Under review as a conference paper at ICLR 2026

NEUROLIFTING: NEURAL INFERENCE ON MARKOV
RANDOM FIELDS AT SCALE

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference in large-scale Markov Random Fields (MRFs) remains challenging,
with traditional approximate like belief propagation and exact methods such as
the Toulbar2 solver often struggling to balance efficiency and solution qual-
ity at scale. This paper presents NEUROLIFTING, a novel approach that uses
Graph Neural Networks (GNNs) to reparameterize MRF decision variables, en-
abling standard gradient descent optimization. By extending lifting techniques
through neural networks, NEUROLIFTING achieves efficient, parallelizable op-
timization with a smooth loss landscape. Empirical results show NEUROLIFT-
ING matches Toulbar2’s solution quality on moderate scales while outperform-
ing approximate methods. Notably, on large-scale MRFs, it demonstrates su-
perior solutions compared to baselines with linear computational complexity
growth, marking a significant advance in scalable MRF inference. The code
of our model can be accessed at https://anonymous.4open.science/
status/NeuroLifting-5BCO.

1 INTRODUCTION

Markov Random Fields stand as a fundamental computational paradigm for modeling complex de-
pendencies among a large collection of variables, permeating a variety of domains such as computer
vision (Wang et al.,|2013};|Su et al.,[2021), natural language processing (Almutiri & Nadeem) 2022}
Ammar et al 2014} Lin et al., 2020), and network analysis (Wu et al.| 2020} [Yunfei Ma & Razavi,
2022). MRF’s capacity to encode intricate probabilistic interactions underscores its widespread
utility. However, unraveling the optimal configurations in high-dimensional settings remains a
formidable task owing to the inherent computational complexity involved.

Traditional inference methodologies for MRFs bifurcate into approximate and exact strategies, each
with its own set of advantages and limitations. Approximate inference techniques, such as belief
propagation (Pearl, 2022; Wainwright et al., [2005)) and mean field (Saito et al., [2012; |[Zhang, |1993))
approximations, strive for computational efficiency but often at the expense of solution quality,
particularly as the scale of the problem escalates. Conversely, exact inference methods, epitomized
by the Toulbar2 solver (De Givry, 2023; Hurley et al., [2016)), aspire to optimality but are frequently
hampered by exponential time complexities that render them infeasible for large-scale MRFs.

Despite significant advances, achieving a harmonious balance between efficiency and solution qual-
ity in large-scale MRF inference has remained a long-standing unmet challenge. This paper ad-
dresses this pivotal issue through the introduction of “NEUROLIFTING” — a neural-network-driven
paradigm that extends traditional lifting technique in the context of optimization (Albersmeyer &
Diehl, 2010; Balas & Perregaard, 2002; |[Bauermeister et al., [2022). NEUROLIFTING is a novel ap-
proach that reimagines MRF inference by leveraging the potency of GNNs alongside gradient-based
optimization techniques.

The core innovation of NEUROLIFTING lies in the reparameterization of the decision variables
within MRFs utilizing a randomly initialized GNN. While some recent heuristics succeeded in uti-
lizing GNNs for solving combinatorial problems (Cappart et al 2023 [Schuetz et all [2022), an
effective adaptation to MRF inference remains opaque. Besides, they generally lack an in-depth
understanding of how GNNs facilitate downstream computation. In this paper, we for the first time
bridge such practice to traditional lifting techniques, and further demonstrate that by harnessing the
continuous and smooth loss landscape intrinsic to neural networks, NEUROLIFTING simplifies the

https://anonymous.4open.science/status/NeuroLifting-5BC0
https://anonymous.4open.science/status/NeuroLifting-5BC0

Under review as a conference paper at ICLR 2026

optimization process for large-scale MRFs, enabling enhanced parallelization and performance on
GPU devices.

Empirical evaluations substantiate the efficacy of NEUROLIFTING, showcasing its ability to de-
liver high-quality solutions across diverse MRF datasets. Notably, it outperforms existing approx-
imate inference strategies in terms of solution quality without sacrificing computational efficiency.
When juxtaposed with exact strategies, NEUROLIFTING demonstrates comparable solution fidelity
while markedly enhancing efficiency. For particularly large-scale MRF problems, encapsulating
instances with over 50,000 nodes, NEUROLIFTING exhibits a linear computational complexity in-
crease, paired with superior solution quality relative to exact methods.

In summary, the contributions of this paper are threefold. 1) Methodical design: we present NEU-
ROLIFTING as an innovative and practical solution to the enduring challenge of efficient and high-
quality inference in large-scale MRFs; 2) Non-parametric lifting: we extend the concept of lifting
from traditional optimization practices into a modern neural network framework, thereby offering
a fresh lens through which to tackle large-scale inference problems; 3) Significant performance:
NEUROLIFTING achieved significant performance improvement over existing methods, showing
remarkable scalability and efficiency in real-world scenarios.

2 RELATED WORK

Lifting in Optimization. Lifting techniques have significantly impacted optimization, especially
for combinatorial problems and algorithm enhancement (Marchand et al) 2002). These methods
transform problems into higher-dimensional spaces for better representation and solutions. Appli-
cations include mixed O-1 integer programming as shown by |Balas et al.| (1993)) and MIP problems
with primal cutting-plane algorithms as demonstrated by [Dey & Richard|(2008). Integration with
variable upper bound constraints has proven effective for problems like Knapsack (Shebalov et al.,
2015). The techniques have expanded to robust optimization (Georghiou et al., 2020; Bertsimas
et al.} |2019) and shown promise when combined with Newton’s method for NLPs (Albersmeyer &
Diehl, 2010).

Unsupervised GNNs for Combinatorial Optimization. Graph Neural Networks have demon-
strated their power in optimization (Yu et al.l 2019} [Ying et al.l 2024)), with recent unsupervised
GNN advancements showing effectiveness in combinatorial optimization. Unsupervised GNNs can
learn meaningful representations of nodes and edges without labeled data, effectively capturing com-
binatorial structure as shown by [Peng et al.| (2021)). This approach has proven particularly valuable
for problems like the Traveling Salesman Problem (Gaile et al.l 2022; Min et al., [2023), Vehicle
Routing Problem (Wu et al.| 2024)), and Boolean satisfiability problem (Cappart et al., 2023)). Effi-
cient solutions for Max Independent Set and Max Cut problems were also demonstrated by [Schuetz
et al.|(2022). However, the loss functions may lack flexibility in handling higher-order relationships
beyond edges.

MREF and Inference. The maximum a posterior (MAP) problem of MRFs is finding the best config-
uration that could minimize the energy function which is a NP-hard problem. Currently, the popular
methods include variants of belief propagation (Weiss & Freeman, 2001} Felzenszwalb & Hutten-
locher, 2004} [Frey & Mackay} 2002) and tree-reweighted message passing (TRBP) (Wainwright
et al.l |2005; Kolmogorov, 2000) and a generalization of TRBP which is suitable for high-order
MRFs(SRMP) (Kolmogorov, 2015).

Neural Networks with supervised learning remain the mainstream approach for MRF problems.
GNNs were used for MRF inference by [Yoon et al.|(2019)), outperforming LBP and TRBP but lim-
ited to 16 nodes. BP information was integrated into GNNs to formulate a neural factor graph by
Garcia Satorras & Welling| (2021)), surpassing traditional BP on graphs under 100 nodes. GNN
message passing rules were modified by |[Kuck et al.| (2020) to align with BP properties, showing
better performance than LBP on graphs up to 196 nodes. A neural version of the Max-product al-
gorithm was proposed by [Zhang et al.| (2020). Variational MPNN for MAP problems on 9-13 node
graphs was introduced by |Cui et al.[(2022). Researchers also explored CRFs. The semi-supervised
method by |Qu et al.|(2019) used CRF to enhance GNN classification, further implemented by [Tang
et al|(2021). However, obtaining optimal configurations in large-scale MRFs remains challenging.
Unsupervised and self-supervised learning offer alternative approaches. Learning to optimize prin-

Under review as a conference paper at ICLR 2026

ciples (Nair et al.,|2021) were applied to MRF problems, while the Augmented Lagrangian Method
was employed by |Arya et al.| (2024b) as loss function for self-supervised models solving CMPE
problems. A self-supervised approach for binary node MMAP problems was proposed by |Arya
et al.| (2024a)). These methods require specially designed loss functions and are all limited to smaller
1nstances.

Our motivation: Our research aims to develop a more comprehensive method applicable to both
pairwise and high-order MRFs, capable of handling nodes with arbitrary label counts. We seek to
create an approach that is not only easily implementable but also directly compatible with MRF
problem frameworks. Most crucially, our method aims to maintain high performance on large-scale
instances, addressing a significant gap in current methodologies.

3 PRELIMINARY

Markov Random Field. An MRF is defined over a undirected graph G = (V,C), where V repre-
sents the index set of random variables and C C 2V is the clique set representing the (high-order)
dependencies among random variables. Throughout this paper, we associate a node index 7 with a
random variable x; € X, where X is a finite alphabet. Thus, given graph G, the joint probability of
a configuration of X = {x;};cy can be expressed as Eq.

P(X) = exp(~E(X)) = 5 exp (S 0w — S bo, (V€ Ck})> (1)

i€V CrecC

where Z is the partition function, 6;(-) denotes the unary energy functions, 6(-) represent the
clique energy functions. In this sense, MRF provides a compact representation of probability by
introducing conditional dependencies:

P(z;| X \{x;}) = P(z;|{x;} for i,j € Cj for Cy €C). 2)
In this paper, we consider the MAP estimate of Eq. [I] which requests optimizing Eq. [[] via X* =
miny E(X). One can consult Koller & Friedman| (2009) for more details.

Graph Neural Networks. GNNs represent a distinct class of neural network architectures specif-
ically engineered to process graph-structured data (Kipf & Welling, [2017; [Hamilton et al. 2017}
Xu et al., 2019; [Velickovi€ et al., |2018)). In general, when addressing a problem involving a graph
G = (V, &), where £ is the edge set, GNNs utilize both the graph G and the initial node representa-

tions {hEO) € R?|Vi € V} as inputs, where d is the dimension of initial features. Assuming the total
number of GNN layers to be K, at the k-th layer the graph convolutions typically read:

n = o (Wi - AGGREGATE® ({nf"V:j e N() Ui} })) @

where AGGREGATE™ is defined by the specific model, W}, is a trainable weight matrix, N() is
the neighborhood of node ¢, and ¢ is a non-linear activation function, e.g., ReLU.

Optimization with Lifting. Lifting is a sophisticated technique employed in the field of opti-
mization to address and solve complex problems by transforming them into higher-dimensional
spaces (Balas| [2005; |Papadimitriou & Steiglitz, [1982)). By introducing auxiliary variables or con-
straints, lifting serves to reformulate an original optimization problem into a more tractable or elu-
cidated form, often making the exploration of optimal solutions more accessible. In the context of
MRFs, lifting can be utilized to transform inference problems into higher dimensions where certain
properties or symmetries associated with specific MRF problems are more easily exploitable (Wain-
wright et al., [2005} |Globerson & Jaakkola, [2007; [Bauermeister et al., [2022). However, a principled
lifting technique is still lacking for generalized MRFs.

4 METHODOLOGY

4.1 OVERVIEW

An overview of NEUROLIFTING is in Fig.[T] with an exemplary scenario involving an energy func-
tion devoid of unary terms, yet comprising three clique terms. Initially, the clique-based represen-

Under review as a conference paper at ICLR 2026

.X ~ 3100

(=}
GNN

Figure 1: An overview of NEUROLIFTING. The energy function of this problem is E(X) =

Oc, (x1,x2,23) + O, (T3, 24, 25) + Oc, (22, T3, X5, T6)- H;K) is the output of the model after
the 7'-th iteration.

tation of this function (depicted in the leftmost shaded diagram) undergoes a transformation to a
graph-based perspective, which subsequently integrates into the network architecture. To address
the absence of inherent node feature information in the original problem, we elevate the dimension-
ality of decision variables within this framework. This transformation facilitates a paradigm shift
from the identification of optimal state values to the learning of optimal parameters for encoding
and classification of these variables. Furthermore, we devised a novel approach to circumvent the
absence of a traditional loss function, thereby extending the applicability of our framework to MRFs
of arbitrary order.

4.2 PREPOSSESSING

We discuss several necessary preprocessing steps to adapt standard MRF to a GNN style.

Topology construction for GNNs. In an MRF instance, the high-order graph structure consists
of nodes and cliques, diverging from typical GNNs allowing only pairwise edges (2nd-order). To
facilitate the power of GNNs, we need to convert high-order graph into a pairwise one.

By the very definition of a clique, any two nodes that appear within the same clique are directly
related. Thus, for any two nodes i,j € Cy in a clique Cj, we add a pairwise edge (i,7) to its
GNN-oriented graph. An example can be observed in Fig. |l| It is worth noting that an edge may
appear in multiple cliques; however, we add each edge only once to the graph.

Initial feature for GNNSs. As there is no initial features associated to MRF instances, we initialize
feature vectors to GNNs randomly with a predefined dimension d. Detailed information on how we
will handle these artificial features to ensure they effectively capture the underlying information of
the problem will be provided in Section. d.3]

Vectorizing the energy function. The transformed energy function E(X) will serve as the loss
function guiding the training of the neural networks. In Section. [.4] we will detail the transfor-
mation process and discuss how to effectively utilize it. Note the values of these functions can be
pre-evaluated and repeatedly used during the training process. Therefore, we employ a look-up table
to memorize all function values with discrete inputs. For unary energies, we denote the vectorized
unary energy of variable x; as ¢(z;), where the n-th element corresponds to ;(x; = n). Similarly,
we represent the clique energy for clique C}, using the tensor ¢ ({x;|Vz; € Cx}). This tensor can
be derived using the same conceptual framework; for instance, the element ¢ (x;, ;, z)) at position
(0,2,4) corresponds to the value of 0, ; py(7; = 0,25 = 2,2, = 4) .

Padding node embeddings & energy terms and Masking. GNNss typically require all node em-
beddings to be of the same dimension, meaning that the embeddings h(*) at K -th layer must share
the same size. However, in general MRFs, the variables often exhibit different numbers of states.
While traditional belief-propagation-based methods can easily manage such variability, adapting
GNNss to handle these discrepancies is less straightforward.

To address this mismatch, we employ padding strategy —a common technique used to handle varying
data lengths. This strategy is applied to both the node embeddings and the unary and pairwise (or
clique) energies, to ensure consistent embedding dimensions. Concretely, we assign virtual states
to the nodes whose state number is less than |X'|. Then, we assign energies to those padded labels
with the largest value of the original energy term. The schematic diagram of the padding procedure
could be found in Appendix [A] This approach of assigning high energies to the padded labels serves
to discourage the model from selecting these padded states, thereby incentivizing it to choose the
original, non-padded states with lower energies. We employ a masking strategy to exclude padded

Under review as a conference paper at ICLR 2026

regions(using -inf as the mask), thereby ensuring these artificially added areas neither participate in
the selection process nor significantly affect the loss computation.

Remark 4.1. Although utilizing uniform large values(e.g., padding with inf) for energy padding
is theoretically viable, this approach introduces significant computational bias. Specifically, this
padding methodology causes substantial deviation between the training loss and the true energy met-
rics, as minimal variations in padded regions disproportionately influence the loss function. Such
distortion impedes effective monitoring of the training dynamics. As empirically validated in Sec-
tion [5] our proposed padding scheme demonstrates superior performance by maintaining a high
degree of consistency between the training loss and the true energy measurements, thereby ensuring
more reliable model optimization.

4.3 GNNS AS NON-PARAMETRIC LIFTING

In this section, we detail how NEUROLIFTING generates features that capture the hidden informa-
tion of the given MRF and solves the original MAP problem by optimizing in a high-dimensional
parameter space. As mentioned in Section we initially generate learnable feature vectors ran-

domly using an encoder that embeds all nodes, transforming the integer decision variables into d;-
(0)

dimension vectors h; ’ € R% for node i, where d; is a hyper-parameter representing the dimension

after lifting.

The intuition for utilizing GNNs in the implementation of lifting techniques is inspired by LBP.
When applying LBP for inference on MRFs, the incoming message M;; to node % from node j
is propagated along the edges connecting them. Node ¢ can then update its marginal distributions
according to the formula in Eq. i where exp(—@(x;)) is the unary potential function.

pposlerior(xi‘X\{xi}) =exp(—o(z;) I > My 4)

(i,5)€E T

Importantly, the incoming messages are not limited to information solely about the directly con-
nected nodes; they also encompass information from sub-graphs that node ¢ cannot access directly
without assistance from its neighbors. This allows a more comprehensive aggregation of informa-
tion, enabling node 7 to merge these incoming messages with its existing information. This process
of message aggregation bears resemblance to the message-passing procedure used in GNNs, where
nodes iteratively update their states based on the information received from their neighbors.

Graph convolutions should intuitively treat adjacent nodes equally, consistent with the principle in
MRFs, where the information collected from neighbors is processed equally. Typical GNNs are
summarized in Tablefrom Appendix where deg(¢) is the degree of node i, «; ; is the attention
coefficients, and [N (7)| is the neighborhood size of node i. According to the influence of neigh-
bors, they can be classified into three categories: 1) neighborhood aggregation with normalizations
(e.g., GCN (Kipf & Welling} 2017) normalize the influence by node degrees), 2) neighborhood ag-
gregation with directional biases (e.g., GAT (Velickovic et al., 2018]) learn to select the important
neighbors via an attention mechanism), and 3) neighborhood aggregation without bias (e.g., Graph-
SAGE (Hamilton et al.| [2017) directly aggregate neighborhood messages with the same weight).
Therefore, we select the aggregator in GraphSAGE as our backbone for graph convolutions. The
performance of these GNN backbones on our MRF datasets is shown in Fig. [5]in Appendix

Another primary characteristic of MRFs is its ability to facilitate information propagation across the
graph through local connections. This means that even though the interactions are defined locally
between neighboring nodes, the influence of a node can extend far beyond its immediate vicinity.
As a result, MRFs can effectively capture global structure and dependencies within the data. We
thus use Jumping Knowledge (Xu et al., 2018)) to leverage different neighborhood ranges. By doing
so, features representing local properties can utilize information from nearby neighbors, while those
indicating global states may benefit from features derived from higher layers.

At each round of iterations, we optimize both the GNN parameters and those of the encoder. At the

start of the next iteration, we obtain a new set of feature vectors, ’H,EO) = {hz(»ot) € R4V € V},
where t indicates the ¢-th iteration. This process enables us to accurately approximate the latent
features of the nodes in a higher-dimensional space.

Under review as a conference paper at ICLR 2026

4.4 ENERGY MINIMIZATION WITH GNN

As indicated by Eq. [T} the energy function can serve as the loss function to guide network training
since minimizing this energy function aligns with our primary objective. Typically, the energy
function for a new problem instance takes the form of a look-up table, rendering the computation
process non-differentiable. To facilitate effective training in a fully unsupervised setting, it is crucial
to transform this computation into a differentiable loss aligning with the original energy function.
The initial step involves transforming the decision variable from x; € {1, ..., s;}, where s; is the
number of states of variable x;, to v; € {0,1}%. At any given time, exactly one element of the
vector v; can be one, while all other elements must be zero; the position of the 1 indicates the current
state of the variable z;. Define V), = ®;cc, vi, Where ® is the tensor product. The corresponding
energy function would be Eq.[5| Subsequently, we relax the vector v; to p;(6) € [0, 1], where
p;(0) represents the output of our network and 6 denotes the network parameters. This output can
be interpreted as the probabilities of each state that the variable x; might assume.

E({uli e V}) = Z(vi(9)7¢(fm)> +) (¥(Ck), Vi) ®)
— Unary Term Ckeccuquc Term
L(0) = Z(pi(9)7@(xi)> +) (¥(Ck), i) (6)
— Unary Term CkECClique Term
Leross Envopy = =32 Qilog(P) (7

where (-, -) refers to the tensor inner product. The applied loss function is defined in Eq. @ here
P, = ®;ec, pi- The rationale behind our loss function closely resembles that of the cross-entropy
loss function commonly used in supervised learning. Let P; represent the true distribution and Q;
denote the predicted distribution of the node i. A lower value of cross-entropy Eq.[7]indicates greater
similarity between these two distributions. However, our approach differs in that we are not seeking
a predicted distribution that closely approximates the true distribution. Instead, for each variable,
we aim to obtain a probability distribution that is highly concentrated, with the concentrated points
corresponding to the states that minimize the overall energy.

Once the network outputs are available, we can easily determine the assignments by rounding the
probabilities p(f) to obtain binary vectors v. Using these rounded results, the actual energy can be
calculated using Eq.[5} It is observed that after the network converges, the discrepancy between L(6)
and E({v;|i € V}) is minor and we won’t see any multi-assignment issue in decision variables. We
choose Adam (Kingma & Ba, |2015) as the optimizer, and employ simulated annealing during the
training process, allowing for better exploring the loss landscape to prevent sub-optima.

4.5 ANALYSIS AND DISCUSSION

Relation to lifting. In this innovative framework of using GNNs for inference on MRFs, a natural
and sophisticated parallel emerges with the classical concept of lifting in optimization (Balas et al.,
1993). By mapping each unary term of an MRF to a node within a GNN and translating clique
terms into densely connected subgraphs, the traditional MRF energy minimization transforms into
optimizing a multi-layer GNN with extra dimensionality. This procedure aligns with the lifting tech-
nique where the problem space is expanded to facilitate more efficient computation. Akin to the prin-
ciple of standard lifting to ease optimization, the GNN-based reparameterization can leverage the
gradient descent optimization paradigm inherent in the smooth neural network landscape (Dauphin
et al., 2014; (Choromanska et al., [2015)), ensuring efficient computation and convergence. Therefore,
while offering an enhanced approach to inference, the GNN reparameterization mirrors the core
principles of lifting by transforming and extending the solution space into a computation-friendly
one to achieve computational efficacy and scalability. More empirical evidence is in Section[5.4]

Complexity analysis. The primary computations in this model arise from both the loss calculation
and the operations within the GNN. For the loss function, let ¢,,,, denote the maximum clique
size. The time complexity for the loss calculation is given by O(|V||X| 4+ ¢maz|C||X|). F or the
GNN component, let V,, denote the average number of neighbors per node in the graph. The time
complexity for neighbor aggregation in each layer is O (N, |V|) , and merging the results for all nodes

Under review as a conference paper at ICLR 2026

requires O(|V|d) where d is the feature dimension. Thus, for a K-layer GraphSAGE model with
the custom loss function, the overall time complexity can be expressed as O(|X|(|V| + ¢maz|C|) +
K|V|(N, + d)). This analysis highlights the efficiency of the framework in managing large-scale
graphs by leveraging neighborhood sampling and aggregation techniques. The derived complexity
indicates that the model scales linearly with respect to the number of nodes, the number of layers,
and the dimensionality of the feature vectors, making it well-suited for large-scale instances.

5 EXPERIMENT

Evaluation metric. For all instances used in the experiments, we utilize the final value of the overall
energy function E(X) as defined in Eq. 1] Without loss of generality, all problems are formulated
as minimization problems.

Baselines. We compare our approach against several well-established baselines: Loopy Belief Prop-
agation (LBP), Tree-reweighted Belief Propagation (TRBP) (Wainwright et al., [2005)), and Toul-
bar2 (De Givry, 2023). LBP is a widely used approximate inference algorithm that iteratively
passes messages between nodes. TRBP improves upon LBP by introducing tree-based reweigh-
ing to achieve better approximations, particularly in complex graph structures. Toulbar2 is an exact
optimization tool based on constraint programming and branch-and-bound methods Notably, Toul-
bar2 is the winner on all MPE and MMAP task categories of UAI 2022 Inference Competition
[H These baselines allow us to evaluate the performance of our proposed solution under fair set-
tings.Note that comparisons with LBP and TRBP are omitted for high-order cases, as these methods
are limited to simple scenarios on this kind of problems. We will use SRMP (Kolmogorov, 2015
on the high-order cases instead.

MREF format and transformation. The MRF data files are in UAI format and we interpret the data
files in the same way as Toulbar2. Detailed information about unary and clique terms will be treated
as unnormalized (joint) distributions, and the energies are calculated as 0;(x; = a) = —log(P(x; =
a)), where P(x; = a) represents the probability provided by the data file. Note that we use the
unnormalized values during the transformation process. The transformation for the clique energy
terms will follow the same procedure. More details are in Appendix[I]

5.1 SYNTHETIC PROBLEMS

We first conduct experiments on synthetic problems generated randomly based on Erdés—Rényi
graphs (Erdos & Rényi, [1959). The experiments are divided into pairwise cases and higher-order
cases. We will compare the performance of NEUROLIFTING with LBP, TRBP, and Toulbar2 on
pairwise MRFs. For the higher-order MRF cases, we will compare NEUROLIFTING exclusively
with Toulbar2, as LBP and TRBP are not well-suited for handling the complexities inherent in high-
order MRFs. The raw probabilities (energies) on the edges/cliques are randomly generated using the
Potts function (Eq.[8), representing two typical types found in the UAI 2022 dataset. The parameters
« and 3 serve as constant penalty terms and I is the indicator function.

9”« = OéH(SUZ‘ = .Tj) + /B (8)

For all the random cases, all the probabilities values of the unary terms and pairwise (clique) terms
are generated randomly range from 0.2 to 3.0. For the Potts models, «, 5 € [0.00001, 1000]. Each
random node can select from 2 to 6 possible discrete labels, and the values of the unary terms are also
generated randomly, ranging from 0.2 to 3.0. LBP and TRBP are allowed up to 60 iterations, with
a damping factor 0.1 to mitigate potential oscillations. Toulbar2 operates in the default mode with
time limit 18000s. We employ a 5-layer GNN to model all instances and d; = 1024. The learning
rate is set to le—?%, and the model is trained for up to 150 iterations for each instance, utilizing a
simple early stopping rule with an absolute tolerance of 1e~* and a patience of 10. We will give 5
trails to NEUROLIFTING to eliminate randomness. The data generation method and the parameter
settings are the same for both pairwise cases and high order cases.

Pairwise instances. The inference results on pairwise cases are summarized in Table. [T} Due to the
page limits here we only show the best results. The full table of the results with more statistics is
shown in Table |4|in Appendix |C] Prefix “P_potts_” and “P_random_" indicate instances generated

'https://www.auai.org/uai2022/uai2022_competition

https://www.auai.org/uai2022/uai2022_competition

Under review as a conference paper at ICLR 2026

with Potts energy and random energy, respectively. It is evident that as the problem size scales
up, NEUROLIFTING outperforms the baseline approaches; meanwhile, it also achieves comparable
solution quality even when the problem sizes are small. This trend is consistent across both energy
models.

Table 1: Results on pairwise synthetic instances. Numbers are the energy values. Best in bold.

Graph #Nodes/#cliques | LBP TRBP Toulbar2 ~ NEUROLIFTING || Graph #Nodes/#cliques | LBP TRBP Toulbar2 ~ NEUROLIFTING
P_potts_1 1k/7591 -22215.700 -21365.800 -22646.529 -21451.025 P_random_1 1k/7540 -4901.100 -4505.020 -4900.759 -4564.763
P_potts 2 5k/37439 -111319.000 -105848.000 -110022.248 -105952.531 P_random 2 5k/37488 -24059.900 -22934.000 -24139.194 -21834.693
P_potts 3 10k/75098 -221567.000 -210570.000 -218311.424 -209925.269 P_random 3 10k/74518 -47873.200 -47002.000 -48107.172 -42120.325
P_potts_4 50k/248695 12411.200 13454.600 12955.129 11679.429 P_random 4 50k/249554 12881.500 14342300 12233.890 11769.934
P_potts_5 50k/249624 25668.500 35389.000 12468.172 11466.507 P_random_5 50k/249374 12478.300 13337.000 12835.994 11750.969
P_potts_6 50k/300181 17609.800 17362.600 17635.791 16756.999 P_random_6 50k/299601 16723.600 16754.500 18031.964 16700.674
P_potts_7 50k/299735 16962.500 16962.500 19532.817 17002.578 P_random_7 50k/299538 16689.200 16701.600 18179.548 16689.252
P_potts_8 50k/374169 24552.400 24596.800 25446.235 24552.413 P_random 8 50k/374203 24556.000 24556.000 25549.594 24555.995
P_potts 9 50k/375603 25099.800 25095.600 25502.495 25050.522 P_random 9 50k/374959 24635.600 24689.500 25908.500 24640.039

Higher-order instances. The inference results on high order cases are summarized in Table. [2]
The “H” in the prefix stands for High-order and all the instances are generated using Potts model.
The number of cliques in the table encompasses both the cliques themselves and the edges con-
necting them. The relationships between nodes are based on either pairwise interactions or clique
relationships. The results indicate that NEUROLIFTING outperforms Toulbar2 and SRMP, demon-
strating its ability to effectively handle complicate high-order MRFs. This performance highlights
the robustness and effectiveness of NEUROLIFTING across different graph structures.

5.2 UAI 2022 INFERENCE COMPETITION DATASETS

We then evaluate our algorithm using instances from the UAI 2022 Inference Competition datasets,
including both pairwise cases and high-order cases. The time settings will align with those estab-
lished in the UAI 2022 Inference Competition, specifically 1200 seconds and 3600 seconds. LBP
and TRBP algorithms are set to run for 30 iterations with a damping factor of 0.1, and the time
limit for Toulbar2 is configured to 1200 seconds, which is generally sufficient for convergence. For
NEUROLIFTING, we utilize an 8-layer GNN to model all instances, with the model trained for up
to 100 iterations for each instance; other settings remain consistent with those used in the synthetic
problems. We also experimented with lifting dimensions of 64, 512, 1024, 4096, and 8192.

Pairwise cases. We evaluated pairwise cases from the UAI MPE dataset, with results in Appendix[D}
Table 5] shows NEUROLIFTING achieves solutions comparable to LBP and TRBP on trivial prob-
lems where Toulbar2 finds optimal solutions. On more challenging problems, while not surpassing
Toulbar2, NEUROLIFTING outperforms both LBP and TRBP, indicating better performance on real-
world datasets than artificial instances. Complete results with varying lifting dimensions appear in
Appendix

High-order cases. For the high-order cases, we select a subset that has relatively large sizes. The
results are presented in Table[6]in Appendix [D] The performance of NEUROLIFTING aligns with the
results obtained from synthetic instances, demonstrating superior efficacy on larger problems while
consistently outperforming Toulbar2 in dense cases.

5.3 PHYSICAL CELL IDENTITY

Physical Cell Identity (PCI) uniquely identifies cells in LTE and 5G networks, distinguishing be-
tween neighboring cells. We transform PCI instances into pairwise MRFs to enable evaluation
across all baselines. Transformation details are provided in Appendix[J]} We evaluated using internal
real-world PCI data and synthetic datasets. LBP, TRBP, and NEUROLIFTING configurations match

Table 2: Results on the synthetic high order MRFs. Numbers correspond to the energy values. Best
in bold. “NA” denotes that no solution was found within the specified time limits. Best in bold.

Graph #Nodes/#cliques | Toulbar2 SRMP NEUROLIFTING .
Energy Loss
H_Instances_1 500/41253 NA -5785.093 -7866.214 + 389.207 -7859.68 + 393.719
H_Instances_2 500/57934 NA -18504.788 -20260.289 + 143.276 -20286.571 £ 143.624
H_Instances_3 1000/36993 NA -5903.131 -7232.648 £ 337.393 -7229.483 £ 336.218

Under review as a conference paper at ICLR 2026

Table 3: Results on the PCI instances. Numbers are the obtained energy values. Best in bold.

NEUROLIFTING

Graph #Nodes/#Cdges LBP TRBP Toulbar2
Energy Loss

PCI_1 30/165 20.344 20.455 18.134 18.372 4+ 0.161 18.373 + 0.160

PCI2 40/311 98.364 98.762 98.364 98.555 4 0.109 98.555 + 0.109

PCI3 80/1522 1003.640 1003.640 1003.640 1003.640 + 0.0 1003.639 + 0.0

PCI4 286/10714 585.977 585.977 426.806 410.945 + 2.009 410.996 £+ 2.014

PCIS 929/29009 1591.590 1591.590 1118.097 1074.617 + 5.501 1074.676 £ 5.503
PClLsynthetic_1 280/9678 564198.000 568082.000 522857.923 496015.5 & 6307.363 496013.662 + 6297.169
PClI_synthetic 2 526/34500 2.092e+06 2.084e+06 2.064e+06 1.923e+06 - 9977.015 1.923e+06 + 10007.739
PClLsynthetic_3 1000/49950 2.932e+06 2.908e+06 2.856e+06 2.665e+06 + 4555.868 2.664e+06 + 4468.965
PClL_synthetic_4 1500/78770 4.568e+06 4.532e+06 4.534e+06 4.215e+06 + 13500.602 4.214e+06 + 13252.456
PCLsynthetic.5 2000/120024 6.807e+06 6.904e+06 7.023e+06 6.542e+06 + 19789.758 6.540e+06 + 19782.638

Section@ but with 100 iterations, while Toulbar2 had a 3600-second limit with default parame-
ters. Table[3|shows results for five real-world cases from a Chinese city and five synthetic instances.
Toulbar2 solves smaller problems exactly but struggles with larger scales. Similarly, LBP and TRBP
face convergence issues on complex problems. NEUROLIFTING demonstrates strong generalization
across all scales, achieving notable performance even on large instances.

5.4 ANALYSIS AND ABLATION STUDY

Efficiency Analysis. Following UAI protocol, we compared NEUROLIFTING against Toulbar2 over
1200 seconds, with metrics at 200-second intervals (due to Toulbar2’s logging limitations, there is
no time information on complex problems). Results in Table 0] (Appendix [G) show Toulbar2 per-
forms better on simpler instances, solving the first three within 200 seconds. However, on complex
problems, Toulbar? fails to terminate within 1200 seconds with minimal quality improvement. NEU-
ROLIFTING maintains efficiency on larger instances, consistently outperforming Toulbar2 across all
time intervals with superior solutions.

Choice of GNN backbones. We evaluated GNN backbones from Sectionf.3]across UAI 2022 pair-
wise cases, private PCI instances, and synthetic datasets (1000 nodes, average degree 4/8), testing
both random energy configurations and Potts models. Fig.[5]in Appendix [G] demonstrates Graph-
SAGE’s consistent superiority in both results quality and convergence speed across all datasets.

Choice of Optimizer. Optimizer selection, discussed in Section is based on problem structure
analysis and empirical testing. We evaluated SGD, RMSprop, and Adam on UAI 2022 pairwise
cases using learning rate 10~%, 1024-dimensional embedded features, and 8-layer networks across
all tests. Results in Fig. [6] (Appendix show Adam’s superior convergence speed and stability
compared to RMSprop and SGD.

Loss Landscape Visualization. We visualize loss landscapes using the tool from |L1 et al.| (2018),
with detailed settings in Appendix Fi in Appendix[G]shows landscape evolution for networks
of depths K € {1,2,5,8}, while Fig. [/| displays converged loss trends. We observe that much
of the loss function remains flat, with decreases possible only in limited parameter space regions.
Deeper lifted models effectively expand these regions, enabling better solution convergence and
demonstrating enhanced optimization landscape navigation capacity.

6 CONCLUSION

In this paper, we introduced NEUROLIFTING and its application to solving MAP problems for
MRFs. Our experiments showed that NEUROLIFTING effectively handles MRFs of varying or-
ders and energy functions, achieving performance on par with established benchmarks, as verified
on the UAI 2022 inference competition dataset. Notably, NEUROLIFTING excels with large and
dense MRFs, outperforming traditional methods and competing approaches on both synthetic large
instances and real-world PCI instances.This method, which utilizes Neural Networks for lifting, has
proven successful and could potentially be extended to other optimization problems with similar
modeling frameworks.

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our research, we provide comprehensive resources and documen-
tation. The complete source code for our implementation is available at the link provided in the
abstract, along with detailed instructions for execution in the repository. All datasets used in our
experiments are clearly identified in Section [5] with sources that are publicly accessible. We pro-
vide detailed configuration parameters for both our proposed algorithm and all baseline methods
to enable precise replication. Appendix [l includes instructions for parsing .uai files, following the
standard format for MRF instance representation, while Appendix [J| documents our methodology
for transforming PCI instances from MIP format into MRF representations. These materials collec-
tively enable complete reproduction of our experimental results and facilitate further research in this
direction.

8 ETHICS STATEMENT

During the preparation and submission of this paper, we have strictly adhered to the Code of Ethics
in scientific research. We ensured proper citation of all relevant work, maintained integrity in our
experimental procedures, reported results accurately without manipulation, and respected confiden-
tiality of data sources where applicable. All authors have contributed substantially to this work and
approved the final manuscript, with no conflicts of interest undisclosed.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Jan Albersmeyer and Moritz Diehl. The lifted newton method and its application in optimization.
SIAM Journal on Optimization, 20(3):1655-1684, 2010.

Talal Almutiri and Farrukh Nadeem. Markov models applications in natural language processing:
A survey. International Journal of Information Technology and Computer Science, 14:1-16, 04
2022.

Waleed Ammar, Chris Dyer, and Noah A Smith. Conditional random field autoencoders for unsu-
pervised structured prediction. Advances in Neural Information Processing Systems, 27, 2014.

Shivvrat Arya, Tahrima Rahman, and Vibhav Gogate. Neural network approximators for marginal
map in probabilistic circuits. Proceedings of the AAAI Conference on Artificial Intelligence, 38
(10):10918-10926, Mar. 2024a. doi: 10.1609/aaai.v38i10.28966. URL https://ojs.aaai.
org/index.php/AAAI/article/view/28966.

Shivvrat Arya, Tahrima Rahman, and Vibhav Gogate. Learning to solve the constrained most prob-
able explanation task in probabilistic graphical models. In Sanjoy Dasgupta, Stephan Mandt,
and Yingzhen Li (eds.), Proceedings of The 27th International Conference on Artificial Intel-
ligence and Statistics, volume 238 of Proceedings of Machine Learning Research, pp. 2791—
2799. PMLR, 02-04 May 2024b. URL https://proceedings.mlr.press/v238/
aryaz4b.htmll

Egon Balas. Projection, lifting and extended formulation in integer and combinatorial optimization.
Annals OR, 140:125-161, 11 2005.

Egon Balas and Michael Perregaard. Lift-and-project for mixed 0—1 programming: recent progress.
Discrete Applied Mathematics, 123(1):129-154, 2002.

Egon Balas, Sebastian Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Math. Program., 58:295-324, 05 1993. doi: 10.1007/BF01581273.

Hartmut Bauermeister, Emanuel Laude, Thomas Mollenhoff, Michael Moeller, and Daniel Cre-
mers. Lifting the convex conjugate in lagrangian relaxations: A tractable approach for continuous
markov random fields. SIAM Journal on Imaging Sciences, 15(3):1253-1281, 2022.

Dimitris Bertsimas, Melvyn Sim, and Meilin Zhang. Adaptive distributionally robust optimization.
Manag. Sci., 65:604-618, 2019.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovié. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1-61, 2023.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks, 2015.

Zijun Cui, Hanjing Wang, Tian Gao, Kartik Talamadupula, and Qiang Ji. Variational message pass-
ing neural network for maximum-a-posteriori (map) inference. In James Cussens and Kun Zhang
(eds.), Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, vol-
ume 180 of Proceedings of Machine Learning Research, pp. 464—474. PMLR, 01-05 Aug 2022.
URLhttps://proceedings.mlr.press/v180/cui22a.htmll

Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization, 2014.

Simon De Givry. toulbar2, an exact cost function network solver. In 24eme édition du congres
annuel de la Société Frangaise de Recherche Opérationnelle et d’Aide a la Décision ROADEF
2023, 2023.

Santanu S. Dey and Jean-Philippe Richard. Linear-programming-based lifting and its application to
primal cutting-plane algorithms. INFORMS Journal on Computing, 21(1):137-150, 2008.

11

https://ojs.aaai.org/index.php/AAAI/article/view/28966
https://ojs.aaai.org/index.php/AAAI/article/view/28966
https://proceedings.mlr.press/v238/arya24b.html
https://proceedings.mlr.press/v238/arya24b.html
https://proceedings.mlr.press/v180/cui22a.html

Under review as a conference paper at ICLR 2026

P Erdos and A Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:290-297,
1959.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early vision.
International Journal of Computer Vision, 70:41-54, 2004.

Brendan Frey and David Mackay. A revolution: Belief propagation in graphs with cycles. 08 2002.

Eliza Gaile, Andis Draguns, Emils Ozolins, and Karlis Freivalds. Unsupervised training for neural
tsp solver, 07 2022.

Victor Garcia Satorras and Max Welling. Neural enhanced belief propagation on factor graphs.
In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th International Con-
ference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learn-
ing Research, pp. 685-693. PMLR, 13—-15 Apr 2021. URL https://proceedings.mlr.
press/v130/garcia—-satorras2la.html.

Angelos Georghiou, Angelos Tsoukalas, and Wolfram Wiesemann. A primal-dual lifting scheme
for two-stage robust optimization. Oper: Res., 68:572-590, 2020.

Amir Globerson and Tommi Jaakkola. Fixing max-product: Convergent message passing algorithms
for map lp-relaxations. Advances in neural information processing systems, 20, 2007.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Barry Hurley, Barry O’sullivan, David Allouche, George Katsirelos, Thomas Schiex, Matthias Zyt-
nicki, and Simon de Givry. Multi-language evaluation of exact solvers in graphical model discrete
optimization. Constraints, 21:413-434, 2016.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the 3rd
International Conference for Learning Representations (ICLR), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

V. Kolmogorov. Convergent Tree-Reweighted Message Passing for Energy Minimization. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 28(10):1568—1583, October 2006.

Vladimir Kolmogorov. A new look at reweighted message passing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(5):919-930, 2015. doi: 10.1109/TPAMI.2014.2363465.

Jonathan Kuck, Shuvam Chakraborty, Hao Tang, Rachel Luo, Jiaming Song, Ashish Sab-
harwal, and Stefano Ermon. Belief propagation neural networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 667-678. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/07217414eb3fbe24d4e5bbcafb9lcal8-Paper.pdfl

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In Neural Information Processing Systems, 2018.

Jerry Chun-Wei Lin, Yinan Shao, Ji Zhang, and Unil Yun. Enhanced sequence labeling based on
latent variable conditional random fields. Neurocomputing, 403:431-440, 2020.

Hugues Marchand, Alexander Martin, Robert Weismantel, and Laurence Wolsey. Cutting planes in
integer and mixed integer programming. Discrete Applied Mathematics, 123(1):397-446, 2002.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 47264—47278. Curran
Associates, Inc., 2023.

12

https://proceedings.mlr.press/v130/garcia-satorras21a.html
https://proceedings.mlr.press/v130/garcia-satorras21a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/07217414eb3fbe24d4e5b6cafb91ca18-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/07217414eb3fbe24d4e5b6cafb91ca18-Paper.pdf

Under review as a conference paper at ICLR 2026

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra
Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yu-
jia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks,
2021. URL https://arxiv.org/abs/2012.133409.

Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity, volume 32. IEEE, 01 1982. ISBN 0-13-152462-3.

Judea Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. In Proba-
bilistic and causal inference: the works of Judea Pearl, pp. 129—138. 2022.

Yun Peng, Byron Choi, and Jianliang Xu. Graph learning for combinatorial optimization: A survey
of state-of-the-art. Data Science and Engineering, 6,06 2021. doi: 10.1007/s41019-021-00155-3.

Meng Qu, Yoshua Bengio, and Jian Tang. GMNN: Graph Markov neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5241-
5250. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/qula.
html.

Masaki Saito, Takayuki Okatani, and Koichiro Deguchi. Application of the mean field methods to
mrf optimization in computer vision. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1680-1687, 2012.

Martin J. A. Schuetz, J. Kyle Brubaker, and Helmut G. Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367-377, April 2022.

Sergey Shebalov, Young Woong Park, and Diego Klabjan. Lifting for mixed integer programs with
variable upper bounds. Discrete Applied Mathematics, 186:226-250, 2015.

Wenkang Su, Jiangqun Ni, Xianglei Hu, and Jessica Fridrich. Image steganography with symmet-
ric embedding using gaussian markov random field model. IEEE Transactions on Circuits and
Systems for Video Technology, 31(3):1001-1015, 2021.

Shixiang Tang, Dapeng Chen, Lei Bai, Kaijian Liu, Yixiao Ge, and Wanli Ouyang. Mutual crf-
gnn for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2329-2339, June 2021.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adrian Romero, P. Lio, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations (ICLR),
2018.

M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. Map estimation via agreement on trees: message-
passing and linear programming. IEEE Transactions on Information Theory, 51(11):3697-3717,
2005.

Chaohui Wang, Nikos Komodakis, and Nikos Paragios. Markov random field modeling, inference
& learning in computer vision & image understanding: A survey. Computer Vision and Image
Understanding, 117(11):1610-1627, 2013.

Y. Weiss and W.T. Freeman. On the optimality of solutions of the max-product belief-propagation
algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 47(2):736-744, 2001.
doi: 10.1109/18.910585.

Xuan Wu, Di Wang, Lijie Wen, Yubin Xiao, Chunguo Wu, Yuesong Wu, Chaoyu Yu, Douglas L.
Maskell, and You Zhou. Neural combinatorial optimization algorithms for solving vehicle routing
problems: A comprehensive survey with perspectives, 2024.

Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, and Enhong Chen. Graph convolutional networks
with markov random field reasoning for social spammer detection. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(01):1054-1061, Apr. 2020.

13

https://arxiv.org/abs/2012.13349
https://proceedings.mlr.press/v97/qu19a.html
https://proceedings.mlr.press/v97/qu19a.html

Under review as a conference paper at ICLR 2026

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453-5462, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Chaolong Ying, Xinjian Zhao, and Tianshu Yu. Boosting graph pooling with persistent homology.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun, Richard
Zemel, and Xaq Pitkow. Inference in probabilistic graphical models by graph neural networks,
2019. URL https://arxiv.org/abs/1803.07710.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching with
channel-independent embedding and hungarian attention. In International conference on learning
representations, 2019.

Elkafi Hassini Yunfei Ma, Amir Amiri and Saiedeh Razavi. Transportation data visualization with
a focus on freight: a literature review. Transportation Planning and Technology, 45(4):358-401,
2022.

J. Zhang. The mean field theory in em procedures for blind markov random field image restoration.
IEEFE Transactions on Image Processing, 2(1):27-40, 1993.

Zhen Zhang, Fan Wu, and Wee Sun Lee. Factor graph neural networks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 8577-8587. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/61c66a2fde6el10dc9clo6ddf9d19745d6-Paper.pdfl

14

https://arxiv.org/abs/1803.07710
https://proceedings.neurips.cc/paper_files/paper/2020/file/61c66a2f4e6e10dc9c16ddf9d19745d6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/61c66a2f4e6e10dc9c16ddf9d19745d6-Paper.pdf

Under review as a conference paper at ICLR 2026

(wmaz)
Tmaz € {1,2,3,4,5}

TP . . |

Padding

Figure 2: This illustrates the padding procedure for unary loss terms ¢(z) and clique loss terms
(x;, xj,), with |X| = 5. Zpmq, denotes the variable that has the maximum value range. The
elements shown in purple represent the energy values in the original ¢ and . After padding, the
dimension of vector ¢, as well as each dimension of the energy tensor ¢(z;, x;,)), will be 5. The
padded portion is indicated in orange, with values either max(¢) or max(%)).

A PADDING PROCEDURE

The schematic diagram of the padding procedure is in Fig. 2] In this example, we consider the case
where |X'| = 5. We start with the unary energy vector for x; denoted as ¢(z;) = {1, 1, 3}, which
has three states. Before padding, the highest value in this vector is 3, highlighted in red, and this
value will be used for padding. The padded vector is shown on the right-hand side of the figure,
with the padded portion indicated in orange. For the clique terms, we will apply padding similarly
to the unary terms. The original energy matrix for the clique involving nodes ¢, j, [has a dimension
of 3 x 3 x 4. Given that | X'| = 5, we need to pad the matrix so that ¢ (z;, z;, ;) € R5*%*5_ In this
case, the largest value in the original energy matrix is 4. As depicted in the figure, all padded values
in the orange area are filled with 4.

B LIMITATIONS

Our proposed GNN-based approach, while effective for complex MRF problems, presents several
limitations worth acknowledging. The method’s computational overhead makes it less efficient for
small instances where traditional algorithms may perform adequately without the preprocessing and
inference costs of neural networks. Additionally, memory requirements for maintaining graph struc-
tures during message passing can become prohibitive for extremely large MRFs. Future work should
focus on fully fully leveraging the potential of our method and balancing the trade-off between pow-
erful representations and computational efficiency.

C FULL RESULTS ON PAIRWISE SYNTHETIC INSTANCES

In this section we show the full statistics about the 5 trials we have on the pairwise synthetic instances
we have with different sizes and different energy formulations. All the result are shown in Table. 4]

D RESULTS OF UAI INFERENCE COMPETITION 2022 DATASET

Table. [5) and Table. [f] shows the final results of our NEUROLIFTING and the baselines on pairwise
cases and high-order cases from the UAI Inference Competition 2022 separately. In Table. [7] we
present the inference results of NEUROLIFTING using various dimensions of feature embeddings
applied to the pairwise cases. The results indicate that the dimensionality of the feature embeddings
is indeed a factor that influences model performance. However, in most cases, a moderate dimen-
sion is sufficient to achieve high-quality results. This suggests that while increasing dimensionality

15

Under review as a conference paper at ICLR 2026

Table 4: Results on ER graphs with state numbers range from 2 to 6. Numbers out of the bracket
correspond to the obtained energy values, the number in the brackets is the final loss given by the
loss function.

Graph #NodesHEdges LBP TRBP Toulbar2 - NEUROLIFTING
nergy Loss
P_potts_| 1K/7591 22215700 -21365.800 -22646.529 -21791.868 + 218.106 -21799.268 + 216.075
P_potts 2 SK/37439 | -111319.000 -105848.000 -110022.248 -105762.092 + 434.674 -106016.855 + 168.861
P_potts 3 [0K/75098 | -221567.000 -210570.000 -218311.424 -211406.914 + 1489.099 -210182.681 + 275.164
Ppotts4 SO0k248695 | 12411200 13454600 12955.120 12219.817 = 538960 11811.682 + 123.877
Ppotts.5 SO0k249624 | 25668.500 35380.000 12468.172 12010.036 = 266.610 11673.708 + 146,513
Ppois 6 S0k/300181 | 17609.800 17362.600 17635791 18399.913 + 1475.526 16988.347 + 163.587
Ppots7 50k299735 | 16962500 16962500 19532817 17480.701 + 212.084 17265434 + 140.904
Ppois 8 SOK/374160 | 24552400 24596800 25446235 26115.840 & 1677.627 24668.087 + 163.587
Ppots O S0K/375603 | 25099.800 25095.600 25502495 26348.525+ 1095319 25189.789 + 132.693
P_random_1 1K/7540 4901100 4505020 -4900.759 -4570.079 = 31.228 4574.664 + 31411
Prandom?2 SK/37488 | 24059900 -22034000 -24139.194 21774416 + 52910 -21798.702 + 32.389
Prandom3 10K/74518 | -47873200 -47002.000 -48107.172 -41953.991 + 237.577 -41972.379 + 216574
Prandom4 50k/249554 | 12881500 14342300 12233890 12552252+ 30.311 11983 388+ 213.454
Prandoms 50k/249374 | 12478300 13337000 12835994 12308580 + 14.045 11945450 + 194.481
Prandom 6 S0k/299601 | 16723.600 16754500 18031.964 17705219 =435.560 17207.997 = 405.217
Prandom7 50K/299538 | 16689200 16701.600 18179.548 18343.026 + 1448.821 16971435 + 209.021
Prandom8 50K/374203 | 24556.000 24556.000 25549.504 25049.446 + 995956 24787343 + 163.587
Prandom O S0K/374950 | 24635.600 24689.500 25908.500 25871.264 + 1087915 24811354 + 171315

may provide some advantages, the decision should be made by considering both performance and

computational efficiency.

Table 5: Results on the UAI inference competition 2022. Numbers correspond to the obtained

energy values. Best in bold.“opt” denotes it is the optimal solution.

Graph #Nodes/#Edges] LBP ~ TRBP Toulbar2 . NEUROLIFTING
nergy Loss
ProteinFolding 11 400/7160 | -3106.080 -3079.030 -4461.047 -3976.908 + 52.047 -4018.784 + 36.491
ProteinFolding 12 250/1848 | 3570.210 3604.240 3562.387(opt) 16137.682 + 16.020 16090.801 = 22.869
Grids_19 1600/3200 | -2250.440 2103.610 -2643.107 -2400251 +20.061 -2398.078 + 16.010
Grids 21 1600/3200 |-13119.300 -12523.300 -18895.393 -16592.926 + 94.368 -16605.564 + 113.096
Grids 24 16003120 |-13210.400 -13260.900 -18274302 16323.767 + 171.950 -16222.104 + 222.593
Grids 25 1600/3120 | -2170.890 -2171.050 -2620.268 -2361.900 & 10.231 -2361.055 + 12.678
Grids 26 400/800 | -2063350 -1903.910 -3010.719 -2595.041 + 43306 -2577.378 + 39.370
Grids 27 1600/3120 | -9024.640 -9019.470 -12284.284 -10898.595 + 160.435 -10771.257 + 170.329
Grids 30 400/760 | -2142.890 -2154.910 -2084.248 -2651.035 + 35.508 -2676.246 + 19.886
Segmentation 11 228/624 | 329.950 339.762 312760 (opt) 432291 + 34208 391.971 + 40.099
Segmentation 12 231/625 75867 77.898 51151 (opt) 90.248 +22.655 105.639 + 21.165
Segmentation 13 225/607 | 75299 88.554 49.859 (opt) 80.156 + 6.462 78.685 + 18.546
Segmentation 14 231/632 | 95619 98691 92334 (opt) 102263 +7.160 101.268 + 5467
Segmentation 15 229/622 | 412.990 418.853 380.393 (opt) 417.276 + 22357 408.214 + 27.037
Segmentation 16 228/610 | 100.853 101.670 95.000 (opt) 102.687 & 4.571 101.687 + 7.358
Segmentation 17 225/612 | 421.888 432012 407.065 (opt) 445.843 + 24459 478.881 + 32.824
Segmentation 18 235/647 | 100389 98411 82.669 (opt) 104.721 + 6.489 96315 + 6.124
Segmentation 19 228/624 | 86.589 86.692 58704 (opt) 96.173 + 4.731 84.882 + 10.063
Segmentation 20 232/635 | 289.435 291527 262.216 (opt) 335.245 +36.163 315.482 + 24.268

Table 6: Results on high-order cases of the UAI inference competition 2022. Numbers correspond

to the obtained energy values. Best in bold.

Graph

#Nodes/#Cdges

Toulbar2 (1200s) ~ Toulbar2 (3600s)

NEUROLIFTING

Energy

Loss

Maxsat_gss-25-s100
BN-nd-250-5-10
Maxsat_mod4block_2vars_10gates_u2_autoenc
Maxsat_mod2c-rand3bip-sat-240-3.shuffled-as.sat05-2520
Maxsat_mod2c-rand3bip-sat-250-3.shuffled-as.sat05-2535

31931/96111
250/250
479/123509
339/2416
352/2492

-145969.060
155.129
-186103.111
-3734.627
-3863.259

-186

-145969.060
154.610

-3737.076
-3863.259

189.395 + 5.424
103.111

-139904.266 + 1717.483

146166.620 + 41250.035
-3511.994 + 220.654
-3686.567 + 166.998

-139914.341 £ 1710.139
187.729 + 4.966
-146166.797 + 41249.859
-3511.822 +220.471
-3686.085 + 166.499

16

Under review as a conference paper at ICLR 2026

Table 7: Full results on the UAI inference competition 2022 of NEUROLIFTING with different
feature dimensions. Numbers correspond to the obtained energy values.

Graph #Nodes/#Edges | dim=64 dim=512 dim=1024 dim=4096 dim=8192
ProteinFolding_11 400/7160 -3892.949 -3886.701 -3946.168 4065.294 -4003.323
ProteinFolding_12 250/1848 16064.795 16068.406 16051.798 16088.073 16071.324

Grids_19 1600/3200 -2355.159 -2404.975 -2337.281 -2341.2746 -2373.618
Grids_21 1600/3200 -16478.466 -16169.0320 -16446.410 -16209.017 -16278.668
Grids_24 1600/3120 -16008.008 -15900.249 -15841.799 - 15608.162 -15948.219
Grids_25 1600/3120 -2343.547 -2353.223 -2319.899 -2306.686 -2288.182
Grids_26 400/800 -2532.837 -2608.395 -2553.781 -2559.572 -2535.464
Grids_27 1600/3120 -10748.024 -10704.057 -10514.857 -10389.031 -10665.737
Grids_30 400/760 -2563.274 -2631.862 -2640.044 -2691.091 -2649.462
Segmentation_11 228/624 330.541 349.906 334.882 356.895 337.312
Segmentation_12 231/625 74.705 74.029 155.062 79.151 105.801
Segmentation_13 225/607 67.371 86.064 69.430 72.394 112.516
Segmentation_14 231/632 94.192 96.501 100.582 104.091 96.572
Segmentation_15 229/622 388.223 386.701 397.246 407.731 390.641
Segmentation_16 228/610 99.086 99.690 111.121 98.209 108.360
Segmentation_17 225/612 424.686 426.130 425.192 425.240 427.810
Segmentation_18 235/647 89.905 101.307 94.224 88.854 88.809
Segmentation_19 228/624 76.244 78.337 74.284 69.116 70.770
Segmentation_20 232/635 298.802 301.802 302.673 304.457 312.970

Segmentation 14 Jes Synthetic Instance 3 Jes Synthetic Instance 5
500

400 3

Loss.
w

300 2

200

20 40 60 80 100 20 40 60 80 100 20 40 60

80 100 120 140
Iteration Iteration Iteration

Figure 3: The loss curves of the Segmentation_14, P_potts_6 and P_potts_8 from pairwise potts
synthetic problems.

E MORE ANALYSIS

Efficiency vs Solution Quality. We evaluate the performance of the NEUROLIFTING using the
same network size and a consistent learning rate of le-4 on the Segmentation_14 dataset from the
UALI 2022 inference competition, along with two of our generated Potts instances: P_potts_6 and
P_potts_8. This setup allows us to observe the trends associated with changes in graph size and
sparsity. The results are presented in Fig. [3] It is seen that the model converges rapidly when
the graph is small and sparse, within approximately 20 iterations on the Segmentation_14 dataset.
Comparing P_potts_6 and P_potts_8, we observe that though both graphs are of the same size, the
denser graph raises significantly more challenges during optimization. This indicates that increased
size and density can complicate the optimization process, and NEUROLIFTING would need more
time to navigate a high quality solution under such cases.

F GNN FORMULATIONS

We summarized the popular GNN message passing formats in Table. [§]to show the logic behind the
GNN backbone selection of our work.

17

Under review as a conference paper at ICLR 2026

Table 8: Graph convolutions in typical GNNs

Graph Convolutions Neighbor Influence
Gen AP =g (Wk Y jentoyos (deg(i) dcg(j))*lﬂhg’“*”) Unequal
GAT R = (Z]e/\/(z)um Qi thﬁ-k*l)) Unequal
GraphSAGE 1®) = & (Wk Chi A Wi (NOD ™ Seno hg.""*”) Equal

G RESULTS ABOUT THE ANALYSIS EXPERIMENTS

In this section, we present the result figures from the analysis in Section. [5.4] These include the
loss landscape visualization (Fig.[d), the average loss across different GNN backbones(Fig. [3)), the
comparison of different optimizers during training(Fig. [6), and the inference time comparison with
Toulbar2 on different size of PCI problems(Table. [9).

1 layer 2 layers 5 layers 8 layers
- T —— #-f T
e N // \\ /7 A

7 S ’ N
N

Ve 7’

7 N 7’

7’ N s
7’

s, N
e S P N
, N 4 N
, N e S
,/ \\ , N Ve AN
'
|

Figure 4: The landscape of instance Segmentation_19. From top to the bottom, each
column correspond to network layer {1,2,5,8}. The first row is the landscape range
from [—10, +10] for both ¢ and) direction. The second row is the landscape range from
[—1, +1] for both § and 7 direction.

Pairwise Cases(UAI 2022) PCl Instances Sythetic Data
Grapr

80 100 0 20 40 60 80 100

80 100 o 20 40 60
Iteration Iteration

0 20 4

o 60
Iteration

Figure 5: The average loss curves over UAI inference competition 2022 pairwise cases, PCI in-
stances and synthetic instances using GraphSAGE, GCN and GAT as the GNN backbones.

H VISUALIZATION SETUP

The core idea of the visualization technique proposed by (2018)) involves applying per-
turbations to the trained network parameters 6* along two directional vectors, d and n: f(a, §) =

L(6* +«d + Bn). By doing so, we can generate a 3-D representation of the landscape corresponding
to the perturbed parameter space.

We sampled 250000 points in the o — 3 plane, where both a and 3 range from -10 to 10, to obtain
an overview of the loss function landscape. Subsequently, we focused on the region around the
parameter 6* by sampling an additional 10,000 points in a narrower range, with « and 3 both from
—1tol.

18

Under review as a conference paper at ICLR 2026

Loss

Loss Curve of Different Optimizers

5 - SGD
RMSprop
—— Adam

40 60
Iterations

80 100

Figure 6: The average loss curves over UAI inference competition 2022 pairwise cases using differ-

ent optimizers.

130

125

Loss

115

110

105

Loss over number of layers

3 4 5 6
Number of Layers

Figure 7: The training loss of instance Segmentation_19 after convergence of using network layer

number {1, 2,5, 8}.

I READ UAI FORMAT FILES

An example data file in UAI format is provided in Box. [l This Markov Random Field consists
of 3 variables, each with 2 possible states. Detailed information can be found in the box, where
we illustrate the meanings of different sections of the file. Notably, in the potential section, the
distributions are not normalized. During the BP procedure, these distributions will be normalized to
prevent numerical issues. However, in the energy transformation phase, we will utilize these values

directly.

19

Under review as a conference paper at ICLR 2026

Table 9: Time comparison between Toulbar2 and NEUROLIFTING on PCl instances.”-” if the solving
process is already stopped.

Instances | Algorithm/Solver | 200s | 400s | 600s | 800s | 1000s | 1200s
PCL 1 Toulbar2 18.134 - -
- NEUROLIFTING 18.211 (10s in total) - -
PCL2 Toulbar2 98.364 - - -
N NEUROLIFTING 98.446 (16s in total) - - -
PCI3 Toulbar2 1003.640 - - -
N NEUROLIFTING | 1003.640 (71s in total) - - -

PCL4 Toulbar2 428.299 426.806 | 426.806 426.806 426.806 426.806
- NEUROLIFTING 408.508 407.6304 | 407.419 - - -
PCL5 Toulbar2 1128.244 1121.325 | 1121.325 | 1121.325 1121.325 | 1121.325

- NEUROLIFTING 1222.281 1086.899 | 1077.858 | 1074.3094 | 1070.8013 | 1069.875

Example.uai

MARKOV //Instance type

3 //Number of vairables

222 //State number of each variable

S5 //Number of cliques that has potentials

10 /I means this clique is a variable, and the variable is 0.

11

12

201 //2 means this clique is an edge, the edge is (0, 1).

3012 //3 means this clique includes 3 variables, and the clique is (0, 1, 2).

2 //The number 2 indicates that the potential in the next line has two values.
0.10.9 //The potential of variable 0 is 0.1 for state 0 and 0.9 for state 1.

2
0.110

2
0.50.5

4
0.1 1.0 1.0 0.1/The potential of the state combinations for variables 0 and 1 is given in the
order of (0,0), (0,1), (1,0) and (1,1).

8
0.12.00.10.10.10.10.1 2.0 //The potential of the state combinations for variables 0, I,
and 2 is given in the order of (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), and so on.

. J

Since the transformation of variable energies and clique energies follows the same procedure, we
will use the edge (0, 1) to illustrate the transformation. The value calculations will adhere to Eq.
In Table. we present the unnormalized joint distribution for the edge (0, 1), while Table.
displays the energy table for the edge (0, 1) after transformation.

Table 10: P(xg,x1) Table 11: O (xo, x1)
Lo |1 Lo 1
Xo Zo
0 0.1 1.0 0 2.303 0
1 1.0 | 0.1 1 0 2.303

20

Under review as a conference paper at ICLR 2026

J PCI PROBLEM FORMULATION

The Mixed Integer Programming format of PCI problems is as follows:

min > ayLi ©)
(3,5)€E
st. znp €{0,1}, VYnEN,peP (Oh)
> zp=1, VneN. ©®b)
peEP
Szt Y zmp— 1< Lig,V(i,5) €E,Vh€{0,1,2}. @b
pPEM;p, PEM;p

where n is the index for devices, and N is the set of these indices. P stands for the possible states
of each device. M;}, stands for the possible states set for node n;. L;; is the cost when given a
certain choices of the states of device ¢ and device j, a;; is the coefficient of the cost in the objective
function. There is an (¢, j) € £ means there exists interference between these two devices.

When using MRF to model PCI problems, each random variable represent the identity state of the
given node and the interference between devices would be captured by the pairwise energy functions.
Next we will introduce how to transform the PCI problem from MIP form to MRF form.

In the original MIP formulation of the PCI problems, three types of constraints are defined. By
combining Eq. [Of] and Eq. [Ob] we establish that each device must select exactly one state at any
given time. Furthermore, the constraint in Eq.] indicates that interference occurs between two
devices only when they select specific states. The overall impact on the system is governed by
the value of L;; and its corresponding coefficient. Given that interference is always present, the
objective is to minimize its extent.

To transform these problems into an MRF framework, we utilize Eq. [Op] to represent the nodes,
where each instance of Eq. [9p] corresponds to the discrete states of a specific node. The constraints
set forth in Eq. Pp] and Eq.%] ensure that only one state can be selected at any given time, thus
satisfying those conditions automatically. By processing Eq.[0F] we can identify the edges and their
associated energies. Ifz,,, and z,), appear in the same constraint from Eq. 9} we can formulate an
edge (i, j). By selecting different values for z,,, and z,,,, we can determine the minimum value of
L;; that maintains the validity of the constraint.

The product of L;; and a,; represents the energy associated with the edge (4, j) under the combina-
tion of the respective states. Once the states of all nodes are fixed, the values of the edge costs also
become fixed. This leads to the conclusion that the objective function is the summation of the ener-
gies across all edges. Since the PCI problems do not include unary terms, we can omit them during
the transformation process. This establishes a clear pathway for converting the MIP formulation
into an MREF representation, allowing us to leverage MRF methods for solving the PCI problems
effectively.

21

Under review as a conference paper at ICLR 2026

Table 12: E(x1,x2)

Z2
T <21 | %22 | %23
Z11 1 0 0
Z12 0 0 1
213 0 1 0
Example
The original problem is
Inlgl L172 + 3L273
st znp € {0,1},
>z =1,

pEP

211+ 221 —1 < Lo
213+ 222 — 1< Lo
212+ 223 — 1< Lo
291 + 231 — 1< Loj3
290+ 2320 —1 < L3
zo3+ 233 —1 < Ly

Then the corresponding MRF problem is

Table 13: E(x2,x3)

T s 231 | %32 | %33
Z91 3 0 0
Z99 0 3 0

Vn € {1,2,3},p € {1,2,3}

IHiIl 912(%1, $2) —+ 9273(.%2, l’g)

vn € {1,2,3}.

the energy on edge (z1, 22) and edge (x2, x3) are shown in Table. [12|and Table.

K LLM STATEMENT

(10)

(1)

In our research process, we utilized large language models primarily to support technical writing
aspects rather than for generating research content. These tools were employed specifically for
grammar checking, spell correction, improving sentence structure, and enhancing the overall read-
ability of the manuscript. All scientific contributions, technical analyses, experimental designs, and
conclusions presented in this paper are the original work of the authors, with language models serv-
ing only as writing assistance tools.

22

	Introduction
	Related work
	Preliminary
	Methodology
	Overview
	Prepossessing
	GNNs as Non-parametric Lifting
	Energy minimization with GNN
	Analysis and Discussion

	Experiment
	Synthetic Problems
	UAI 2022 Inference Competition datasets
	Physical Cell Identity
	Analysis and Ablation Study

	Conclusion
	Reproducibility statement
	Ethics statement
	Padding procedure
	Limitations
	Full results on Pairwise Synthetic instances
	Results of UAI Inference Competition 2022 dataset
	More analysis
	GNN formulations
	Results about the analysis experiments
	Visualization setup
	Read UAI format files
	PCI problem formulation
	LLM statement

