)
approximations, strive for computational efficiency but often at the expense of solution quality,
particularly as the scale of the problem escalates. Conversely, exact inference methods, epitomized
by the Toulbar2 solver (De Givry, 2023; Hurley et al., 2016), aspire to optimality but are frequently
hampered by exponential time complexities that render them infeasible for large-scale MRFs.

Despite significant advances, achieving a harmonious balance between efficiency and solution qual-
ity in large-scale MRF inference has remained a long-standing unmet challenge. This paper ad-
dresses this pivotal issue through the introduction of “NEUROLIFTING” – a neural-network-driven
paradigm that extends traditional lifting technique in the context of optimization (Albersmeyer &
Diehl, 2010; Balas & Perregaard, 2002; Bauermeister et al., 2022). NEUROLIFTING is a novel ap-
proach that reimagines MRF inference by leveraging the potency of GNNs alongside gradient-based
optimization techniques.

The core innovation of NEUROLIFTING lies in the reparameterization of the decision variables
within MRFs utilizing a randomly initialized GNN. While some recent heuristics succeeded in uti-
lizing GNNs for solving combinatorial problems (Cappart et al., 2023; Schuetz et al., 2022), an
effective adaptation to MRF inference remains opaque. Besides, they generally lack an in-depth
understanding of how GNNs facilitate downstream computation. In this paper, we for the first time
bridge such practice to traditional lifting techniques, and further demonstrate that by harnessing the
continuous and smooth loss landscape intrinsic to neural networks, NEUROLIFTING simplifies the
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optimization process for large-scale MRFs, enabling enhanced parallelization and performance on
GPU devices.

Empirical evaluations substantiate the efficacy of NEUROLIFTING, showcasing its ability to de-
liver high-quality solutions across diverse MRF datasets. Notably, it outperforms existing approx-
imate inference strategies in terms of solution quality without sacrificing computational efficiency.
When juxtaposed with exact strategies, NEUROLIFTING demonstrates comparable solution fidelity
while markedly enhancing efficiency. For particularly large-scale MRF problems, encapsulating
instances with over 50,000 nodes, NEUROLIFTING exhibits a linear computational complexity in-
crease, paired with superior solution quality relative to exact methods.

In summary, the contributions of this paper are threefold. 1) Methodical design: we present NEU-
ROLIFTING as an innovative and practical solution to the enduring challenge of efficient and high-
quality inference in large-scale MRFs; 2) Non-parametric lifting: we extend the concept of lifting
from traditional optimization practices into a modern neural network framework, thereby offering
a fresh lens through which to tackle large-scale inference problems; 3) Significant performance:
NEUROLIFTING achieved significant performance improvement over existing methods, showing
remarkable scalability and efficiency in real-world scenarios.

2 RELATED WORK

Lifting in Optimization. Lifting techniques have significantly impacted optimization, especially
for combinatorial problems and algorithm enhancement (Marchand et al., 2002). These methods
transform problems into higher-dimensional spaces for better representation and solutions. Appli-
cations include mixed 0-1 integer programming as shown by Balas et al. (1993) and MIP problems
with primal cutting-plane algorithms as demonstrated by Dey & Richard (2008). Integration with
variable upper bound constraints has proven effective for problems like Knapsack (Shebalov et al.,
2015). The techniques have expanded to robust optimization (Georghiou et al., 2020; Bertsimas
et al., 2019) and shown promise when combined with Newton’s method for NLPs (Albersmeyer &
Diehl, 2010).

Unsupervised GNNs for Combinatorial Optimization. Graph Neural Networks have demon-
strated their power in optimization (Yu et al., 2019; Ying et al., 2024), with recent unsupervised
GNN advancements showing effectiveness in combinatorial optimization. Unsupervised GNNs can
learn meaningful representations of nodes and edges without labeled data, effectively capturing com-
binatorial structure as shown by Peng et al. (2021). This approach has proven particularly valuable
for problems like the Traveling Salesman Problem (Gaile et al., 2022; Min et al., 2023), Vehicle
Routing Problem (Wu et al., 2024), and Boolean satisfiability problem (Cappart et al., 2023). Effi-
cient solutions for Max Independent Set and Max Cut problems were also demonstrated by Schuetz
et al. (2022). However, the loss functions may lack flexibility in handling higher-order relationships
beyond edges.

MRF and Inference. The maximum a posterior (MAP) problem of MRFs is finding the best config-
uration that could minimize the energy function which is a NP-hard problem. Currently, the popular
methods include variants of belief propagation (Weiss & Freeman, 2001; Felzenszwalb & Hutten-
locher, 2004; Frey & Mackay, 2002) and tree-reweighted message passing (TRBP) (Wainwright
et al., 2005; Kolmogorov, 2006) and a generalization of TRBP which is suitable for high-order
MRFs(SRMP) (Kolmogorov, 2015).

Neural Networks with supervised learning remain the mainstream approach for MRF problems.
GNNs were used for MRF inference by Yoon et al. (2019), outperforming LBP and TRBP but lim-
ited to 16 nodes. BP information was integrated into GNNs to formulate a neural factor graph by
Garcia Satorras & Welling (2021), surpassing traditional BP on graphs under 100 nodes. GNN
message passing rules were modified by Kuck et al. (2020) to align with BP properties, showing
better performance than LBP on graphs up to 196 nodes. A neural version of the Max-product al-
gorithm was proposed by Zhang et al. (2020). Variational MPNN for MAP problems on 9-13 node
graphs was introduced by Cui et al. (2022). Researchers also explored CRFs. The semi-supervised
method by Qu et al. (2019) used CRF to enhance GNN classification, further implemented by Tang
et al. (2021). However, obtaining optimal configurations in large-scale MRFs remains challenging.
Unsupervised and self-supervised learning offer alternative approaches. Learning to optimize prin-
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ciples (Nair et al., 2021) were applied to MRF problems, while the Augmented Lagrangian Method
was employed by Arya et al. (2024b) as loss function for self-supervised models solving CMPE
problems. A self-supervised approach for binary node MMAP problems was proposed by Arya
et al. (2024a). These methods require specially designed loss functions and are all limited to smaller
instances.

Our motivation: Our research aims to develop a more comprehensive method applicable to both
pairwise and high-order MRFs, capable of handling nodes with arbitrary label counts. We seek to
create an approach that is not only easily implementable but also directly compatible with MRF
problem frameworks. Most crucially, our method aims to maintain high performance on large-scale
instances, addressing a significant gap in current methodologies.

3 PRELIMINARY

Markov Random Field. An MRF is defined over a undirected graph G = (V, C), where V repre-
sents the index set of random variables and C ⊆ 2V is the clique set representing the (high-order)
dependencies among random variables. Throughout this paper, we associate a node index i with a
random variable xi ∈ X , where X is a finite alphabet. Thus, given graph G, the joint probability of
a configuration of X = {xi}i∈V can be expressed as Eq. 1,

P(X) =
1

Z
exp(−E(X)) =

1

Z
exp

(
−
∑
i∈V

θi(xi)−
∑
Ck∈C

θCk
({xl|∀xl ∈ Ck})

)
(1)

where Z is the partition function, θi(·) denotes the unary energy functions, θC(·) represent the
clique energy functions. In this sense, MRF provides a compact representation of probability by
introducing conditional dependencies:

P(xi|X\{xi}) = P(xi|{xj} for i, j ∈ Ck for Ck ∈ C). (2)
In this paper, we consider the MAP estimate of Eq. 1, which requests optimizing Eq. 1 via X∗ =
minX E(X). One can consult Koller & Friedman (2009) for more details.

Graph Neural Networks. GNNs represent a distinct class of neural network architectures specif-
ically engineered to process graph-structured data (Kipf & Welling, 2017; Hamilton et al., 2017;
Xu et al., 2019; Veličković et al., 2018). In general, when addressing a problem involving a graph
G = (V, E), where E is the edge set, GNNs utilize both the graph G and the initial node representa-
tions {h(0)i ∈ Rd|∀i ∈ V} as inputs, where d is the dimension of initial features. Assuming the total
number of GNN layers to be K, at the k-th layer the graph convolutions typically read:

h
(k)
i = σ

(
Wk ·AGGREGATE(k)

({
h
(k−1)
j : j ∈ N (i) ∪ {i}

}))
(3)

where AGGREGATE(k) is defined by the specific model, Wk is a trainable weight matrix, N (i) is
the neighborhood of node i, and σ is a non-linear activation function, e.g., ReLU.

Optimization with Lifting. Lifting is a sophisticated technique employed in the field of opti-
mization to address and solve complex problems by transforming them into higher-dimensional
spaces (Balas, 2005; Papadimitriou & Steiglitz, 1982). By introducing auxiliary variables or con-
straints, lifting serves to reformulate an original optimization problem into a more tractable or elu-
cidated form, often making the exploration of optimal solutions more accessible. In the context of
MRFs, lifting can be utilized to transform inference problems into higher dimensions where certain
properties or symmetries associated with specific MRF problems are more easily exploitable (Wain-
wright et al., 2005; Globerson & Jaakkola, 2007; Bauermeister et al., 2022). However, a principled
lifting technique is still lacking for generalized MRFs.

4 METHODOLOGY

4.1 OVERVIEW

An overview of NEUROLIFTING is in Fig. 1, with an exemplary scenario involving an energy func-
tion devoid of unary terms, yet comprising three clique terms. Initially, the clique-based represen-
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Figure 1: An overview of NEUROLIFTING. The energy function of this problem is E(X) =

θC1(x1, x2, x3) + θC2(x3, x4, x5) + θC3(x2, x3, x5, x6). H
(K)
T is the output of the model after

the T -th iteration.

tation of this function (depicted in the leftmost shaded diagram) undergoes a transformation to a
graph-based perspective, which subsequently integrates into the network architecture. To address
the absence of inherent node feature information in the original problem, we elevate the dimension-
ality of decision variables within this framework. This transformation facilitates a paradigm shift
from the identification of optimal state values to the learning of optimal parameters for encoding
and classification of these variables. Furthermore, we devised a novel approach to circumvent the
absence of a traditional loss function, thereby extending the applicability of our framework to MRFs
of arbitrary order.

4.2 PREPOSSESSING

We discuss several necessary preprocessing steps to adapt standard MRF to a GNN style.

Topology construction for GNNs. In an MRF instance, the high-order graph structure consists
of nodes and cliques, diverging from typical GNNs allowing only pairwise edges (2nd-order). To
facilitate the power of GNNs, we need to convert high-order graph into a pairwise one.

By the very definition of a clique, any two nodes that appear within the same clique are directly
related. Thus, for any two nodes i, j ∈ Ck in a clique Ck, we add a pairwise edge (i, j) to its
GNN-oriented graph. An example can be observed in Fig. 1. It is worth noting that an edge may
appear in multiple cliques; however, we add each edge only once to the graph.

Initial feature for GNNs. As there is no initial features associated to MRF instances, we initialize
feature vectors to GNNs randomly with a predefined dimension d. Detailed information on how we
will handle these artificial features to ensure they effectively capture the underlying information of
the problem will be provided in Section. 4.3.

Vectorizing the energy function. The transformed energy function E(X) will serve as the loss
function guiding the training of the neural networks. In Section. 4.4, we will detail the transfor-
mation process and discuss how to effectively utilize it. Note the values of these functions can be
pre-evaluated and repeatedly used during the training process. Therefore, we employ a look-up table
to memorize all function values with discrete inputs. For unary energies, we denote the vectorized
unary energy of variable xi as ϕ(xi), where the n-th element corresponds to θi(xi = n). Similarly,
we represent the clique energy for clique Ck using the tensor ψ({xl|∀xl ∈ Ck}). This tensor can
be derived using the same conceptual framework; for instance, the element ψ(xi, xj , xk) at position
(0, 2, 4) corresponds to the value of θ{i,j,k}(xi = 0, xj = 2, xk = 4) .

Padding node embeddings & energy terms and Masking. GNNs typically require all node em-
beddings to be of the same dimension, meaning that the embeddings h(K) at K-th layer must share
the same size. However, in general MRFs, the variables often exhibit different numbers of states.
While traditional belief-propagation-based methods can easily manage such variability, adapting
GNNs to handle these discrepancies is less straightforward.

To address this mismatch, we employ padding strategy – a common technique used to handle varying
data lengths. This strategy is applied to both the node embeddings and the unary and pairwise (or
clique) energies, to ensure consistent embedding dimensions. Concretely, we assign virtual states
to the nodes whose state number is less than |X |. Then, we assign energies to those padded labels
with the largest value of the original energy term. The schematic diagram of the padding procedure
could be found in Appendix A. This approach of assigning high energies to the padded labels serves
to discourage the model from selecting these padded states, thereby incentivizing it to choose the
original, non-padded states with lower energies. We employ a masking strategy to exclude padded
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regions(using -inf as the mask), thereby ensuring these artificially added areas neither participate in
the selection process nor significantly affect the loss computation.
Remark 4.1. Although utilizing uniform large values(e.g., padding with inf) for energy padding
is theoretically viable, this approach introduces significant computational bias. Specifically, this
padding methodology causes substantial deviation between the training loss and the true energy met-
rics, as minimal variations in padded regions disproportionately influence the loss function. Such
distortion impedes effective monitoring of the training dynamics. As empirically validated in Sec-
tion 5, our proposed padding scheme demonstrates superior performance by maintaining a high
degree of consistency between the training loss and the true energy measurements, thereby ensuring
more reliable model optimization.

4.3 GNNS AS NON-PARAMETRIC LIFTING

In this section, we detail how NEUROLIFTING generates features that capture the hidden informa-
tion of the given MRF and solves the original MAP problem by optimizing in a high-dimensional
parameter space. As mentioned in Section 4.2, we initially generate learnable feature vectors ran-
domly using an encoder that embeds all nodes, transforming the integer decision variables into dl-
dimension vectors h(0)i ∈ Rdl for node i, where dl is a hyper-parameter representing the dimension
after lifting.

The intuition for utilizing GNNs in the implementation of lifting techniques is inspired by LBP.
When applying LBP for inference on MRFs, the incoming message Mji to node i from node j
is propagated along the edges connecting them. Node i can then update its marginal distributions
according to the formula in Eq. 4 where exp(−ϕ(xi)) is the unary potential function.

pposterior(xi|X\{xi}) = exp(−ϕ(xi))
∏

(i,j)∈E

∑
xj

Mji (4)

Importantly, the incoming messages are not limited to information solely about the directly con-
nected nodes; they also encompass information from sub-graphs that node i cannot access directly
without assistance from its neighbors. This allows a more comprehensive aggregation of informa-
tion, enabling node i to merge these incoming messages with its existing information. This process
of message aggregation bears resemblance to the message-passing procedure used in GNNs, where
nodes iteratively update their states based on the information received from their neighbors.

Graph convolutions should intuitively treat adjacent nodes equally, consistent with the principle in
MRFs, where the information collected from neighbors is processed equally. Typical GNNs are
summarized in Table 8 from Appendix 8, where deg(i) is the degree of node i, αi,j is the attention
coefficients, and |N (i)| is the neighborhood size of node i. According to the influence of neigh-
bors, they can be classified into three categories: 1) neighborhood aggregation with normalizations
(e.g., GCN (Kipf & Welling, 2017) normalize the influence by node degrees), 2) neighborhood ag-
gregation with directional biases (e.g., GAT (Veličković et al., 2018) learn to select the important
neighbors via an attention mechanism), and 3) neighborhood aggregation without bias (e.g., Graph-
SAGE (Hamilton et al., 2017) directly aggregate neighborhood messages with the same weight).
Therefore, we select the aggregator in GraphSAGE as our backbone for graph convolutions. The
performance of these GNN backbones on our MRF datasets is shown in Fig. 5 in Appendix G.

Another primary characteristic of MRFs is its ability to facilitate information propagation across the
graph through local connections. This means that even though the interactions are defined locally
between neighboring nodes, the influence of a node can extend far beyond its immediate vicinity.
As a result, MRFs can effectively capture global structure and dependencies within the data. We
thus use Jumping Knowledge (Xu et al., 2018) to leverage different neighborhood ranges. By doing
so, features representing local properties can utilize information from nearby neighbors, while those
indicating global states may benefit from features derived from higher layers.

At each round of iterations, we optimize both the GNN parameters and those of the encoder. At the
start of the next iteration, we obtain a new set of feature vectors, H(0)

t = {h(0)i,t ∈ Rdl |∀i ∈ V},
where t indicates the t-th iteration. This process enables us to accurately approximate the latent
features of the nodes in a higher-dimensional space.

5
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4.4 ENERGY MINIMIZATION WITH GNN

As indicated by Eq. 1, the energy function can serve as the loss function to guide network training
since minimizing this energy function aligns with our primary objective. Typically, the energy
function for a new problem instance takes the form of a look-up table, rendering the computation
process non-differentiable. To facilitate effective training in a fully unsupervised setting, it is crucial
to transform this computation into a differentiable loss aligning with the original energy function.
The initial step involves transforming the decision variable from xi ∈ {1, ..., si}, where si is the
number of states of variable xi, to vi ∈ {0, 1}si . At any given time, exactly one element of the
vector vi can be one, while all other elements must be zero; the position of the 1 indicates the current
state of the variable xi. Define Vk = ⊗i∈Ck

vi, where ⊗ is the tensor product. The corresponding
energy function would be Eq. 5. Subsequently, we relax the vector vi to pi(θ) ∈ [0, 1]si , where
pi(θ) represents the output of our network and θ denotes the network parameters. This output can
be interpreted as the probabilities of each state that the variable xi might assume.

E({vi|i ∈ V}) =
∑
i∈V

⟨vi(θ), ϕ(xi)⟩︸ ︷︷ ︸
Unary Term

+
∑
Ck∈C

⟨ψ(CK), Vk⟩︸ ︷︷ ︸
Clique Term

(5)

L(θ) =
∑
i∈V

⟨pi(θ), ϕ(xi)⟩︸ ︷︷ ︸
Unary Term

+
∑
Ck∈C

⟨ψ(CK), Pk⟩︸ ︷︷ ︸
Clique Term

(6)

LCross Entropy = −
∑
i

Qilog(Pi) (7)

where ⟨·, ·⟩ refers to the tensor inner product. The applied loss function is defined in Eq. 6, here
Pk = ⊗i∈Ck

pi. The rationale behind our loss function closely resembles that of the cross-entropy
loss function commonly used in supervised learning. Let Pi represent the true distribution and Qi

denote the predicted distribution of the node i. A lower value of cross-entropy Eq. 7 indicates greater
similarity between these two distributions. However, our approach differs in that we are not seeking
a predicted distribution that closely approximates the true distribution. Instead, for each variable,
we aim to obtain a probability distribution that is highly concentrated, with the concentrated points
corresponding to the states that minimize the overall energy.

Once the network outputs are available, we can easily determine the assignments by rounding the
probabilities p(θ) to obtain binary vectors v. Using these rounded results, the actual energy can be
calculated using Eq. 5. It is observed that after the network converges, the discrepancy between L(θ)
and E({vi|i ∈ V}) is minor and we won’t see any multi-assignment issue in decision variables. We
choose Adam (Kingma & Ba, 2015) as the optimizer, and employ simulated annealing during the
training process, allowing for better exploring the loss landscape to prevent sub-optima.

4.5 ANALYSIS AND DISCUSSION

Relation to lifting. In this innovative framework of using GNNs for inference on MRFs, a natural
and sophisticated parallel emerges with the classical concept of lifting in optimization (Balas et al.,
1993). By mapping each unary term of an MRF to a node within a GNN and translating clique
terms into densely connected subgraphs, the traditional MRF energy minimization transforms into
optimizing a multi-layer GNN with extra dimensionality. This procedure aligns with the lifting tech-
nique where the problem space is expanded to facilitate more efficient computation. Akin to the prin-
ciple of standard lifting to ease optimization, the GNN-based reparameterization can leverage the
gradient descent optimization paradigm inherent in the smooth neural network landscape (Dauphin
et al., 2014; Choromanska et al., 2015), ensuring efficient computation and convergence. Therefore,
while offering an enhanced approach to inference, the GNN reparameterization mirrors the core
principles of lifting by transforming and extending the solution space into a computation-friendly
one to achieve computational efficacy and scalability. More empirical evidence is in Section 5.4.

Complexity analysis. The primary computations in this model arise from both the loss calculation
and the operations within the GNN. For the loss function, let cmax denote the maximum clique
size. The time complexity for the loss calculation is given by O(|V||X | + cmax|C||X |). F or the
GNN component, let Nv denote the average number of neighbors per node in the graph. The time
complexity for neighbor aggregation in each layer isO(Nv|V|) , and merging the results for all nodes

6
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requires O(|V|d) where d is the feature dimension. Thus, for a K-layer GraphSAGE model with
the custom loss function, the overall time complexity can be expressed as O(|X |(|V|+ cmax|C|) +
K|V|(Nv + d)). This analysis highlights the efficiency of the framework in managing large-scale
graphs by leveraging neighborhood sampling and aggregation techniques. The derived complexity
indicates that the model scales linearly with respect to the number of nodes, the number of layers,
and the dimensionality of the feature vectors, making it well-suited for large-scale instances.

5 EXPERIMENT

Evaluation metric. For all instances used in the experiments, we utilize the final value of the overall
energy function E(X) as defined in Eq. 1. Without loss of generality, all problems are formulated
as minimization problems.

Baselines. We compare our approach against several well-established baselines: Loopy Belief Prop-
agation (LBP), Tree-reweighted Belief Propagation (TRBP) (Wainwright et al., 2005), and Toul-
bar2 (De Givry, 2023). LBP is a widely used approximate inference algorithm that iteratively
passes messages between nodes. TRBP improves upon LBP by introducing tree-based reweigh-
ing to achieve better approximations, particularly in complex graph structures. Toulbar2 is an exact
optimization tool based on constraint programming and branch-and-bound methods Notably, Toul-
bar2 is the winner on all MPE and MMAP task categories of UAI 2022 Inference Competition
1. These baselines allow us to evaluate the performance of our proposed solution under fair set-
tings.Note that comparisons with LBP and TRBP are omitted for high-order cases, as these methods
are limited to simple scenarios on this kind of problems. We will use SRMP (Kolmogorov, 2015)
on the high-order cases instead.

MRF format and transformation. The MRF data files are in UAI format and we interpret the data
files in the same way as Toulbar2. Detailed information about unary and clique terms will be treated
as unnormalized (joint) distributions, and the energies are calculated as θi(xi = a) = −log(P (xi =
a)), where P (xi = a) represents the probability provided by the data file. Note that we use the
unnormalized values during the transformation process. The transformation for the clique energy
terms will follow the same procedure. More details are in Appendix I.

5.1 SYNTHETIC PROBLEMS

We first conduct experiments on synthetic problems generated randomly based on Erdős–Rényi
graphs (Erdös & Rényi, 1959). The experiments are divided into pairwise cases and higher-order
cases. We will compare the performance of NEUROLIFTING with LBP, TRBP, and Toulbar2 on
pairwise MRFs. For the higher-order MRF cases, we will compare NEUROLIFTING exclusively
with Toulbar2, as LBP and TRBP are not well-suited for handling the complexities inherent in high-
order MRFs. The raw probabilities (energies) on the edges/cliques are randomly generated using the
Potts function (Eq. 8), representing two typical types found in the UAI 2022 dataset. The parameters
α and β serve as constant penalty terms and I is the indicator function.

θij = αI(xi = xj) + β (8)

For all the random cases, all the probabilities values of the unary terms and pairwise (clique) terms
are generated randomly range from 0.2 to 3.0. For the Potts models, α, β ∈ [0.00001, 1000]. Each
random node can select from 2 to 6 possible discrete labels, and the values of the unary terms are also
generated randomly, ranging from 0.2 to 3.0. LBP and TRBP are allowed up to 60 iterations, with
a damping factor 0.1 to mitigate potential oscillations. Toulbar2 operates in the default mode with
time limit 18000s. We employ a 5-layer GNN to model all instances and dl = 1024. The learning
rate is set to 1e−4, and the model is trained for up to 150 iterations for each instance, utilizing a
simple early stopping rule with an absolute tolerance of 1e−4 and a patience of 10. We will give 5
trails to NEUROLIFTING to eliminate randomness. The data generation method and the parameter
settings are the same for both pairwise cases and high order cases.

Pairwise instances. The inference results on pairwise cases are summarized in Table. 1. Due to the
page limits here we only show the best results. The full table of the results with more statistics is
shown in Table 4 in Appendix C. Prefix “P potts ” and “P random ” indicate instances generated

1https://www.auai.org/uai2022/uai2022_competition
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with Potts energy and random energy, respectively. It is evident that as the problem size scales
up, NEUROLIFTING outperforms the baseline approaches; meanwhile, it also achieves comparable
solution quality even when the problem sizes are small. This trend is consistent across both energy
models.

Table 1: Results on pairwise synthetic instances. Numbers are the energy values. Best in bold.
Graph #Nodes/#cliques LBP TRBP Toulbar2 NEUROLIFTING Graph #Nodes/#cliques LBP TRBP Toulbar2 NEUROLIFTING

P potts 1 1k/7591 -22215.700 -21365.800 -22646.529 -21451.025 P random 1 1k/7540 -4901.100 -4505.020 -4900.759 -4564.763
P potts 2 5k/37439 -111319.000 -105848.000 -110022.248 -105952.531 P random 2 5k/37488 -24059.900 -22934.000 -24139.194 -21834.693
P potts 3 10k/75098 -221567.000 -210570.000 -218311.424 -209925.269 P random 3 10k/74518 -47873.200 -47002.000 -48107.172 -42120.325
P potts 4 50k/248695 12411.200 13454.600 12955.129 11679.429 P random 4 50k/249554 12881.500 14342.300 12233.890 11769.934
P potts 5 50k/249624 25668.500 35389.000 12468.172 11466.507 P random 5 50k/249374 12478.300 13337.000 12835.994 11750.969
P potts 6 50k/300181 17609.800 17362.600 17635.791 16756.999 P random 6 50k/299601 16723.600 16754.500 18031.964 16700.674
P potts 7 50k/299735 16962.500 16962.500 19532.817 17002.578 P random 7 50k/299538 16689.200 16701.600 18179.548 16689.252
P potts 8 50k/374169 24552.400 24596.800 25446.235 24552.413 P random 8 50k/374203 24556.000 24556.000 25549.594 24555.995
P potts 9 50k/375603 25099.800 25095.600 25502.495 25050.522 P random 9 50k/374959 24635.600 24689.500 25908.500 24640.039

Higher-order instances. The inference results on high order cases are summarized in Table. 2.
The “H” in the prefix stands for High-order and all the instances are generated using Potts model.
The number of cliques in the table encompasses both the cliques themselves and the edges con-
necting them. The relationships between nodes are based on either pairwise interactions or clique
relationships. The results indicate that NEUROLIFTING outperforms Toulbar2 and SRMP, demon-
strating its ability to effectively handle complicate high-order MRFs. This performance highlights
the robustness and effectiveness of NEUROLIFTING across different graph structures.

5.2 UAI 2022 INFERENCE COMPETITION DATASETS

We then evaluate our algorithm using instances from the UAI 2022 Inference Competition datasets,
including both pairwise cases and high-order cases. The time settings will align with those estab-
lished in the UAI 2022 Inference Competition, specifically 1200 seconds and 3600 seconds. LBP
and TRBP algorithms are set to run for 30 iterations with a damping factor of 0.1, and the time
limit for Toulbar2 is configured to 1200 seconds, which is generally sufficient for convergence. For
NEUROLIFTING, we utilize an 8-layer GNN to model all instances, with the model trained for up
to 100 iterations for each instance; other settings remain consistent with those used in the synthetic
problems. We also experimented with lifting dimensions of 64, 512, 1024, 4096, and 8192.

Pairwise cases. We evaluated pairwise cases from the UAI MPE dataset, with results in Appendix D.
Table 5 shows NEUROLIFTING achieves solutions comparable to LBP and TRBP on trivial prob-
lems where Toulbar2 finds optimal solutions. On more challenging problems, while not surpassing
Toulbar2, NEUROLIFTING outperforms both LBP and TRBP, indicating better performance on real-
world datasets than artificial instances. Complete results with varying lifting dimensions appear in
Appendix D.

High-order cases. For the high-order cases, we select a subset that has relatively large sizes. The
results are presented in Table 6 in Appendix D. The performance of NEUROLIFTING aligns with the
results obtained from synthetic instances, demonstrating superior efficacy on larger problems while
consistently outperforming Toulbar2 in dense cases.

5.3 PHYSICAL CELL IDENTITY

Physical Cell Identity (PCI) uniquely identifies cells in LTE and 5G networks, distinguishing be-
tween neighboring cells. We transform PCI instances into pairwise MRFs to enable evaluation
across all baselines. Transformation details are provided in Appendix J. We evaluated using internal
real-world PCI data and synthetic datasets. LBP, TRBP, and NEUROLIFTING configurations match

Table 2: Results on the synthetic high order MRFs. Numbers correspond to the energy values. Best
in bold. “NA” denotes that no solution was found within the specified time limits. Best in bold.

Graph #Nodes/#cliques Toulbar2 SRMP NEUROLIFTING
Energy Loss

H Instances 1 500/41253 NA -5785.093 -7866.214 ± 389.207 -7859.68 ± 393.719
H Instances 2 500/57934 NA -18504.788 -20260.289 ± 143.276 -20286.571 ± 143.624
H Instances 3 1000/36993 NA -5903.131 -7232.648 ± 337.393 -7229.483 ± 336.218
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Table 3: Results on the PCI instances. Numbers are the obtained energy values. Best in bold.
Graph #Nodes/#Cdges LBP TRBP Toulbar2 NEUROLIFTING

Energy Loss

PCI 1 30/165 20.344 20.455 18.134 18.372 ± 0.161 18.373 ± 0.160
PCI 2 40/311 98.364 98.762 98.364 98.555 ± 0.109 98.555 ± 0.109
PCI 3 80/1522 1003.640 1003.640 1003.640 1003.640 ± 0.0 1003.639 ± 0.0
PCI 4 286/10714 585.977 585.977 426.806 410.945 ± 2.009 410.996 ± 2.014
PCI 5 929/29009 1591.590 1591.590 1118.097 1074.617 ± 5.501 1074.676 ± 5.503

PCI synthetic 1 280/9678 564198.000 568082.000 522857.923 496015.5 ± 6307.363 496013.662 ± 6297.169
PCI synthetic 2 526/34500 2.092e+06 2.084e+06 2.064e+06 1.923e+06 ± 9977.015 1.923e+06 ± 10007.739
PCI synthetic 3 1000/49950 2.932e+06 2.908e+06 2.856e+06 2.665e+06 ± 4555.868 2.664e+06 ± 4468.965
PCI synthetic 4 1500/78770 4.568e+06 4.532e+06 4.534e+06 4.215e+06 ± 13500.602 4.214e+06 ± 13252.456
PCI synthetic 5 2000/120024 6.807e+06 6.904e+06 7.023e+06 6.542e+06 ± 19789.758 6.540e+06 ± 19782.638

Section 5.1, but with 100 iterations, while Toulbar2 had a 3600-second limit with default parame-
ters. Table 3 shows results for five real-world cases from a Chinese city and five synthetic instances.
Toulbar2 solves smaller problems exactly but struggles with larger scales. Similarly, LBP and TRBP
face convergence issues on complex problems. NEUROLIFTING demonstrates strong generalization
across all scales, achieving notable performance even on large instances.

5.4 ANALYSIS AND ABLATION STUDY

Efficiency Analysis. Following UAI protocol, we compared NEUROLIFTING against Toulbar2 over
1200 seconds, with metrics at 200-second intervals (due to Toulbar2’s logging limitations, there is
no time information on complex problems). Results in Table 9 (Appendix G) show Toulbar2 per-
forms better on simpler instances, solving the first three within 200 seconds. However, on complex
problems, Toulbar2 fails to terminate within 1200 seconds with minimal quality improvement. NEU-
ROLIFTING maintains efficiency on larger instances, consistently outperforming Toulbar2 across all
time intervals with superior solutions.

Choice of GNN backbones. We evaluated GNN backbones from Section 4.3 across UAI 2022 pair-
wise cases, private PCI instances, and synthetic datasets (1000 nodes, average degree 4/8), testing
both random energy configurations and Potts models. Fig. 5 in Appendix G demonstrates Graph-
SAGE’s consistent superiority in both results quality and convergence speed across all datasets.

Choice of Optimizer. Optimizer selection, discussed in Section 4.4, is based on problem structure
analysis and empirical testing. We evaluated SGD, RMSprop, and Adam on UAI 2022 pairwise
cases using learning rate 10−4, 1024-dimensional embedded features, and 8-layer networks across
all tests. Results in Fig. 6 (Appendix G) show Adam’s superior convergence speed and stability
compared to RMSprop and SGD.

Loss Landscape Visualization. We visualize loss landscapes using the tool from Li et al. (2018),
with detailed settings in Appendix H. Fig. 4 in Appendix G shows landscape evolution for networks
of depths K ∈ {1, 2, 5, 8}, while Fig. 7 displays converged loss trends. We observe that much
of the loss function remains flat, with decreases possible only in limited parameter space regions.
Deeper lifted models effectively expand these regions, enabling better solution convergence and
demonstrating enhanced optimization landscape navigation capacity.

6 CONCLUSION

In this paper, we introduced NEUROLIFTING and its application to solving MAP problems for
MRFs. Our experiments showed that NEUROLIFTING effectively handles MRFs of varying or-
ders and energy functions, achieving performance on par with established benchmarks, as verified
on the UAI 2022 inference competition dataset. Notably, NEUROLIFTING excels with large and
dense MRFs, outperforming traditional methods and competing approaches on both synthetic large
instances and real-world PCI instances.This method, which utilizes Neural Networks for lifting, has
proven successful and could potentially be extended to other optimization problems with similar
modeling frameworks.
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7 REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our research, we provide comprehensive resources and documen-
tation. The complete source code for our implementation is available at the link provided in the
abstract, along with detailed instructions for execution in the repository. All datasets used in our
experiments are clearly identified in Section 5, with sources that are publicly accessible. We pro-
vide detailed configuration parameters for both our proposed algorithm and all baseline methods
to enable precise replication. Appendix I includes instructions for parsing .uai files, following the
standard format for MRF instance representation, while Appendix J documents our methodology
for transforming PCI instances from MIP format into MRF representations. These materials collec-
tively enable complete reproduction of our experimental results and facilitate further research in this
direction.
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1 1 3 1 1 3 3 3

Figure 2: This illustrates the padding procedure for unary loss terms ϕ(x) and clique loss terms
ψ(xi, xj , xk), with |X | = 5. xmax denotes the variable that has the maximum value range. The
elements shown in purple represent the energy values in the original ϕ and ψ. After padding, the
dimension of vector ϕ, as well as each dimension of the energy tensor ψ(xi, xj , xk), will be 5. The
padded portion is indicated in orange, with values either max(ϕ) or max(ψ).

A PADDING PROCEDURE

The schematic diagram of the padding procedure is in Fig. 2. In this example, we consider the case
where |X | = 5. We start with the unary energy vector for xi denoted as ϕ(xi) = {1, 1, 3}, which
has three states. Before padding, the highest value in this vector is 3, highlighted in red, and this
value will be used for padding. The padded vector is shown on the right-hand side of the figure,
with the padded portion indicated in orange. For the clique terms, we will apply padding similarly
to the unary terms. The original energy matrix for the clique involving nodes i, j, l has a dimension
of 3× 3× 4. Given that |X | = 5, we need to pad the matrix so that ψ(xi, xj , xl) ∈ R5×5×5. In this
case, the largest value in the original energy matrix is 4. As depicted in the figure, all padded values
in the orange area are filled with 4.

B LIMITATIONS

Our proposed GNN-based approach, while effective for complex MRF problems, presents several
limitations worth acknowledging. The method’s computational overhead makes it less efficient for
small instances where traditional algorithms may perform adequately without the preprocessing and
inference costs of neural networks. Additionally, memory requirements for maintaining graph struc-
tures during message passing can become prohibitive for extremely large MRFs. Future work should
focus on fully fully leveraging the potential of our method and balancing the trade-off between pow-
erful representations and computational efficiency.

C FULL RESULTS ON PAIRWISE SYNTHETIC INSTANCES

In this section we show the full statistics about the 5 trials we have on the pairwise synthetic instances
we have with different sizes and different energy formulations. All the result are shown in Table. 4.

D RESULTS OF UAI INFERENCE COMPETITION 2022 DATASET

Table. 5 and Table. 6 shows the final results of our NEUROLIFTING and the baselines on pairwise
cases and high-order cases from the UAI Inference Competition 2022 separately. In Table. 7, we
present the inference results of NEUROLIFTING using various dimensions of feature embeddings
applied to the pairwise cases. The results indicate that the dimensionality of the feature embeddings
is indeed a factor that influences model performance. However, in most cases, a moderate dimen-
sion is sufficient to achieve high-quality results. This suggests that while increasing dimensionality
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Table 4: Results on ER graphs with state numbers range from 2 to 6. Numbers out of the bracket
correspond to the obtained energy values, the number in the brackets is the final loss given by the
loss function.

Graph #Nodes/#Edges LBP TRBP Toulbar2 NEUROLIFTING
Energy Loss

P potts 1 1k/7591 -22215.700 -21365.800 -22646.529 -21791.868 ± 218.106 -21799.268 ± 216.075
P potts 2 5k/37439 -111319.000 -105848.000 -110022.248 -105762.092 ± 434.674 -106016.855 ± 168.861
P potts 3 10k/75098 -221567.000 -210570.000 -218311.424 -211406.914 ± 1489.099 -210182.681 ± 275.164
P potts 4 50k/248695 12411.200 13454.600 12955.129 12219.817 ± 538.969 11811.682 ± 123.877
P potts 5 50k/249624 25668.500 35389.000 12468.172 12010.036 ± 266.610 11673.708 ± 146.513
P potts 6 50k/300181 17609.800 17362.600 17635.791 18399.913 ± 1475.526 16988.347 ± 163.587
P potts 7 50k/299735 16962.500 16962.500 19532.817 17480.701 ± 212.084 17265.434 ± 140.904
P potts 8 50k/374169 24552.400 24596.800 25446.235 26115.840 ± 1677.627 24668.087 ± 163.587
P potts 9 50k/375603 25099.800 25095.600 25502.495 26348.525 ± 1095.319 25189.789 ± 132.693

P random 1 1k/7540 -4901.100 -4505.020 -4900.759 -4570.079 ± 31.228 -4574.664 ± 31.411
P random 2 5k/37488 -24059.900 -22934.000 -24139.194 -21774.416 ± 52.910 -21798.702 ± 32.389
P random 3 10k/74518 -47873.200 -47002.000 -48107.172 -41953.991 ± 237.577 -41972.379 ± 216.574
P random 4 50k/249554 12881.500 14342.300 12233.890 12552.252 ± 30.311 11983.388± 213.454
P random 5 50k/249374 12478.300 13337.000 12835.994 12308.580 ± 14.045 11945.450 ± 194.481
P random 6 50k/299601 16723.600 16754.500 18031.964 17705.219 ± 435.560 17207.997 ± 405.217
P random 7 50k/299538 16689.200 16701.600 18179.548 18343.026 ± 1448.821 16971.435 ± 209.021
P random 8 50k/374203 24556.000 24556.000 25549.594 25949.446 ± 995.956 24787.343 ± 163.587
P random 9 50k/374959 24635.600 24689.500 25908.500 25871.264 ± 1087.915 24811.354 ± 171.315

may provide some advantages, the decision should be made by considering both performance and
computational efficiency.

Table 5: Results on the UAI inference competition 2022. Numbers correspond to the obtained
energy values. Best in bold.“opt” denotes it is the optimal solution.

Graph #Nodes/#Edges LBP TRBP Toulbar2 NEUROLIFTING
Energy Loss

ProteinFolding 11 400/7160 -3106.080 -3079.030 -4461.047 -3976.908 ± 52.047 -4018.784 ± 36.491
ProteinFolding 12 250/1848 3570.210 3604.240 3562.387(opt) 16137.682 ± 16.020 16090.801 ± 22.869

Grids 19 1600/3200 -2250.440 -2103.610 -2643.107 -2400.251 ± 20.061 -2398.078 ± 16.010
Grids 21 1600/3200 -13119.300 -12523.300 -18895.393 -16592.926 ± 94.368 -16605.564 ± 113.096
Grids 24 1600/3120 -13210.400 -13260.900 -18274.302 16323.767 ± 171.950 -16222.104 ± 222.593
Grids 25 1600/3120 -2170.890 -2171.050 -2620.268 -2361.900 ± 10.231 -2361.055 ± 12.678
Grids 26 400/800 -2063.350 -1903.910 -3010.719 -2595.041 ± 43.306 -2577.378 ± 39.370
Grids 27 1600/3120 -9024.640 -9019.470 -12284.284 -10898.595 ± 160.435 -10771.257 ± 170.329
Grids 30 400/760 -2142.890 -2154.910 -2984.248 -2651.035 ± 35.508 -2676.246 ± 19.886

Segmentation 11 228/624 329.950 339.762 312.760 (opt) 432.291 ± 34.208 391.971 ± 40.099
Segmentation 12 231/625 75.867 77.898 51.151 (opt) 90.248 ± 22.655 105.639 ± 21.165
Segmentation 13 225/607 75.299 88.554 49.859 (opt) 80.156 ± 6.462 78.685 ± 18.546
Segmentation 14 231/632 95.619 98.691 92.334 (opt) 102.263 ± 7.169 101.268 ± 5.467
Segmentation 15 229/622 412.990 418.853 380.393 (opt) 417.276 ± 22.357 408.214 ± 27.037
Segmentation 16 228/610 100.853 101.670 95.000 (opt) 102.687 ± 4.571 101.687 ± 7.358
Segmentation 17 225/612 421.888 432.012 407.065 (opt) 445.843 ± 24.459 478.881 ± 32.824
Segmentation 18 235/647 100.389 98.411 82.669 (opt) 104.721 ± 6.489 96.315 ± 6.124
Segmentation 19 228/624 86.589 86.692 58.704 (opt) 96.173 ± 4.731 84.882 ± 10.063
Segmentation 20 232/635 289.435 291.527 262.216 (opt) 335.245 ± 36.163 315.482 ± 24.268

Table 6: Results on high-order cases of the UAI inference competition 2022. Numbers correspond
to the obtained energy values. Best in bold.

Graph #Nodes/#Cdges Toulbar2 (1200s) Toulbar2 (3600s) NEUROLIFTING
Energy Loss

Maxsat gss-25-s100 31931/96111 -145969.060 -145969.060 -139904.266 ± 1717.483 -139914.341 ± 1710.139
BN-nd-250-5-10 250/250 155.129 154.610 189.395 ± 5.424 187.729 ± 4.966

Maxsat mod4block 2vars 10gates u2 autoenc 479/123509 -186103.111 -186103.111 146166.620 ± 41250.035 -146166.797 ± 41249.859
Maxsat mod2c-rand3bip-sat-240-3.shuffled-as.sat05-2520 339/2416 -3734.627 -3737.076 -3511.994 ± 220.654 -3511.822 ± 220.471
Maxsat mod2c-rand3bip-sat-250-3.shuffled-as.sat05-2535 352/2492 -3863.259 -3863.259 -3686.567 ± 166.998 -3686.085 ± 166.499
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Table 7: Full results on the UAI inference competition 2022 of NEUROLIFTING with different
feature dimensions. Numbers correspond to the obtained energy values.

Graph #Nodes/#Edges dim=64 dim=512 dim=1024 dim=4096 dim=8192

ProteinFolding 11 400/7160 -3892.949 -3886.701 -3946.168 4065.294 -4003.323
ProteinFolding 12 250/1848 16064.795 16068.406 16051.798 16088.073 16071.324

Grids 19 1600/3200 -2355.159 -2404.975 -2337.281 -2341.2746 -2373.618
Grids 21 1600/3200 -16478.466 -16169.0320 -16446.410 -16209.017 -16278.668
Grids 24 1600/3120 -16008.008 -15900.249 -15841.799 - 15608.162 -15948.219
Grids 25 1600/3120 -2343.547 -2353.223 -2319.899 -2306.686 -2288.182
Grids 26 400/800 -2532.837 -2608.395 -2553.781 -2559.572 -2535.464
Grids 27 1600/3120 -10748.024 -10704.057 -10514.857 -10389.031 -10665.737
Grids 30 400/760 -2563.274 -2631.862 -2640.044 -2691.091 -2649.462

Segmentation 11 228/624 330.541 349.906 334.882 356.895 337.312
Segmentation 12 231/625 74.705 74.029 155.062 79.151 105.801
Segmentation 13 225/607 67.371 86.064 69.430 72.394 112.516
Segmentation 14 231/632 94.192 96.501 100.582 104.091 96.572
Segmentation 15 229/622 388.223 386.701 397.246 407.731 390.641
Segmentation 16 228/610 99.086 99.690 111.121 98.209 108.360
Segmentation 17 225/612 424.686 426.130 425.192 425.240 427.810
Segmentation 18 235/647 89.905 101.307 94.224 88.854 88.809
Segmentation 19 228/624 76.244 78.337 74.284 69.116 70.770
Segmentation 20 232/635 298.802 301.802 302.673 304.457 312.970
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Figure 3: The loss curves of the Segmentation 14, P potts 6 and P potts 8 from pairwise potts
synthetic problems.

E MORE ANALYSIS

Efficiency vs Solution Quality. We evaluate the performance of the NEUROLIFTING using the
same network size and a consistent learning rate of 1e-4 on the Segmentation 14 dataset from the
UAI 2022 inference competition, along with two of our generated Potts instances: P potts 6 and
P potts 8. This setup allows us to observe the trends associated with changes in graph size and
sparsity. The results are presented in Fig. 3. It is seen that the model converges rapidly when
the graph is small and sparse, within approximately 20 iterations on the Segmentation 14 dataset.
Comparing P potts 6 and P potts 8, we observe that though both graphs are of the same size, the
denser graph raises significantly more challenges during optimization. This indicates that increased
size and density can complicate the optimization process, and NEUROLIFTING would need more
time to navigate a high quality solution under such cases.

F GNN FORMULATIONS

We summarized the popular GNN message passing formats in Table. 8 to show the logic behind the
GNN backbone selection of our work.
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Table 8: Graph convolutions in typical GNNs
Graph Convolutions Neighbor Influence

GCN h
(k)
i = σ

(
Wk ·

∑
j∈N (i)∪{i}(deg(i) deg(j))

−1/2h
(k−1)
j

)
Unequal

GAT h
(k)
i = σ

(∑
j∈N (i)∪{i} αi,jWkh

(k−1)
j

)
Unequal

GraphSAGE h
(k)
i = σ

(
Wk · hi +Wk · (|N (i)|)−1

∑
j∈N (i) h

(k−1)
j

)
Equal

G RESULTS ABOUT THE ANALYSIS EXPERIMENTS

In this section, we present the result figures from the analysis in Section. 5.4. These include the
loss landscape visualization (Fig. 4), the average loss across different GNN backbones(Fig. 5), the
comparison of different optimizers during training(Fig. 6), and the inference time comparison with
Toulbar2 on different size of PCI problems(Table. 9).

1 layer 2 layers 5 layers 8 layers

Figure 4: The landscape of instance Segmentation 19. From top to the bottom, each
column correspond to network layer {1, 2, 5, 8}. The first row is the landscape range
from [−10,+10] for both δ and η direction. The second row is the landscape range from
[−1,+1] for both δ and η direction.

0 20 40 60 80 100
Iteration

2000

1000

0

1000

2000

Lo
ss

Pairwise Cases(UAI 2022)
GraphSAGE
GCN
GAT

0 20 40 60 80 100
Iteration

550

600

650

700

750

800

850

900

950

Lo
ss

PCI Instances
GraphSAGE
GCN
GAT

0 20 40 60 80 100
Iteration

6000

4000

2000

0

Lo
ss

Sythetic Data
GraphSAGE
GCN
GAT

Figure 5: The average loss curves over UAI inference competition 2022 pairwise cases, PCI in-
stances and synthetic instances using GraphSAGE, GCN and GAT as the GNN backbones.

H VISUALIZATION SETUP

The core idea of the visualization technique proposed by Li et al. (2018) involves applying per-
turbations to the trained network parameters θ∗ along two directional vectors, δ and η: f(α, β) =
L(θ∗+αδ+βη). By doing so, we can generate a 3-D representation of the landscape corresponding
to the perturbed parameter space.

We sampled 250000 points in the α − β plane, where both α and β range from -10 to 10, to obtain
an overview of the loss function landscape. Subsequently, we focused on the region around the
parameter θ∗ by sampling an additional 10,000 points in a narrower range, with α and β both from
−1 to 1.
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Figure 6: The average loss curves over UAI inference competition 2022 pairwise cases using differ-
ent optimizers.
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Figure 7: The training loss of instance Segmentation 19 after convergence of using network layer
number {1, 2, 5, 8}.

I READ UAI FORMAT FILES

An example data file in UAI format is provided in Box. I. This Markov Random Field consists
of 3 variables, each with 2 possible states. Detailed information can be found in the box, where
we illustrate the meanings of different sections of the file. Notably, in the potential section, the
distributions are not normalized. During the BP procedure, these distributions will be normalized to
prevent numerical issues. However, in the energy transformation phase, we will utilize these values
directly.
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Table 9: Time comparison between Toulbar2 and NEUROLIFTING on PCI instances.”-” if the solving
process is already stopped.

Instances Algorithm/Solver 200s 400s 600s 800s 1000s 1200s

PCI 1 Toulbar2 18.134 - - - - -
NEUROLIFTING 18.211 (10s in total) - - - - -

PCI 2 Toulbar2 98.364 - - - - -
NEUROLIFTING 98.446 (16s in total) - - - - -

PCI 3 Toulbar2 1003.640 - - - - -
NEUROLIFTING 1003.640 (71s in total) - - - - -

PCI 4 Toulbar2 428.299 426.806 426.806 426.806 426.806 426.806
NEUROLIFTING 408.508 407.6304 407.419 - - -

PCI 5 Toulbar2 1128.244 1121.325 1121.325 1121.325 1121.325 1121.325
NEUROLIFTING 1222.281 1086.899 1077.858 1074.3094 1070.8013 1069.875

Example.uai

MARKOV //Instance type
3 //Number of vairables
2 2 2 //State number of each variable
5 //Number of cliques that has potentials
1 0 //1 means this clique is a variable, and the variable is 0.
1 1
1 2
2 0 1 //2 means this clique is an edge, the edge is (0, 1).
3 0 1 2 //3 means this clique includes 3 variables, and the clique is (0, 1, 2).

2 //The number 2 indicates that the potential in the next line has two values.
0.1 0.9 //The potential of variable 0 is 0.1 for state 0 and 0.9 for state 1.

2
0.1 10

2
0.5 0.5

4
0.1 1.0 1.0 0.1//The potential of the state combinations for variables 0 and 1 is given in the
order of (0,0), (0,1), (1,0) and (1,1).

8
0.1 2.0 0.1 0.1 0.1 0.1 0.1 2.0 //The potential of the state combinations for variables 0, 1,
and 2 is given in the order of (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), and so on.

Since the transformation of variable energies and clique energies follows the same procedure, we
will use the edge (0, 1) to illustrate the transformation. The value calculations will adhere to Eq. 1.
In Table. 10, we present the unnormalized joint distribution for the edge (0, 1), while Table. 11
displays the energy table for the edge (0, 1) after transformation.

Table 10: P (x0, x1)

x0

x1 0 1

0 0.1 1.0
1 1.0 0.1

Table 11: θC(x0, x1)

x0

x1 0 1

0 2.303 0
1 0 2.303
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J PCI PROBLEM FORMULATION

The Mixed Integer Programming format of PCI problems is as follows:

min
z,L

∑
(i,j)∈E

aijLij (9)

s.t. znp ∈ {0, 1}, ∀n ∈ N, p ∈ P (9a)∑
p∈P

znp = 1, ∀n ∈ N. (9b)

∑
p∈Mih

znip +
∑

p∈Mjh

znjp − 1 ≤ Lij ,∀(i, j) ∈ E ,∀h ∈ {0, 1, 2}. (9c)

where n is the index for devices, and N is the set of these indices. P stands for the possible states
of each device. Mih stands for the possible states set for node ni. Lij is the cost when given a
certain choices of the states of device i and device j, aij is the coefficient of the cost in the objective
function. There is an (i, j) ∈ E means there exists interference between these two devices.

When using MRF to model PCI problems, each random variable represent the identity state of the
given node and the interference between devices would be captured by the pairwise energy functions.
Next we will introduce how to transform the PCI problem from MIP form to MRF form.

In the original MIP formulation of the PCI problems, three types of constraints are defined. By
combining Eq. 9a and Eq. 9b, we establish that each device must select exactly one state at any
given time. Furthermore, the constraint in Eq. 9c indicates that interference occurs between two
devices only when they select specific states. The overall impact on the system is governed by
the value of Lij and its corresponding coefficient. Given that interference is always present, the
objective is to minimize its extent.

To transform these problems into an MRF framework, we utilize Eq. 9b to represent the nodes,
where each instance of Eq. 9a corresponds to the discrete states of a specific node. The constraints
set forth in Eq. 9a and Eq. 9b ensure that only one state can be selected at any given time, thus
satisfying those conditions automatically. By processing Eq. 9c, we can identify the edges and their
associated energies. Ifznip and znjp appear in the same constraint from Eq. 9c, we can formulate an
edge (i, j). By selecting different values for znip and znjp, we can determine the minimum value of
Lij that maintains the validity of the constraint.

The product of Lij and aij represents the energy associated with the edge (i, j) under the combina-
tion of the respective states. Once the states of all nodes are fixed, the values of the edge costs also
become fixed. This leads to the conclusion that the objective function is the summation of the ener-
gies across all edges. Since the PCI problems do not include unary terms, we can omit them during
the transformation process. This establishes a clear pathway for converting the MIP formulation
into an MRF representation, allowing us to leverage MRF methods for solving the PCI problems
effectively.
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Table 12: E(x1, x2)

x1

x2 z21 z22 z23

z11 1 0 0
z12 0 0 1
z13 0 1 0

Table 13: E(x2, x3)

x2

x3 z31 z32 z33

z21 3 0 0
z22 0 3 0
z23 0 0 3

Example
The original problem is

min
z,L

L1,2 + 3L2,3

s.t. znp ∈ {0, 1}, ∀n ∈ {1, 2, 3}, p ∈ {1, 2, 3}∑
p∈P

znp = 1, ∀n ∈ {1, 2, 3}.

z11 + z21 − 1 ≤ L1,2

z13 + z22 − 1 ≤ L1,2

z12 + z23 − 1 ≤ L1,2

z21 + z31 − 1 ≤ L2,3

z22 + z32 − 1 ≤ L2,3

z23 + z33 − 1 ≤ L2,3

(10)

Then the corresponding MRF problem is

min θ1,2(x1, x2) + θ2,3(x2, x3) (11)

the energy on edge (x1, x2) and edge (x2, x3) are shown in Table. 12 and Table. 13.
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