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ABSTRACT

Spatiotemporal forecasting plays an essential role in intelligent transportation sys-
tems (ITS) and numerous applications, such as route planning, navigation, and
automatic driving. Deep Spatiotemporal Graph Neural Networks, which capture
both spatial and temporal patterns, have achieved great success in traffic forecast-
ing applications. Though Deep Neural Networks (DNNs) have been proven to be
vulnerable to carefully designed perturbations in multiple domains like objection
classification and graph classification, these adversarial works cannot be directly
applied to spatiotemporal GNNs because of their causality and spatiotemporal
mechanism. There is still a lack of studies on the vulnerability and robustness
of spatiotemporal GNNs. Particularly, if spatiotemporal GNNs are vulnerable in
real-world traffic applications, a hacker can easily cause serious traffic congestion
and even a city-scale breakdown. To fill this gap, we design One Vertex Attack
to break deep spatiotemporal GNNs by attacking a single one vertex. To achieve
this, we apply the genetic algorithm with a universal attack method as the eval-
uation function to locate the weakest vertex; then perturbations are generated by
solving an optimization problem with the inverse estimation. Empirical studies
prove that perturbations in one vertex can be diffused into most of the graph when
spatiotemporal GNNs are under One Vertex Attack.

1 INTRODUCTION

Spatiotemporal traffic forecasting has been a long-standing research topic and a fundamental appli-
cation in intelligent transportation systems (ITS). For instance, with better prediction of future traffic
states, navigation apps can help drivers avoid traffic congestion, and traffic signals can manage traffic
flows to increase network capacity. Essentially, traffic forecasting can be modeled as a multivariate
time series prediction problem for a network of connected sensors based on the topology of road
networks. Given the complex spatial and temporal patterns governed by traffic dynamics and road
network structure (Roddick & Spiliopoulou, 1999), recent studies have developed various Graph
Neural Networks-based traffic forecasting models (Yu et al., 2018; Wu et al., 2019; Li et al., 2017;
Guo et al., 2019).

These deep learning models have achieved superior performance compared with traditional mul-
tivariate time series forecasting models such as vector autoregression (VAR). However, recent
research has shown that deep learning frameworks are very vulnerable to carefully designed at-
tacks (Kurakin et al., 2016b; Goodfellow et al., 2014; Papernot et al., 2016a; Tramèr et al., 2017;
Kurakin et al., 2016a). This raises a critical concern about the application of spatiotemporal GNN-
based models for real-world traffic forecasting, in which robustness and reliability are of ultimate
importance.

For example, with a vulnerable forecasting model, a hacker can manipulate the predicted traffic
states. Feeding these manipulated values into the downstream application can cause severe prob-
lems such as traffic congestion and even city-scale breakdown. However, it remains unclear how
vulnerable these GNN-based spatiotemporal forecasting models are. Particularly, previous adversar-
ial works cannot be directly applied to fool GNN-based spatiotemporal forecasting models because
of their causality and spatiotemporal mechanism, which is detailed in Section 2.

The goal of this paper is to understand and examine the vulnerability and robustness of GNN-based
spatiotemporal forecasting models. In doing so, we design a One Vertex Attack (OVA) framework
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to break these forecasting models by manipulating only one vertex in the graph. We first propose a
universal attack method against spatiotemporal GNNs by applying the inverse estimation to avoid
using future ground truth. Then, we utilize the genetic algorithm, whose evaluation function is
composed of the proposed universal attack method, to locate the “weakest” vertex. Here the weakest
vertex refers to the vertex where attacking it will cause maximum damage to the forecasting models.
Finally, we generate perturbations by solving an optimization problem.

It should be noted that poisoning all vertices even multiple vertices in real-world applications is im-
possible, because the large scale of graph. For instance, the graph of traffic forecasting applications
generally covers 1000 square kilometers, and it is unrealistic to organize Harker vehicles to poison
all vertices in such a large scale road network. Hence, the proposed one-vertex attack is a realistic
solution to evaluate the robustness and vulnerability of spatiotemporal forecasting models deployed
in real-world applications.

To prove the effectiveness of the proposed OVA method, we test it in two spatiotemporal traffic
datasets with three different Spatiotemporal GNNs. The proposed method can cause at least 15%
accuracy drop, and there are about 10% vertices severely impacted with the boundary of speed
variation limited to 15km/h.

The contribution of this paper can be summarized as follows.

• First, to the best of our knowledge, this is the first study on attacking Spatiotemporal GNNs
by poisoning only one vertex.

• Second, we proposed a novel OVA method that is able to find the weakest vertex and
generate optimal adversarial perturbations.

• Third, we empirically study the effectiveness of the proposed method with multiple exper-
iments on real-world datasets.

2 RELATED WORK

Adversarial Attacks against Time Series Analysis. Some previous works (Chen et al., 2019;
Zhou et al., 2019; Alfeld et al., 2016; Karim et al., 2019) proposed adversarial attack methods
against Autoregressive models or time series classification models. The above works only consider
univariate time series. Different from these works, we focus on complex spatiotemporal domains.
The input of spatiotemporal GNNs is the temporal dynamic graph rather than regular matrices or
sequences. We take the spatial correlation into consideration while the above works didn’t.

Adversarial Attacks against Graph Neural Networks. Many studies (Dai et al., 2018; Zugner
& Gunnemann, 2019; Chang et al., 2020; Tang et al., 2020) utilized Reinforcement Learning (RL),
meta learning, or genetic algorithm to fool GNNs in node, edge, and graph classification domains
by tuning the graph topology. All these studies involve no temporal variation in their graphs, and
they mainly focus on the spatial pattern. These cannot be applied to fool spatiotemporal forecasting
models because of the lack of temporal correlation. Particularly, attacking spatiotemporal forecasing
models deployed in real-world applications by graph topology-based attack methods (Zugner &
Gunnemann, 2019; Chang et al., 2020) are unrealistic, because tuning the graph topology represents
tuning the sensor network that collects spatiotemporal data continuously and any modification on
sensors can be easily sensed by the sensor network manager.

Adversarial Attacks against Recurrent Neural Network. Recent studies (Rosenberg et al., 2019;
Papernot et al., 2016b; Hu & Tan, 2017) demonstrated RNN classifiers were vulnerable to adversar-
ial sequences. These adversarial works require the ground truth to compute adversarial sequences.
Because of the forecasting applications’ causality, the future ground truth is unavailable. Besides,
these works focus on regular vectors or matrices, rather than irregular graphs. Hence these adver-
sarial sequence generation models cannot be directly applied to attack spatiotemporal GNN-based
forecasting models.

One Pixel Attack for Fooling Deep Neural Networks. Su et al. (2019) utilized Differential Evo-
lution (DE) to generate the perturbation to poison one pixel in images, and then fool CNNs. Similar
to one pixel attack, we only poison one vertex in graphs. However, images are regular-structured,
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and Su et al. (2019) consider no temporal variation. In addition, one pixel attack requires the ground
truth to compute perturbations. In forecasting applications, the ground truth is the future traffic state,
and it is inaccessible. The above features prevents one pixel attack from poisoning spatiotemporal
forecasting models.

3 METHODOLOGY

3.1 SPATIOTEMPORAL SEQUENCE FORECASTING AND SPATIOTEMPORAL GNNS

Because of the impossibility of deploying sensors as a regular grid in real-world applications, the
form of spatiotemporal data is generally irregular. Consequently, to better mine the spatial informa-
tion, the spatiotemporal sequence is represented as a temporally varied graph rather than a regular
grid. The spatiotemporal sequence can be represented as Gt = {Vt, E ,W}, where E is the set of
edges in the graph, W is the weighted adjacency matrix whose every element describe the spatial
relationship between different variates, Vt = {v1,t, . . . , vn,t} is the set of condition values (e.g.
traffic speed and traffic volume) collected from sensors on timestamp t, and n is the number of
sensors (Shuman et al., 2013).

Multistep spatiotemporal sequence forecasting can be formulated as Equation 1. Previous conditions
from timestamp t−N + 1 to t are fed into a forecasting model F that outputs predictions of future
conditions from t + 1 to t + M . In general, M ≤ N . The above process is customarily called
sequence-to-sequence (seq2seq) forecasting.

{G∗t+M , ...,G∗t+1} = F ({Gt, ...,Gt−N+1}) (1)

where G∗i denotes the prediction of the condition on timestamp i.

Most state-of-art spatiotemporal sequence forecasting models output a single future condition, which
will be in turn fed as input into the model to forecast the next condition. This process is named as
the recursive multistep forecasting, which can be represented as Equation 2.


G∗t+1 = F ({Gt,Gt−1, ...,Gt−N+1})
G∗t+2 = F ({G∗t+1,Gt, ...,Gt−N+2})

...
G∗t+M = F ({G∗t+M−1,G∗t+M−2, ...,Gt−N+M})

(2)

Most state-of-art forecasting models, F , are constructed based on spatiotemporal GNNs (Li et al.,
2017; Wu et al., 2019; Yu et al., 2018; Guo et al., 2019). Spatiotemporal GNNs are composed of both
spatial layers and temporal layers. In general, gated linear unit (GLU) or Gated-CNN (Bai et al.,
2018) works as the temporal layer to capture the temporal patterns embedded in the spatiotemporal
sequence, and the Graph-CNN (Shuman et al., 2013; Bruna et al., 2014) works as spatial layers to
capture the spatial patterns.

In this paper, we focus on adversarial studies towards recursive multistep spatiotemporal sequence
forecasting. Our studies can be easily extended to seq2seq multistep forecasting.

3.2 UNIVERSAL ADVERSARIAL ATTACK AGAINST SPATIOTEMPORAL GNNS

In this section, we point out the form of adversarial attack against the spatiotemporal forecasting,
and outline the gap between attacking spatiotemporal GNNs and attacking CNNs or GNNs. Then
we propose the inverse estimation to fill the gap. Finally, we design the universal adversarial attack
against spatiotemporal GNNs.

3.2.1 ADVERSARIAL ATTACKS AGAINST SPATIOTEMPORAL FORECASTING

Adversarial attacking against recursive multistep forecasting can be formed as Equation 3. The goal
is to mislead spatiotemporal GNNs to generate false forecasting by adding perturbations.
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F ({Gt, ...,Gt−N+1}+ {ρt, ..., ρt−N+1}) 6= Gt+1

s.t. ‖ρi‖p ≤ ξ ∀ i ∈ {t, ...t−N + 1} (3)

where ρi denotes perturbations on timestamp i, ‖·‖p denotes `p-norm, and ξ denotes the pre-defined
constant to constrain the perturbation scale. In real-world traffic applications, ξ control the hacker’s
driving behavior to balance the attack performance and detection avoidance.

Because of spatiotemporal sequence’s causality, we cannot access the future condition that works
as the ground truth of forecasting models. In other words, Gt+1 in Equation 3 is not available
on timestamp t. Previous adversarial studies against CNNs, RNNs, and GNNs (Dai et al., 2018;
Papernot et al., 2016b; Kurakin et al., 2016b; Alfeld et al., 2016) almost all involve the ground truth
in the perturbation computation. In fooling spatiotemporal GNNs as Equation 3, the ground truth,
Gt+1, is still inevitable. As we mentioned above, the future condition is unavailable, and thus we
cannot generate adversarial perturbations directly as Equation 3.

3.2.2 INVERSE ESTIMATION

We propose Inverse Estimation to avoid using the future ground truth in fooling spatiotemporal
GNNs. First, Equation 3 is transformed to Equation 4, which represents our goal is to fool spa-
tiotemporal GNNs to generate opposite forecasting.

arg min
{ρt,...,ρt−N+1}

‖F ({Gt, ...,Gt−N+1}+{ρt, ..., ρt−N+1})−G̃t+1‖2+α·
t∑

i=t−N+1

max(0, ρ2i−ξ) (4)

where G̃t+1 denotes the opposite condition of Gt+1, α denotes the penalty factor. The constrain in
Equation 3 is replaced with a regularization term in Equation 4 to constrain the perturbation scale.
The penalty factor α is set as 100 to make sure the scale penalty term is much larger than the first
term in Equation 4 so that the scale of the computed perturbation is strictly forced. The above idea
is similar to targeted attacks (Akhtar & Mian, 2018). However, classical targeted attacks still utilize
the ground truth in perturbation computations.

To use no future information, the opposite of future condition, G̃t+1, is estimated by computing the
opposite of the most recent condition, which is represented as Equation 5.

G̃t+1 ← G̃t = {Ṽt, E ,W} (5)

where Ṽt = {ṽ1,t, ..., ṽn,t} denotes a collection of condition values opposite to these collected from
sensors. Take the traffic condition for instance, when the condition is “congested/low speed”, its
opposite is “free/high speed”, and vice versa. ṽi,t, the opposite of vi,t, is computed as Equation 6.

ṽi,t =

{
max(V), vi,t < mid

min(V), vi,t ≥ mid
(6)

where mid, max(V), and min(V) represent the mean, maximum, and minimum value of the spa-
tiotemporal dataset, respectively.

Table 1: Comparison on different estimation strategies.

strategy PeMS
MAE MAPE (%) RMSE PER(%)

MR 1.48 3.30 2.40 13.33
STGCN 1.39 3.06 2.37 10.55
ARIMA 1.92 3.64 3.02 12.17

IE 0.56 0.99 1.63 99.56
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Inverse Estimation outperforms directly estimating the future ground truth. The error of the estima-
tion on the opposite of ground truth is smaller than errors of any direct estimation. To validate the
above assumption, we carry out a test on PeMS dataset. We compare the proposed inverse estimation
with three types of ground truth estimation methods, namely estimating by the most recent traffic
condition (MR), spatiotemporal graph convolution neural network (STGCN), and AutoRegressive
Integrated Moving Average (ARIMA). The experiment result is shown as Table 1. The proposed In-
verse Estimation’s performance, including mean absolute error (MAE), mean absolute percent error
(MAPE), root mean square error (RMSE), and perfect estimation ratio (PER), is better than others’.
It should be noted 99.56% IE’s estimations are exactly equal to the opposite of ground truth.

3.2.3 UNIVERSAL ATTACKS AGAINST SPATIOTEMPORAL SEQUENCE FORECASTING

Adversarial perturbations generated by the subsection 3.2.2 vary with the input graph. Only if the
perturbation keeps being updated, it will be effective all the time. The universal attack denotes
that the perturbation is consistent and independent from the input, which can be represented as
Equation 7.

arg min
ρu

‖F ({Gt, ...,Gt−N+1}+ {ρu})− G̃t+1‖2 + α ·max(0, ρ2u − ξ) (7)

where ρu denotes the universal perturbation.

The universal perturbation can be generated by solving equation 7. After the universal perturbation
is generated, there is no need to update it when new data come. The proposed universal attack will
be utilized to locate which vertex to attack for one vertex attack.

3.3 LOCATING WEAKEST VERTEX

In this subsection, we first mathematically define the “weakness” of a vertex in a graph. The “weak-
ness” of the jth vertex denotes the number of influenced vertices when the jth vertex is attacked by
the proposed universal universal perturbation, which is shown as equation 8.

weakj = ‖Kθ

{
F ({Gt, ...,Gt−N+1}+Mj · ρu)− Gt+1

}
‖0 (8)

where Mj · ρu denotes that all elements except the one corresponding jth vertex are set to 0, and
Kθ{·} denotes an element-wise filter to set elements whose absolute value is smaller than θ to 0. A
greater “weakness” value represents more vertices will be influenced if the jth vertex is attacked.
We will attack the vertex with the largest “weakness” value. In traffic forecasting applications, θ is
set as 5 empirically.

A possible method to locate the weakest vertex is the complete traversal algorithm. However, this
method is time consuming. To reduce the time cost, we utilize the genetic algorithm to locate the
weakest vertex, which is shown as follows.

• First, the initial candidate set is composed of s vertices with the most edges.

• Second, the updated candidate set is computed as equation 9

vi(g + 1) = vr1(g) + p(vr2(g)− vr3(g)) (9)

where vi denotes the position of the ith vertex, g denotes the gth iteration, r1, r2, and r3
are random numbers with different values, and p is the parameter set to be 0.5 empirically.

• Third, compare the updated candidates’ weakness with the previous candidates’, then keep
s candidates with the largest weakness value.

• Fourth, repeat the second and third step until the candidate set is consistent or g > 10.
Select the weakest vertex to attack. It should be noted that the bound of g controls the trade-
off of the proposed solution’s effectiveness and efficiency. The larger bound represents the
proposed solution is much closer to the complete traversal algorithm.
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3.4 ONE VERTEX ATTACKING AGAINST SPATIOTEMPORAL GNNS

After the weakest vertex is located, we generate one vertex perturbation based on equation 10.
Poisoning the weakest vertex in a graph with the carefully designed perturbation can fool the spa-
tiotemporal GNN-based traffic forecasting system.

arg min
MJ ·{ρt,...,ρt−N+1}

‖F ({Gt, ...,Gt−N+1}+MJ · {ρt, ..., ρt−N+1})− G̃t‖2 + α · Ronevertex

Ronevertex =

t∑
i=t−N+1

max(0, (MJ · ρi)2 − ξ)
(10)

where J denotes the index of the weakest vertex, andMJ ·ρi is the generated perturbation. It should
be noted that ‖MJ · ρi‖0 ≤ 1.

Different from adversarial attack methods proposed as Equation 4 and Equation 7, the one vertex
attack keeps poisoning one vertex in the graph, while others poison the entire graph. As for real-
world traffic forecasting applications, poisoning the entire sensor network deployed in road networks
is unrealistic, while one vertex attack is much more harmful.

In reality, the vertex denotes a sensor like a loop detector. The one vertex perturbation denotes
a vehicle’s speed shift. If a hacking vehicle’s speed varies following the perturbation computed as
Equation 10, it can fool the entire traffic forecasting system, not only at the vertex where the hacking
vehicle is, but also at other vertices and even vertices far away from the attacked vertex.

4 EVALUATION AND RESULTS

The evaluation of the proposed method is based on two traffic datasets, namely PeMS and METR-
LA(S). PeMS records 44-days traffic speed data which was collected from 200 stations of Caltrans
Performance Measurement System (PeMS). METR-LA(S) records four months of traffic speed on
100 stations on the highways of Los Angeles County. Our experiments are conducted under an
NVIDIA DGX station with 4 NVIDIA Tesla V100 GPU cards.

We test three spatiotemporal GNNs including STGCN (Yu et al., 2018), DCRNN (Li et al., 2017),
and Graph WaveNet (Wu et al., 2019). Each dataset is split into 3 subsets: 70% for training, 10%
for validation, and 20% for testing. All setting parameters are as same as related papers (Yu et al.,
2018; Li et al., 2017; Wu et al., 2019) except the number of input and output channels accordingly
set as the number of stations in the said dataset. In addition, we use the validation set to locate the
attack position, and generate OVA perturbations in real-time for the test set. As for measurement,
we introduce three metrics to measure the proposed method’s effectiveness.

• MAPE Increase (MAPEI) - Mean Absolute Percentage Error (MAPE) is a measure of
prediction accuracy and smaller MAPE represents better predictions. An increase in MAPE
thus translates into a decrease in the prediction accuracy.
• Normalized MAPE Increase (NMAPEI) - It denotes the ratio between MAPEI and the

MAPE before attacking.
• k%-Impacted Vertices - Counts the number of vertices with NMAPEI being greater than
k%.

4.1 TRADEOFF BETWEEN ATTACK PERFORMANCE AND DETECTION AVOIDANCE

In real-world traffic applications, the generated perturbations represent the hacking vehicle’s speed
shifts. The parameter ξ, which is used to limit the driving behavior, in Equation 10 balances the
attack performance and detection avoidance.

We first propose an experiment to test how the parameter ξ influences the effectiveness of the pro-
posed one vertex attack method. In this subsection, 15min traffic speed forecasting is undertaken
by STGCN, DCRNN, and Graph Wavenet that work as the targeted models and the experiment is
conducted on META-LA(S). These models are attacked by the proposed OVA with different ξ.
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Table 2 shows the number of impacted vertices with different ξ. When the
√
ξ is equal to 20, over

10% vertices, whose NMAPEI are greater than 40%, are severely impacted, even with only one
vertex attacked. With a small

√
ξ, there are about 50% vertices are influenced. Based on the results

shown as Table 2, we can conclude that perturbations will be diffused from one vertex to most of the
graph when we apply spatiotemporal GNN-based forecasting models. The greater the perturbation
is, the more vertices in the graph will be influenced.

Table 2: The relationship between
√
ξ and the k%-Impacted Vertices

STGCN DCRNN Grave Wavenet

k%−

√
ξ 5 10 15 20 5 10 15 20 5 10 15 20

5%-Impacted Vertices 43 71 69 90 51 75 82 88 42 70 82 91
10%-Impacted Vertices 14 52 61 82 17 59 65 71 16 32 52 73
20%-Impacted Vertices 4 22 40 46 8 27 45 50 3 25 41 55
30%-Impacted Vertices 0 1 17 39 1 1 26 40 1 4 19 38
40%-Impacted Vertices 0 1 1 9 0 0 0 13 0 0 1 16

Setting ξ into an appropriate range is important. An extremely large ξ, which represents abnormal
driving behaviors in traffic domains, will be detected easily. By analyzing PeMS and META-LA(S),
speed variation within 15km/h occurs frequently, and consequently, we regard the accessible bound-
ary of speed variation is 15km/h, namely

√
ξ = 15.

4.2 EFFECTIVENESS AND EFFICIENCY OF LOCATING WEAKEST VERTEX

In this subsection, experiments on PeMS are carried out to prove the effectiveness and efficiency
of the proposed weakest vertex locating strategy. STGCN works as the model to attack. Three
locating strategies, namely locating the vertex with the most edges (MOS), locating the vertex with
the highest centrality (CEN), and locating the weakest vertex by the complete traversal algorithm
(CT), work as baselines. After locating the weakest vertex by different strategies, perturbations are
computed as Equation 10, and then fed into STGCN. NMAPEI and 30%-IV are recorded in Table 3.

Table 3: The effectiveness test on the proposed weakest vertex locating strategy

NMAPEI 30%-IV
MOS 4.5% 3
CEN 3.2% 1
CT 15.2% 17

Proposed 15.2% 17

The proposed strategy’s effectiveness is close to the complete traversal algorithm. In this experiment,
it locates the same weakest vertex as the complete traversal algorithm does. Poisoning the vertex
with the most edges or the highest centrality cannot fool the forecasting model effectively. A possible
reason is that these vertices’ robustness is improved by their neighbors because of the STGCN’s
spatiotemporal mechanism.

In addition, the proposed strategy spends 1104 seconds to locate the vertex to attack, while the
complete traversal algorithm spends 1795 seconds. The proposed strategy can reduce the time cost
of locating the weakest vertex.

4.3 EFFECTIVENESS OF ONE VERTEX ATTACK

In this subsection, experiments on PeMS are designed to prove the effectiveness of the proposed
method. 15min traffic speed forecasting is undertaken by three spatiotemporal GNN methods that
work as models to attack. We compare the proposed OVA with four baselines that are detailed as
follows.
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• RAN: Generate perturbations based on Equation 4 and randomly attack one vertex; repeat
the above step for 10 times and compute the average MAPEI and NMAPEI.
• RAN2: Generate Gaussian White Noise (GWN) with the same scale constrain as the pro-

posed OVA method shown as Equation 10, and attack the weakest vertex following the
proposed weakest vertex locating strategy.
• MOS: Regard the vertex with the most edges in the graph as the weakest vertex, and attack

this vertex based on Equation 10.
• MFSM: Attack all vertices with modified Fast Gradient Sign Method (FGSM) (Szegedy

et al., 2015). We replace the ground truth in the original FGSM with the proposed inverse
estimation as Equation 5, which is shown as Equation 11.

{ρt, ..., ρt−N+1} = ε sign(5J (Φ, {Gt, ...,Gt−N+1}, G̃t)) (11)

where 5J computes the gradient of the cost function around the prediction of the fore-
casting model parameterized by Φ w.r.t the input sequence {Gt, ...,Gt−N+1}, sign denotes
the sign function, G̃t denotes the inverse estimation of the ground truth, and ε control the
scale of the perturbations.

Table 4: Effectiveness evaluation based on PeMS

STGCN DCRNN Grave Wavenet
NMAPEI 30%-IV NMAPEI 30%-IV NMAPEI 30%-IV

Proposed 15.2% 17 16.7% 22 15.5% 21
RAN 2.1% 1 2.7% 0 2.3% 0

RAN2 1.7% 0 2.3% 0 2.1% 0
MOS 4.5% 3 4.7% 3 5.7% 2

MFGSM-3 27.3% - 24.4% - 25.8% -
MFGSM-2 15.4% - 15.6% - 16.2% -

In these experiments,
√
ξ is set to 15 for methods that attack only one vertex. “MFGSM-ε” is used

to point out the perturbation constrain of MFGSM. Because it attacks all vertices rather than one
vertex, we set ε as 3 and 2 respectively.
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Figure 1: Results of the proposed One Vertex Attack

Table 4 shows the experiment results. Our proposed one vertex attack method outperforms attacking
one vertex randomly (RAN) and attacking the vertex with the most edges (MOS), which represents
that the proposed method on locating the weakest vertex works. Our method outperforms attacking
the weakest vertex with GWN (RAN2), which represents the proposed method can generate the
optimal perturbations for one vertex attack.

Fig 1a shows an attack result on STGCN. Vertex A is attacked with the poisoned input as Fig 1b,
and predicted sequences in vertex B and C are shown as Fig 1c and Fig 1d respectively. B and C are
far away from A and there is no attack on B and C. Fig 1c shows an example that the spatiotemporal
GNN-based forecasting model mispredicts “congestion” as “uncongested” at about the 60th step.

For traffic forecasting in PeMS, the proposed method can cause over 15% accuracy drop for all
three Spatiotemporal GNN models, and about 10% vertices are seriously impacted (these vertices’
NMAPEI are greater than 30%) with

√
ξ equal to 15.
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Attacking all vertices are always better than attacking only one vertex, but the proposed method’s
effectiveness is similar with attacking all vertices by MFSDM with ε approximately equal to 10% ·√
ξ, which is concluded by comparing the proposed method with MFGSM-3 and MFGSM-2 in

table 4. It should be noted that MFGSM attacks 200 vertices, while OVA only attacks one.

5 CONCLUSION

This paper proposed One Vertex Attack that can break spatiotemporal GNN-based forecasting mod-
els by poisoning only one vertex. The generated perturbation will be diffused to numerous vertices
in the graph when Spatiotemporal GNNs are under attack.

Future works for the proposed study can be summarized as follows. First, we utilized a universal
adversarial attack method to measure the “weakness” of vertices. We do not include temporal pat-
terns in our measurement. Consequently, involving temporal patterns in the evaluation is a possible
modification. Second, we design a genetic algorithm-based method to find the “weakest” vertex in
a graph to attack. This might not be the optimal solution. Third, studies on the scalability of one
vertex attack is valuable.

Besides, as spatiotemporal applications require reliable algorithms, how to defend these adversarial
attacks, and how to build more robust spatiotemporal GNN-based models are still valuable.
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