
Under review as a conference paper at ICLR 2023

DIP-GNN: DISCRIMINATIVE PRE-TRAINING OF
GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural network (GNN) pre-training methods have been proposed to en-
hance the power of GNNs. Specifically, a GNN is first pre-trained on a large-scale
unlabeled graph and then fine-tuned on a separate small labeled graph for down-
stream applications, such as node classification. One popular pre-training method
is to mask out a proportion of the edges, and a GNN is trained to recover them.
However, such a generative method suffers from graph mismatch. That is, the
masked graph input to the GNN deviates from the original graph. To alleviate
this issue, we propose DiP-GNN (Discriminative Pre-training of Graph Neural
Networks). Specifically, we train a generator to recover identities of the masked
edges, and simultaneously, we train a discriminator to distinguish the generated
edges from the original graph’s edges. The discriminator is subsequently used
for downstream fine-tuning. In our pre-training framework, the graph seen by the
discriminator better matches the original graph because the generator can recover
a proportion of the masked edges. Extensive experiments on large-scale homo-
geneous and heterogeneous graphs demonstrate the effectiveness of the proposed
framework. Our code will be publicly available.

1 INTRODUCTION

Graph neural networks (GNNs) have achieved superior performance in various applications, such as
node classification (Kipf & Welling, 2017), knowledge graph modeling (Schlichtkrull et al., 2018)
and recommendation systems (Ying et al., 2018). To enhance the power of GNNs, generative pre-
training methods are developed (Hu et al., 2020b). During the pre-training stage, a GNN incor-
porates topological information by training on a large-scale unlabeled graph in a self-supervised
manner. Then, the pre-trained model is fine-tuned on a separate small labeled graph for downstream
applications. Generative GNN pre-training is akin to masked language modeling in language model
pre-training (Devlin et al., 2019). That is, for an input graph, we first randomly mask out a propor-
tion of the edges, and then a GNN is trained to recover the original identity of the masked edges.

One major drawback with the abovementioned approach is graph mismatch. That is, the input graph
to the GNN deviates from the original one since a considerable amount of edges are dropped. This
causes changes in topological information, e.g., node connectivity. Consequently, the learned node
embeddings may not be desirable.

To mitigate the above issues, we propose DiP-GNN (Discriminative Pre-training of Graph Neural
Networks). In DiP-GNN, we simultaneously train a generator and a discriminator. The generator
is trained similar to existing generative pre-training approaches, where the model seeks to recover
the masked edges and outputs a reconstructed graph. Subsequently, the reconstructed graph is fed to
the discriminator, which predicts whether each edge resides in the original graph (i.e., a true edge)
or is wrongly constructed by the generator (i.e., a fake edge). After pre-training, we fine-tune the
discriminator on downstream tasks. Figure 1 illustrates our training framework. Note that our work
is related to Generative Adversarial Nets (GAN, Goodfellow et al. 2014), and detailed discussions
are presented in Section 3.4. We remark that similar approaches have been used in natural language
processing (Clark et al., 2020). However, we identify the graph mismatch problem (see Section 4.5),
which is specific to graph-related applications and is not observed in natural language processing.

The proposed framework is more advantageous than generative pre-training. This is because the
reconstructed graph fed to the discriminator better matches the original graph compared with the

1

Under review as a conference paper at ICLR 2023

Figure 1: Illustration of DiP-GNN. From left to right: Original graph; Graph with two masked
edges (dashed lines); Reconstructed graph created by the generator (generated edges are the dashed
red lines); Discriminator labels each edge as [G] (generated) or [O] (original), where there are two
wrong labels (shown in red).

masked graph fed to the generator. Consequently, the discriminator can learn better node embed-
dings. Such a better alignment is because the generator recovers the masked edges during pre-
training, i.e., we observe that nearly 40% of the missing edges can be recovered. We remark that in
our framework, the graph fed to the generator has missing edges, while the graph fed to the discrim-
inator contains wrong edges since the generator may make erroneous predictions. However, em-
pirically we find that missing edges hurt more than wrong ones, making discriminative pre-training
more desirable (see Section 4.5 in the experiments).

We demonstrate effectiveness of DiP-GNN on large-scale homogeneous and heterogeneous graphs.
Results show that the proposed method significantly outperforms existing generative pre-training
and self-supervised learning approaches. For example, on the homogeneous Reddit dataset (Hamil-
ton et al., 2017) that contains 230k nodes, we obtain an improvement of 1.1 in terms of F1 score;
and on the heterogeneous OAG-CS graph (Tang et al., 2008) that contains 1.1M nodes, we obtain
an improvement of 2.8 in terms of MRR score in the paper field prediction task.

2 BACKGROUND

⋄Graph Neural Networks. Graph neural networks compute a node’s representation by aggregating
information from the node’s neighbors. Concretely, for a multi-layer GNN, the feature vector h(k)

v

of node v at the k-th layer is

a(k)v = Aggregate
({

h(k−1)
u ∀u ∈ Neighbor(v)

})
, h(k)

v = Combine
(
a(k)v , h(k−1)

v

)
,

where Neighbor(v) denotes all the neighbor nodes of v. Various implementations of Aggregate(·)
and Combine(·) are proposed for both homogeneous (Defferrard et al., 2016; Kipf & Welling, 2017;
Velickovic et al., 2018; Xu et al., 2019) and heterogeneous graphs (Schlichtkrull et al., 2018; Wang
et al., 2019; Zhang et al., 2019; Hu et al., 2020c).

⋄ Graph Neural Network Pre-Training. Previous unsupervised learning methods leverage the
graph’s proximity (Tang et al., 2015) or information gathered by random walks (Perozzi et al., 2014;
Grover & Leskovec, 2016; Dong et al., 2017; Qiu et al., 2018). However, the learned embeddings
cannot be transferred to unseen nodes, limiting the methods’ applicability. Other unsupervised learn-
ing algorithms adopt contrastive learning (Hassani & Ahmadi, 2020; Qiu et al., 2020; Zhu et al.,
2020; 2021; You et al., 2020; 2021). That is, we generate two views of the same graph, and then
maximize agreement of node presentations in the two views. However, our experiments reveal that
these methods do not scale well to extremely large graphs with millions of nodes.

Many GNN pre-training methods focus on generative objectives. For example, GAE (Graph Auto-
Encoder, Kipf & Welling 2016) proposes to reconstruct the graph structure; GraphSAGE (Hamilton
et al., 2017) optimizes an unsupervised loss derived from a random-walk-based metric; and DGI
(Deep Graph Infomax, Velickovic et al. 2019) maximizes the mutual information between node
representations and a graph summary representation.

There are also pre-training methods that extract graph-level representations, i.e., models are trained
on a large amount of small graphs instead of a single large graph. For example, Hu et al. 2020a
propose pre-training methods that operate on both graph and node level; and InfoGraph (Sun et al.,
2020) proposes to maximize the mutual information between graph representations and representa-
tions of the graphs’ sub-structures. In this work, we focus on pre-training GNNs on a single large
graph instead of multiple small graphs.

2

Under review as a conference paper at ICLR 2023

3 METHOD

We formally introduce the proposed discriminative GNN pre-training framework DiP-GNN. The
algorithm contains two ingredients that operate on edges and features.

3.1 EDGE GENERATION AND DISCRIMINATION

Suppose we have a graph G = (N , E), where N denotes all the nodes and E denotes all the edges.
We randomly mask out a proportion of the edges, such that E = Eu ∪Em, where Eu is the unmasked
set of edges and Em is the set of edges that are masked out.

For a masked edge e = (n1, n2) ∈ Em, where n1 and n2 are the two nodes connected by e, the
generator’s goal is to predict n1 given n2 and the unmasked edges Eu. For each node n, we compute
its representation hg(n) = fe

g (n, θ
e
g) using the generator fe

g (·, θeg), which is parameterized by θeg .
We remark that the computation of hg(·) only relies on the unmasked edges Eu. We assume that the
generation process of each edge is independent. Then, we have the prediction probability

p(n1|n2, Eu) =
exp (d(hg(n1), hg(n2)))∑

n′∈C exp (d(hg(n′), hg(n2)))
, C = {n1} ∪ (N \Neighbor(n2)). (1)

Here, C is the candidate set for n1, which contains all the nodes that are not connected to n2 except
n1 itself. Moreover, the distance function d(·, ·) is chosen as a trainable cosine similarity, i.e.,

d(u, v) =
(W cosu)⊤v

||W cosu|| · ||v||
, (2)

where W cos is a trainable weight. The training loss for the generator is defined as

Le
g(θ

e
g) =

∑
(n1,n2)∈Em

− log p(n1|n2, Eu), (3)

which is equivalent to maximizing the likelihood of correct predictions.

The goal of the generator is to recover the masked edges in Em. Therefore, after we train the
generator, we use the trained model to generate Eg = {(n̂1, n2)}(n1,n2)∈Em

, where each n̂1 is the
model’s prediction as n̂1 = argmaxn′∈C p(n′|n2, Eu). Because the generator cannot correctly
predict every edge, some edges in Eg are wrongly generated (i.e., not in Em). We refer to such edges
as fake edges, and the rest as true edges. Concretely, we denote the true edges E true = Eu∪(Em∩Eg),
i.e., the unmasked edges and the edges correctly generated by the generator. Correspondingly, we
denote the fake edges E fake = E \ E true.

The discriminator is trained to distinguish edges that are from the original graph (i.e., the true edges)
and edges that are not (i.e., fake edges). Specifically, given the true edges E true and the fake ones
E fake, we first compute hd(n) = fe

d (n, θ
e
d) for every node n ∈ N , where fe

d (·, θed) is the discrimina-
tor model parameterized by θed. We highlight that different from computing hg(·), the computation
of hd(·) relies on all the edges, such that the discriminator can separate a fake edge from a true one.
Then, for each edge e = (n1, n2) ∈ E true ∪ E fake, the discriminator outputs

pfake = p(e ∈ E fake|E true, E fake) = sigmoid (d(hd(n1), hd(n2))) , (4)

where d(·, ·) is the distance function in Eq. 2. The training loss for the discriminator is the binary
cross-entropy loss of predicting whether an edge is fake or not, defined as

Le
d(θ

e
d) =

∑
e∈E true∪Efake

−1{e ∈ E fake} log(pfake)− 1{e ∈ E true} log(1− pfake), (5)

where 1{·} is the indicator function.

The edge loss is the weighted sum of the generator’s and the discriminator’s loss

Le(θeg, θ
e
d) = Le

g(θ
e
g) + λLe

d(θ
e
d), (6)

where λ is a hyper-parameter. Note that structures of the generator fe
g and the discriminator fe

d are
flexible, e.g., they can be graph convolutional networks (GCN) or graph attention networks (GAT).

3.2 FEATURE GENERATION AND DISCRIMINATION

In real-world applications, nodes are often associated with features. For example, in the Reddit
dataset (Hamilton et al., 2017), a node’s feature is a vectorized representation of the post corre-
sponding to the node. As another example, in citation networks (Tang et al., 2008), a paper’s title

3

Under review as a conference paper at ICLR 2023

can be treated as a node’s feature. Previous work (Hu et al., 2020b) has demonstrated that generating
features and edges simultaneously can improve the GNN’s representation power.

Node features can be either texts (e.g., in citation networks) or vectors (e.g., in recommendation
systems). In this section, we develop feature generation and discrimination procedures for texts.
Vector features are akin to encoded text features, and we can use linear layers to generate and
discriminate them. Details about vector features are deferred to Appendix B.

For text features, we parameterize both the feature generator and the feature discriminator using
bi-directional Transformer models (Vaswani et al., 2017), similar to BERT (Devlin et al., 2019).
Denote ff

g (·, θfg) = trmg ◦ embg(·) the generator parameterized by θfg , where embg is the word
embedding function and trmg denotes subsequent Transformer layers. For an input text feature
x = [x1, · · · , xL] where L is the sequence length, we randomly select indices to mask out, i.e.,
we randomly select an index setM ⊂ {1, · · · , L}. For a masked position i ∈ M, the prediction
probability is given by

p(xi|x) =
exp

(
embg(xi)

⊤vg(xi)
)∑

x′∈vocab exp (embg(x′)⊤vg(x′))
, vg(xi) = trmg

(
W proj

g [hg(nx), embg(xi)]
)
. (7)

Here W proj
g is a trainable weight and hg(nx) is the representation of the node corresponding to x

computed by the edge generation GNN. Note that we concatenate the text embedding embg(xi)
and the feature node’s embedding hg(nx), such that the feature generator can aggregate information
from the graph structure. We train the generator by maximizing the probability of predicting the
correct token, i.e., by minimizing the loss

Lf
g (θ

e
g, θ

f
g) =

∑
x

∑
i∈M− log p(xi|x). (8)

After we train the generator, we use the trained model to predict all the masked tokens, after which
we obtain a new text feature xcorr. Here, we set xcorr

i = xi for i /∈ M and xcorr
i = x̂i for i ∈ M,

where x̂i = argmaxx′∈vocab p(xi|x) is the generator’s prediction.

The discriminator is trained to distinguish the fake tokens (i.e., wrongly generated tokens) from the
true ones (i.e., the unmasked and correctly generated tokens) in xcorr. Similar to the generator, we
denote ff

d (·, θ
f
d) = trmd ◦ embd(·) as the discriminator parameterized by θfd . For each position i,

the discriminator’s prediction probability is defined as

p(xcorr
i = xi) = sigmoid

(
w⊤vd(x

corr
i)

)
, vd(x

corr
i) = trmd

(
W proj

d [hd(nx), embd(x
corr
i)]

)
. (9)

Here w and W proj
d are trainable weights and hd(nx) is the representation of the node corresponding

to x computed by the edge discriminator GNN. The training loss for the discriminator is

Lf
d(θ

e
d, θ

f
d) =

∑
x

∑L
i=1−1{xcorr

i = xi} log(ptrue)− 1{xcorr
i ̸= xi} log(1− ptrue), (10)

where ptrue = p(xcorr
i = xi) and 1{·} is the indicator function.

The text feature loss is defined as

Lf (θeg, θ
f
g , θ

e
d, θ

f
d) = L

f
g (θ

e
g, θ

f
g) + λLf

d(θ
e
d, θ

f
d), (11)

where λ is a hyper-parameter.

3.3 MODEL TRAINING

We jointly minimize the edge loss and the feature loss, where the loss function is

L(θeg, θfg , θed, θ
f
d) = L

e(θeg, θ
e
d) + Lf (θeg, θ

f
g , θ

e
d, θ

f
d)

=
(
Le
g(θ

e
g) + Lf

g (θ
e
g, θ

f
g)
)
+ λ

(
Le
d(θ

e
d) + L

f
d(θ

e
d, θ

f
d)
)
. (12)

Here, λ is the weight of the discriminator’s loss. We remark that our framework is flexible be-
cause the generator’s loss (Le

g and Lf
g) is decoupled from the discriminator’s (Le

d and Lf
d). As such,

existing generative pre-training methods can be applied to train the generator. In DiP-GNN, the
discriminator has a better quality than the generator because of the graph mismatch issue (see Sec-
tion 4.5). Therefore, after pre-training, we discard the generator and fine-tune the discriminator on
downstream tasks. A detailed training pipeline is presented in Appendix A.

4

Under review as a conference paper at ICLR 2023

3.4 COMPARISON WITH GAN

We remark that our framework is different from Generative Adversarial Nets (GAN, Goodfellow
et al. 2014). In GAN, the generator-discriminator training framework is formulated as a min-max
game, where the generator is trained adversarially to fool the discriminator. The two models are
updated using alternating gradient descent/ascent.

However, the min-max game formulation of GAN is not applicable to our framework. This is be-
cause in GNN pre-trianing, the generator generates discrete edges, unlike continuous pixel values in
the image domain. Such a property prohibits back-propagation from the discriminator to the gen-
erator. Existing works (Wang et al., 2018) use reinforcement learning (specifically policy gradient)
to circumvent the non-differentiability issue. However, reinforcement learning introduces extensive
hyper-parameter tuning and suffers from scalability issues. For example, the largest graph used in
Wang et al. 2018 only contains 18k nodes, whereas the smallest graph used in our experiments has
about 233k nodes.

Additionally, the goal of GAN is to train good-quality generators, which is different from our focus.
In our discriminative pre-training framework, we focus on the discriminator because of better graph
alignments. In practice, we find that accuracy of the generator is already high even without the
discriminator, e.g., the accuracy is higher than 40% with 255 negative samples. And we observe that
further improving the generator does not benefit downstream tasks.

4 EXPERIMENTS

We implement all the algorithms using PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey
& Lenssen, 2019). Experiments are conducted on NVIDIA A100 GPUs. By default, we use Hetero-
geneous Graph Transformer (HGT, Hu et al. 2020c) as the backbone GNN. We also discuss other
choices in the experiments. Training and implementation details are deferred to Appendix C.

4.1 SETTINGS AND DATASETS

⋄ Settings. We consider a node transfer setting in the experiments. In practice we often work with
a single large-scale graph, on which labels are sparse. In this case, we can use the large amount
of unlabeled data as the pre-training dataset, and the rest are treated as labeled fine-tuning nodes.
Correspondingly, edges between pre-training nodes are added to the pre-training data, and edges
between fine-tuning nodes are added to the fine-tuning data. In this way, the model cannot see the
fine-tuning data during pre-training, and vice versa.

We remark that our setting is different from conventional self-supervised learning settings, namely
we pre-train and fine-tune on two separate graphs. This meets the practical need of transfer learning,
e.g., a trained GNN needs to transfer across locales and time spans in recommendation systems.

⋄ Homogeneous Graph. We use the Reddit dataset (Hamilton et al., 2017), which is a publicly
available large-scale graph. In this graph, each node corresponds to a post, and is labeled with a
“subreddit”. Each node has a 603-dimensional feature vector constructed from the corresponding
post. Two nodes (posts) are connected if the same user commented on both. The dataset contains
posts from 50 subreddits sampled from posts initiated in September 2014. In total, there are 232,965
posts with an average node degree of 492. We use 70% of the data as the pre-training data, and the
rest as the fine-tuning data, which are further split into training, validation, and test sets equally. We
consider node classification as the downstream fine-tuning task.

⋄ Product Recommendation Graph. We collect in-house product recommendation data from an
e-commerce website. We build a bi-partite graph with two node types: search queries and product
ids. The dataset contains about 633k query nodes, 2.71M product nodes, and 228M edges. We
sample 70% of the nodes (and corresponding edges) for pre-training, and the rest are evenly split
for fine-tuning training, validation and testing. We consider link prediction as the downstream task,
where for each validation and test query node, we randomly mask out 20% of its edges to recover.
For each masked edge that corresponds to a query node and a positive product node, we randomly
sample 255 negative products. The task is to find the positive product out of the total 256 products.

5

Under review as a conference paper at ICLR 2023

⋄ Heterogeneous Graph. We use the OAG-CS dataset (Tang et al., 2008; Sinha et al., 2015),
which is a publicly available heterogeneous graph containing computer science papers. The dataset
contains over 1.1M nodes and 28.4M edges. In this graph, there are five node types (institute, author,
venue, paper and field) and ten edge types. The “field” nodes are further categorized into six levels
from L0 to L5, which are organized using a hierarchical tree. Details are shown in Figure 2.

Figure 2: Details of OAG-CS. There are 5 node
types (in black) and 10 edge types (in red).

We use papers published before 2014 as the
pre-training dataset (63%), papers published
between 2014 (inclusive) and 2016 (inclusive)
as the fine-tuning training set (20%), papers
published in 2017 as the fine-tuning validation
set (7%), and papers published after 2017 as the
fine-tuning test set (10%). During fine-tuning,
by default we only use 10% of the fine-tuning
training data (i.e., 2% of the overall data) be-
cause in practice labeled data are often scarce.
We consider three tasks for fine-tuning: author
name disambiguation (AD), paper field classifi-
cation (PF) and paper venue classification (PV).
For paper field classification, we only consider L2 fields. In the experiments, we use the pre-
processed graph from Hu et al. 2020b.

4.2 IMPLEMENTATION DETAILS

⋄ Graph subsampling. In practice, graphs are often too large to fit in the hardware, e.g., the
Reddit dataset (Hamilton et al., 2017) contains over 230k nodes. Therefore, we sample a dense
subgraph from the large-scale graph in each training iteration. For homogeneous graphs, we apply
the LADIES algorithm (Zou et al., 2019), which theoretically guarantees that the sampled nodes are
highly inter-connected with each other and can maximally preserve the graph structure. For hetero-
geneous graphs, we use the HGSampling algorithm (Hu et al., 2020b), which is a heterogeneous
version of LADIES.

⋄ Node sampling for the edge generator. In the edge generator, for a masked edge (s, t), we fix
the node t and seek to identify the other node s. One approach is to identify s from all the graph
nodes, i.e., by setting C = N in Eq. 1. However, this task is computationally intractable when the
number of nodes is large, i.e., the model needs to find s out of hundreds of thousands of nodes.
Therefore, we sample some negative nodes {sgi }

nneg
i=1 such that (sgi , t) /∈ E . Then, the candidate set to

generate the source node becomes {s, sg1, · · · , sgnneg
} instead of all the graph nodes N . We remark

that such a sampling approach is standard for GNN pre-training and link prediction (Hamilton et al.,
2017; Sun et al., 2020; Hu et al., 2020b).

⋄ Edge sampling for the edge discriminator. In computing the loss for the discriminator, the
number of edges in Eu is significantly larger than those in Eg , i.e., we only mask a small proportion
of the edges. To avoid the discriminator from outputting trivial predictions (i.e., all the edges belong
to Eu), we balance the two loss terms in Le

d. Specifically, we sample Edu ⊂ Eu such that |Edu| =
α|Eg|, where α is a hyper-parameter. Then, we compute Le

d on Eg and Edu . Note that the node
representations hd are still computed using all the generated and unmasked edges Eg and Eu.

4.3 BASELINES

We compare our method with several baselines in the experiments. For fair comparison, all the
methods are trained for the same number of GPU hours.

⋄GAE (Graph Auto-Encoder, Kipf & Welling 2016) adopts an auto-encoder for unsupervised learn-
ing on graphs. In GAE, node embeddings are learnt using a GNN, and we minimize the discrepancy
between the original and the reconstructed adjacency matrix.

⋄ GraphSAGE (Hamilton et al., 2017) encourages embeddings of neighboring nodes to be similar.
For each node, the method learns a function that generates embeddings by sampling and aggregating
features from the node’s neighbors.

6

Under review as a conference paper at ICLR 2023

Table 1: Experimental results on homogeneous
graphs. We report F1 averaged over 10 runs for
the Reddit data and MRR over 10 runs for the
product recommendation data. The best results
are shown in bold.

Reddit Recomm.
w/o pre-train 87.3 46.3

GAE 88.5 56.7
GraphSAGE 88.0 53.0
DGI 87.7 53.3
GPT-GNN 89.6 58.6
GRACE 89.0 51.5
GraphCL 88.6 —
JOAOv2 89.1 —

DiP-GNN 90.7 60.1

Table 2: Experimental results on OAG-CS
(heterogeneous). Left to right: paper-field,
paper-venue, author-name-disambiguation.
We report MRR over 10 runs. The best re-
sults are shown in bold.

PF PV AD
w/o pre-train 32.7 19.6 60.0

GAE 40.3 24.5 62.5
GraphSAGE 37.8 22.1 62.9
DGI 38.1 22.5 63.0
GPT-GNN 41.6 25.6 63.1
GRACE 38.0 21.5 62.0
GraphCL 38.0 22.0 61.5
JOAOv2 38.6 23.5 62.8

DiP-GNN 44.1 27.7 65.6

(a) Author name disambiguation. (b) Paper field classification. (c) Paper venue classification.

Figure 3: Model performance vs. amount of labeled data on OAG-CS.

⋄ DGI (Deep Graph Infomax, Velickovic et al. 2019) maximizes mutual information between node
representations and corresponding high-level summaries of graphs. Thus, a node’s embedding sum-
marizes a sub-graph centered around it.

⋄ GPT-GNN (Hu et al., 2020b) adopts a generative pre-training objective. The method generates
edges by minimizing a link prediction objective, and incorporates node features in the framework.

⋄ GRACE (Graph Contrastive Representation, Zhu et al. 2020) leverages a contrastive objective.
The algorithm generates two views of the same graph through node and feature corruption, and then
maximize agreement of node representations in the two views.

⋄ GraphCL (You et al., 2020) is another graph contrastive learning approach that adopts node and
edge augmentation techniques, such as node dropping and edge perturbation.

⋄ JOAO (Joint Augmentation Optimization, You et al. 2021) improves GraphCL by deigning a
bi-level optimization objective to automatically and dynamically selects augmentation methods.

4.4 MAIN RESULTS

In Table 1 and Table 2, w/o pre-train means direct training on the fine-tuning dataset without pre-
training. Results on the Reddit dataset are F1 scores averaged over 10 runs, and results on the
product recommendation graph are MRR scores averaged over 10 runs. All the performance gain
have passed a hypothesis test with p-value < 0.05.

Table 1 summarizes experimental results on the homogeneous graphs: Reddit and Recommenda-
tion. We see that pre-training indeed benefits downstream tasks. For example, performance of GNN
improves by at ≥ 0.4 F1 on Reddit (DGI) and ≥ 5.2 MRR on Recommendation (GRACE). Also,
notice that among the baselines, generative approaches (GAE and GPT-GNN) yield promising per-

7

Under review as a conference paper at ICLR 2023

(a) Neg. nodes for generation. (b) Pos. edges for discrimination. (c) Weight of discriminator’s loss.

Figure 4: Ablation experiments on Reddit. By default, we set the number of negative nodes to 256,
the factor of positive edges to 1.0, and weight of the discriminator’s loss to 20.

Table 3: Test F1 score of
model variants on Reddit.

Model F1

Edges+Features 90.7

Edges 90.4
Features 90.2
RandomEdges 89.8

Table 4: Test F1 of models
with different backbone graph
neural networks on Reddit.

Model HGT GAT

w/o pretrain 87.3 86.4

GPT-GNN 89.6 87.5
DiP-GNN 90.7 88.5

Figure 5: F1 vs. proportion of
manipulated edges on Reddit.

formance. On the other hand, the contrastive method (GRACE, GraphCL and JOAO) does not scale
well to large graphs, e.g., the OAG-CS graph which contains 1.1M nodes and 28.4M edges. By
using the proposed discriminative pre-training framework, our method significantly outperforms all
the baseline approaches. For example, DiP-GNN outperforms GPT-GNN by 1.1 on Reddit and 1.5
on Recommendation.

Experimental results on the heterogeneous OAG-CS dataset are summarized in Table 2. Similar to
the homogeneous graphs, notice that pre-training improves model performance by large margins.
For example, pre-training improves MRR by at least 5.1, 2.5 and 2.5 on the PF, PV and AD tasks,
respectively. Moreover, by using the proposed training framework, models can learn better node
embeddings and yield consistently better performance compared with all the baselines.

Recall that during fine-tuning on OAG-CS, we only use 10% of the labeled fine-tuning data (about
2% of the overall data). In Figure 3, we examine the effect of the amount of labeled data. We see
that model performance improves when we increase the amount of labeled data. Also, notice that
DiP-GNN consistently outperforms GPT-GNN in all the three tasks under all the settings.

4.5 ANALYSIS

Figure 6: Test F1 on Reddit.

⋄ Comparison with semi-supervised learning. We com-
pare DiP-GNN with a semi-supervised learning method: C&S
(Correct&Smooth, Huang et al. 2020). Figure 6 summarizes
the results. We see that C&S yields a 0.5 improvement com-
pared with the supervised learning method (i.e., w/o pre-train).
However, performance of C&S is significantly lower than both
DiP-GNN and other pre-training methods such as GPT-GNN.

⋄Hyper-parameters. There are several hyper-parameters that
we introduce in DiP-GNN: the number of negative nodes
that are sampled for generating edges (Section 4.2); the num-
ber of positive edges that are sampled for the discriminator’s
task (Section 4.2); and the weight of the discriminator’s loss
(Eq. 12). Figure 4 illustrate ablation experimental results on the Reddit dataset. From the results, we
see that DiP-GNN is robust to these hyper-parameters. We remark that under all the settings, ours
model behaves better than the best-performing baseline (89.6 for GPT-GNN).

8

Under review as a conference paper at ICLR 2023

Figure 7: Performance vs.
proportion of masked edges
on product recommendation.

Table 5: Generator and discriminator performance vs. pro-
portion of masked edges during pre-training. Coverage is
the proportion of true edges input to the models.

Masked% Acc Coverage
Gen. Dis. Gen. Dis. Ratio

20 0.50 0.87 0.80 0.90 ×1.13
80 0.33 0.84 0.20 0.46 ×2.30
95 0.20 0.80 0.05 0.24 ×4.80

⋄ Model variants. We also examine variants of DiP-GNN. Recall that the generator and the dis-
criminator operate on both edges and node features. We first check the contribution of these two
factors. We also investigate the scenario where edges are randomly generated, and the discriminator
still seeks to find the generated edges. Table 3 summarizes results on the Reddit dataset.

We see that by only using edges, model performance drops by 0.3; and by only using node features,
performance drops by 0.5. This indicates that the graph structure plays a more important role in the
proposed framework than the features. Also notice that performance of RandomEdges is unsatis-
factory. This is because implausible edges are generated when using a random generator, making
the discriminator’s task significantly easier. We remark that performance of all the model variants is
better than the best-performing baseline (89.6 for GPT-GNN).

Table 4 examines performance of our method and GPT-GNN using different backbone GNNs. Re-
call that by default, we use HGT (Hu et al., 2020c) as the backbone. We see that when GAT (Velick-
ovic et al., 2018) is used, performance of DiP-GNN is still significantly better than GPT-GNN.

⋄ Missing edges hurt more than wrong edges. In our pre-training framework, the generator is
trained to reconstruct the masked graph, after which the reconstructed graph is fed to the discrimi-
nator. During this procedure, the graph input to the generator has missing edges, and the graph input
to the discriminator has wrong edges. From Figure 5, we see that wrong edges hurt less than missing
ones. For example, model performance drops by 0.7% when 50% of wrong edges are added to the
original graph, and performance decreases by 1.8% when 50% of original edges are missing. This
indicates that performance relies on the amount of original edges seen by the models. Intuitively,
wrong edges add noise to the graph, but they do not affect information flow. On the contrary, miss-
ing edges cut information flow. Moreover, in practice we work with graph attention models, and the
attention mechanism can alleviate the wrong edges by assigning low attention scores to them.

⋄Why is discriminative pre-training better? Figure 7 illustrates effect of the proportion of masked
edges during pre-training. We see that when we increase the proportion from 0.2 to 0.8, performance
of GPT-GNN drops by 6.1, whereas performance of DiP-GNN only drops by 3.3. This indicates that
the generative pre-training method is more sensitive to the masking proportion.

Table 5 summarizes pre-training quality. First, the generative task (i.e., the generator) is more diffi-
cult than the discriminative task (i.e., the discriminator). For example, when we increase the propor-
tion of masked edges from 20% to 80%, accuracy of the generator drops by 17% while accuracy of
the discriminator only decreases by 3%. Second, the graph input to the discriminator better aligns
with the original graph. For example, when 80% of the edges are masked, the discriminator sees
2.3 times more original edges than the generator. Therefore, the discriminative task is more advan-
tageous because model quality relies on the number of observed original edges (Figure 5).

5 CONCLUSION AND DISCUSSIONS

We propose Discriminative Pre-Training of Graph Neural Networks (DiP-GNN), where we simul-
taneously train a generator and a discriminator. During pre-training, we mask out some edges in
the graph, and a generator is trained to recover the masked edges. Subsequently, a discriminator
seeks to distinguish the generated edges from the original ones. Our framework is more advanta-
geous than generative pre-training for two reasons: the graph inputted to the discriminator better
matches the original graph; and the discriminative pre-training task better aligns with downstream
node classification. We conduct extensive experiments to validate the effectiveness of DiP-GNN.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: pre-
training text encoders as discriminators rather than generators. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-
10, 2016, Barcelona, Spain, pp. 3837–3845, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.

Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. metapath2vec: Scalable representation
learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17,
2017, pp. 135–144. ACM, 2017. doi: 10.1145/3097983.3098036.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Zoubin Ghahramani,
Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger (eds.), Advances in
Neural Information Processing Systems 27: Annual Conference on Neural Information Process-
ing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 2672–2680, 2014.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Balaji
Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev
Rastogi (eds.), Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 855–864. ACM,
2016. doi: 10.1145/2939672.2939754.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 1024–1034, 2017.

Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning on
graphs. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp.
4116–4126. PMLR, 2020.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. GPT-GNN: generative
pre-training of graph neural networks. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya
Prakash (eds.), KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pp. 1857–1867. ACM, 2020b.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (eds.), WWW ’20: The Web

10

Under review as a conference paper at ICLR 2023

Conference 2020, Taipei, Taiwan, April 20-24, 2020, pp. 2704–2710. ACM / IW3C2, 2020c. doi:
10.1145/3366423.3380027.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining
label propagation and simple models out-performs graph neural networks. arXiv preprint
arXiv:2010.13993, 2020.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 8024–8035, 2019.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social represen-
tations. In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani
(eds.), The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pp. 701–710. ACM, 2014. doi:
10.1145/2623330.2623732.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Yi Chang, Chengxiang Zhai,
Yan Liu, and Yoelle Maarek (eds.), Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018,
pp. 459–467. ACM, 2018. doi: 10.1145/3159652.3159706.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. GCC: graph contrastive coding for graph neural network pre-training. In Rajesh
Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (eds.), KDD ’20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27,
2020, pp. 1150–1160. ACM, 2020.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan Wang.
An overview of microsoft academic service (mas) and applications. In Proceedings of the 24th
international conference on world wide web, pp. 243–246, 2015.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: large-scale
information network embedding. In Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi
(eds.), Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Flo-
rence, Italy, May 18-22, 2015, pp. 1067–1077. ACM, 2015. doi: 10.1145/2736277.2741093.

11

Under review as a conference paper at ICLR 2023

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and
mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 990–998, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie,
and Minyi Guo. Graphgan: Graph representation learning with generative adversarial nets. In
Sheila A. McIlraith and Kilian Q. Weinberger (eds.), Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial In-
telligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 2508–2515. AAAI
Press, 2018.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S. Yu. Heterogeneous
graph attention network. In Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J.
McAuley, Ricardo Baeza-Yates, and Leila Zia (eds.), The World Wide Web Conference, WWW
2019, San Francisco, CA, USA, May 13-17, 2019, pp. 2022–2032. ACM, 2019. doi: 10.1145/
3308558.3313562.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural net-
works? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In Yike
Guo and Faisal Farooq (eds.), Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, pp.
974–983. ACM, 2018. doi: 10.1145/3219819.3219890.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33:5812–5823, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. In International Conference on Machine Learning, pp. 12121–12132. PMLR, 2021.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V. Chawla. Heteroge-
neous graph neural network. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria
Terzi, and George Karypis (eds.), Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8,
2019, pp. 793–803. ACM, 2019. doi: 10.1145/3292500.3330961.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In Proceedings of the Web Conference 2021, pp. 2069–2080, 2021.

12

Under review as a conference paper at ICLR 2023

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 11247–11256, 2019.

13

Under review as a conference paper at ICLR 2023

A DETAILED ALGORITHM

Algorithm 1 is a detailed training pipeline of DiP-GNN. For graphs with vector features instead of
text features, we can substitute the feature generation and discrimination modules with equations in
Appendix B.

Algorithm 1: DiP-GNN: Discriminative Pre-training of Graph Neural Networks.
Input: Graph Gfull; edge masking ratio; feature masking ratio; number of negative samples for

edge generator; proportion of positive samples for edge discriminator α; weight of the
discriminator’s loss λ; number of training steps T .

for t = 0, · · · , T − 1 do
// Graph subsampling.
Sample a subgraph G = (N , E) from Gfull;
// Edge generation.
Initialize the generated edge set Eg = {} and the edge generation loss Le

g = 0;
Construct the unmasked set of edges Eu and the masked set Em such that E = Eu ∪ Em;
Compute node embeddings using Eu;
for e = (n1, n2) ∈ Em do

Construct candidate set C for n1 (n2 is given during generation) via negative sampling;
Generate ê = (n̂1, n2) where n̂1 ∈ C;
Update the generated edge set Eg ← Eg ∪ {ê};
Update the edge generation loss Le

g;

// Text Feature generation.
Initialize the feature generation loss Lf

g = 0;
for n ∈ N do

For the node’s text feature xn, mask out some of its tokens;
Construct the generated text feature xcorr

n using the embedding of node n (computed
during edge generation) and the feature generation Transformer model;

Update the feature generation loss Lf
g ;

// Edge discrimination.
Initialize the edge discrimination loss Le

d = 0;
Compute node embeddings using Eg ∪ Eu;
Sample Edu ⊂ Eu such that |Edu| = α|Eg|;
for e = (n1, n2) ∈ Eg ∪ Edu do

Determine if e is generated using the embedding of n1 and n2;
Update the edge discrimination loss Le

d;
// Text feature discrimination.

Initialize the feature discrimination loss Lf
d = 0;

for n ∈ N do
For the node’s generated text feature xcorr

n , determine whether each token is generated
using the embedding of node n (computed during edge discrimination) and the feature
discrimination Transformer model;

Update the feature discrimination loss Lf
d ;

// Model updates.

Compute L = (Le
g + Lf

g) + λ(Le
d + L

f
d) and update the model;

Output: Trained discriminator ready for fine-tuning.

B GENERATION AND DISCRIMINATION OF VECTOR FEATURES

Node features can be vectors instead of texts, e.g., the feature vector can contain topological infor-
mation such as connectivity information. In this case both the generator and the discriminator are
parameterized by a linear layer.

14

Under review as a conference paper at ICLR 2023

To generate feature vectors, we first randomly select some nodes Ng ⊂ N . For a node n ∈ N ,
denote its feature vector vn, then the feature generation loss is

Lf
g (Wg) =

∑
n∈Ng

||v̂n − vn||22 , where v̂n = W f
g hg(n).

Here hg(n) is the representation of node n and W f
g is a trainable weight. For a node n ∈ N , we

construct its corred feature vcorr
n = v̂n if n ∈ Ng and vcorr

n = vn if n ∈ N \ Ng .

The discriminator’s goal is to differentiate the generated features from the original ones. Specifically,
the prediction probability is

p(n ∈ Ng) = sigmoid
(
W d

d hd(n)
)
,

where W f
d is a trainable weight. We remark that the node representation hd(n) is computed based

on the corred feature vcorr
n . Correspondingly, the discriminator’s loss is

Lf
d(Wd) =

∑
n∈N
−1{n ∈ Ng} log p(n ∈ Ng)− 1{n ∈ N \ Ng} log(1− p(n ∈ Ng)).

The vector feature loss Lf (θeg,W
f
g , θ

e
d,W

f
d) = Lf

g (θ
e
g,W

f
g) + L

f
d(θ

e
d,W

f
d) is computed similar to

the text feature loss.

C IMPLEMENTATION AND TRAINING DETAILS

By default, we use Heterogeneous Graph Transformer (HGT, Hu et al. 2020c) as the backbone GNN.
In the experiments, the edge generator and discriminator have the same architecture, where we set
the hidden dimension to 400, the number of layers to 3, and the number of attention heads to 8.
For the OAG dataset which contains text features, the feature generator and discriminator employs
the same architecture: a 4 layer bi-directional Transformer model, similar to BERT (Devlin et al.,
2019), where we set the embedding dimension to 128 and the hidden dimension of the feed-forward
neural network to 512.

For pre-training, we mask out 20% of the edges and 20% of the features (for text features we mask
out 20% of the tokens). We use AdamW (Loshchilov & Hutter, 2019) as the optimizer, where we
set β = (0.9, 0.999), ϵ = 10−8, the learning rate to 0.001 and the weight decay to 0.01. We adopt a
dropout ratio of 0.2 and gradient norm clipping of 0.5. For graph subsampling, we set the depth to 6
and width to 128, the same setting as Hu et al. 2020b.

For fine-tuning, we use AdamW (Loshchilov & Hutter, 2019) as the optimizer, where we set β =
(0.9, 0.999), ϵ = 10−6, and we do not use weight decay. We use the same graph subsampling setting
as pre-training. The other hyper-parameters are detailed in Table 6.

Table 6: Hyper-parameters for fine-tuning tasks.

Dataset Task Steps Dropout Learning rate Gradient clipping
Reddit — 2400 0.3 0.0015 0.5

Recomm. — 1600 0.1 0.0010 0.5

OAG-CS
PF 1600 0.2 0.0010 0.5
PV 1600 0.2 0.0005 0.5
AD 1600 0.2 0.0005 0.5

15

	Introduction
	Background
	Method
	Edge Generation and Discrimination
	Feature Generation and Discrimination
	Model Training
	Comparison with GAN

	Experiments
	Settings and Datasets
	Implementation Details
	Baselines
	Main Results
	Analysis

	Conclusion and Discussions
	Detailed Algorithm
	Generation and Discrimination of Vector Features
	Implementation and Training Details

