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ABSTRACT

Vector-Quantization (VQ) generative models are widely used to learn a high-
quality (HQ) codebook and a decoder as powerful generative priors for blind image
restoration (BIR). In this paper, we revisit the key VQ process in VQ-based BIR
methods, and provide three close observations on the side effects of VQ for code
index prediction: 1) confining the representational capability of HQ codebook, 2)
being error-prone on code index prediction, and 3) under-valuing the low-quality
(LQ) feature for BIR. These observations motivate us to replace discrete VQ
selection by continuous feature transformation from input LQ image to output
HQ image with the HQ codebook. To this end, in this paper, we propose a new
Self-in-Cross-Attention (SinCA) module to augment the HQ codebook with the
LQ feature of input LQ image and perform cross-attention between LQ feature and
input-augmented codebook. In this way, our SinCA extends the representational
capability of the HQ codebook and effectively leverages the self-expressiveness
property of input LQ image. Experiments on four typical VQ-based BIR methods
demonstrate that, by replacing the VQ process with transformers using our SinCA,
they achieve better quantitative and qualitative performance on blind image super-
resolution and blind face restoration. The code will be publicly released.

1 INTRODUCTION

Blind image restoration (BIR) aims to recover high-quality (HQ) images from the corresponding
low-quality (LQ) images affected by complex degradation (Wang et al., 2021c; 2023b; Zhang et al.,
2021). This ill-posed problem has been addressed by many generative models (Wang et al., 2021b;
Chen et al., 2022; Lin et al., 2023; Wang et al., 2023a), under the architectures of VAEs (Kingma
& Welling, 2013; Rezende et al., 2014), GANs (Goodfellow et al., 2014; Karras et al., 2019), or
diffusion models (Ho et al., 2020; Song et al., 2020). Recently, with successes in applications like
DALL·E (Ramesh et al., 2021), Vector-Quantization (VQ) based discrete generative models like
VQVAE (Van Den Oord et al., 2017) or VQGAN (Esser et al., 2021) have been increasingly adopted
in many BIR methods (Chen et al., 2022; Zhou et al., 2022; Liu et al., 2023a; TSAI et al., 2024) as
robust backbones against diverse image degradations.

Current VQ-based BIR methods typically follow a multi-stage training scheme. First, an encoder-
decoder model and a discrete codebook are learned to reconstruct HQ images using VQGAN (Esser
et al., 2021). The encoder is then fine-tuned to restore LQ images, during which the VQ process
replaces each pixel-wise LQ feature vector with a selected code item from the HQ codebook. Though
allowing for useful information recovery from the HQ codebook, the VQ process also brings three
notable side effects to VQ-based blind restoration methods. Firstly, the representational range of
VQ process is confined to the finite set of HQ codebook items. Secondly, two main VQ strategies,
i.e., nearest-neighbor feature matching (Fig. 1 (a)) and transformer-based prediction (Fig. 1 (c)), are
error-prone on selecting code items for BIR. Thirdly, the VQ process undervalues the essential role
of LQ features for blind image restoration, since it simply replaces LQ features by HQ code items.

Considering the side effects of VQ process mentioned above, a natural question raises: is it feasible
to replace the vulnerable discrete VQ process by continuous transformation from LQ features to HQ
ones with the HQ codebook? In this paper, we provide positive feedback to the above question by
implementing continuous feature transformation via cross-attention between LQ feature and HQ
codebook. Specifically, the cross-attention computes the attention map by using the LQ feature as the
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(a) (b)

(c) (d)

Figure 1: Left: Illustration of two VQ strategies. (a) Nearest-neighbor feature matching selects the
closest (via a distance metric) HQ code item for each LQ feature vector. (c) Transformer-based
code index prediction learns a transformer to predict the HQ code index for each LQ feature vector.
Right: Effectiveness of replacing discrete VQ process by continuous feature transformation. (b)
“FeMaSR+CA” or “FeMaSR+SinCA” denotes a FeMaSR variant replacing nearest-neighbor feature
matching by cross-attention or SinCA, respectively. (d) “CodeFormer+CA” or “CodeFormer+SinCA”
denotes a CodeFormer variant replacing the self-attention for index prediction by cross-attention or
SinCA, respectively. CA generates a faked glass when restoring the LQ face image.

query and the HQ codebook as the key, highlighting the most relevant HQ code items for each LQ
feature vector. The HQ feature is obtained by multiplying the attention map with the HQ codebook
as the value. Here, each HQ feature vector is obtained by a weighted combination of HQ code items,
where the weights stands for adaptive correlation between the corresponding LQ feature vector and
the HQ code items. In this way, the representation range of HQ codebook extends from a set of finite
code items in VQ to a simplex space spanned by HQ code items with infinite combinations.

Despite its effectiveness, naive cross-attention taking only HQ codebook as the key and value would
fails to capture specific characteristics in diverse LQ images. The reason is that the HQ codebook are
learned from external HQ images. To address this issue, we propose a new Self-in-Cross-Attention
(SinCA) module to conduct cross-attention between the LQ feature of input LQ image and an input-
augmented codebook consisting of the HQ codebook and the feature of input LQ image. To be
specific, our SinCA contains two collaborative parts: cross-part and self-part. On one hand, the
cross-part exploits the adaptive correlation information between input LQ feature and HQ codebook.
On the other, the self-part excavates the self-expressiveness property (Elhamifar & Vidal, 2013) of
each input LQ image, which is very useful to boost BIR performance, as shown in Figs. 1 (b) and (d).

In summary, the contributions of this work are three-fold:

• We revisit the key VQ process of VQ-based BIR methods, and provide three key observations on
the side-effects of discrete VQ process on code index prediction.

• Our observations raise the necessity to replace discrete VQ process by continuous feature learning.
To this end, we propose a Self-in-Cross-Attention (SinCA) module with augmented codebook to
simultaneously exploit useful information from input LQ image and HQ codebook.

• Experiments demonstrate that, by replacing the VQ process with a standard transformer using our
SinCA, four typical VQ-based BIR methods achieve better performance on blind image super-
resolution and blind face restoration. Ablation studies validate the effectiveness of our SinCA.

2 RELATED WORK

Blind Image Restoration (BIR) aims to recover high-quality (HQ) images from the corresponding
low-quality (LQ) images with unknown degradation. Early methods (Gu et al., 2019; Huang et al.,
2020; Shocher et al., 2018; Zhang et al., 2018a) mainly exploit the effectiveness of CNNs to restore
LQ images. To tackle the complex degradation, many different generative priors (Chen et al., 2018;
Shen et al., 2018; Yu et al., 2018; Zhu et al., 2022) have been utilized to achieve robust restoration
performance. Among these priors, GAN priors (Goodfellow et al., 2014; Karras et al., 2019) are
widely adopted by BIR methods (Pan et al., 2020; 2021; Tao Yang & Zhang, 2021; Wang et al.,
2021b; 2022a). For example, GFPGAN (Wang et al., 2021b) and GPEN (Tao Yang & Zhang, 2021)
employed a pre-trained StyleGAN2 (Karras et al., 2020) in a U-shaped decoder network for face
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image restoration. However, GANs are prone to generate unrealistic textures due to the inherent
difficulty on distinguishing similar patterns (Chen et al., 2022). Recently, diffusion generative
priors (Ho et al., 2020; Song et al., 2020) have also been exploited by many BIR methods (Wang
et al., 2023a; Lin et al., 2023; Yang et al., 2023). Despite the impressive progress, these methods are
usually not robust to severe image degradations (Zhou et al., 2022).

Benefited by the power of vector-quantization (VQ) models (Van Den Oord et al., 2017; Esser et al.,
2021) in image generation, VQ-based BIR methods (Zhao et al., 2022; Chen et al., 2022; Zhou et al.,
2022; Liu et al., 2023a; Wang et al., 2023b) have been developed to utilize discrete HQ codebook
priors. In this work, we examine the side effects of discrete VQ process on feature matching and
replace it with our Self-in-Cross-Attention (SinCA) for continuous feature learning.

VQ-based Generative Models learn discrete codebook priors of images in latent space. This idea
is first introduced in VQVAE (Van Den Oord et al., 2017) and further enhanced by VQGAN (Esser
et al., 2021) with better perceptual quality induced by learning codebook priors and autoregressive
transformer (Vaswani et al., 2017). Built upon VQVAE and VQGAN, recent VQ-based image
generation methods (Cao et al., 2023; Chang et al., 2022; Lee et al., 2022; Yu et al., 2022; Zhang
et al., 2023; Zheng et al., 2022) primarily focus on improving the quantization and token generation
processes. For example, MaskGIT (Chang et al., 2022) utilized a bidirectional transformer (Kenton &
Toutanova, 2019) to simultaneously predict all the image tokens.

VQ-based generative priors have also been adopted by many methods for face restoration (Zhou et al.,
2022; Gu et al., 2022; TSAI et al., 2024; Wang et al., 2023b; Zhao et al., 2022) and image super-
resolution (Chen et al., 2022; Liu et al., 2023a; Wu et al., 2023; Liu et al., 2023b). In particular, the
methods of FeMaSR (Chen et al., 2022), AdaCode (Liu et al., 2023a), and RestoreFormer++ (Wang
et al., 2023b) performed codebook selection via nearest-neighbor (NN) feature matching. Code-
Former (Zhou et al., 2022) predicted the indices of code items using transformers. DAEFR (TSAI
et al., 2024) used an extra HQ encoder as the prior to bridge the domain gap between LQ and HQ
images. AdaCode learned five categories of HQ codebooks with a weight predictor to effectively
restore the LQ images. In this paper, we propose to replace the discrete VQ process by continuous
transformation from LQ feature to HQ ones with the HQ codebook for VQ-based BIR.

Vision Transformer (Dosovitskiy et al., 2021) has inspired great progress in computer vision
tasks (Wang et al., 2021a; Carion et al., 2020). It extends the idea of self-attention (Vaswani et al.,
2017) by taking a sequence of image patches as input tokens. SwinIR (Liang et al., 2021) performed
self-attention on shifted local windows (Liu et al., 2021) and transmitted information between them.
Restormer (Zamir et al., 2022) exploited self-attention across feature channels for efficient image
restoration. Cross-attention is also developed to mix the information from two different inputs (Chen
et al., 2021). It is applied in RestoreFormer (Wang et al., 2022b; 2023b) to fuse the LQ and HQ
features for blind face restoration. In this paper, we propose a Self-in-Cross-Attention module to
collaboratively perform self-attention of LQ feature and cross-attention between LQ feature and HQ
codebook for feature learning in VQ-based BIR methods.

3 PRELIMINARY

Vector Quantization (VQ) is a classical quantization technology originally developed for signal
compression (Linde et al., 1980). With VQ, VQVAE (Van Den Oord et al., 2017) learns an encoder
E, a decoder D, and a discrete visual codebook C = [c1, ..., cB ]

⊤ ∈ RB×d of images in latent
space with a deep neural network. Given an input image x, the encoder E extracts its latent
feature as z = E(x) ∈ Rh×w×d, which is then quantized by replacing each of its feature vector zi
(i = 1, ..., hw) with the corresponding nearest code item in codebook C, as follows:

ẑi = cki
, where ki = argmin

j∈{1,...,B}
∥zi − cj∥2 . (1)

The quantized latent feature ẑ including all replaced code items {ẑi}hwi=1 is fed into the decoder D
to output the reconstructed image. For model training, VQVAE utilizes three loss functions, i.e.,
a reconstruction loss Lrec to minimize the distance between the output and the target image y, a
codebook loss Lcode and a commitment loss Lcom with a weighting factor β. Denoting sg(·) as the
stop-gradient operator (Van Den Oord et al., 2017), the overall objective function Ltotal is as follows:

Ltotal = ∥y −D(ẑ)∥22︸ ︷︷ ︸
Lrec

+ ∥sg(E(x))− ẑ∥22︸ ︷︷ ︸
Lcode

+β ∥sg(ẑ)−E(x)∥22︸ ︷︷ ︸
Lcom

.
(2)
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Figure 2: (a) Usage rates of codebook in FeMaSR, AdaCode, CodeFormer and DAEFR. (b) Prediction
accuracy of code index in FeMaSR and AdaCode for ×2 task on different test sets. (c) Prediction
accuracy of code index in CodeFormer and DAEFR on synthetic CelebA-Test set. (d) Inaccurate
index prediction brings performance drop. AdaCode and CodeFormer achieve better results when
using ground-truth (GT) indices (Sec.§4.2).

Since quantization is non-differentiable, VQVAE adopts straight-through gradient estimator (Huh
et al., 2023) to back-propagate the gradients of the reconstruction loss Lrec from decoder to encoder.
VQGAN (Esser et al., 2021) further improves VQVAE by extraly utilizing an adversarial loss (Good-
fellow et al., 2014) and a perceptual loss (Johnson et al., 2016) for better reconstruction quality. These
VQ-based generative models have inspired many VQ-based blind image restoration methods (Chen
et al., 2022; Zhou et al., 2022; Liu et al., 2023a; Wang et al., 2023b; TSAI et al., 2024).

VQ-based Blind Image Restoration (BIR) methods mainly leverage the learned codebook and
decoder as a high-quality (HQ) prior robust to diverse degradation. The training pipeline of these
methods can be generally divided into two stages with different goals. The first Prior Learning stage
aims to reconstruct the HQ image xh by learning an HQ encoder Eh, an HQ decoder Dh, and an HQ
codebook C. The second Restoration stage is to restore the low-quality (LQ) images along with the
learned HQ prior, i.e., the HQ decoder Dh and HQ codebook C. To this end, these methods learn
an LQ encoder El (initialized from the HQ encoder Eh) to extract from the LQ image xl its latent
feature zl = El(x

l). Each vector zli in zl is replaced by a predicted code item in HQ codebook C via
a VQ process, usually implemented by nearest-neighbor feature matching (Chen et al., 2022; Liu
et al., 2023a) or code index prediction (Zhou et al., 2022; TSAI et al., 2024). The quantized HQ
feature ẑ is fed into the HQ decoder Dh to recover the HQ image xh. Besides the two stages, many
VQ-based BIR methods (Zhou et al., 2022; Wang et al., 2023b) further fuse the LQ feature from
encoder and the HQ feature from decoder to trade-off the restoration fidelity and quality.

4 OBSERVATIONS ON VQ-BASED BLIND IMAGE RESTORATION METHODS

Despite promising performance, current VQ-based methods (Chen et al., 2022; Zhou et al., 2022;
Wang et al., 2022b; 2023b; Liu et al., 2023a; TSAI et al., 2024) rarely discuss the potential side
effects of the essential VQ process for blind image restoration (BIR). In this section, we provide three
close observations on the VQ process in the second Restoration stage of VQ-based BIR methods.

4.1 OBSERVATION 1: VQ CONFINES THE CODEBOOK’S REPRESENTATIONAL CAPABILITY

The high-quality (HQ) codebook serves as an expressive generative prior for VQ-based BIR (Chen
et al., 2022; Zhou et al., 2022; Liu et al., 2023a; TSAI et al., 2024). VQ performs one-hot code
selection to replace each low-quality (LQ) feature vector by a single HQ code item from the HQ
codebook. This, however, confines the representation range of HQ codebook to a finite set of code
items. This limitation would be further amplified by low codebook usage rates of VQ-based BIR
methods. As illustrated in Fig. 2, though the codebook usage rate of CodeFormer (Zhou et al.,
2022) and DAEFR (TSAI et al., 2024) are 98.73% and 100%, respectively, for blind face restoration
on 3,000 face images from CelebA-Test (Karras et al., 2018)). FeMaSR (Chen et al., 2022) and
AdaCode (Liu et al., 2023a) only used 3.32% and 20.76% of the HQ codebook vectors, respectively,
for ×2 blind image super-resolution on the DIV2K validation set.

Since the representational capability of VQ process is confined by the discrete code selection of HQ
codebook in VQ-based BIR methods, it is necessary to develop alternative solutions that can well
utilize HQ codebook and expand the representional range of HQ codebook on diverse LQ images.
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(a) Feature matching in FeMaSR. (b) Code index prediction in CodeFormer. (c) Prediction accuracy v.s. SSIM
Figure 3: T-SNE visualization of VQ process in FeMaSR (a) and CodeFormer (b). Different code
items in HQ codebook are marked by “✩” in different colors. The color of LQ feature vector marked
by “◦” or the HQ feature vector marked by “△” is the same with the codebook item they select in
VQ process. Gray dashed lines “- -” connects the LQ feature vector ◦ and its selected codebook item
“✩” (“VQ Process”). Red dash lines “- -” connects the LQ feature vector ◦ and the codebook item
“✩” selected by the corresponding HQ feature vector using nearest-neighbor (NN) feature matching
in the Prior Learning Stage (“GT Selection”). (a) NN feature matching on LQ feature vectors are
inconsistent with “GT Selection”. For a given LQ feature vector, the codebook item selected by NN
feature matching (gray dash line, “- -” ) is quite different from the corresponding “GT Selection” (
Red dashed line, “- -”). (b) Transformer for code index prediction is not robust to image degradation.
In a degraded LQ image, an “LQ Eye” patch looks like skin area and selects the code item represented
by many “HQ Skin” patches. The regions marked by purple dashed box and orange dashed box are
enlarged for better view (“Enlarge”). (c) Prediction accuracy of code indices by transformer and
SSIM results achieved by CodeFormer using “LQ Indices” predicted on LQ images, “HQ Indices”
predicted on HQ images, or “GT Indices” defined in §4.2.

4.2 OBSERVATION 2: THE VQ PROCESS IS ERROR-PRONE ON LQ FEATURES

Current VQ-based BIR methods mainly adopt two VQ strategies for code index prediction: 1)
nearest-neighbor feature matching independently selects a nearest code item from HQ codebook
for each LQ feature vector (Chen et al., 2022; Liu et al., 2023a) and 2) learning a transformer to
exploit global correlations of the input LQ image for code index prediction (Zhou et al., 2022; TSAI
et al., 2024). However, both strategies suffer from inaccurate code selection. To illustrate this point,
we evaluate mainstream VQ-based BIR methods on the prediction accuracy of code index, which
refers to the percentage that, the number of indices predicted from LQ feature vectors equal their
ground-truth (GT) indices. The GT indices are obtained through nearest-neighbor feature matching in
Eqn. (1) using the corresponding HQ feature vectors zh = Eh(x

h) (Zhou et al., 2022). In Figs. 2 (b)
and (c), we visualize the prediction accuracies of four typical VQ-based BIR methods. The accuracies
of FeMaSR (Chen et al., 2022) and AdaCode (Liu et al., 2023a) are at most 30.95% on different test
sets, while those of CodeFormer (Zhou et al., 2022) and DAEFR (TSAI et al., 2024) are 5.63% and
3.42%, respectively. As shown in Fig. 2 (d), AdaCode (Liu et al., 2023a) and CodeFormer (Zhou
et al., 2022) achieve higher PSNR results when using GT code indices. This demonstrates that low
accuracy of code index prediction degrades the performance of VQ-based BIR methods.

The low prediction accuracy is mainly attributed to the quality degradation of LQ images, as shown in
Figs. 3 (a) and (b). Figs. 3 (c) also shows that, using HQ images for index prediction in CodeFormer
(“HQ Indices”) increases the accuracy from 5.63% to 24.02% with clear improvements on SSIM.
Furthermore, learning a transformer to predict code indices (Zhou et al., 2022) casts this problem as
a classification task. However, this is error-prone since CodeFormer has 1024256 ≈ 10768 possible
prediction choices even on a 16× 16 LQ feature with an HQ codebook of 1024 items. As shown in
Fig. 2 (c), both the image quality degradation and classification challenge conspire to the clear drops
in prediction accuracy of code index and SSIM results of CodeFormer. Besides, the VQ process
in (Chen et al., 2022; Liu et al., 2023a) also brings gradient estimation errors when back-propagate
the gradients from decoder to encoder (Huh et al., 2023), as described in Sec. 3. Thus, it is potentially
meaningful to replace the discrete VQ process by alternative solutions that are feasible to perform
HQ feature learning while avoiding error-prone index prediction.

4.3 OBSERVATION 3: LQ FEATURE IS IMPORTANT FOR BIR, BUT UNDERVALUED IN VQ

In VQ-based BIR methods (Zhou et al., 2022), the VQ process directly replace the LQ features by
selected HQ code items to retrieve high-quality image information. However, this fails to establish a
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Figure 4: Importance of LQ feature for BIR. (a) Quantitative results of FeMaSR and AdaCode w
or w/o feature fusion for ×2 blind super-resolution on DIV2K validation set. (b) Quantitative results
of CodeFormer w or w/o feature fusion on synthetic CelebA-Test set.
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Figure 5: Comparison of retrained FeMaSR with (w) or without (w/o) feature fusion module.
(a) Quantitative results on DIV2K-validation set. Given an LR image (b), the retrained FeMaSR w/o
feature fusion (c) loses many texture details when compared to the FeMaSR w feature fusion (d).

direct connection between the LQ features and the final restoration performance. To alleviate this
issue, many VQ-based BIR methods (Chen et al., 2022; Zhou et al., 2022) further fuse the LQ feature
from encoder and the HQ features from decoder to enhance the restoration performance. To study
the role of LQ features, we perform experiments on the released models of FeMaSR, AdaCode, and
CodeFormer. We remove the corresponding feature fusion module from these models and denote the
corresponding variants as “FeMaSR w/o f”, “AdaCode w/o f”, and “CodeFormer w/o f”, respectively.
As shown in Figs. 4 (a) and (b), it is not surprising to observe a huge drop of these variants on BIR.
We also retrained the restoration stage of FeMaSR and “FeMaSR w/o f”. The results in Fig. 5 show
that the retrained variant “FeMaSR w/o f” still suffers from clear performance drop. These results
validate that the feature of input LQ image is essential to final BIR performance.

Despite their efforts to preserve LQ information, these VQ-based BIR methods are still constrained
by the VQ bottleneck. As the LQ feature is only used for the prediction of code index, regardless of
how informative the LQ feature is, the information about the LQ feature transmitted to the decoder is
encoded in log2 B bits (B is the number of items in the HQ codebook). To this end, we argue that
the VQ process still underestimates the importance of the LQ feature for BIR. Directly alleviating
this problem in the VQ process can potentially improve the performance of VQ-based BIR methods.

5 METHODOLOGY

5.1 REPLACING DISCRETE VQ SELECTION BY CONTINUOUS FEATURE TRANSFORMATION

Based on the three observations analyzed in §4, VQ is a two-sided coin with clear rewards and
punishments for VQ-based BIR methods. To avoid the side effects of discrete VQ selection, motivated
by the self-attention for code index prediction (Fig. 6 (a)), it is natural to employ cross-attention
for continuous feature transformation from the LQ feature of input LQ image to HQ one with the
HQ codebook. Specifically, as shown in Fig. 6 (b), to replace discrete VQ process, cross-attention
takes the input feature as the query and the HQ codebook as both the key and value. The attention
map correlates each LQ feature vector with HQ codebook items. Each output feature vector is an
adaptively weighted combination of HQ codebook. In this way, the input LQ feature is transformed
into HQ ones. However, the vanilla cross-attention ignores the self-expressiveness of LQ feature and
would fail to preserve the fidelity of diverse LQ images (Figs. 1 (b) and (d)).

5.2 PROPOSED SELF-IN-CROSS-ATTENTION (SINCA)

To exploit useful self-expressiveness (Elhamifar & Vidal, 2013) of LQ images for better BIR per-
formance, in this paper, we propose a new Self-in-Cross-Attention (SinCA) module to augment
the HQ codebook with specific feature of input LQ image and performs cross-attention between
input LQ feature and augmented codebook. As shown in Fig. 6 (c), given an LQ feature tensor
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Figure 6: (a) Self-attention for code index prediction. (b) Cross-attention for feature transformation.
(c) Our proposed Self-in-Cross Attention (SinCA) for effective feature transformation.

(a) (b)

Figure 7: Visualization of the attention map of the first SinCA in ‘FeMaSR+SinCA’ for ×2 blind
image super-resolution. We take inputs of size 64× 64 which will be encoded into 16× 16 = 256
feature vectors and visualize the attention weights by selecting the first 100 indices of self-part (0-99)
and the first 100 indices of cross-part (256-355).

zl ∈ Rh×w×d of an LQ image extracted from the LQ encoder, our SinCA first reshapes it into
an LQ feature matrix X ∈ Rhw×d and then multiplies it with a linear projection matrix WQ to
obtain the query matrix Q. To jointly explore the expressiveness of HQ codebook C ∈ RB×d and
excavate the self-expressiveness of the LQ feature itself, we concatenate the LQ feature X and the
HQ codebook C to obtain the key matrix K ∈ R(hw+B)×d and the value matrix V ∈ R(hw+B)×d

with the corresponding linear projection matrices WK and WV, respectively, as follows:

Q = XWQ,K =

[
XWK

CWK

]
,V =

[
XWV

CWV

]
. (3)

Denoting KX = XWK, KCode = CWK, VX = XWV, and VCode = CWV, the attention
matrix A ∈ Rhw×(hw+B) and the output feature matrix O of our SinCA are computed as follows:

A = Softmax

(
1√
d
QK⊤

)
= Softmax

(
1√
d

[
QK⊤

X QK⊤
Code

])
,O = A

[
VX

VCode

]
. (4)

As revealed by Eqn. (4), the attention map A correlates both the LQ feature and the input-augmented
codebook. This is then used to adaptively weight the value feature matrices VX and VCode. In
this way, our SinCA simultaneously leverages the expressive HQ codebook prior and the self-
expressiveness of input LQ image to obtain the output feature matrix O.

We replace the VQ process in VQ-based BIR methods (Chen et al., 2022; Liu et al., 2023a; Zhou
et al., 2022; TSAI et al., 2024) by a transformer (Dosovitskiy et al., 2021) using our SinCA, which
aims to transform from the LQ feature of input image to HQ one with the HQ codebook.

5.3 A CLOSER LOOK AT OUR SINCA

To study the working mechanism of our SinCA, in Fig. 7 we visualize the attention map of “Fe-
MaSR+SinCA” (variant of FeMaSR (Chen et al., 2022)) for ×2 blind image super-resolution. Here,
the VQ in FeMaSR is replaced by a transformer using our SinCA. The “Example 1” in Fig. 7 (a)
show highly structured with repeated patterns, which could be better represented by itself. Thus, the
self-part in the attention map of our SinCA exhibits dense and high attention weights. This indicates
that our SinCA effectively utilizes the self-expressiveness of the LQ feature itself for BIR. In contrast,
the “Example 2” in Fig. 7 (b) presents an animal that can be well represented by the HQ codebook
(cross-part). In this case, our SinCA utilizes more the HQ codebook to recover the HQ feature.

In sum, our SinCA utilizes augmented codebook to exploit the self-expressiveness of the LQ feature
and the correlation between LQ feature and HQ codebook. This enables each pixel of input LQ image
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to be adaptively recovered by a weighted combination of augmented codebook. Compared to discrete
VQ process relying on HQ code index selection, our SinCA extends the representational range of the
HQ codebook and further exploits the self-expressiveness of LQ image for VQ-based BIR methods.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Baselines. We evaluate our Self-in-Cross-Attention (SinCA) on four typical VQ-based BIR methods:
FeMaSR (Chen et al., 2022) and AdaCode (Liu et al., 2023a) for blind image super-resolution (BSR),
CodeFormer (Zhou et al., 2022) and DAEFR (TSAI et al., 2024) for blind face restoration (BFR). For
each baseline method, we directly use the HQ encoder, HQ codebook, and HQ decoder it learned in
the first Prior Learning stage (§3) to reconstruct the HQ images. Then we replace the VQ process
by a transformer with our SinCA, and fine-tuned the encoder to restore the LQ images along with
fixed codebook and decoder learned by each baseline. For all models in our experiments, we set the
number of attention heads as eight in the transformers using our SinCA and the channel dimension of
both the input and the output of the transformer equal the channel dimension d of codebook. More
details will be provided in the Appendix.

Training Dataset. For BSR task, we train models on DIV2K (Agustsson & Timofte, 2017) training
set, including 800 HQ images of 2K resolution. The HR images are cropped into 256× 256 patches
for training. Following the settings in FeMaSR and Adacode, we generate pairs of high-resolution
(HR) and low-resolution (LR) training images with the degradation pipeline in BSRGAN (Zhang
et al., 2021). For the BFR task, we employ the FFHQ (Karras et al., 2019) dataset with 70,000 HQ
images of size 1024× 1024. All HQ face images are resized into 512× 512 for training. The LQ
images are synthesized by following the degradation pipeline in CodeFormer or DAEFR, respectively.

Test Set. The BSR methods are evaluated on the DIV2K validation set, Urban100, BSDS100, and
Manga109. The LR images are generated with the mixed degradation pipelines of (Zhang et al.,
2021; Wang et al., 2021c) used in FeMaSR. The BFR methods are evaluated on the 3000 images used
in (Zhou et al., 2022; TSAI et al., 2024) from CelebA-Test set (Karras et al., 2018) and the real-world
dataset CelebChild-Test (Wang et al., 2021b). The LQ images from CelebA-Test set are synthesized
with the same settings used in CodeFormer and DAEFR, respectively.

Metrics. For BSR, we report PSNR and SSIM results computed on the y-channel, and LPIPS (Zhang
et al., 2018b) on RGB images. For BFR, we compute PSNR, SSIM, and LPIPS on CelebA-Test,
while FID (Heusel et al., 2017) and NIQE (Mittal et al., 2012) on real-world CelebChild-Test.

Training Details. For each baseline using our SinCA, we follow its original setting of codebook
size, optimizer, and learning rates. For FeMaSR and AdaCode, we train the second stage with a
batchsize of 16 for 100K and 160K iterations, respectively. For CodeFormer, we train the stage-2
with a batchsize of 8 and stage-3 with a batchsize of 4. For DAEFR, we train the last stage with a
batchsize of 8 for 200K iterations. The models are implemented by PyTorch. The BSR methods are
trained with 2 RTX 4090 GPUs, while BFR methods are trained with 1 Tesla H100 GPU.

6.2 COMPARISON RESULTS

Blind Image Super-Resolution. In Table 1, we summarize the quantitative results of comparison
methods on four benchmarks. One can see that the FeMaSR and AdaCode using our SinCA (denoted
as “FeMaSR+SinCA” and “AdaCode+SinCA”, respectively) outperform their corresponding baselines
(retrained under the same settings) by 0.70∼1.10dB in PSNR, 0.01∼0.03 in SSIM, and generally
better results in LPIPS. For reference, in Table 1 we also report the results of the released models,
denoted as “FeMaSR (release)” and “AdaCode (release)”. Note that albeit being trained with much
larger datasets, the released models still achieve worse results than the corresponding methods using
our SinCA in terms of PSNR and SSIM.

Blind Face Restoration. In Table 2, we provide the quantitative results of blind face restoration on
synthetic and real-world datasets. One can see that, on CelebA-Test set, compared with retrained ones,
CodeFormer using our SinCA obtains a gain of 0.23 dB and 0.0129 on PSNR and SSIM, respectively,
while DAEFR using our SinCA achieves an improvement of 1.92 dB, 0.0636 and 0.0069 on PSNR,
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“0861” from DIV2K valid on x2 task

“image021” from Urban100 on x4 task

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

Figure 8: Comparison on blind image super-resolution and blind face restoration. “+SinCA”:
employing a transformer using our SinCA for continuous feature transformation.

Table 1: Results of blind image super-resolution methods on four benchmark test sets.

Scale Method
Urban100 BSDS100 Manga109 DIV2K valid

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
FeMaSR (release) 20.11 0.5769 0.3847 21.90 0.5189 0.4225 22.14 0.7075 0.3358 23.44 0.6443 0.3878
FeMaSR (re-train) 19.61 0.5607 0.4103 21.25 0.5052 0.4315 21.85 0.7092 0.3505 22.76 0.6311 0.4129
FeMaSR + SinCA 20.59 0.5853 0.3958 22.43 0.5335 0.4387 22.61 0.7222 0.3428 23.84 0.6498 0.4026
AdaCode (release) 20.46 0.5886 0.3808 22.03 0.5173 0.4199 22.35 0.7097 0.3226 23.38 0.6467 0.3759
AdaCode (re-train) 19.47 0.5565 0.4124 21.28 0.5014 0.4422 21.81 0.7038 0.3522 22.55 0.6231 0.4102

×2

AdaCode + SinCA 20.46 0.5924 0.3940 22.44 0.5440 0.4293 22.74 0.7306 0.3326 23.75 0.6621 0.3917

FeMaSR (release) 18.52 0.4891 0.4358 20.49 0.4528 0.4647 18.85 0.6107 0.3945 21.72 0.5626 0.4418
FeMaSR (re-train) 18.41 0.4729 0.4759 20.82 0.4585 0.4950 18.86 0.5999 0.4269 21.72 0.5634 0.4715
FeMaSR + SinCA 19.11 0.4887 0.4707 20.80 0.4477 0.4928 19.47 0.6168 0.4267 22.30 0.5703 0.4673
AdaCode (release) 18.71 0.4875 0.4444 20.71 0.4495 0.4752 19.00 0.6067 0.3955 21.80 0.5638 0.4432
AdaCode (re-train) 17.94 0.4644 0.4796 19.75 0.4237 0.5025 18.62 0.5936 0.5607 20.73 0.5404 0.4760

×4

AdaCode + SinCA 18.72 0.4780 0.4660 21.15 0.4617 0.4882 19.51 0.6093 0.4229 22.09 0.5658 0.4587

Table 2: Results of blind face restoration methods on two synthetic and real-world test sets.

Method
CelebA-Test CelebChild-Test

Method
CelebA-Test CelebChild-Test

PSNR↑ SSIM↑ LPIPS↓ FID↓ NIQE↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ NIQE↓
CodeFormer (release) 22.19 0.5957 0.3152 116.23 4.983 DAEFR (release) 19.92 0.5534 0.3880 105.70 4.143
CodeFormer (re-train) 22.66 0.6248 0.3100 116.53 4.883 DAEFR (re-train) 19.65 0.5456 0.3675 105.23 4.220
CodeFormer + SinCA 22.89 0.6377 0.3108 121.50 5.112 DAEFR + SinCA 21.57 0.6092 0.3606 104.56 4.097

SSIM, LPIPS, respectively. On CelebChild-Test dataset, we cannot evaluate their performance on
restoration fidelity since there is no ground-truth image. The CodeFormer using our SinCA obtain
similar results of FID and NIQE to the released model, while DAEFR using our SinCA achieves an
improvement in FID and NIQE. These results demonstrate that our SinCA serves as a promising
replacement for the discrete VQ process for blind face restoration.
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Table 3: Comparison of using our SinCA for code index prediction or feature fusion.
×2 Blind Image Super-Resolution Blind Face Restoration

Method
DIV2K valid Urban100

Method
CelebA-Test

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
FeMaSR (index) 22.85 0.6399 0.4124 19.78 0.5666 0.4101 CodeFormer (index) 22.63 0.6243 0.3061
FeMaSR (feature) 23.84 0.6498 0.4026 20.59 0.5853 0.3958 CodeFormer (feature) 22.89 0.6377 0.3108
AdaCode (index) 22.17 0.5542 0.4992 20.04 0.5635 0.4045 DAEFR (index) 19.85 0.5551 0.3635
AdaCode (feature) 23.75 0.6621 0.3917 20.46 0.5924 0.3940 DAEFR (feature) 21.57 0.6092 0.3606

Table 4: Comparison of Self-Attention (SA), Cross-Attention (CA), and our Self-in-Cross-
Attention (SinCA) used by transformers for feature fusion in VQ-based BIR methods.

×2 Blind Image Super-Resolution Blind Face Restoration

Method
DIV2K valid Urban100

Method
CelebA-Test

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
FeMaSR + SA 23.01 0.6352 0.4035 19.87 0.5689 0.3990 CodeFormer + SA 22.85 0.6341 0.3165
FeMaSR + CA 23.22 0.6424 0.3970 20.08 0.5740 0.3957 CodeFormer + CA 22.83 0.6310 0.3154
FeMaSR + SinCA 23.84 0.6498 0.4026 20.59 0.5853 0.3958 CodeFormer + SinCA 22.89 0.6377 0.3108
AdaCode + SA 21.88 0.6053 0.4185 19.06 0.5379 0.4228 DAEFR + SA 21.53 0.5987 0.4118
AdaCode + CA 22.67 0.6349 0.3654 19.53 0.5583 0.4247 DAEFR + CA 21.47 0.6001 0.3770
AdaCode + SinCA 23.75 0.6621 0.3917 20.46 0.5924 0.3940 DAEFR + SinCA 21.57 0.6092 0.3606

Visual Comparisons in Fig. 8 show that, the four VQ-based BIR methods using our SinCA consis-
tently preserves the colors and geometric shapes. For example, “FeMaSR + SinCA” and “AdaCode +
SinCA” restore the steel ropes on the bridge and colors of bricks in the 1-st and 2-nd rows, respec-
tively, while “CodeFormer + SinCA” and “DAEFR + SinCA” properly recover the skin tones and
grin in the 3-rd and 4-th rows, respectively.

6.3 ABLATION STUDY

Necessity of Replacing Index Prediction with Feature Transformation. To study this aspect, we
additionally design a variant of transformer using our SinCA for discrete index prediction in VQ-based
BIR methods. As shown in Table 3, the four methods using our SinCA for feature transformation
(“feature”) obviously outperform those for code index prediction (“index”), especially on PSNR and
SSIM. This validates the effectiveness of replacing the VQ process for code index prediction by
feature transformation using our SinCA in VQ-based BIR methods.

Effectiveness of our SinCA. Here, we compare VQ-based BIR methods with transformers using
self-attention (SA) (Dosovitskiy et al., 2021), cross-attention (CA) (Chen et al., 2021), or our SinCA
for continuous feature learning. For CA, we generate the query/value matrix from HQ codebook and
the key matrix from LQ feature for consistent input and output dimensions. As shown in Table 4,
compared with those using SA and CA, the baselines using our SinCA achieve superior results on
objective metrics in most cases. This validates the effectiveness of SinCA in VQ-based BIR methods.

7 CONCLUSION

In this paper, we revisited the key VQ process in VQ-based blind image restoration (BIR) methods
and provided three close observations on the side-effects of VQ on code index prediction. We
revealed that discrete VQ limits the representational capability of HQ codebook prior, is error-prone
on code index prediction, and under-values the important LQ feature for BIR. Based on these
observations, we proposed to replace the discrete VQ selection by continuous feature transformation
from LQ feature to HQ ones via cross-attention of LQ feature and HQ codebook. We further
proposed a Self-in-Cross-Attention (SinCA) module to augment HQ codebook with LQ feature and
perform cross-attention between LQ feature and input-augmented codebook. Our SinCA extends
the representational capability of HQ codebook and well leverages the self-expressiveness of input
LQ image. Experiments demonstrated that, the four VQ-based BIR methods replacing the discrete
VQ process with a transformer using our SinCA achieve better performance on blind image super-
resolution and blind face restoration. Ablation studies also validated the effectiveness of our SinCA.
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A MORE ARCHITECTURE DETAILS

We develop transformers (Dosovitskiy et al., 2021) using our SinCA for feature transformation to
replace the discrete VQ process for code index prediction in four VQ-based BIR methods. To verify
the effectiveness of our SinCA, we apply the transformers using our SinCA on FeMaSR (Chen et al.,
2022) and AdaCode (Liu et al., 2023a) for blind super-resolution as well as CodeFormer (Zhou et al.,
2022) and DAEFR (TSAI et al., 2024) for blind face restoration. The transformers contain multiple
layers. Each transformer layer incorporates one SinCA to excavate the useful information from input
LQ feature itself and HQ codebook prior. Following our SinCA, each layer employs a Gated-Dconv
Feed-Forward Network from (Zamir et al., 2022). We also use a skip connection to concatenate
the input LQ feature of the transformer with the output HQ feature, followed by a linear layer for
feature fusion. In all experiments, the input and output of the transformers maintain the same channel
dimension as that of the HQ codebook in different baseline methods.

FeMaSR (Chen et al., 2022). The transformer using our SinCA for FeMaSR contains nine layers.
Since the HQ codebook in FeMaSR is of size 1024 × 512, where the number of code items in
codebook is B = 1024. The input and output channel dimension in our SinCA should be d = 512.

AdaCode (Liu et al., 2023a) has five categories of basis codebooks in its network backbone: archi-
tecture, indoor objects, natural scenes, street views and portraits, with codebooks of size 512× 256,
256 × 256, 512 × 256, 256 × 256, and 256 × 256, respectively. We replace the VQ process
for each category by a transformer using our SinCA with a channel dimension of d = 256, and
B = 512, 256, 512, 256, 256. We set the number of transformer layers for these five categories to be
5, 4, 3, 4, and 4, respectively. The number of transformer layers is determined by the average value
of weight maps from the pre-trained weight predictor.

CodeFormer (Zhou et al., 2022) uses a transformer (Dosovitskiy et al., 2021) consists of nine
transformer layers with a channel dimension of d = 512, followed by a linear projection for code
index prediction. To equip CodeFormer with our SinCA, we directly replace its transformer for code
index prediction by our alternative transformer containing nine transformer layers with a channel
dimension of d = 256, and the number of code items in HQ codebook is B = 1024.

DAEFR (TSAI et al., 2024) also employs a nine-layer transformer for code index prediction. Similar
to our practice on CodeFormer (Zhou et al., 2022), we replace its transformer with the transformer
containing nine layers with a channel dimension of d = 256, and the number of code items in HQ
codebook is B = 1024.

B EXPERIMENTAL DETAILS

B.1 MORE DETAILS ON MAIN EXPERIMENTS

In this section, we elaborate more details on the main experiments. All of our implementations are
built upon publicly released codes of the baseline methods. For better clarity, we denote ẑ as the
quantized HQ feature obtained by VQ or the output HQ feature by the transformer using our SinCA.

FeMaSR (Chen et al., 2022) adopts a two-stage training pipeline. We directly take the pre-trained
codebook and decoder from the first stage. Then we replace the VQ process in FeMaSR with the
transformer using our SinCA, and train the modified FeMaSR for the second stage.

AdaCode (Liu et al., 2023a) employs a three-stage training pipeline. The first two stages aim to
obtain high-quality codebook and decoder prior as well as a weight predictor, while the last stage
fine-tunes the encoder and weight predictor for image restoration. We replace the VQ process in
AdaCode with the transformer using our SinCA, and train the modified AdaCode on the third stage.
We take the original loss functions used in AdaCode for training.

CodeFormer (Zhou et al., 2022) utilizes a three-stage training pipeline. The first stage learns the
HQ generative prior of codebook and decoder. The second stage learns a transformer to predict
code indices. The third stage aims for feature fusion of LQ and HQ features in the decoder. We
replace the VQ process in CodeFormer with the transformer using our SinCA, and train the modified
CodeFormer on the second and third stages. The second training stage of vanilla CodeFormer has two
loss functions: a cross-entropy loss Ltoken

code to supervise the training of transformer for index prediction
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and an ℓ2 loss Lfeat′
code to align the extracted LQ feature zl and the quantized HQ feature ẑ. The training

objective function Ltf of the second stage can be written as follows:

Ltoken
code =

hw−1∑
i=0

−si log (ŝi) , Lfeat′
code =

∥∥zl − sg (ẑ)
∥∥2
2
, Ltf = λtoken Ltoken

code + Lfeat′
code , (5)

where si represents the i-th element of the GT indices (defined in §4.1 while ŝi denotes the i-th
element of indices predicted by the vanilla transformer in CodeFormer and λtoken is a hyper-parameter
used to balance the two loss functions. Since our transformer performs feature transformation instead
of code index prediction, we replace the cross-entropy loss Ltoken

code with a feature matching loss
Lmatching = ∥zt − sg (ẑ)∥22, where zt denotes the LQ feature zl after transformation. Setting equal
weight to Lmatching and Lfeat′

code , our training objective function in the second stage is

Ltf =
∥∥ẑ− zt

∥∥2
2︸ ︷︷ ︸

Lmatching

+
∥∥zl − sg (ẑ)

∥∥2
2︸ ︷︷ ︸

Lfeat′
code

.
(6)

The training of the third stage in CodeFormer inherits the loss functions used in the second stage,
with additional image-level ℓ1 loss function and a perceptual loss (Johnson et al., 2016). Following
this setting, we keep the loss functions adopted in training the second stage of the CodeFormer with
the transformer using our SinCA with the ℓ1 loss and the perceptual loss as well.

DAEFR (TSAI et al., 2024) is trained in three stages. Similar to the second stage in Code-
Former (Zhou et al., 2022), the third stage of DAEFR aims to align the LQ feature with HQ
codebook, by using a cross-entropy loss function and an ℓ2 loss function of Eqn. (6) as the training
objective. We replace the VQ process in DAEFR with the transformer using our SinCA for feature
learning. We train the revised DAEFR in the third stage using our feature matching loss Lmatching

defined above and the loss function Lfeat′
code defined in Eqn. (6), with equal weights.

B.2 MORE DETAILS ON ABLATION STUDY

Transformer Using Our SinCA for Code Index Prediction. As described in §6.3 of our main
paper, we also apply the transformer using our SinCA for code index prediction in VQ-based BIR
methods. To this end, we use the linear layer following the transformer developed by our SinCA to
project the output feature map of size hw × d into the size of hw ×B, with B is the number of code
items in HQ codebook. The output feature matrix of the linear layer is transformed into a probability
matrix P via a softmax operation, where pij (i = 1, ..., hw, j = 1, ..., B) represents the probability
that the i-th LQ feature vector select the j-th code item of HQ codebook. Then we use top-1 selection
for each LQ feature vector. For FeMaSR (Chen et al., 2022) and AdaCode (Liu et al., 2023a), besides
their original loss functions, we introduce the cross-entropy loss Ltoken

code to supervise the learning of
code index prediction. For CodeFormer (Zhou et al., 2022) and DAEFR (TSAI et al., 2024), since
the code index prediction is incorporated in their original implementations, we directly use the loss
functions used in the second Restoration stage of the corresponding VQ-based BIR methods.

Self-Attention (SA) for Feature Transformation. We replace our SinCA by SA (Dosovitskiy et al.,
2021) for feature transformation in the transformer of VQ-based BIR methods. The experimental
setups remain the same with those methods using our SinCA, with the exception that the SA module
only takes LQ feature as the input to obtain query, key, and value. The input and output channel
dimensions of SA in FeMaSR (Chen et al., 2022), AdaCode (Liu et al., 2023a), CodeFormer (Zhou
et al., 2022), and DAEFR (TSAI et al., 2024) are set as 512, 256, 256, and 256, respectively.

Cross-Attention (CA) for Feature Transformation. Similar to the experiments on SA-based feature
transformation mentioned above, we conduct experiments on CA (Chen et al., 2021) by replacing our
SinCA in transformer with CA (Chen et al., 2021) for feature transformation. CA uses LQ feature
to obtain the query and HQ codebook to obtain the key and the value. For FeMaSR (Chen et al.,
2022), the input LQ feature and HQ codebook have 512 channels. For the transformers used in
AdaCode (Liu et al., 2023a), CodeFormer (Zhou et al., 2022), and DAEFR (TSAI et al., 2024), both
the input LQ feature and HQ codebook have 256 channels.
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C MORE VISUAL COMPARISON RESULTS

Here, we provide more visual comparison results of different methods on blind image super-resolution
(SR) in Figs. 9∼11 for ×2 SR task and in Figs. 12∼13 for ×4 SR task. More visual comparison
results of blind face restoration are provided in Figs. 14∼16.

“image060” from Urban100

“image043” from Urban100

“image087” from Urban100

“image087” from Urban100

Figure 9: More visual results on ×2 blind image super-resolution task. “+SinCA”: employing
the transformer using our SinCA for feature transformation.
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“PrayerHaNemurenai” from Manga109

“TapkunNoTanteisitsu” from Manga109

“0825” from DIV2K valid

“0879” from DIV2K valid

“33039” from BSDS100

Figure 10: More visual results on ×2 blind image super-resolution task. “+SinCA”: employing
the transformer using our SinCA for feature transformation.
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“78004” from BSDS100

“271035” from BSDS100

Figure 11: More visual results on ×2 blind image super-resolution task. “+SinCA”: employing
the transformer using our SinCA for feature transformation.

“MiraiSan” from Manga109

“0817” from DIV2K valid

Figure 12: More visual results on ×4 blind image super-resolution task. “+SinCA”: employing
the transformer using our SinCA for feature transformation.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

“0833” from DIV2K valid

“21077” from BSDS100

“33039” from BSDS100

Figure 13: More visual results on ×4 blind image super-resolution task. “+SinCA”: employing
the transformer using our SinCA for feature transformation.

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

Figure 14: More visual results of blind face restoration task on CelebA-Test. “+SinCA”: employ-
ing the transformer using our SinCA for feature transformation.
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LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

LQ (CodeFormer) CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA Ground Truth LQ (DAEFR) DAEFR (release) DAEFR (re-train) DAEFR + SinCA Ground Truth

Figure 15: More visual results of blind face restoration task on CelebA-Test. “+SinCA”: employ-
ing the transformer using our SinCA for feature transformation.

LQ CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA DAEFR (release) DAEFR (re-train) DAEFR + SinCA

LQ CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA DAEFR (release) DAEFR (re-train) DAEFR + SinCA

LQ CodeFormer (release) CodeFormer (re-train) CodeFormer + SinCA DAEFR (release) DAEFR (re-train) DAEFR + SinCA

Figure 16: More visual results of blind face restoration task on CelebChild-Test. “+SinCA”:
employing the transformer using our SinCA for feature transformation.
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