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ABSTRACT

Differentially-Private Stochastic Gradient Descent (DP-SGD) prevents training-
data privacy breaches by adding noise to the clipped gradient during SGD training to
satisfy the differential privacy (DP) definition. On the other hand, the same clipping
operation and additive noise across training steps results in unstable updates and
even a ramp-up period, which significantly reduces the model’s accuracy. In this
paper, we extend the Gaussian DP central limit theorem to calibrate the clipping
value and the noise power for each individual step separately. We, therefore, are
able to propose the dynamic DP-SGD, which has a lower privacy cost than the
DP-SGD during updates until they achieve the same target privacy budget at a target
number of updates. Dynamic DP-SGD, in particular, improves model accuracy
without sacrificing privacy by gradually lowering both clipping value and noise
power while adhering to a total privacy budget constraint. Extensive experiments
on a variety of deep learning tasks, including image classification, natural language
processing, and federated learning, show that the proposed dynamic DP-SGD
algorithm stabilizes updates and, as a result, significantly improves model accuracy
in the strong privacy protection region when compared to DP-SGD.

1 INTRODUCTION

Data privacy protection is becoming increasingly important; not only are data breaches gaining
public attention, but there are also data protection initiatives and data privacy laws in place, such as
the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA).
Deep learning, on the other hand, poses a significant risk of data privacy leakage since the model
embeds information about the training data. For example, both Zhu & Han (2020) and Zhao et al.
(2020) provide paradigms for reconstructing training examples from published models. As a result,
privacy-preserving algorithms are becoming increasingly important for preserving data privacy.

Differential privacy (DP) is a provable and quantifiable method for privacy protection (Dwork, 2006),
which guarantees it nearly impossible for the adversary to differentiate from two neighboring data
sets. However, applying DP to maintain the privacy of the training data in deep learning is extremely
difficult due to the thousands to millions of repetitions1 of privacy budget cost in stochastic gradient
descent (SGD) iterations, resulting in a very high additive noise power that completely degrades the
learning process within a reasonable privacy preserving region.

The first DP-SGD with a reasonable level of accuracy is proposed by Abadi et al. (2016). The
calibrated noise added to the clipped gradient is much smaller than all previous methods due to their
moments-accountant method for tight privacy accounting. Even so, the accuracy drop when compared
to the non-DP model is still significant. In the MNIST dataset, for example, the moment-accountant
based DP-SGD sacrifices accuracy by about 4.5% with the privacy protection level ε = 1.34 (Bu
et al., 2020). Performance will continue to suffer as the level of privacy protection increases. This
motivates us to narrow the performance gap in this paper without compromising privacy.

To begin, motivated by the instability and even ramp-up of DP-SGD updates, as shown later in Fig. 1,
we investigate how to perform a tight DP accounting to enable proactive DP budget allocation for
each training step to avoid unstable updates. Second, under this new privacy accounting framework,
we propose instances of algorithms for proactive privacy budget allocation, such as the sensitivity-
decay method, the growing-µt method, and a hybrid of the two known as dynamic DP-SGD. Third,
we thoroughly validate the performance of dynamic DP-SGD for a variety of deep learning tasks,

1Around 300,000 steps is needed to train large models like GPT3.
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demonstrating consistently significant accuracy improvements over existing methods while preserving
privacy. The technical contributions are summarized below.

• We broaden Gaussian DP’s central limit theorem (CLT) to obtain a tight bound for the
composition of Gaussian mechanisms with different privacy parameters considering subsam-
pling amplification. The closed form of the CLT result facilitates the proactive calibration of
different noise powers and clipping values at each training step.

• We investigate how to proactively allocate the DP cost based on the CLT result in such a
way that the gradient updates are stabilized and thus model performance is improved. We
propose the sensitivity decay and growing-µt methods, and demonstrate that combining
these two methods results in the best performance, which is referred to as dynamic DP-SGD.

• We perform a series of experiments and ablation studies on a variety of neural network
tasks, including image classification, natural language processing, and federated learning,
and show that the proposed dynamic DP-SGD effectively stabilizes gradient updates and
consistently outperforms existing methods. With a strong privacy guarantee, i.e., at ε = 1.2,
dynamic DP-SGD has a performance loss of only 2.49% when compared to the none-DP
version on MNIST dataset, and the loss is reduced to 1.72% in the federated learning setting
for a stronger privacy guarantee, i.e., ε = 1 due to a larger DP amplification.

2 RELATED WORK

The following section summarizes related work on algorithm design and DP accounting for DP-SGD.

DP-SGD Algorithm To improve the model’s accuracy, previous work has concentrated on designing
variations of DP-SGD by estimating the clipping bound and minimizing the bias introduced by
gradient clipping. More precisely, Abadi et al. (2016) propose norm clipping and per-layer clipping,
both of which select clipping values based on gradient differences between different layers. Pichapati
et al. (2019) pioneer AdaClip, a coordinate-wise clipping method that significantly reduces the total
amount of noise required. Thakkar et al. (2019) introduce gradient clipping based on the quantile
statistics of the gradient, which requires additional DP cost to protect those quantiles. Recently, Chen
et al. (2020) analyze the bias introduced by the gradient clipping operation and propose a method
for reducing the bias error by first adding noise before clipping. It’s worth noting that the proposed
dynamic DP-SGD in this paper is compatible with the methods mentioned above and can be used in
tandem to investigate accuracy improvement.

Furthermore, Yu et al. (2019) provide a means of reducing noise variance during the DP-SGD process,
thereby improving model performance; and Zhang et al. (2021b) analyze the DP cost for the same
method using the z-CDP privacy accounting. Due to the loose DP accountings, these methods
have a large performance gap in the high privacy guaranteed region. As demonstrated later in the
experiments, the proposed dynamic DP-SGD improves these results significantly due to the dynamic
clipping operation and tight DP composition.

Privacy Accounting Each step in the DP-SGD process depletes the total privacy budget. Following
T steps of training, DP accounting necessitates the composition of these mechanisms in order to
calculate the total privacy cost in terms of (ε, δ). Simple composition (Dwork et al., 2006; Dwork
& Lei, 2009) with ε = O(T ) and advance composition (Dwork et al., 2010) with ε = O(

√
T ) have

been proposed in the literature. If M1,M2, . . . ,MT are distinct DP mechanisms such that Mi is
(εi, δi)-DP, then it is shown by Murtagh & Vadhan (2016) that computing the exact DP guarantees
for the composition M = M1 ◦M2 ◦ · · · ◦MT is #P-complete. Abadi et al. (2016) propose the
moment accountant of DP-SGD. By establishing a privacy cost function, the moment accountant
imposes a tight constraint on the estimation of privacy loss, calibrating the noise power down to a
practicable level for the first time in the privacy preserving deep learning context. From a broader
perspective, Mironov (2017) proposes to use Rényi divergence to determine the distance between
the outputs of two adjacent datasets, thereby establishing the RDP concept, and Balle et al. (2020)
provide an advance conversion from RDP to (ε, δ)-DP. Due to the inherent use of subsampling in
training neural networks, the DP composition with subsampling DP amplification is studied in detail
by Wang et al. (2019); Balle et al. (2020), which reduce the noise power for the privacy preserving.
Dong et al. (2019) recently propose the concept of f-DP to quantify the privacy cost from a hypothesis
testing perspective, with Gaussian DP (GDP) as a major application. While GDP allows for a
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Figure 1: Experiments on MNIST with DP budget (ε, δ) = (0.4, 10−5) after 5× 103 steps for both
DP-SGD and proposed dynamic DP-SGD. In comparison to SGD without DP protection, DP-SGD
is unstable and has a ramp-up period. In contrast, the gradient norm is stabilized by the proposed
dynamic DP-SGD.

tight composition, computing the exact composition of the Gaussian mechanism with subsampling
amplification is computationally challenging. It is also demonstrated that a computationally efficient
central limit theorem (CLT) can approximate the composition of multiple identical DP mechanisms.
Very recently, Gopi et al. (2021); Zhu et al. (2021) propose optimal composition of DP mechanisms
via numerical methods, but it is unclear how to calibrate different noise power and clipping value at
each step as in the proposed dynamic DP-SGD.

3 AN INSPIRING CASE OF THE UNSTABLE DP-SGD

DP defines an upper bound, i.e., (ε, δ(ε)) on the privacy budget. Lower ε values indicate better
privacy protection. The value δ can be interpreted as the probability of failing to achieve DP. The
neighboring data sets, i.e., X and X ′, which differs by one data record is denoted by X ∼ X ′. The
widely accepted (ε, δ)-DP is defined as below (Dwork, 2006).

Definition 1. ((ε, δ(ε))-DP Profile) A randomized algorithm M(·) gives (ε, δ(ε))-differential privacy
if for any pair of neighboring datasets X ∼ X ′ and any event E,

P(M(X) ∈ E) 6 eεP (M (X ′) ∈ E) + δ,

where the probability P(·) is taken over the randomness of M , and ε ≥ 0. When δ = 0, the algorithm
is ε-DP. Intuitively, this means that we can’t tell whether M was run on X or X ′ based on the results.
As a result, an adversary cannot infer the existence of any specific data record in the input data set.

In a Gaussian mechanism, let Y be the random variable following Gaussian distribution with
Y ∼ N

(
0, σ2Id

)
and f : Xn → Rd. The Gaussian mechanism M(X) = f(X) + Y follows the

DP profile (Wang et al., 2019):

δ(ε;µ) = Φ

(
− ε
µ

+
µ

2

)
− eεΦ

(
− ε
µ
− µ

2

)
, (1)

where

µ =
C

σ
(2)

with C the sensitivity of f(X) and Φ(·) the Gaussian cumulative distribution function. The DP-SGD
is proposed below based on the Gaussian mechanism. Let the model parameters be denoted by
θ. The gradient computed by a data sample x in the SGD is given by gx , ∂fx

∂θ , where fx is the
corresponding loss function. To calibrate the noise required for DP, a paradigm is to first clip the
`2-norm of the gradient, i.e.,

g̃x , CL (gx;C) , gx ·min

(
1,

C

‖gx‖

)
, (3)
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and in the subsequent, to add the calibrated noise ξt ∼ N (0, σ2) with σ = C
µ . Thereby, the DP-SGD

updates at the t-th step is given by (Abadi et al., 2016):

DP-SGD: θt = θt−1 − η
1

|Xt|

(∑
x∈Xt

g̃x + ξt

)
, t ∈ [T ]. (4)

Because of DP’s post-processing property, protecting gradients provides the same level of privacy
protection on the output model. A closer examination of the DP-SGD process in (4) reveals that the
clipping-per-sample operator introduces biases to the original unbiased gradient estimate in the SGD
updates if C is not large enough. It is possible to have an unbiased gradient estimate by increasing C
if C is greater than any ∂fx

∂θ . It does, however, result in an over-calibrated noise power.

Motivations of this work: In standard SGD updates, the gradient norm is reduced to a very small
value. However, because the DP-SGD is followed by evenly consuming the privacy budget, the ratio
of noise power to the true gradient norm in Eqn. (4) would continue to rise, resulting in unstable
updates. This hypothesis is supported by Fig. 1, which displays the average coordinate gradient norm
for all the data records in each step during the iterative updates. It is worth noting that the DP-SGD
gradient norm has a ramp-up period. This phenomenon also appeared in the experiments in (Thakkar
et al., 2019). The observation motivates us to investigate a dynamic DP-SGD to reduce both the
clipping value and the noise power in order to stabilize the updates. As a result, we can control the
rate at which the privacy budget consumed. Despite the idea of a dynamic DP-SGD, existing DP
accounting methodologies are inadequate to facilitate the study on under what criterior to allocate
the privacy budget. As a result, in the following section, we first present an extended CLT of DP
accounting based on Gaussian DP (GDP) (Dong et al., 2019) and then demonstrate how to achieve
dynamic DP-SGD with the extended CLT of GDP to improve model accuracy.

4 DYNAMIC DP-SGD

The dynamic DP-SGD is presented in two parts: an extension of the CLT of GDP, specifically for
dynamic noise and changing gradient clipping values, and the algorithms, which include growing-µt,
sensitivity decay, and dynamic DP-SGD.

4.1 EXTENDED CLT FOR GDP

GDP Preliminary: We first introduce some background about GDP. Let P and Q denote the
distributions of M(X) and M (X ′) with X ∼ X ′, and let φ be any (possibly randomized) rejection
rule for testing H0 : P against H1 : Q. With these in place, Dong et al. (2019) defines the trade-off
function of P and Q as

T(P,Q) : [0, 1] 7→ [0, 1]

α 7→ inf
φ
{1− EQ[φ] : EP [φ] 6 α} . (5)

Above, EP [φ] and 1− EQ[φ] are type I and type II errors of the rejection rule φ, respectively. It is
shown that T(P,Q) ≥ T(N (0, 1),N (µ, 1)) , Gµ, which is referred to as µ-GDP.

In each step of the DP-SGD in (4) with the Gaussian mechanism, it achieves µ-GDP with µ =
C
σ . Consider the sampling scheme PS(X) that each individual data sample (x, y) is subsampled
independently with probability p from the training set to construct Xt. It is shown in (Bu et al., 2020)
that given two neighboring datasets X and X ′, if a randomized mechanismM is Gµ-DP, then

T (M◦ PS(X),M◦ PS (X ′)) > pGµ + (1− p)Id, (6)

where Id(x) = 1− x. Then after a large enough T steps, a Berry-Esseen style CLT result is shown
by Bu et al. (2020) that as T → +∞ and p

√
T → a constant, the composition of the r.h.s. of (6)

converges to a Gµtot -DP with

µtot = p
√
T (eµ2 − 1). (7)

Extended CLT of GDP: The preceding CLT result is based on the assumption that each step satisfies
the same Gµ-DP, which restricts the possibility to calibrate noise for each individual step. Following

4



Under review as a conference paper at ICLR 2022

that, in order to pave the way for DP accounting of a dynamic DP-SGD, we investigate the extended
CLT in which each step t has a different Gµt

-DP. LetMA andMB denote the compositions of
T steps updates for the neighboring data sets X and X ′, respectively. According to (4), each step
consists of subsampling and local updates. Then, we expressMA andMB by

MA ,MT ◦ PST (X) ◦ · · · ◦M1 ◦ PS1(X), MB ,MT ◦ PST (X ′) ◦ · · · ◦M1 ◦ PS1(X ′).

The composition theorem in (Bu et al., 2020) gives

T(MA,MB) > ⊗Tt=1 (p ·Gµt
+ (1− p) Id ) . (8)

The symbol⊗Tt=1 denotes the product of all the T trade-off functions with the form p·Gµt +(1−p) Id ,
which is far from analytically computable. In the following theorem, we develop the CLT for the r.h.s
of (8) with the proof provided in Appendix A.
Theorem 1. Consider a series of adaptive composition mechanismsMt for t ∈ [T ], whereMt

is Gµt
-DP, and each mechanism works only on a subsampled data sets by independent Bernoulli

trial with probability p. The trade-off function for limT→∞⊗Tt=1 (p ·Gµt
+ (1− p) Id ) in (8)

approaches to Gµtot -DP when p
√
T is a constant, where

µtot = p ·

√√√√ T∑
t=1

(
eµ

2
t − 1

)
. (9)

Notably, when µt = µ is substituted for t ∈ [T ], Eqn.(9) reduces to the CLT result in (7).

Theorem 1 reflects that, given the target privacy budget (ε, δ) and the corresponding privacy parameter
µtot obtained by (1), we can proactively allocate privacy cost to each step t ∈ [T ] for a predefined
total number of steps T , according to (9). Because µt is determined by both the clipping value and the
noise power, we can adjust both Ct and σt to control the privacy budget allocation. Sections 4.2-4.4
detail the corresponding algorithms.

4.2 GROWING-µt METHOD

It is expected that the gradient should be decreased during training, thereby, it is natural to reduce the
noise power to stabilize the gradient updates. As a result, we investigate the noise power decay rate
in order to satisfy the µ grow rate and thus control the privacy cost. With (9) in mind, we control the
privacy cost rate by adjusting a hyper-parameter ρµ with

ρµ ,
µT
µ0
, ρµ ≥ 1. (10)

Then the dynamic µt, , which corresponds to the dynamic DP-SGD is given by

µt = (ρµ)t/T · µ0, ∀t ∈ [T ]. (11)

Algorithm 1 µt computation

Require: privacy budget (ε, δ), step #T ,
ρµ.

1: Compute µtot corresponding to (ε, δ)
according to (1).

2: Compute µ0 in (12) by binary
search.

3: Compute σt according to (13) for all
t ∈ [T ].

Given the total privacy budget (ε, δ), the equivalent privacy
parameter µtot of µtot-GDP is obtained according to (1).
Then the rest problem is to determine the initial state µ0.
Once µ0 is obtained, the whole {µt} sequence can be
generated according to (11). By substituting (11) into (9),
we obtain

µ2
tot = p2 ·

T∑
t=1

(
exp

{(
(ρµ)t/T · µ0

)2}
− 1

)
. (12)

Because the above equation is transcendental when ρµ > 1, there is no closed-form solution for µ0.
Nonetheless, the r.h.s of (12) is monotone increasing w.r.t. µ0, and we can thus solve it efficiently
using a numerical method such as binary search. The computation of µt is summarized in Algorithm 1.
The noise power at iteration t can be calculated using a specific expression of µ0 and ρµ:

σt =
C

µ0
(ρµ)−

t
T , ρµ > 1. (13)
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Figure 2: Consumption of privacy bud-
get with different µt increasing rate.

One example is shown in Fig. 2. Given the total DP bud-
get ε = 1.2, growing-µt gives the freedom to adjust the
privacy cost rate, which is the slope of the curve. In Fig 2,
we demonstrate the privacy budget consumption curve for
different ρµ. The solid line (ρµ = 1) represents vanilla
DP-SGD with evenly distributed noise power along with
the step updates. With growing-µt, we can now realize
any µ consumption process under the constraint of the
total DP budget as shown by the dashed lines. Specifically,
the growing-µt slows consumption in the early rounds and
accelerates consumption in the later rounds.

4.3 SENSITIVITY-DECAY METHOD

The gradient norm of a neural network converges to zero once the SGD training converges. This
is not the case for DP-SGD. When the required privacy protection level is high, it requires a large
calibrated noise promotional to the clipping value. The updated gradient norm tends to rise, as shown
in Fig. 1. Based on this discovery, we propose to adjust the sensitivity across training iterations. We
set the evolution of clipping values by

Ct = (ρc)
− t

T · C0, ρc ≥ 1. (14)

Assuming a constant µt, and by substituting µt = µ0 into (9) in Theorem 1, we have the closed form
solution:

µ0 =

√
log

(
µ2

tot

p2T
+ 1

)
, t ∈ [T ]. (15)

With (14) and (15), we can calibrate the noise power at each round by:

σt =
C0

µ0
(ρc)

− t
T , ρc > 1, t ∈ [T ]. (16)

4.4 DYNAMIC DP

Algorithm 2 Dynamic DP-SGD Algorithm

Require: DP budget (ε, δ), sampling rate p and
hyper-parameters: ρµ, ρc and C0.

1: Compute µ0 in Algorithm 1
2: for t = 1, . . . , T do
3: Compute Ct = (ρc)

− t
T · C0 in (14)

4: Calibrate noise : σt = C0

µ0
(ρµ · ρc)−

t
T

5: Sample Xt ∈ X with sampling rate p and
sample noise ξt ∼ N (0, σ2

t I).
6: Compute: θt = θt−1 − η

|Xt|
[
ξt+∑

x∈Xt
CL (gx;Ct)

]
with CL(·) in (3)

7: end for

Because the noise calibration is based on the
clipping value, we incorporate the growing-µt
method into the sensitivity-decay method and re-
fer to this new one as dynamic DP-SGD. It main-
tains the same µt increasing rate as the previous
growing-µt method while having a faster noise
decay rate than the sensitivity-decay method.
We summarize the dynamic DP-SGD algorithm
in Algorithm 2 and conduct extensive experi-
ments to show how dynamic DP-SGD improves
performance.

5 EXPERIMENTS

5.1 DATASETS, MODELS AND BENCHMARKS

Datasets: To conduct a comprehensive test of the dynamic DP-SGD performance, we run experiments
on the following 5 datasets: MNIST, FashionMNIST, IMDB, NAME, and InfiniteMNIST, using
neural network models such as MLP, CNN, LSTM, and Federated Learning. In Appendix A.2,
we describe each data set, the corresponding neural network model, and parameter settings for
each experiment separately. We also go into details about the dynamic DP-SGD federated learning
algorithm to make the paper self-contained.

Benchmarks: Using the aforementioned datasets and models, we compare our proposed dynamic
DP-SGD, growing-µt method, and sensitivity-decay method to the four benchmarks listed below.
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(i) SGD without DP: The SGD method serve as the upper bound of model inference accuracy in
the absence of clipping and additive noise. Please note that the DP-SGD and proposed dynamic
DP-SGD can also be used to obtain the DP-Adam counterparts of an Adam optimizer due to DP’s
postprocessing properties (Dwork & Lei, 2009). For the IMDB data set, we apply the Adam to
compute the performance upper bound, and DP-Adam counterparts for comparison.

(ii) DP-SGD with the CLT of GDP Acountant (Bu et al., 2020): GDP, a recently developed DP
accounting framework, provides a simple, explicit, and tight privacy accounting CLT bound for
the classical DP-SGD with evenly calibrated noise power. It is proved by Dong et al. (2019) that
the CLT of GDP provides a tighter composition bound for DP-SGD than the moment accountant
method (Abadi et al., 2016). As a result, it serves as a standard for our dynamic DP-SGD methods.

(iii) Noise Power Decay with ρ-zCDP Accountant (Yu et al., 2019): This paper proposes decaying
the noise power during the SGD and computing the privacy loss using the ρ-zCDP. However, only
parallel composition is considered, with no regard for DP amplification by subsampling.

(iv) Noise Power Decay with tCDP Accountant (Zhang et al., 2021a): Zhang et al. (2021a) recently
proposed decaying the noise power for DP-SGD training as well as analyzing the DP composition and
subsampling amplification under the truncated concentrated differential privacy (tCDP) framework.

Parameters: We concentrate on the strong privacy guarantee, with ε set to be in the range [0.4, 9]
and δ = 1/(10|X|), where |X| is the training data sample size. It is worth noting that we observed a
significant performance degradation of DP-SGD when performing IMDB tasks. As a result, we also
test large ε values in this case, i.e., ε = 9. The hyperparameters ρc and ρµ are swept in the following
predefined sets: 1/ρc, 1/ρµ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. Other hyper-parameters are
detailed in Appendix A.22.

5.2 RESULTS ANALYSIS

Experiment results for the above five different datasets on MLP, CNN, LSTM, and Federated Learning
models are shown in Table 1-Table 4, along with benchmarks and proposed methods’ performance. It
is worth noting that in the majority of cases, we concentrate on the strong privacy protection region
with ε < 1. As a result, if the DP accountant is not tight enough, it will lead to an overestimation
of the noise power needed, resulting in the noise dominating the gradient and causing the network
to fail to learn. For example, the method in Yu et al. (2019) fails to leverage the subsampling DP
amplification in the DP accounting, resulting in significantly worse performance in the high privacy
guarantee region due to overestimated noise. As a result, we only replicate its CNN model results in
the MNIST and FashionMNIST datasets.

In contrast, the GDP framework proposed by Bu et al. (2020) provides a detailed examination of DP
amplification through subsampling as well as DP composition. Thereby, more precise noise power is
calibrated for the same privacy budget. Specifically, even when there are no dynamics for DP-SGD
updates, it outperforms the accuracy of the noise decay method by Yu et al. (2019) and Zhang et al.
(2021a).

The proposed extended CLT supports the privacy accounting for dynamic clipping and noise power
decay. Separate experiments are carried out with the proposed growing-µt method, sensitivity-decay
method, and dynamic DP-SGD method. The results show that all the three proposed methods improve
performance when compared to the static noise GDP method Bu et al. (2020). In particular, µt grows
at the expense of early convergence speed in order to achieve higher accuracy, while sensitivity decay
ensures more stable convergence. This explains why the performance of sensitivity decay outperforms
that of growing-µt. The dynamic DP-SGD, a combination of the two, improves performance while
causing no additional privacy loss, as demonstrated by the Dynamic DP results in each table.

Experiments with different privacy budgets were conducted, and the results show that the stronger
the privacy protection required (lower ε value), the more noticeable the improvement by the proposed
dynamic DP-SGD method. For example, when ε = 0.4 for the MNIST, even though the noise decay
is adopted by Yu et al. (2019) and Zhang et al. (2021b), however, their model fail to learn due to large
calibrated noise power by the loose DP compositions. In contrast, our method outperforms GDP
method by a large margin, achieving 3.17% when ε = 0.4 and even 4.6% for the LSTM network on

2The code will be available at github.com/dynamic-dp once the paper is accepted.
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NAME. Without compromising privacy, our method consistently outperforms all other benchmarks
on MNIST, FashionMNIST, IMDN, and NAME datasets for CNN, MLP, LSTM, and federated
learning models, as shown in Table1-4.

Table 1: CNN on MNIST and FashionMNIST datasets.

DP Accountant Dynamic Noise MNIST FashionMNIST
ε = 0.4 ε =0.6 ε =1.2 ε =0.4 ε =1.2 ε =2.0

Non-private - 98.83 87.92
ρ-zCDP (Yu et al., 2019) Noise Decay 10.28 10.12 65.33 9.86 63.30 72.18

tCDP (Zhang et al., 2021a) Noise Decay 26.93 83.28 92.60 53.69 76.48 77.58
CLT for GDP (Bu et al., 2020) - 91.18 93.80 95.50 76.77 80.45 82.55

Extended CLT for GDP (Ours)
growing-µt 91.67 94.49 96.06 77.81 80.95 83.10

Sensitivity Decay 93.95 95.17 96.17 78.11 82.83 83.64
Dynamic DP 94.35 95.21 96.34 78.50 83.22 83.81

Table 2: MLP on the IMDB dataset.

DP Framework Dynamic Noise IMDB
ε = 0.5 ε =1 ε =3 ε =6 ε =9

Non-private - 82.85
tCDP (Zhang et al., 2021a) Noise Decay 56.67 58.24 62.15 65.88 70.16

CLT for GDP (Bu et al., 2020) - 63.62 69.71 75.64 77.75 78.60

Extended CLT for GDP(Ours)
growing-µt 64.92 69.85 76.00 78.16 78.56

Sensitivity Decay 65.44 70.25 76.23 78.47 79.42
Dynamic GDP 65.63 70.77 76.64 78.61 79.61

Table 3: LSTM on NAME dataset.

DP Framework Dynamic Noise NAME
ε = 1 ε =2 ε =4 ε =8

Non-private - 80.14
tCDP(Zhang et al., 2021a) Noise Decay 48.13 51.20 57.67 68.53

CLT for GDP (Bu et al., 2020) - 62.71 69.64 73.04 74.15

Extended CLT for GDP(Ours)
growing-µt 64.10 71.25 74.68 75.50

Sensitivity Decay 66.66 71.78 73.67 74.78
Dynamic DP 67.30 72.01 75.03 75.75

Table 4: Federated learning on InfiniteMNIST dataset.

DP Framework Dynamic Noise MNIST-250K MNIST-500K
ε = 0.1 ε =0.4 ε =1 ε =0.1 ε =0.4 ε = 1

Non-private - 98.89 98.96
CLT for GDP (Bu et al., 2020) - 93.47 95.71 96.02 94.82 96.55 96.89

Extended CLT for GDP(Ours)
growing-µt 93.75 95.93 96.13 95.65 96.76 97.05

Sensitivity Decay 94.46 95.90 96.40 95.75 96.83 97.06
Dynamic DP 94.72 96.00 96.55 95.88 96.95 97.22

5.3 HYPER-PARAMETER SENSITIVITY

We then test the robustness of dynamic DP-SGD performance to different values of ρµ and ρc
as shown in Fig. 3. We use grid search to demonstrate the impact of these parameters on model
performance. The dynamic method can consistently improve model performance across a wide range.

5.4 EXACT PRIVACY COST

Though Dong et al. (2019) have shown that the CLT of GDP approximate the true privacy cost with
negligible error, Gopi et al. (2021) recently discovere that the CLT of GDP may underestimate the
privacy cost. The RDP accountant (Wang et al., 2019), on the other hand, overestimates the true cost.
To evaluate the exact privacy cost, thereby, we plot the privacy cost curves for both the proposed
extended CLT of GDP and RDP in Fig. 4. Specifically, we set a target training round and conduct
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Figure 3: Dynamic DP-SGD performance is robust to ρµ and ρc.

privacy accounting for the dynamic DP-SGD based on the extended CLT of GDP as well as RDP3

with the advanced translation method between RDP and (ε, δ)-DP (Balle et al., 2020). Consequently,
the true privacy cost curve must lie somewhere between these two limits. The result of extended
CLT for GDP is reasonable because the privacy cost differences between these two limits are small,
particularly in the high privacy protection region.

It is worth noting that, in addition to the proposed extended CLT for dynamic DP-SGD accounting,
exact accounting can be performed using the recently proposed methods by Gopi et al. (2021) and Zhu
et al. (2021), separately. However, because they both require numerical computation, the computation
of µ0 in (15) becomes much involved.

Figure 4: Upper bound (advanced RDP) and lower bound (extended GDP CLT) of the dynamic
DP-SGD privacy budget cost curves. The true privacy cost curve must lie somewhere between these
two limits. The result of extended CLT for GDP is reasonable because the privacy cost differences
between these two limits are small, especially in the high privacy protection region.

6 CONCLUSIONS

In this paper, we extend the central limit theorem (CLT) of Gaussian DP to perform tight privacy
accounting in order to calibrate dynamic noise for each individual step of stochastic gradient descent
(SGD) updates. We, therefore, are able to allocate a lower privacy cost than the DP-SGD during
updates based on this extended CLT until both methods consume the same target privacy budget at
the predefined update number. Extensive testing on a variety of datasets and models demonstrates
that the dynamic DP-SGD consistently and clearly outperforms existing methods.

For the future work, we intend to investigate how to leverage the recently achievement of numerical
composition methods (Gopi et al., 2021; Zhu et al., 2021) to calibrate the noise power and clipping
value for each individual training step of dynamic DP-SGD.
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