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ABSTRACT

The electrocardiogram (ECG) is a key diagnostic tool in cardiovascular health.
Single-lead ECG recording is integrated into both clinical-grade and consumer
wearables. While self-supervised pretraining of foundation models on unlabeled
ECGs improves diagnostic performance, existing approaches do not incorporate
domain knowledge from clinical metadata. We introduce a novel contrastive
approach that utilizes an established clinical risk score to adaptively weight negative
pairs: clinically-guided contrastive learning. It aligns the similarities of ECG
embeddings to clinically meaningful differences between subjects, with an explicit
mechanism to handle missing metadata. Using 12-lead ECGs from 161K patients in
MIMIC-IV dataset, we pretrain single-lead ECG foundation models at three scales,
collectively called CLEF , using only routinely-collected metadata without requiring
per-sample ECG annotations. We evaluate CLEF on 18 clinical classification and
regression tasks across 7 held-out datasets, and benchmark against 5 foundation
model baselines and 3 self-supervised algorithms. When pretrained on 12-lead
ECG data and tested on lead-I data, CLEF outperforms self-supervised foundation
model baselines: the medium-sized CLEF achieves average AUROC improvements
of at least 2.6% in classification and average reductions in MAEs of at least 3.2%
in regression. Comparing with existing self-supervised learning algorithms, CLEF
improves the average AUROC by at least 1.8%. Moreover, when pretrained only
on lead-I data for classification tasks, CLEF performs comparably to the state-
of-the-art ECGFounder, which has been trained in a supervised manner. Overall,
CLEF allows more accurate and scalable single-lead ECG analysis, advancing
remote health monitoring. We will publish our code and pretrained CLEF models.

1 INTRODUCTION

The electrocardiogram (ECG) (Geselowitz, 1989) captures the heart’s electrical activity as a sequence
of voltage fluctuations (Lilly, 2012). While ECG interpretation is a clinical task, ECG-based AI
started matching clinician performance, and enabled large-scale applications such as detecting heart
conditions from wearables. Furthermore, Yao et al. (2021) found out that clinicians using AI were
30% more accurate in diagnosing left ventricular dysfunction from ECGs than those without AI
support. The rise of wearables and mobile health devices with single-lead ECGs enables continuous
monitoring beyond clinical settings, supporting early cardiac event detection, long-term tracking, and
proactive interventions. Nevertheless, accurate analysis of single-lead ECGs remains a challenge due
to the reduced spatial information and the increased noise and motion artifacts (Khamis et al., 2016;
Halvaei et al., 2021; Khunte et al., 2023). Prior work has shown that single-lead ECG devices can
be used to diagnose atrial fibrillation Svennberg et al. (2015), and that spatial correlations among
ECG leads can help infer missing leads (Nelwan et al., 2004). Single-lead ECG is used for practical
diagnoses, especially in wearable contexts (Qin et al., 2023; Li et al., 2024).

Collecting sufficiently large, human-annotated, single-lead ECGs is impractical, given the variability
in downstream tasks across devices and health conditions. ECGs from healthcare organizations are
usually provided in the standard 12-lead format but contain limited annotations. A more practical
solution is to pretrain on 12-lead ECGs to learn generalizable representations, then fine-tune on
smaller, task-specific data curated for the target health condition. Often, pretraining is performed using
contrastive learning with data augmentation (Chen et al., 2020; Soltanieh et al., 2022), encouraging
the representations of similar samples to be as close to one another while pushing apart those of
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Figure 1: CLEF ’s framework and performance overview (see §2 for notations). (A) Our clinically-
guided contrastive pretraining. Key components include a negative weighting loss Lw and a
dissimilarity alignment loss Ld that work in tandem to guide contrastive learning with clinical
knowledge. (B) Spider plot on AUROC performance of CLEF -M (our medium-sized model) across
13 downstream classification tasks. Baseline performances are in gray lines (see §4).

dissimilar ones. This not only uses information from within samples (e.g. data augmentations), but
also uses contextual factors, which can provide important cues for similarity that are not directly
observable in the input. Contrastive learning for images is guided by the spatial proximity of image
viewpoints or content (Thoma et al., 2020a;b), or by sample identities (Haslum et al., 2024). Prior
work also incorporates subject and signal attributes in contrastive learning (Kim et al., 2025), but did
not incorporate clinical knowledge, nor handle missing metadata.

Metadata recorded alongside ECGs, such as patient demographics, provides a potential source
of contextual data. Some use metadata as model inputs (Erturk et al., 2025), while others have
incorporated metadata prediction as part of the pretraining objective (Wang et al., 2024), or as
downstream prediction targets (e.g., predicting gender or age from ECGs (Li et al., 2024)). Since
gender or age is not a primary objective, this merely demonstrates the model’s ability to distinguish
between patient groups. In this paper, we take a more integrative strategy to employ metadata as
contextual information in contrastive pretraining, since different people might be associated with
different risks of a particular health outcome. We leverage metadata in the form of clinically validated
risk scores to pretrain a foundation model (FM) for single-lead ECGs. Risk scores estimate a person’s
risk of experiencing an adverse health outcome in a specified time period, such as risk of developing
cardiovascular disease in the next ten years (Conroy et al., 2003; working group and risk collaboration,
2021a;b). They take various metadata variables as inputs (e.g., patient demographics, past medical
history, and comorbidities), and output a quantitative assessment of the risk of adverse outcomes.
Risk scores can guide clinical decisions Hughes et al. (2023), such as whether to prescribe a drug (Lip
et al., 2010), or perform invasive procedures (Fox et al., 2006). Our contributions are:

1. Clinically-guided contrastive learning for ECG representation learning. We leverage metadata
to calculate clinically informative risk scores that provide flexible similarity relationships between
unlabeled ECG samples. Unlike classic contrastive approaches that rely on binary notions of
similarity/dissimilarity, our method incorporates clinical risk scores as soft guidance, enabling the
model to learn richer and more nuanced representations.

2. Extensive empirical analysis and benchmarking for ECG FMs. We: (i) evaluate downstream
performance on lead I/II ECG classification and regression, (ii) compare against 12-lead ECG
approaches, (iii) assess robustness across different model architectures and pretraining methods,
(iv) perform ablation studies on loss components and handling missing metadata, and (v) use
linear probing analysis to assess representation quality.

3. Effectiveness across diverse downstream tasks. We evaluate on a wide range of applications.
CLEF consistently consistently outperforms strong baselines, achieving an average improvement
of 3.1% in classification AUROC and a reduction of 2.9% in regression MAE.

2 CLINICALLY-GUIDED CONTRASTIVE PRETRAINING

LetD = {(es = (e1s, . . . , e
12
s ),as)}Ns=1 denote the pretraining dataset, where els ∈ Rt, of length t,

represents the ECG signal from lead l of the s-th sample, as = {a1
s, . . . ,a

A
s } denotes demographic

or clinical metadata (i.e., attributes like age or blood pressure) associated with the subject and
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not labels specific to the current ECG recording, and N is the number of 12-lead ECG samples.
Importantly, certain attributes might be missing in some samples’ metadata. Let R denote a standard,
clinically-validated function that combines a subject’s metadata into a numerical estimate of the
likelihood of a future health outcome (e.g. sudden cardiac arrest). We define rs = R(as) as a risk
score associated to the sample es. Our objective is to train a single-lead ECG FM F(·) on D such
that the geometry of the embedding space, i.e., outputs z = F(els) ∈ Rh, with a dimension of h,
reflects clinically meaningful similarities according to the risk score function R(·).
To measure the success of our objective, we attach a linear layer G(·) on top of the embeddings of
condition-specific single-lead ECGs produced by F(·). LetC = {(els, ys)}Ms=1 denote a downstream
evaluation dataset, where els ∈ Rt, represents the ECG signal from lead l, and ys indicates the
ground-truth label associated to that ECG signal. Note that the lead is fixed across all samples in the
test set (e.g. lead I). We evaluate F(·) under two downstream scenarios: (1) fine-tuning, where all
parameters of F(·) and G(·) are updated during training on the training split of C, and (2) linear
probing, where the pretrained F(·) is kept frozen and only the linear head G(·) is updated to map the
embeddings z = F(els) to task-specific labels. To maintain a fair comparison, we adopt a consistent
set of hyperparameters across all experiments; further details are provided in Appendix C.1.

For binary labels y ∈ {0, 1}, we report the AUROC metric, which measures the model’s ability to
discriminate between the positive and negative classes by computing the area under the Receiver
Operating Characteristic (ROC) curve, representing the trade-off between true positive rate and false
positive rate across all possible classification thresholds. For categorical labels y ∈ {1, · · · ,K}
where K is the number of classes, we report the macro AUROC score using the one-vs-rest extension,
where each class is compared against all others and the resulting scores are macro-averaged (i.e.
unweighted mean). For numerical labels y∈R0, we report the mean absolute error (MAE) between
the predicted and true values, providing an interpretable metric of prediction accuracy in the same
units as the target variable. Performance is summarized as a percentage improvement over baseline.

2.1 CONTRASTIVE LEARNING

Contrastive Loss. We revisit contrastive learning (Chen et al., 2020). Given a sample els
i.i.d.∼ es

i.i.d.∼ D,
an independent stochastic transformation T (·) is applied to els to obtain an augmented view, denoted
as xi = T (els). Similarly, we generate another view xj = T (els) forming a positive pair (xi,xj)
in contrastive learning. A batch of B samples yields 2B augmented views, such that any k ∈
{1, 2, . . . , 2B} \ {i, j} forms negative pairs with both xi and xj , i.e., (xi,xk) and (xj ,xk). Using a
model F(·), the augmented views are encoded into embeddings denoted as zi, zj , and zk∈Rh. For
each pair of (xi,xj), the classic contrastive loss, termed NT-Xent (Chen et al., 2020), is given by

Li,j = − log
exp (fsim (zi, zj) /τ)∑2B

k=1 1[k ̸=i] exp (fsim (zi, zk) /τ)
, (1)

where fsim(zi, zj) =
z⊤
i zj

||zi||·||zj || ∈ [−1, 1] is cosine similarity, and τ is a temperature hyperparameter.

Weighted Contrastive Loss. While Eq. (1) treats all negative pairs equally, recent works highlight that
negative pairs could contribute unequally to representation learning Robinson et al. (2021); Li et al.
(2023); Zhuang et al. (2024); Yang et al. (2024). Conceptually, in the embedding space, negative
samples are pushed away from a positive sample according to their similarity. Specifically, the less
similar a negative sample is to the positive, the more it is pushed away. By introducing a weighting
term Wik for each pair of negative embeddings (zi, zk), we can adjust the relative importance of
negatives according to their similarity to the positive, having

Lw
i,j = − log

exp (fsim (zi, zj) /τ)∑2B
k=1 1[k ̸=i]Wik exp (fsim (zi, zk) /τ)

. (2)

Eq. (2) generalizes Eq. (1) by replacing the uniform treatment of negatives with an adaptive weighting.

2.2 CLINICAL METADATA

Cardiovascular Risk Score. A risk score, quantified on clinical and demographic attributes, is the
likelihood of experiencing an adverse outcome. They translate complex physiological factors into
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interpretable values that guide clinical actions and interventions. The Systematic Coronary Risk
Evaluation 2 score (SCORE2) commonly used by healthcare professionals, estimates the 10-year
risk of cardiovascular disease events (death, myocardial infarction, or non-fatal stroke). SCORE2 is
obtained based on 7 variables: age (a1

s), gender (a2
s), smoking status (a3

s), systolic blood pressure
(SBP, a4

s), diabetes status (a5
s), total cholesterol (a6

s), and high-density lipoprotein cholesterol (a7
s).

Let us = [u1
s, · · · , u6

s] = g(as) denote the vector after standardization of the ordered metadata
feature as = [a1

s,a
3
s, . . . ,a

7
s]. For each sample es, we assign a risk score rs∈ [0, 1], defined by the

risk score function R(·) as that SCORE2 value of es:

rs
def≡ R(as) = 1− S0(t)

exp(b1u
⊤
s +u1

sb2u
⊤
s ) . (3)

where S0(t) is the baseline survival 1 function at year t, and b1,b2 are the variable’s coefficient
estimated from the European cohort data covering over 600K individuals with more than 30K
cardiovascular events (values varying by age and gender). Given that augmentations do not change
metadata, for xi,xj of sample s, we have ri = rj = rs (ri, rj are risk scores for xi,xj). We
provide further details on calculating SCORE2 in Appendix C.6. The CLEF framework supports any
validated risk score. While we use SCORE2, we note that its development on European populations
might limit its generalisability, and the optimal score may differ by application (see Appendix F).

Handling Missing Metadata. MIMIC-IV-ECG (Gow et al., 2023) contains 161,352 unique subjects,
each with multiple 12-lead ECG recordings. For each subject, the dataset reports only three variables:
age, gender, and systolic blood pressure. This is a common challenge in real-world settings, where
certain metadata variables are often unavailable either at a specific institution or for particular patients.
Such variables are typically collected independently rather than at the time of the ECG recording. To
address this issue, we assign different multipliers to negative pairs (xi,xk) based on the number of
metadata variables available when calculating their risk scores (ri, rk). Specifically, we calculate

Mik = exp

(
−A−mi

A
×A−mk

A

)
, (4)

where A is the number of variables (e.g., A = 7 in SCORE2), and mi/mk are the number of missing
variables for xi/xk. Thus, Mik ∈ (0, 1] indicates the level of missing metadata for a pair (xi,xk),
which functions as a relative reliability adjustment to ensure that only well-supported risk differences
meaningfully shape the embedding geometry, we further elaborate this in section 2.3.

2.3 GUIDING REPRESENTATION LEARNING WITH CLINICAL RISK SCORES

Risk Score Dissimilarity. We aim to enhance weighted contrastive loss in Eq. (2) by using risk
scores in Eq. (3) for pretraining our ECG FM F(·). Our objective is to guide F(·) toward learning
embeddings that capture clinically relevant patterns, building a latent space for ECG signals where
the distance between embeddings reflects dissimilarities in risk scores. For a negative pair (xi,xk)
with corresponding (ri, rk), let δik = (ri − rk)2. We define a negative pair’s dissimilarity:

Di,k = (1− α)
δik − δmin

δmax − δmin
+ α, where δmax = max

i,k
(δik) and δmin = min

i,k
(δik). (5)

Parameter α∈ [0, 1] controls the minimum distance between the positive pair and all negative pairs.
Dissimilarity to all negative pairs stays within [α, 1], having Di,j = 0 only for the positive pair. For
(xi,xk), even when their metadata indicates ri = rk, we have their dissimilarity Di,k at least α.

Weighting Negative Pairs. By combining Eq. (4) and (5) via the Hadamard product, we define the
weight matrix W = D⊙M, where each entry is given by Wik = Di,k ·Mi,k∈ [0, 1]. This value
represents the weight assigned to pushing the embedding of xk away from that of xi. Intuitively,
the weight increases when the risk scores of xi and xk differ more; conversely, it decreases when
the risk scores are similar. Importantly, when many metadata variables are missing, and SCORE2
would rely heavily on default imputations (see Appendix C.6), the resulting risk differences are
thus less trustworthy. In such cases, the corresponding Mik between the negative pairs moves the
weighting closer to a uniform SimCLR-like behavior, preventing uncertain or noisy risk differences
from exerting undue influence on the contrastive objective. For each batch of data, we calculate our
clinically-guided contrastive loss by

1The probability of not experiencing a cardiovascular event over 10 years for a reference individual.
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Lw = − 1

2B

2B∑
i=1

Lw
i,j = − 1

2B

2B∑
i=1

log
exp (fsim (zi, zj) /τ)∑2B

k=1 1[k ̸=i]Wik exp (fsim (zi, zk) /τ)
. (6)

Dissimilarity Alignment Loss. We compute the mean squared error loss between the cosine similarity
of each embedding and its corresponding weight, averaged across all pairs in the batch.

Ld =
1

B2

∑
i,j

(
1 + fsim(zi, zj)

2
− (1−Wij)

)2

. (7)

Note that cosine similarity fsim ∈ [−1, 1] is rescaled to [0, 1]. This encourages the model to map
clinically similar ECG signals to nearby embeddings, while pushing dissimilar signals apart. This
supports clinical use, where models must highlight differences between ECG signals to distinguish
clinical categories (e.g., diagnoses or prognoses). Our final objective is: L = Lw + Ld, where, in
this paper, the contribution of the two losses are considered equal (details in Appendix D.6).

3 EXPERIMENTAL EVALUATION

We evaluate against (i) existing FMs and models pretrained on ECG data, (ii) widely-used self-
supervised learning algorithms, and (iii) a state-of-the-art (SOTA) supervised foundation model.

Foundation Model F . We use ResNeXt1D (Hong et al., 2020)2, built on ResNeXt Xie et al. (2017),
using one-dimensional convolutional filters, and widely used as a benchmark for ECG processing Li
et al. (2024). We evaluate three model configurations: small (448K parameters), medium (30.7M
parameters), and large (296M parameters), which differ in network depth, width, and complexity. A
more detailed model structure description can be found in Appendix C.3 and Table S7.

Pretraining Dataset D. We train F(·) using the MIMIC-IV-ECG dataset (Gow et al., 2023), which
contains 161, 352 unique patients, each with multiple ECG recordings. To ensure that signals from
the same patient are not considered as negative pairs during model pretraining, we use the first ECG
recording of each patient. Each ECG record e is sampled at 500Hz over 10 seconds, resulting in a
sequence length of t = 5,000. Following the common practice, we apply a Butterworth bandpass
filter between 0.67 and 40 Hz, followed by z-score normalization for each sample.

Stochastic Data Augmentation T . To simulate real-world signal perturbations, we apply some noise
derived from free-living3 ECG recordings, including (i) muscle noise, (ii) movement artifacts, (iii)
baseline wander, (iv) white noise, or (v) no perturbations. Function T is a random selection from
these five choices, each with equal probability of p = 0.2. For details, see Appendix C.2.

Random Lead Selection. Our CLEF can be fine-tuned to any lead, which is crucial since devices and
health-monitoring scenarios vary. Also, many wearables only approximate a lead; e.g., smartwatches
approximate lead I, and the target lead may not be known at pretraining time. With this motivation,
we do not restrict training to a specific lead as pretraining exclusively on a specific lead (explored
in section 4, Figure 4) requires one separate model per lead and is less flexible for cross-device use.
Instead, for each sample in a batch, we randomly select one of the 12 leads and apply stochastic
augmentation, thus every batch contains diverse samples from multiple leads. In this way, the model
is collectively trained across all 12 leads, allowing F to generalize and later be fine-tuned to any lead.

Downstream Datasets C. We evaluate on various downstream tasks from cardiovascular conditions,
including 3 well-established benchmarks used in (Li et al., 2024; Na et al., 2024), and 4 newly curated
datasets from wearables or emergency visits. Tasks include multi-label diagnostic (e.g. heart block,
myocardial infarction, hypertrophy), form (i.e. wave morphology), and rhythm statements on PTB-XL
dataset (Wagner et al., 2020), left ventricular ejection fraction (LVEF) regression and classification at
50% threshold on MIMIC-IV-ECG dataset (Gow et al., 2023), and multi-label disease classification
on the Chapman dataset (Zheng et al., 2020). We also include MC-MED (Kansal et al., 2025)
and Aurora BP (Mieloszyk et al., 2022) for blood pressure estimation, the MUSIC dataset (Martin-
Yebra et al., 2025) for long-term cardiovascular outcomes such as sudden cardiac death (SCD), and

2The PyTorch implementation of the model is adapted from github.com/hsd1503/resnet1d.
3The noise data is available at: physionet.org/content/ecg-ppg-simulator-arrhythmia.
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Table 1: Results for finetuning on lead I (left) and lead II (right) ECGs. AUROCs are reported for 7
clinical tasks: LVEF refers to left ventricular ejection fraction; Dx denotes diagnosis; SubDx denotes
subdiagnosis; SupDx denotes superdiagnosis; Form refers to waveform morphology; Rhyth denotes
rhythm; Arrhy denotes arrhythmia.Best result bolded. The second best underlined.

Lead I
Dataset MIMIC-IV PTB-XL Chapman
Task LVEF Dx SubDx SupDx Form Rhyth Arrhy

Moirai 2024 (91M) .4968 .5003 .4966 .5011 .5158 .5031 .4992
Moment 2024 (125M) .7763 .7780 .7627 .7700 .6322 .8243 .8150
ST-MEM 2024 (85M) .7751 .7763 .7639 .7800 .5724 .7549 .8113
KED 2024 (8M) .8330 .8390 .8332 .8302 .6696 .8887 .8897

CLEF -S (448K) .8170 .8268 .8448 .8452 .6738 .9304 .9033
CLEF -M (30.7M) .8083 .8292 .8566 .8430 .7409 .9361 .9061
CLEF -L (296M) .7858 .8472 .8397 .8273 .7162 .9325 .9010

ECGFounder 2024 (76.3M) .8512 .8457 .8500 .8376 .7626 .9501 .9090

Lead II
MIMIC-IV PTB-XL Chapman

LVEF Dx SubDx SupDx Form Rhyth Arrhy

.5000 .5014 .5001 .4993 .5003 .4988 .4987

.8024 .7896 .7788 .8260 .6164 .8754 .8905

.7499 .6764 .7284 .7637 .5319 .7489 .8228

.8073 .8072 .8304 .8407 .6492 .8736 .8941

.8166 .8205 .8486 .8445 .6913 .9305 .9047

.8079 .8307 .8555 .8446 .7378 .9326 .9089

.8194 .8193 .8438 .8409 .7478 .9512 .9011

.8312 .8024 .8244 .8437 .6823 .9229 .8755

Icentia11K (Tan et al., 2019), a large-scale continuous wearable ECG dataset supporting beat and
rhythm classification. More details are provided in Appendix B and C.1, respectively.

Foundation model baselines. (1) ST-MEM (Na et al., 2024): a spatio-temporal masked autoencoder
trained to reconstruct randomly masked ECGs. (2) KED (Tian et al., 2024): that aligns ECG
signals with textual reports, enabling joint ECG–text representations. (3) Moirai (Woo et al., 2024):
a forecasting model for time series, supporting both univariate and multivariate prediction. (4)
Moment (Goswami et al., 2024): a transformer-based model designed for univariate time series tasks.

Self-supervised learning baselines. (1) SimCLR (Chen et al., 2020): a canonical contrastive
learning framework, as described in §2, Eq. (1). (2) BYOL (Grill et al., 2020): an augmentation-based
approach that eliminates negative pairs by training another network to predict the target network’s
representation of the same signal. (3) MoCo (He et al., 2020): maintains a dynamic memory bank to
store representations from past batches, reducing the reliance on large in-batch negatives.

Supervised baseline. Concurrent to this work, Harvard–Emory researchers released the HEEDB
dataset (Ghanta et al., 2025) of 12-lead ECG recordings with 10M ECGs from 1.8M patients
annotated with 150 diagnostic categories. While we could not get access to the dataset, they released
a supervised ECG FM, ECGFounder (Li et al., 2024), trained for multi-label classification over the
150 categories. We run ECGFounder on our evaluation datasets, and since it is trained on a large
labeled dataset, we consider it as an upper bound relative to semi-supervised methods, including our
proposed CLEF . Implementation details for all baselines are provided in Appendix C.4 and C.5.

4 RESULTS

Finetuning on Lead I & II (in-clinic datasets). The AUROC results are detailed in Table 1 (with
further details in Appendix D.1). CLEF outperforms the best baseline across both leads, with the best-
performing CLEF variant for each task achieving an average AUROC improvement over the strongest
baseline for that task of 3.1% on lead I, and 4.8% on lead II. On lead I, the CLEF -S, -M, and -L
variants achieve improvements of 1.0%, 2.6%, and 1.3%, respectively, over the best performing
baseline (1.6% on average), while on lead II, gains were even stronger, achieving 2.8%, 4.0%, and
4.2% (3.7% average) performance gain. KED was the best-performing baseline in all but one task,
and CLEF -M shows statistically significant superiority over KED (p = 0.010, by paired t-test). CLEF
outperforms KED by ≥ 1.0% on lead I and ≥ 2.8% on lead II across all 3 variants, demonstrating
its strong potential for pretraining. Additionally, the averaged confidence interval across all CLEF
variants and tasks is ±0.01, showcasing CLEF ’s consistent performance. CLEF performs particularly
well on pattern identification tasks (form and rhythm tasks of PTB-XL, and the arrhythmia task of
Chapman), with its best variant improving AUROC by 5.9% (lead I) and 8.5% (lead II) on average
over the strongest baselines. These results suggest that CLEF excels at capturing both morphological
features of individual beats and long-range rhythm dependencies across the signal.

CLEF maintains robust performance across leads, with CLEF -S, -M, and -L differing by 0.3%, 0.0%,
and 1.4% on average in AUROC across 7 tasks. In contrast, ST-MEM and KED which are specifically
pretrained for ECG tasks, favored lead I, with AUROCs on lead II an average of 4.2% and 1.5%
lower, respectively. When compared to the supervised model ECGFounder, CLEF performs less

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

well on lead I (AUROCs lower by 2.9%, 1.5%, and 2.7% for CLEF -S, -M, and -L, respectively)
but better on lead II (AUROC increases by 1.3%, 2.5%, and 2.6%). This is primarily because
ECGFounder’s performance drops 3.8% on lead II, compared to lead I (on which the single-lead
version of ECGFounder was trained (Li et al., 2024)), while CLEF maintains performance across
leads. Although the unsupervised CLEF did not perform as well as this SOTA supervised model
on the lead for which that model was trained, it did achieve improved performance on another lead.
Notably, our single-lead CLEF even outperforms some baselines when those baselines are pretrained
and evaluated on 12-lead ECGs. Specifically, CLEF -S (evaluated on lead I & II) outperforms
ST-MEM on 5 out of 7 tasks (Details are reported in Appendix D.2 and Table S10).

Finetuning for Single-lead ECG (out-of-clinic datasets). We use single-lead ECGs from MUSIC,
Icentia11k, and AuroraBP collected by wearables, and MC-MED dataset of Emergency Department.

Classification. The AUROC results are detailed in Table 2 (for classification tasks) and Table 3
(for regression tasks). In classification, CLEF outperforms all semi-supervised baselines, with the
best CLEF variant improving AUROC by 2.5% on average over the strongest baseline of the task.
The best-performing CLEF variant for each task achieves an average AUROC improvement over
the strongest baseline for that task of 2.5%. Individually, CLEF -S, -M, and -L achieve averaged
AUROC improvements of 2.8%, 6.7%, and 2.5% over the best baseline (KED). On Icentia11K Beat
and Rhythm tasks, the best-performing CLEF variant on each task achieves improved AUROC by
1.9% over the best baselines. When looking at each CLEF variant, CLEF -S, -M, and -L achieve
average AUROC improvements of 1.5%, 2.5%, and 3.7% over the best baseline (KED), highlighting
the effectiveness of CLEF in capturing quality ECG representations for wearable devices. However,
Moment outperformed CLEF on MUSIC SCD prediction, the only case where a general time series
model surpassed an ECG-specific model; likely because SCD risk depends on long-range and subtle
temporal patterns in the ECG, making it more of a forecasting problem than a short-term classification.

Regression. We evaluate on the MIMIC-IV LVEF task (explored in prior work (Li et al., 2024)),
and also systolic and diastolic blood pressure (SBP and DBP) prediction on the MC-MED and
AuroraBP datasets. Target labels are first z-scored based on the statistics of the training set, and
then at test time, predicted values are transformed back to the original scale of the labels for
evaluation. See Appendix C.1 for details of our experimental setup. The mean absolute error (MAE)
is reported in Table 3. The best-performing CLEF for each task achieves an average MAE reduction
in comparison to the strongest baseline for that task of 2.9%. The CLEF -S and CLEF -M variants
outperform all baselines, achieving average MAE reductions of 3.2% compared to the best baseline
(ST-MEM). In contrast, CLEF -L outperforms 3 of the 4 baselines (yet MAE is 2.3% higher than
ST-MEM on average). CLEF also outperforms the supervised model ECGFounder, with CLEF -S, -M,
and -L achieving lower MAEs than ECGFounder by 5.5%, 5.6%, and 0.2% on average.

Linear probing. To evaluate the quality of the representations produced by CLEF , the parameters of
FMs were kept frozen, and a linear classifier was trained on the output embeddings. The AUROCs
are summarized in Figure 2 for CLEF -M and 4 baselines. Full results including those for the other 2
variants (CLEF -S and -L) are provided in Table S11 (Appendix D.3). The best-performing CLEF
for each task outperforms the strongest baseline for that task of +7.3%. CLEF -M and CLEF -L both
outperform all baselines, with average AUROC improvements of 8.5% and 9.9% respectively over

Table 2: Finetuning using single-lead ECGs.
AUROCs are for: SCD outcome prediction,
beat and rhythm recognition, disposition after
emergency department visit (ED dispo) and after
hospital stay (DC dispo), and ED triage acuity.
Best result bolded. The second best underlined.

Model MUSIC Icentia11K MC-MED
SCD Beat Rhythm ED Dispo DC Dispo Acuity

Moirai .0106 .4998 .4927 .5004 .4996 .4992
Moment .6223 .9764 .8540 .5488 .5042 .5782
ST-MEM .5389 .9452 .7115 .5323 .5645 .4943
KED .4701 .9424 .9228 .5992 .6200 .5978

CLEF -S .5493 .9801 .9135 .6065 .6261 .5650
CLEF -M .5304 .9792 .9328 .6397 .6607 .6510
CLEF -L .5545 .9800 .9535 .5805 .5800 .5940

ECGFounder .5420 .9822 .9723 .6572 .6710 .6690

Table 3: ECG regression tasks. MAEs are
reported for LVEF prediction (in %) on MIMIC-
IV, and systolic and diastolic blood pressure
prediction (in mmHg) on both the MC-MED and
Aurora BP data sets. Best result bolded. The
second best underlined.

Model MIMIC-IV Aurora BP MC-MED
LVEF SBP DBP SBP DBP

Moirai 7.405 12.587 8.261 32.881 12.704
Moment 7.277 12.707 8.150 18.623 12.576
ST-MEM 7.149 12.707 8.157 18.623 12.552
KED 8.313 11.844 8.032 18.598 12.647

CLEF -S 6.569 11.667 8.653 17.901 12.314
CLEF -M 6.805 12.110 8.099 17.880 12.318
CLEF -L 7.313 12.819 8.865 18.763 12.441

ECGFounder 7.900 13.577 8.332 17.880 12.378
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Table 4: Comparing self-supervised pretraining methods with AUROCs of single-lead ECG
classification. For datasets that originally have 12 leads, lead I was used for analysis. Instances
outperformed by CLEF are highlighted with cells having a grey background.

Model MIMIC-IV PTB-XL Chapman MUSIC Icentia11K MC-MED
LVEF Dx SubDx SupDx Form Rhyth Arrhy Outcome Beat Rhyth ED Dispo DC Dispo Acuity

MOCO (2020)
S .8194 .5378 .5803 .7260 .5300 .5128 .7743 .5477 .9133 .4737 0.6111 0.6075 0.5518
M .8112 .7664 .7885 .7757 .5021 .5163 .8119 .4546 .9764 .7115 0.5926 0.5963 0.5659
L .6994 .5014 .4981 .5060 .5063 .4990 .5258 .4563 .8680 .5697 0.5331 0.4865 0.4781

SimCLR (2020)
S .8185 .7923 .7790 .8180 .5560 .8979 .8554 .5485 .9722 .9180 0.6150 0.6376 0.6135
M .8243 .8247 .8352 .8210 .7338 .9248 .8888 .5531 .9756 .8936 0.6380 0.6553 0.5743
L .8192 .8393 .8370 .8279 .7137 .9109 .8945 .4799 .9733 .9087 0.5984 0.6129 0.5988

BYOL (2020)
S .8147 .8134 .8282 .8259 .6883 .9296 .8789 .5448 .9729 .9065 0.6166 0.6177 0.6188
M .8221 .8421 .8221 .8251 .7215 .9351 .8917 .4713 .9766 .8919 0.6306 0.6447 0.5643
L .8221 .8409 .8378 .8239 .7144 .9257 .8978 .4719 .9819 .9032 0.5515 0.5588 0.5147

the best baseline (KED). However, CLEF -S does not outperform KED or Moment, which indicates
that the larger CLEF models produce better quality representations. Models pretrained specifically
for ECG tasks do not always yield better performance. Moment (which CLEF -M outperforms by
10.0%) performs better than ST-MEM (which CLEF outperforms by 28.1%).

Comparison with Self-supervised Algorithms. Our proposed clinically-guided contrastive learning
method is compared against 3 widely used self-supervised pretraining methods: SimCLR, BYOL, and
MoCo. Each pretraining method is trained on all 3 size variants of CLEF. The AUROC results for the
comparator methods are presented in Table 4. A total of 100 out of 117 instances were outperformed
by CLEF (highlighted in gray). Overall, CLEF outperforms all 3 self-supervised pretraining methods,
with average AUROC improvements across all sizes of backbone models of 29.8%, 1.8%, and 2.3%
in comparison to MOCO, SimCLR, and BYOL, respectively.

Our Clinically-guided Contrastive Loss with Best Semi-supervised Baseline. We initialize the
best-performing baseline for ECG, i.e. KED, with its original pretrained weights and apply our
proposed clinically-guided pretraining approach. AUROC results are presented in Figure 3. It can be
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Figure 2: AUROC scores from linear probing on 9 classification tasks, comparing Moirai, Moment,
ST-MEM, KED, and our CLEF. Each subplot focuses on one model, with others shown in gray for
reference. Higher values indicate better performance (see further details in Table S11).
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Figure 4: Spider plot comparing CLEF with CLEF model
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reported across 3 model variants and 7 downstream tasks.
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Table 5: Ablation results on handling missing metadata across CLEF models of different sizes, where
¬M denotes the model trained without handling the missing metadata. We report both the results
from the ablated models, and the performance changes relative to the corresponding CLEF models
(shown in brackets). The ↑ and ↓ depict performance increase and drop, respectively. For better
clarity, we highlighted cases where performance is inferior in blue.

Task MIMIC-IV PTB-XL Chapman MUSIC Icentia11K
LVEF Dx SubDx SupDx Form Rhyth Arrhy Outcome Beat Rhyth

CLEF -S ¬M .8245 (↑ .01) .8152 (↓ .01) .8266 (↓ .02) .8210 (↓ .03) .6810 (↑ .01) .9362 (↑ .01) .8786 (↓ .03) .4763 (↓ .13) .9637 (↓ .02) .9052 (↓ .01)
CLEF -M ¬M .8191 (↑ .01) .8268 (↓ .00) .8311 (↓ .03) .8245 (↓ .02) .7252 (↓ .02) .9230 (↓ .01) .8839 (↓ .02) .5513 (↑ .04) .9749 (↓ .00) .8856 (↓ .05)
CLEF -L ¬M .7786 (↓ .01) .8299 (↓ .02) .8502 (↑ .01) .8257 (↓ .02) .7024 (↓ .02) .9201 (↓ .01) .8939 (↓ .01) .4966 (↓ .10) .9757 (↓ .00) .8835 (↓ .07)

observed that, apart from the LVEF classification task in MIMIC-IV, all tasks gained improvement,
on average 3.0% higher AUROC. The form task in PTB-XL gets the greatest improvement (11.7%).
More results on pretraining other ECG baseline models are provided in Appendix D.4.

Pretraining CLEF on a Specific Lead. To assess the potential upper bound of CLEF , we pretrain
models exclusively on the corresponding lead of the downstream tasks (lead I or II). Pretraining was
performed for 10 epochs, with the other downstream finetuning hyperparameters the same as the
previous experiments. Results are summarized in Figure 4, and provided in full in Appendix D.5.
On lead I, pretraining achieves average AUROC improvements over pretraining using all 12 leads of
3.4%, 1.4%, and 2.4% for CLEF -S, -M, and -L, respectively. Moreover, this made the performance
of CLEF comparable to that of the supervised ECGFounder model, with differences in average
AUROC of only 0.2%, −0.1%, and −0.3% for CLEF -S, -M, and -L, respectively, on lead I (the same
lead ECGFounder is trained on too). Improvements are also observed when pretraining on lead II, of
3.4%, 2.0%, and 0.8% for CLEF -S, -M, and -L, respectively.

Ablation on Handling Missing Metadata. We assess the impact of our solution for handling missing
metadata. As an ablation study, we report AUROC for all CLEF variants across 10 tasks including
wearable datasets (MUSIC and Icentia11K) and single-lead ECG tasks (MIMIC-IV, PTB-XL, and
Chapman) using lead I. Table 5 shows that without M in Eq. (4), the performance of all models
degrades on the majority of tasks. On average, AUROC decreases by 1.9%, with a larger decrease on
wearable datasets (4.0% drop) compared to lead I datasets (1.1% drop).

Contribution of different loss components. A study is conducted using CIFAR-100 to understand
the contribution of different loss components. All models are initialized with ImageNet-1K pretrained
ResNet-18 weights and further pretrained with: the standard contrastive loss Lnce, the weighted
contrastive loss Lw, the dissimilarity alignment loss Ld, Lnce + Ld, and our proposed Lw + Ld. A
detailed experiment setup is provided in Appendix D.6. Our proposed Lw + Ld achieves clearer
separation with lower variance. Further details in Appendix D.6, Figure S2, and Table S15).

5 DISCUSSION AND CONCLUSION

We propose CLEF : clinically-guided contrastive learning to train single-lead ECG foundation models.
On average, CLEF outperforms all baseline semi-supervised FMs across 18 clinical classification
and regression tasks on 7 datasets. Furthermore, CLEF outperforms three self-supervised pretraining
algorithms. When pretrained on the same lead as in downstream tasks, CLEF also performs
comparably to ECGFounder, a state-of-the-art FM trained in a supervised manner on a labeled
dataset. CLEF facilitates the creation of high-performance ECG FMs using only routinely-recorded
metadata, without needing ECG-level annotations.

Limitations. We trained models on ECGs from a single hospital, which suit hospital-related tasks but
are not representative of the general population. Performance on population-level tasks would likely
improve with a more diverse cohort. The risk scores in this study are limited by only three out of
seven SCORE2 input variables being available. Therefore, the scores cannot be considered a holistic
assessment of cardiovascular risk, but instead are representative of real-world applications with
incomplete metadata. Potentially richer embeddings could be obtained when using more complete
metadata and, therefore, more precise risk scores. Finally, the single-lead ECGs used to assess
performance in this study were measured using wet gel electrodes at the chest, and so are likely of
higher quality than those typically measured by devices such as smartwatches and handheld ECGs.
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Future work. One can investigate the utility of the proposed contrastive learning strategy for
other modalities and health conditions. For instance, it may also be useful for developing
photoplethysmography (PPG) FMs, since the PPG is also a cardiovascular signal and has been
found to be associated with cardiovascular risk Weng et al. (2024). It could also be applied to other
health conditions, such as incorporating the risk of deterioration in chronic respiratory conditions,
in contrastive learning for respiratory signals. The practical application of this strategy would be
aided by understanding which metadata variables contribute most to the quality of the representations
produced by CLEF. A further ablation study, preferably conducted on a dataset with complete
metadata, could identify the most important metadata variables and provide insight into how to apply
this approach across diverse datasets with different metadata. Finally, we can go beyond traditional
classification and regression tasks. Because the CLEF ’s embedding space enables patient ECGs to
be analyzed without prior metadata. It is possible to assess the proximity of current embeddings
to prototypes of high-risk patients from the training set. This opens the door to clustering-based
decision-making and other novel applications.
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We acknowledge that biases may exist in the training data and recognize the importance of fair
performance across diverse populations. Future evaluations on broader and more representative
datasets will be essential for further improving the generalizability and fairness of our models. While
our work demonstrates potential for advancing remote health monitoring and clinical decision support,
we are mindful of the risks of misuse. Potential harmful applications could include unauthorized
health surveillance, discriminatory practices in insurance or employment, unfair credit assessments,
or the exploitation of sensitive health data for targeted marketing. We emphasize that this research
is intended solely for beneficial healthcare and scientific purposes and strongly advocate for its
responsible use. Our study adhered to established research ethics guidelines, and we declare no
conflicts of interest. We further encourage interdisciplinary dialogue to anticipate and mitigate
risks, develop appropriate governance frameworks, and safeguard individual rights. Recognizing
the broader societal implications of AI in healthcare, we encourage ethical AI research and foster
responsible deployment of these technologies.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our work. Models, code, and hyperparameters will be
publicly released, accompanied by user-friendly tutorials to facilitate adoption and extension. Our
work relies exclusively on publicly accessible datasets, which can be readily downloaded or requested
from the respective data-hosting institutions. To further support reproducibility, we provide detailed
descriptions of the datasets, model architectures, training and evaluation procedures, hyperparameters,
and preprocessing methods used throughout the paper. Together, these resources will enable other
researchers to replicate our results and build upon our contributions in future work.
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SUPPLEMENTARY MATERIAL
CLEF : CLINICALLY-GUIDED CONTRASTIVE LEARNING

FOR ELECTROCARDIOGRAM FOUNDATION MODELS

A RELATED WORK

A.1 ECG AND ML

Utility of single-lead ECGs compared to 12-lead. Electrodes on the limbs and chest provide
spatially diverse views of cardiac activity Kligfield et al. (2007), producing 12-lead ECGs to assess
a range of heart conditions and abnormalities (Garcia and Holtz, 2001; Ribeiro et al., 2020). The
growing usage of wearables and mobile health devices with single-lead ECG functionality (Hannun
et al., 2019; Friedman, 2024; Attia et al., 2022) has opened new opportunities for continuous health
monitoring beyond traditional care settings (Preejith et al., 2016; Majumder et al., 2018; Clark et al.,
2018), with applications including early detection of cardiac events (Lin et al., 2019; Huda et al.,
2020; Wang et al., 2022), long-term pattern tracking (Ravanshad et al., 2014; Majumder et al., 2018),
and proactive health interventions (Melillo et al., 2015; Sopic et al., 2018; Bommasani et al., 2022).

Prior work Jiménez-Serrano et al. (2022) studied the Computing in Cardiology 2021 ECG dataset
(covering 88,253 annotated 12-lead training recordings). They compared ML performance over 26
target cardiac conditions when processing only lead I versus all 12 leads. They found that 12 leads give
the best overall performance, but using only lead I yields a modest average degradation rather than a
collapse in accuracy: the average of G-metric (geometric mean of sensitivity and specificity) falls
from 0.80 to 0.74. Specifically, among the 26 conditions, performance is similar (absolute G-metric
change lower than 0.03) for 12 conditions; there is a moderate loss(G-metric drop from 0.04 to 0.07)
for 7 conditions; and a significant drop (G-metric drop more than 0.07) for 7 conditions. On average,
the drop in the G-metric is 0.06. Overall, this shows that single-lead (lead I) ECGs can reliably
detect many rhythm-based abnormalities (making them attractive for wearables/screening), but they
perform substantially worse for axis deviations, certain conduction blocks, and morphology-dependent
findings that require precordial leads. Another observational study Angelaki et al. (2025) on 1,254
subjects showed that a single-lead ECG (lead I), when combined with other demographic features,
can diagnose arterial hypertension with high accuracy (AUC 0.831, sensitivity 72%, specificity 82%),
demonstrating that even single-lead ECGs contain sufficient diagnostic information when analyzed
effectively. Additionally, a study by Ramirez et al. (2024) demonstrates that the standard 12-lead
ECG contains redundant information when classifying cardiovascular diseases using CNNs. By
selecting subsets of leads or applying transformations to the ECG signals, the authors evaluated how
these adjustments influenced a CNN’s diagnostic performance. Their main finding is that carefully
optimizing input configurations, hence reducing redundancy while preserving essential information,
can improve deep learning model performance and enable efficient diagnostics even with fewer leads.

Diagnostic potential and limitations of machine learning for ECG analysis. A proof-of-concept
study by Sun et al. (2022) demonstrates that a ResNet model trained on large-scale, population-based
ECG datasets can accurately predict a wide range of diseases, including many non-cardiovascular
conditions. Using over 1.5 million ECGs linked to 11K unique WHO ICD codes from 240K patients
across 26 hospitals in Canada, the authors identified 700 disease categories with sufficient data for
modeling. Models achieved strong discriminative performance (AUROC > 80%) for 80 disease
categories, with 18 categories exceeding AUROC > 90% (including non-cardivascular conditions
such as silicosis, type 1 diabetes mellitus, liver diseases, behavioral disorder due to drug use, and
some maternal diseases during pregnancy). Despite excellent AUROC values, precision was limited
for many conditions due to their low prevalence, suggesting greater utility for rule-out screening
rather than definitive diagnosis. The findings highlight the untapped diagnostic potential of ECGs for
diverse diseases, while also noting that predictions may reflect correlated comorbidities or patient
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Table S1: Available metadata for each database. M-iv-ecg is short for MIMIC-IV-ECG, G12EC is
short for Georgia 12-lead ECG Challenge, and Phy2021 is short for PhysioNet 2021.

Dataset M-iv-ecg (2023) CPSC2018 (2018) Chapman (2020) PTB-XL (2020) CODE-15 (2021) G12EC (2020) HEEDB (2025) Phy2021 (2021)

Lead number 12 12 12 12 12 12 12 12
Record number 800,035 - 45,152 21,799 345,779 - 10,471,531 -
Patient number 161,352 50,165 45,152 18,869 233,770 - 1,818,247 -
Sample rate (Hz) 500 500 500 500 400 500 500 varied
Duration 10 s 10 s 10 s 10 s 10 s varied 10 s varied

Sex

Sex at Birth

Gender identity

Age

Weight

Height

BMI

Race

Ethnicity

Marital status

Religion

Language

Veteran

Education

Date of Birth

Date of Death

Last visit date

SNOMED

sinus rhythm

AF

bundle branch block

Used Studies

Tian et al.
Liu et al.
Jin et al.
McKeen et al.

Mehari and Strodthoff
Wang et al. Na et al. Mehari and Strodthoff

Wang et al. Na et al. Wang et al. Li et al. McKeen et al.

characteristics rather than direct disease-specific ECG changes, and that further targeted, clinically
adjudicated studies are needed before deployment. Another study Kim et al. (2024) using data from
919 patients found that time-dependent follow-up features contributed more strongly to predicting
heart failure rehospitalization than admission or discharge variables, highlighting the dynamic nature
of heart failure risk and underscoring the importance of ongoing monitoring and medication adherence
during the post-discharge period for more accurate risk stratification and targeted intervention.

A.2 CONTRASTIVE APPROACHES

Adapting self-supervised learning for ECGs. Classic self-supervised methods based on instance
discrimination and latent forecasting are adapted by Mehari and Strodthoff (2022) to the ECG
domain. They utilize time-series-specific data augmentations (including physiological noise models),
modifying the CPC architecture to suit ECG’s temporal resolution, employing a joint 12-lead encoder,
and systematically evaluating multiple frameworks on large public datasets for their impact on
downstream performance, label efficiency, and robustness. They find out that contrastive predictive
coding (CPC) with these adaptations achieves near-supervised linear evaluation performance and
significantly improves downstream accuracy, data efficiency, and robustness to physiological noise.

Multi-objective contrastive learning. A combination of two contrastive losses for pretraining is
used by Oh et al. (2022), where a Wav2Vec architecture captures local lead-level temporal features
and a contrastive multi-segment coding architecture from Kiyasseh et al. (2021) captures global
patient-level context. The total loss is the sum of both, enabling the model to learn fine-grained
intra-signal information and broader inter-patient relationships. Also, during pretraining, the authors
introduce Random Lead Masking, where each ECG lead is randomly masked with a fixed probability
to simulate reduced-lead scenarios. This augmentation makes the single pretrained model robust to
arbitrary lead configurations during fine-tuning.

A.3 ECG DATASET OVERVIEW

The ECG datasets used in prior work exhibit substantial variability in scale, metadata richness,
and clinical scope, directly impacting foundation model development capabilities. A detailed
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Table S2: ECG diagnostic labels in the PTB-XL dataset. The dataset contains 42 diagnostic labels
in a 3-level hierarchy: superclass, subclass, and specific diagnosis. The Label column denotes the
specific diagnostic label, while the Subclass and Superclass column indicates its corresponding
subclass and superclass categories.

Label Description Subclass Superclass
Conduction Disturbances (CD)

LAFB Left anterior fascicular block LAFB/LPFB CD
LPFB Left posterior fascicular block LAFB/LPFB CD
IRBBB Incomplete right bundle branch block IRBBB CD
ILBBB Incomplete left bundle branch block ILBBB CD
CRBBB Complete right bundle branch block CRBBB CD
CLBBB Complete left bundle branch block CLBBB CD
AVB First degree AV block AVB CD
3AVB Third degree AV block AVB CD
2AVB Second degree AV block AVB CD
IVCD Non-specific intraventricular conduction

disturbance
IVCD CD

WPW Wolff-Parkinson-White syndrome WPW CD

Hypertrophy (HYP)

LVH Left ventricular hypertrophy LVH HYP
LAO/LAE Left atrial overload/enlargement LAO/LAE HYP
RVH Right ventricular hypertrophy RVH HYP
RAO/RAE Right atrial overload/enlargement RAO/RAE HYP
SEHYP Septal hypertrophy SEHYP HYP

Myocardial Infarction (MI)

IMI Inferior myocardial infarction IMI MI
ILMI Inferolateral myocardial infarction IMI MI
IPLMI Inferoposterolateral myocardial infarction IMI MI
IPMI Inferoposterior myocardial infarction IMI MI
INJIN Subendocardial injury in inferior leads IMI MI
INJIL Subendocardial injury in inferolateral leads IMI MI
ASMI Anteroseptal myocardial infarction AMI MI
AMI Anterior myocardial infarction AMI MI
ALMI Anterolateral myocardial infarction AMI MI
INJAS Subendocardial injury in anteroseptal leads AMI MI
INJAL Subendocardial injury in anterolateral leads AMI MI
INJLA Subendocardial injury in lateral leads AMI MI
LMI Lateral myocardial infarction LMI MI
PMI Posterior myocardial infarction PMI MI

ST/T Changes (STTC)

NDT Non-diagnostic T abnormalities STTC STTC
DIG Digitalis effect STTC STTC
LNGQT Long QT interval STTC STTC
ANEUR ST-T changes compatible with ventricular

aneurysm
STTC STTC

EL Electrolytic disturbance or drug effect STTC STTC
NST Non-specific ST changes NST STTC
ISC Non-specific ischemic changes ISC STTC
ISCIN Ischemic changes in inferior leads ISCI STTC
ISCIL Ischemic changes in inferolateral leads ISCI STTC
ISCAL Ischemic changes in anterolateral leads ISCA STTC
ISCAS Ischemic changes in anteroseptal leads ISCA STTC
ISCLA Ischemic changes in lateral leads ISCA STTC
ISCAN Ischemic changes in anterior leads ISCA STTC

Normal (NORM)

NORM Normal ECG NORM NORM

summarization of the current available ECG dataset is tabulated in Table S1. Among the datasets,
MIMIC-IV-ECG emerges as a particularly well-suited one for health risk assessment applications due
to its combination of large-scale clinical data (161,352 patients) and a relatively inclusive metadata,
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Table S3: Form labels and label descriptions in the PTB-XL dataset. Labels represent morphological
and rhythm abnormalities detected in ECG recordings.

Label Description Label Description
ABQRS Abnormal QRS LOWT Low amplitude T-waves
DIG Digitalis effect LPR Prolonged PR interval
HVOLT High QRS voltage LVOLT Low QRS voltages
INVT Inverted T-waves NDT Non-diagnostic T abnormalities
LNGQT Long QT interval NST Non-specific ST changes
NT Non-specific T-wave changes PAC Atrial premature complex
PRC(S) Premature complex(es) PVC Ventricular premature complex
QWAVE Q waves present STD Non-specific ST depression
STE Non-specific ST elevation TAB T-wave abnormality
VCLVH Voltage criteria for LVH

Table S4: Rhythm labels and label descriptions in the PTB-XL dataset. Labels represent various
cardiac rhythm patterns and arrhythmias detected in ECG recordings.

Label Description Label Description
AFIB Atrial fibrillation PACE Normal functioning artificial pacemaker
AFLT Atrial flutter PSVT Paroxysmal supraventricular tachycardia
BIGU Bigeminal pattern (unknown origin) SARRH Sinus arrhythmia
SBRAD Sinus bradycardia SR Sinus rhythm
STACH Sinus tachycardia SVARR Supraventricular arrhythmia
SVTAC Supraventricular tachycardia TRIGU Trigeminal pattern (unknown origin)

including gender, age, and SBP. In contrast, alternative datasets present significant limitations: smaller-
scale collections like Chapman and PTB-XL lack the statistical power for robust foundation model
training, while metadata-sparse datasets preclude comprehensive health risk modeling. Although
HEEDB offers a superior scale (1.8 million patients), its restricted accessibility limits reproducibility
and benchmarking capabilities.

B DETAILS OF THE DATASETS USED FOR PRETRAINING AND DOWNSTREAM
EVALUATION

MIMIC-IV-ECG dataset is a large-scale clinical ECG database containing 800,035 12-lead
diagnostic recordings collected from 161,352 unique patients.4 Each ECG is 10 seconds in length
and sampled at 500Hz. Corresponding metadata can be matched to each patient using the unique
patient code.5 A more detailed procedure of aligning metadata for each ECG sample is provided
in Appendix B.1. We use this dataset in 2 phases: (1) for pretraining, we use the first unique ECG
recording from each patient and train over all distinct patients, and (2) for downstream evaluation,
we follow prior work (Li et al., 2024) who obtained the labels for the LVEF estimation task from
the discharge section of MIMIC-IV-Notes. Specifically, LVEF values are provided as continuous
labels for the regression task, while an LVEF of 50% or higher is considered normal and below 50%
abnormal, thereby defining a binary classification task. We sequentially split the dataset into training
(60,329 samples, 80%), validation (7,541 samples, 10%), and test sets (7,542 samples, 10%).

MUSIC dataset (MUerte Subita en Insuficiencia Cardiaca) focuses on assessing cardiac mortality
and sudden cardiac death (SCD) in ambulatory patients with chronic heart failure (CHF).6 It contains
992 patients with CHF consecutively enrolled from the specialized HF clinics of eight University
Spanish Hospitals between April 2003 and December 2004. All patients are measured with a 3-lead
resting electrocardiogram (ECG), or a 3-lead Holter ECG. In this study, we focus on using the first
lead of the collected Holter ECG signal. In the original dataset, outcome labels (non-cardiovascular
death, sudden cardiac death, or pump-failure death) are provided at the patient level. For each
patient, we extract the first 10 seconds of ECG recordings with non-zero signals. For the downstream

4MIMIC-IV-ECG dataset available at: physionet.org/content/mimic-iv-ecg.
5Metadata for MIMIC-IV available at: physionet.org/content/mimiciv.
6MUSIC dataset available at: physionet.org/content/music-sudden-cardiac-death.
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Table S5: Beat Symbol Definitions with Icentia11K data set

Symbol Beat Description
N Normal
S ESSV (PAC): Premature or ectopic supraventricular beat, premature atrial contraction
V ESV (PVC): Premature ventricular contraction, premature ventricular contraction

Table S6: Rhythm symbol definitions with Icentia11K data set.

Symbol Rhythm Type Rhythm description
(N . . . ) NSR (Normal sinus rhythm) -
(AFIB . . . ) AFib (Atrial fibrillation) Irregular rhythm with absent P waves and irregular RR intervals
(AFL . . . ) AFlutter (Atrial flutter) Regular atrial arrhythmia with sawtooth flutter waves

experiments, we take 188 samples (20%) as a held-out test set, while the remaining 655 samples are
for training and 93 for validation.

PTB-XL dataset is a large-scale ECG dataset that has been widely used in prior research (cite) for
evaluating model capacity in signal pattern and disease identification.7 We adopt the preprocessing
and label alignment procedures described in the original dataset publication.8 Details of the tasks
of PTB-XL are tabulated in Tables S2, S3, and S4 To ensure fair comparison, we follow prior
work (Wagner et al., 2020) and adopt a data partitioning of [80/10/10]%, yielding 16,832, 2,100,
and 2,098 samples for training, validation, and testing phases, respectively.

Icentia11K dataset is a wearable dataset that contains ECG signals collected from single-lead chest-
mounted wearable devices.9 The sample rate for the dataset is 250 Hz. Beat and rhythm labels are
extracted from the dataset’s annotation files, focusing on three beat types (Normal, Supraventricular,
Ventricular) and three rhythm types (Normal Sinus Rhythm, Atrial Fibrillation, Atrial Flutter),
see Tables S5 and S6 for a more detailed description. Note that the dataset also includes an undefined
beat class, which we omit here as it does not correspond to a physiologically interpretable beat
type. For both tasks, segments are generated by slicing 10-second windows starting from the
annotated event and assigning numerical labels for classification. To ensure balanced representation
across patients, we employ a patient-stratified sampling strategy: for each patient, we search their
recordings for each target beat type and randomly select one representative instance, continuing
until all types are found or available segments are exhausted. This results in relatively balanced
distributions across beat classes (N: 10,866; S: 9,844; V: 9,287), whereas rhythm classes remain
imbalanced due to the limited prevalence of atrial fibrillation and atrial flutter (N: 10,239; AFib:
743; AFL: 516). For experimental evaluation, the dataset is partitioned into training, validation, and
test sets (90%/10%/10%), comprising 20, 994/4, 532/4, 511 samples for beat classification and
8, 042/1, 723/1, 733 samples for rhythm classification.

Chapman dataset is a collection of 12-lead ECG recordings from 45,152 patients labeled by clinical
experts to support research in arrhythmia and cardiovascular disease detection.10 The dataset contains
10-second recordings sampled at 500 Hz, featuring 11 common cardiac rhythms and 67 additional
cardiovascular conditions, all validated through a rigorous multi-physician review process with senior
physician arbitration for diagnostic disagreements. We follow prior work (Jin et al., 2025) and use a
refined version of the dataset, which contains 23,026 ECG recordings with 38 distinct labels. The
samples are then split into training (16, 546 samples, 70%), validation (1, 860 samples, 10%), and
test sets (4, 620 samples, 20%).

MC-MED dataset is a multimodal collection of emergency department visits from 118,385 adult
patients at Stanford Health Care between 2020 and 2022.11 The dataset combines continuous
physiological monitoring (lead II ECG, photoplethysmography, respiration waveforms), clinical data

7PTB-XL dataset available at: physionet.org/content/ptb-xl.
8Data preprocessing code for PTB-XL available at: github.com/helme/ecg_ptbxl_benchmarking.
9Icentia11K dataset available at: physionet.org/content/icentia11k-continuous-ecg.

10Chapman dataset available at: physionet.org/content/ecg-arrhythmia.
11MC-MED dataset available at: physionet.org/content/mc-med.
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(demographics, medical histories, laboratory results, medications, radiology reports), and temporal
visit outcomes. It covers emergency department patients during and after the COVID-19 pandemic
with granular physiological measurements.

The prediction targets encompass both classification and regression tasks across the clinical care
continuum. For classification, there are 3 tasks: (1) emergency department (ED) disposition, which
determines patient placement after ED assessment. This includes 4 classes: Discharge (outpatient),
Inpatient (hospital admission), Observation (extended monitoring without full admission), and
ICU (critical care); (2) Discharge (DC) disposition, classification of patient outcomes at hospital
discharge. We categorized the outcome into 5 categories: home care, care facility, hospital
transfer, psychiatric care, and death. and (3) Triage acuity assessment, which is predicting clinical
urgency as determined by healthcare professionals during initial patient evaluation, including 5
tasks: Resuscitation, emergent, urgent, Semi-Urgent, and Non-Urgent. The regression tasks involve
continuous prediction of systolic blood pressure (SBP) and diastolic blood pressure (DBP) values.
We follow the chronological splitting provided in the original dataset based on patient admission
dates, and allocate the first 78% (37,438 samples) for training, the following 11% (5,540 samples)
for validation, and the most recent 11% (5,572 samples) for testing. Note that the exact number may
differ from the original dataset, as we only include patients with lead II ECG recordings.

Aurora BP dataset is a collection of simultaneous multi-modal physiological recordings collected
from 1,221 diverse participants,12 serving the purpose for cuffless blood pressure research. The
dataset contains synchronized tonometry, photoplethysmography (PPG), electrocardiography (ECG),
accelerometry, and reference blood pressure measurements collected during both laboratory and 24-
hour ambulatory monitoring phases, with participants spanning a wide range of ages and hypertensive
status to ensure real-world applicability. The prediction targets are systolic blood pressure (SBP)
and diastolic blood pressure (DBP), with the task formulated as the estimation of their actual values
through regression. We use a 70%/15%/15% train/validation/test split on patient ID, resulting in
786/169/169 patients, which corresponds to 9,237/1,913/1,854 samples for training, validation, and
testing, respectively.

B.1 METADATA ALIGNMENT WITH MIMIC-IV-ECG DATASET

The MIMIC-IV-ECG database provides raw electrocardiogram (ECG) waveforms together with
patient identifiers and relative timestamps, but does not directly include demographic or clinical
metadata. To match each ECG with patient information, we aligned it with the corresponding records
in MIMIC-IV,13 which contains both static demographics (e.g., sex, age at admission) and time-
stamped clinical observations (e.g., blood pressure). Each ECG was first linked to the corresponding
patient using the unique patient identifier, which is shared across MIMIC-IV and MIMIC-IV-ECG.
Demographic variables that remain constant over time were directly assigned to all ECGs of the
same patient. For time-varying clinical measurements, we selected the most recent value recorded
at or before the ECG timestamp, ensuring that the metadata reflected the patient’s state at the time
of acquisition. If no prior measurement was available, the variable was marked as missing, and no
forward-filling across admissions or imputation beyond this step was performed. This procedure
ensures that every ECG recording is annotated with the most temporally relevant metadata.

C SUPPLEMENTARY EXPERIMENT SETUP AND BASELINES

C.1 EXPERIMENT SETUP FOR DOWNSTREAM EVALUATION

This section supplements the experiment setup in section 3 of the main paper. All experiments were
conducted using a Linux server (Ubuntu 22.04.5) with 4 NVIDIA L40S GPUs, 2 Intel Xeon Gold
6542Y CPUs. Code will be made available.

Pretraining: All experiments are conducted under fixed hyperparameter settings. All models are
pretrained for 100 epochs with a batch size of 64 using the AdamW optimizer, except for the
experiments for pretraining on a specific lead due to a reduced data diversity (section 4, pretraining

12A sample data of Aurora BP is available at: github.com/microsoft/aurorabp-sample-data. Access can be
provided via application.

13MIMIC-IV database available at: physionet.org/content/mimiciv/3.1/
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on a specific lead), where we pretrain for 10 epochs. A learning rate of 1× 10−4 and a weight decay
of 5× 10−5 are employed, with a Cosine Annealing Learning Rate scheduler to adjust the learning
rate. Training stops if the validation loss does not decrease for 20 consecutive epochs. Seed is fixed to
42 for all pretraining. For parameters specific to contrastive pretraining, we set the clinical-guidance
coefficient to α = 0.2 and temperature to τ = 0.07, consistent with prior literature (Wu et al., 2018;
He et al., 2020). The effect of α and τ is further examined in Appendix D.8, Table S17, and Table S18.

Downstream tasks: For downstream evaluation, training is also conducted for 100 epochs with a
batch size of 64. We use binary cross-entropy loss for classification and L1 loss for regression tasks.
Model parameters are optimized using Adam with a learning rate of 1× 10−3 and a weight decay
of 1× 10−5. The learning rate is adjusted using a Cosine Annealing with Warm Restarts scheduler.
Training stops if the validation loss does not decrease for 5 consecutive epochs. Seed is fixed to 42
for all downstream evaluation, except for the seed robustness evaluation in Appendix D.1.

Downstream preprocessing: For all downstream tasks, the ECG signals are resampled to 500
Hz. For datasets containing recordings longer than 10 seconds, we keep the first 10 seconds as our
input. We preprocessed all ECG signals using a 5th-order Butterworth bandpass filter with cutoff
frequencies of 0.67 Hz and 40 Hz to remove low-frequency baseline wander (e.g. due to breathing)
whilst maintaining heart rate frequencies, and to remove high-frequency noise (e.g. power-line
interference) whilst maintaining fundamental frequencies of P, QRS, and T-waves. The input ECG
samples are then standardized using z-scoring, an operation that transforms the data to zero mean and
unit standard deviation.

Regression specific setup: In all regression tasks, the target labels are also z-scored using statistics
computed from the training set. Predictions are de-normalized back to the original scale before
comparison with the ground-truth labels. The errors are evaluated on the original scale.

C.2 DATA AUGMENTATION FOR CONTRASTIVE PRETRAINING

This section supplements the stochastic data augmentation in section 3.

Simulate physiological noise We inject physiological noise collected from the MIT-BIH noise
stress test database (Sološenko et al., 2021a), as a form of data augmentation that encourages the
model to learn representations invariant to electrode movement and motion-induced artifacts, etc.14

The noise injection is achieved by selecting the noise signal from the corresponding lead, given by
êls = els + ϕ×nl, where ϕ controls the noise intensity, nl is the noise vector of the l-th lead. We
provide visualization in Figure S1 of how different noises influence and augment the original signal.
Note that we set ϕ = 0.02 following prior work (Goldberger et al., 2000; Sološenko et al., 2021b), a
parameter also used in the main experiment.

14The noise is available at: physionet.org/content/ecg-ppg-simulator-arrhythmia.
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Figure S1: Physiological noise for single-lead ECG contrastive learning. We include four common
sources of signal degradation in wearable ECG devices: electrode movement artifacts, baseline
wander, motion-induced distortions, and additive noise. Original signals are shown in black, with
augmented versions in color.
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Table S7: ResNeXt1D Model Architecture Configurations for CLEF variants. Left: Shared
hyperparameters of all three variants. Right: Detailed stage-wise model configurations.

Parameter CLEF -S CLEF -M CLEF -L

Model Size 448K 30.7M 296M

Hidden Dimension d 32 64 128

Ratio ι 0.5 1.0 1.5

Groups Width g 8 16 32

Number of Stages ϖ 6 7 9

Stage CLEF -S CLEF -M CLEF -L
h / γ h / γ h / γ

1 32 / 1 64 / 2 128 / 2
2 64 / 1 160 / 2 256 / 3
3 64 / 2 160 / 2 256 / 3
4 128 / 2 400 / 3 512 / 4
5 128 / 2 400 / 3 512 / 4
6 256 / 2 1024 / 4 1024 / 5
7 – 1024 / 4 1024 / 5
8 – – 2048 / 6
9 – – 2048 / 6

Random mask Randomly masking segments of the ECG signal encourages the model to learn
representations that are invariant to missing information. In our experiments, we set the masking
probability to p = 0.2, with each selected segment having 10% of its signal randomly masked.

C.3 BACKBONE RESNET MODELS

CLEF is built upon a multi-layer ResNeXt1D architecture, where each stage contains multiple
residual blocks. We implement three variants, i.e. small, medium, and large, for our proposed CLEF
model with different computational complexities. All variants follow the same architectural principles
but differ in depth, width, and parameter count.

Convolution layer. The network begins with an initial convolutional layer with 1 channel, a kernel
size of 16, and a stride of 2. This layer takes the input ECG signal els ∈ Rt from the s-th sample and
l-th lead, where t denotes the signal length. that takes input ECG signal els∈Rt of s-th sample and
l-th lead, where t denotes the signal length. The input els is first transformed by the layer and passed
through a swish activation, yielding the hidden state Hl

s ∈ Dd×ℓ, where ℓ = t
2 is the sequence length,

and the hidden dimension d is set to 32, 64, or 128 for small, medium, and large variants, respectively.
For brevity, we omit the sample & lead indices s and l in the intermediate representations.

Residual stages. The network then processes Hl
s through a sequence of ϖ residual stages. Each

stage consists of γ residual blocks. Each residual block processes features through three convolution
layers sequentially:

(1) A 1×1 convolution layer with stride 1 transforms Hl
s to an intermediate dimension H(1)∈Rd(1)×ℓ,

where d(1) = d×ι, with ι∈{0.5, 1.0, 1.5} is a predefined ratio parameter for small, medium, and
large models, respectively.

(2) A 16×16 convolution layer with stride 1 is applied to H(1), producing the layer output H(2)∈
Rd(1)×ℓ. Specifically, the input is first divided into d(1)/g groups along channel dimension, where
g ∈ {8, 16, 32} specifies the group width for the small, medium, and large variants, respectively.
Each group is convolved independently with its own set of filters, and the resulting features are
concatenated along the channel dimension to form the output H(2).

(3) Finally, a 1×1 convolution layer maps H(2) to the output tensor H(3)∈Rh×ℓ, where h denotes
the final output channel dimension of the residual block.

A swish activation is used between layers. Following the final convolutional output of the last block
of each stage, the output matrix H(3) is first averaged along sequence dimension, forming vector
hs∈Rh. This vector hs is passed through a swish-activated 2-layer perception (hidden dimension
is h

2 , output dimension is h), followed by a sigmoid activation, forming channel-wise gating scores
hr ∈Rh. Each channel vector of H(3) is multiplied by the corresponding element of hr, and the
reweighted channel vectors collectively form the residual tensor Hr ∈ Rh×ℓ. This residual term is
then added with H(3) to form the output of the state, given by Ho = H(3) +Hr. The final output of
the last stage is averaged over the sequence dimension to obtain the feature embedding of the input
signal, denoted as z∈Rh. Table S7 details the component parameters of each variant:
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Table S8: SCORE2 model coefficients (βi) by gender and age group (<70 vs. ≥70 years).

Coefficient Male < 70 Female < 70 Male ≥ 70 Female ≥ 70
β1 0.3742 0.4648 0.0634 0.0789
β2 0.6012 0.7744 0.3524 0.4921
β3 0.2777 0.3131 0.0094 0.0102
β4 0.6457 0.8096 0.4245 0.6010
β5 0.1458 0.1002 0.0850 0.0605
β6 -0.2698 -0.2606 -0.3564 -0.3040
β7 -0.0755 -0.1088 -0.0247 -0.0255
β8 -0.0255 -0.0277 -0.0005 -0.0004
β9 -0.0281 -0.0226 0.0073 -0.0009
β10 0.0426 0.0613 0.0091 0.0154
β11 -0.0983 -0.1272 -0.0174 -0.0107
S0(t) 0.9605 0.9776 0.7576 0.8082
c 0 0 0.0929 0.2290

C.4 BASELINE MODELS

ST-MEM (Na et al., 2024) is a self-supervised learning framework specifically designed to capture
spatio-temporal dependencies in 12-lead ECG signals. It employs a spatio-temporal masked auto-
encoder that reconstructs randomly masked signal segments, enabling the model to learn rich ECG
representations.

KED (Tian et al., 2024) is an ECG foundation model pretrained with raw ECG signal and textual
input (ECG reports). They used contrastive learning to align the representation of two modalities,
enhancing diagnostic performance.

ECGFounder (Li et al., 2024) is a foundation model for ECG trained in a supervised manner on
large-scale labeled datasets for multi-label classification. To address the challenge of missing labels
that are commonly present in long-tailed clinical datasets, the authors propose a modified loss function
that enables more robust and balanced representation learning despite label sparsity.

Moirai (Woo et al., 2024) is a foundation model for time series designed for general-purpose
forecasting. It supports both univariate and multivariate forecasting. For multivariable input, to get an
aligned sequence, they reshape the input sequence into a single, aligned sequence that integrates both
temporal and variable dimensions, enabling unified processing through the transformer architecture.

Moment (Goswami et al., 2024) is a transformer-based model built on the T5 architecture, designed
for univariate time series tasks. It supports both sequence-to-sequence forecasting and time series
classification, offering a unified and scalable foundational framework for temporal modeling.

C.5 BASELINE PRETRAINING METHODS

SimCLR (Chen et al., 2020) is a contrastive learning framework whose objective is to bring
the representations of augmented views of the same sample closer together, while pushing apart
representations of different samples. It relies on a large set of diverse negative samples, which are
typically achieved through large batch sizes, to provide effective contrastive learning signals.

BYOL (Grill et al., 2020) is a self-supervised learning method that does not require negative samples.
It proposed to have an online network and a target network. The online network is trained to predict
the target network’s representation of the same augmented input. The target network is updated via
an exponential moving average of the online parameters.

MoCo (He et al., 2020) is also a modified contrastive learning framework. Instead of relying on
negatives sampled directly from the dataset, they propose to have a dynamic memory bank that stores
encoded representations from previous batches. This memory bank is updated using a momentum
encoder, which ensures stable and consistent representations over time. The stored representations
serve as negative samples for contrastive learning, providing a large and diverse set of negatives
without requiring large batch sizes.
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C.6 DETAILS IN OBTAINING SCORE2 RISK SCORES

The SCORE2 risk score estimates the 10-year risk of fatal and non-fatal cardiovascular disease.15

Demographic information (e.g. sex and age) and clinical measurements (e.g. blood pressure) are
used to predict cardiovascular risk (working group and risk collaboration, 2021a;b). Specifically,
for sample s, the score uses 7 features, including: age (a1

s, in years), gender (a2
s∈{male, female}),

smoking status (a3
s∈{0, 1}), systolic blood pressure (SBP, a4

s in mmHg), diabetes status (a5
s∈{0, 1}),

total cholesterol (a6
s in mmol/L), and high-density lipoprotein (HDL) cholesterol (a7

s in mmol/L).

Detailed risk score computation. The 7 covariates are first scaled by subtracting their
corresponding mean values and then scaling by their pre-defined units (e.g., 5 years for age, 20
mmHg for SBP), except for the 3 binary features, gender, smoking status, and diabetes status. Given
sample s, the transformed variables are given as:

u1
s :=

a1
s − 60

5
, u2

s := a3
s, u3

s :=
a4
s − 120

20
, u4

s := a5
s, u5

s := a6
s − 6, u6

s :=
a7
s − 1.3

0.5
.

(S1)
These normalized covariates, collected in vector u = [u1

s, u
2
s, · · · , u6

s]∈R6, are then transformed
with parameters b1 = [β1, β2, β3, β4, β5, β6] ∈ R6, and age-dependent transformation b2 =
[0, β7, β8, β9, β10, β11]∈R6, given by:

χs = b1u
⊤
s + u1b2u

⊤
s , (S2)

where χ marks an intermediate score. Different parameter sets b1 and b2 are used for males and
females, and also for different age groups. Details are tabulated in Table S8.

The health risk score r of a patient sample is then obtained using an exponential transformation of χ:

rs = 1− S0(t)
exp(χs−c) , (S3)

where S0(t) is the baseline survival function at time t (10 years) and c is an offset. Different S0(t)
and c are also used for different gender and age groups. Details are tabulated in Table S8. Note that
the original SCORE2 calculation includes a step for regional calibration. As regional information is
unavailable in our dataset, this step was omitted. We directly used the uncalibrated 10-year risk score,
with no further region-specific adjustment applied.

The SCORE2 risk score initially uses 7 variables, but because MIMIC-IV-ECG only records the age,
gender, and systolic BP, we infer missing values with simple imputation strategies. Smoking and
diabetes status were assumed to be absent if not recorded (i.e., set to 0). The missing total cholesterol
and HDL cholesterol values were estimated using population-based reference values stratified by sex,
with added Gaussian noise to reflect natural biological variation. Specifically, the total cholesterol
was imputed as 5.2 ± 0.5 mmol/L and HDL cholesterol as 1.3 ± 0.2 mmol/L, based on the mean
values of age group 40-45 (working group and risk collaboration, 2021a). Additionally, there are 15
records with missing age, which we impute as 40. The number of missing values is accounted for in
the handling missing metadata step described in section 2.2.

15SCORE2 risk score is obtained following the implementation available at:
github.com/dvicencio/RiskScorescvd.

Table S9: Results for finetuning on lead I (upper table) and lead II (lower table) ECGs with confidence
interval. AUROCs are reported for seven clinical tasks: LVEF refers to left ventricular ejection
fraction; Dx denotes diagnosis; SubDx denotes subdiagnosis; SupDx denotes superdiagnosis; Form
refers to waveform morphology; Rhyth denotes rhythm; Arrhy denotes arrhythmia.

Dataset MIMIC-IV PTB-XL Chapman
Task LVEF Dx SubDx SupDx Form Rhyth Arrhy
Lead I
CLEF -S (448K) 0.8276±0.007 0.8473±0.011 0.8515±0.009 0.8311±0.007 0.7632±0.047 0.9515±0.011 0.9001±0.003

CLEF -M (30.7M) 0.8230±0.010 0.8499±0.011 0.8581±0.003 0.8335±0.005 0.7708±0.019 0.9415±0.006 0.9074±0.003

CLEF -L (296M) 0.7875±0.015 0.8533±0.005 0.8543±0.008 0.8320±0.004 0.7732±0.032 0.9442±0.007 0.9041±0.004

Lead II
CLEF -S (448K) 0.8186±0.004 0.8284±0.008 0.8515±0.004 0.8475±0.003 0.7727±0.042 0.9510±0.011 0.9026±0.003

CLEF -M (30.7M) 0.8115±0.005 0.8361±0.004 0.8615±0.005 0.8482±0.004 0.7849±0.025 0.9531±0.011 0.9098±0.003

CLEF -L (296M) 0.7850±0.032 0.8333±0.009 0.8604±0.011 0.8489±0.007 0.7836±0.020 0.9538±0.005 0.9094±0.005
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Table S10: Results for finetuning on 12-lead ECGs. AUROCs are reported, with numbers in brackets
denoting the change relative to the corresponding single-lead baselines using lead I (in left hand
side of Table 1), where (↑) and (↓) denote a performance gain and degradation, respectively. A grey
background denotes that the method was outperformed by CLEF. LVEF refers to left ventricular
ejection fraction; Dx denotes diagnosis; SubDx denotes subdiagnosis; SupDx denotes superdiagnosis;
Form refers to waveform morphology; Rhyth denotes rhythm; Arrhy denotes arrhythmia.

Model MIMIC-IV PTB-XL Chapman
LVEF Dx SubDx SupDx Form Rhyth. Arrhy.

ST-MEM .8095 (↑.08) .8340 (↑.23) .8261 (↑.13) .8459 (↑.11) .6716 (↑.26) .8419 (↑.12) .8462 (↑.03)
KED .8704 (↑.08) .9293 (↑.15) .9079 (↑.09) .9250 (↑.10) .8549 (↑.32) .9683 (↑.11) .9419 (↑.05)
Moment .7884 (↓.02) .8995 (↑.14) .8727 (↑.12) .8926 (↑.08) .7874 (↑.28) .9528 (↑.09) .9298 (↑.04)
ECGFounder .8748 (↑.05) .9107 (↑.14) .9106 (↑.10) .9085 (↑.08) .8046 (↑.18) .9321 (↑.01) .9362 (↑.07)

D SUPPLEMENTARY EVALUATIONS

D.1 DETAILED CONFIDENCE INTERVAL RESULTS

This section supplements the results reported in section 4. To quantify uncertainty for the
proposed CLEF model, we conducted 6 rounds of experiments with the prediction head initialized
with different seeds ‘10, 42, 111, 123, 1111, 1234’, and computed 95% confidence
intervals for all reported metrics. Table S9 enumerates the results, where for the majority of the
tasks, most confidence intervals remain tight (0.003− 0.011), apart from Form classification in the
PTB-XL dataset, which shows larger variability across seeds. It can also be observed that the selected
seed ‘42’ yields relatively conservative results compared to other initializations.

D.2 COMPARISON WITH FINETUNING ON 12-LEAD ECGS

To better quantify the performance upper bounds for downstream tasks, we compare single-lead
results for CLEF against baseline methods that use full 12-lead ECG data. Table S10 summarizes the
finetuning results for baseline methods on 12-lead ECGs. Several 12-lead baselines fail to surpass
the performance of the single-lead CLEF model (shown as gray-highlighted cells). Performance
changes relative to the corresponding single-lead baselines are shown in parentheses. All models
benefited from multi-lead inputs for all tasks, except for Moment, where there is a small reduction in
performance on the LVEF classification task when using 12-lead data. This confirms that additional
leads provide valuable complementary information.

D.3 LINEAR PROBING

This section supplements the linear probing experiments in section 4 in the main paper, where we
analyzed the performance of CLEF -M linear probing against the baselines. Table S11 presents the
detailed performance for CLEF -M and further results for CLEF -S and CLEF -L, comparing with the

Table S11: Results for linear probing on lead I ECG representations expressed as AUROCs. LVEF
refers to left ventricular ejection fraction; Dx denotes diagnosis; SubDx denotes subdiagnosis; SupDx
denotes superdiagnosis; Form refers to waveform morphology; Rhyth denotes rhythm; Arrhy denotes
arrhythmia. Best result bolded. The second best underlined.

Model MIMIC-IV PTB-XL Chapman Icentia11K
LVEF Dx SubDx SupDx Form Rhyth Arrhy Beat Rhyth

Moirai .5000 .4989 .5000 .5000 .5000 .5000 .4988 .5002 .4927
Moment .7537 .6392 .6932 .7611 .5863 .6227 .7292 .7298 .6434
ST-MEM .5709 .5652 .5872 .6189 .5300 .5374 .6587 .6640 .5605
KED .7607 .5935 .6883 .7514 .5333 .7372 .7712 .6984 .7221

CLEF -S .7728 .6005 .6509 .7503 .5266 .5872 .6913 .6581 .6761
CLEF -M .7864 .7256 .7736 .7903 .6146 .8077 .7937 .7302 .7302
CLEF -L .7939 .7388 .7713 .7971 .6110 .7966 .8010 .7843 .7479

ECGFounder .8228 .7945 .8423 .8443 .7412 .9422 .8428 .9692 .9721
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Table S12: Results when retraining the backbone models with clinically-guided pretraining and
finetuning, using lead I ECG. Numbers in brackets denote the change relative to the corresponding
single-lead baselines using lead I, with (↑) denoting a performance gain and (↓) a degradation. LVEF
refers to left ventricular ejection fraction; Dx denotes diagnosis; SubDx denotes subdiagnosis; SupDx
denotes superdiagnosis; Form refers to waveform morphology; Rhyth denotes rhythm; Arrhy denotes
arrhythmia. For better clarity, we highlighted cases where performance is better in teal.

Model MIMIC-IV PTB-XL Chapman
LVEF Dx SubDx SupDx Form Rhyth Arrhy

ST-MEM .7788 (↑ .00) .7690 (↓ .01) .7568 (↓ .01) .7878 (↑ .01) .5468 (↓ .04) .8078 (↑ .07) .8046 (↓ .01)
KED .8267 (↓ .01) .8729 (↑ .04) .8569 (↑ .03) .8330 (↑ .00) .7481 (↑ .12) .9067 (↑ .02) .8956 (↑ .01)
ECGFounder .8263 (↓ .03) .8515 (↑ .01) .8649 (↑ .02) .8322 (↓ .01) .7957 (↑ .04) .9516 (↑ .00) .9038 (↓ .01)

baseline models. Among the 3 variants, CLEF -L achieves the highest linear probing performance
with a 7.4% improvement over best baselines on average across 9 downstream classification
tasks. The second best being CLEF -M (6.0% improvement), while CLEF -S exhibits a 7.3%
performance deficit. This descending trend indicates that larger models develop more expressive and
generalizable representations during pretraining, which can be effectively leveraged through simple
linear classification heads.

Notably, comparing results in Table S11 with Table 1, CLEF -M generally achieves the best balance
of capacity and data efficiency during fine-tuning, where it outperforms CLEF -L on many tasks,
particularly those with limited labeled data. This potentially reflects a capacity–data mismatch under
shared fine-tuning hyperparameters. The 296M-parameter CLEF -L requires stronger regularization
and/or more labeled data for stable end-to-end fine-tuning. When it is given with relatively small
downstream datasets (especially on wearable and ED tasks), it is more prone to overfitting or reaching
optimization plateaus when using the same fine-tuning recipe as CLEF -M. Nevertheless, the stronger
linear-probe performance of CLEF -L indicates that its representations are of higher quality.

Additionally, the supervised model ECGFounder outperformed all three variants of CLEF ,
with CLEF -M AUROCs an average of 12.7% lower than those of ECGFounder. This is expected,
as ECGFounder was pretrained on a much larger labeled dataset, whereas CLEF relies purely on
self-supervised learning.

D.4 EFFECTIVENESS OF RISK-GUIDED PRETRAINING ON BASELINE MODELS

This section supplements the experiment in section 4 on applying our clinically-guided contrastive loss
to the best semi-supervised baseline, KED. We further extend our analysis by applying the proposed
pretraining approach to other baseline models, thereby testing its generalizability across architectures.
Each baseline model has been initialized with its original pretrained weights and pretrained with our
proposed clinically-guided pretraining approach. The AUROC results are presented in Table S12,
with values in the brackets indicating the changes relative to the finetuning results of the original
model weights, as reported in Table 1. On average, pretraining with our proposed clinically-guided
method yields an overall performance gain of 0.7%. Among the three baselines, KED shows the
largest improvement, with its AUROC score increasing by 3.0%. This substantial improvement likely
stems from KED’s reliance on purely self-supervised learning without explicit clinical guidance,

Table S13: Results on finetuning CLEF variants pretrained on the corresponding lead. The parentheses
indicate the lead on which the model was pretrained. AUROCs are shown for Lead I (left) and Lead II
(right). A teal text denotes improved performance compared to Table 1. LVEF refers to left ventricular
ejection fraction; Dx denotes diagnosis; SubDx denotes subdiagnosis; SupDx denotes superdiagnosis;
Form refers to waveform morphology; Rhyth denotes rhythm; Arrhy denotes arrhythmia.

Task MIMIC-IV PTB-XL Chapman
LVEF Dx SubDx SupDx Form Rhyth Arrhy

CLEFI-S .8215 .8536 .8604 .8324 .7958 .9449 .9057
CLEFI-M .8170 .8505 .8575 .8336 .7805 .9476 .9128
CLEFI-L .7821 .8606 .8564 .8327 .7870 .9513 .9133

Task MIMIC-IV PTB-XL Chapman
LVEF Dx SubDx SupDx Form Rhyth Arrhy

CLEFII-S .8207 .8386 .8620 .8497 .8001 .9552 .9107
CLEFII-M .8102 .8349 .8719 .8523 .7921 .9552 .9135
CLEFII-L .7862 .8421 .8680 .8464 .7829 .9257 .9134
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Table S14: “Risk score” of CIFAR-100 superclasses and subclasses. Subclasses within the same
superclass have similar risk scores, while more distant superclasses have larger dissimilar scores.

Superclass Subclass Risk Score

Natural Environment (0.05–0.20)

Large natural outdoor scenes 0.05
Trees 0.10
Flowers 0.15
Fruit and vegetables 0.20

Aquatic Life (0.25–0.30) Fish 0.25
Aquatic mammals 0.30

Invertebrates (0.35–0.40) Insects 0.35
Non-insect invertebrates 0.40

Land Mammals (0.45–0.70)

Small mammals 0.45
Medium mammals 0.50
Reptiles 0.55
Large omnivores and herbivores 0.60
Large carnivores 0.65
People 0.70

Human-Made Objects (0.75–1.00)

Food containers 0.75
Household furniture 0.80
Household electrical devices 0.85
Large man-made outdoor things 0.90
Vehicles 1 0.95
Vehicles 2 1.00

making it particularly receptive to our clinically-guided pretraining strategy that provides essential
domain-specific knowledge.

D.5 SUPPLEMENTS IN PRETRAINING WITH A SPECIFIC LEAD

This section supplements section 4 on pretraining on a specific lead, which explores the upper
bound performance by pretraining exclusively on lead I or lead II data, corresponding to the leads
used in our downstream evaluation tasks. Although less generalizable, this method reduces potential
domain shift compared with our primary pretraining approach using all 12 leads.

Table S13 present the results. The ones colored in red with an uparrow (↑) denote a performance
improvement compared to the performance of the corresponding-sized CLEF model pretrained
on all 12 leads, while those with a downarrow (↓) indicate a performance degradation. Overall,
lead-specific pretraining yields performance gains across all tasks, with an average improvement of
2.0%. Specifically, CLEFI-S, CLEFI-M, and CLEFI-L achieve improvements of 3.4%, 1.6%,
and 1.0%, respectively, compared to their corresponding models pretrained on all leads across all
tasks and both leads. Interestingly, the Small variant gives the largest performance gain. This may be
because the reduced capacity of the smaller model helps prevent overfitting on the relatively limited
data, allowing it to capture the essential patterns more effectively than the larger counterparts.

D.6 EFFECTIVENESS OF DIFFERENT LOSS COMPONENTS

An ablation study is conducted using CIFAR-100 (Krizhevsky et al., 2009) (the representative
computer vision benchmark) to understand the contribution of different loss components. This dataset
consists of 100 subclasses, each grouped into a higher-level superclass. While instances within the
same superclass may belong to different subclasses, they are generally more similar to each other
than to instances from different superclasses. To simulate the setup in informing the contrastive
learning process with risk scores, we assign each CIFAR-100 superclass a risk score within the range
[0, 1]. The assigned scores are decided in a way such that subclasses belonging to the same superclass
receive relatively close risk scores, while subclasses from more distinct superclasses are assigned
increasingly dissimilar scores. The detailed scores given to each subclass are provided in Table S14.
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Table S15: Cosine similarity statistics between class pairs. A spade symbol (♠) indicates that the
two classes belong to the same superclass in the CIFAR-100 dataset, whereas a diamond symbol
(♢) represents pairs from different superclasses. Values are reported as mean ± standard deviation
of cosine similarity computed over the sampled pairs. We also report the classification accuracy on
both sub and superclass classification, which has 100 and 20 classes in total, with mean and standard
deviation reported on 6 different random seed initializations. Best classification results are bolded.

Class Pair Groups Lnce Lw Ld Lnce + Ld Lw + Ld

Palm – Pine Tree ♠ .058 ± .125 .081 ± .139 .699 ± .214 .067 ± .132 .556 ± .153
Palm Tree – Baby ♢ .018 ± .060 .025 ± .064 .548 ± .131 .016 ± .052 .432 ± .075
Pine Tree – Baby ♢ .012 ± .052 .016 ± .053 .564 ± .136 .010 ± .045 .438 ± .075

Shark – Trout ♠ .022 ± .081 .024 ± .078 .738 ± .104 .019 ± .077 .542 ± .074
Shark – Bicycle ♢ .014 ± .060 .026 ± .067 .527 ± .146 .012 ± .051 .385 ± .094
Trout – Bicycle ♢ .023 ± .073 .038 ± .081 .501 ± .137 .019 ± .062 .380 ± .100

Apple – Pear ♠ .053 ± .125 .062 ± .148 .761 ± .110 .083 ± .162 .559 ± .116
Apple – Bottle ♢ .015 ± .055 .017 ± .059 .544 ± .107 .030 ± .060 .411 ± .081
Pear – Bottle ♢ .036 ± .099 .038 ± .094 .589 ± .121 .035 ± .083 .452 ± .089

Bridge – House ♠ .065 ± .129 .087 ± .136 .762 ± .135 .057 ± .119 .561 ± .115
Bridge – Sea ♢ .044 ± .102 .056 ± .113 .311 ± .222 .046 ± .107 .284 ± .165
House – Sea ♢ .018 ± .064 .021 ± .067 .307 ± .217 .016 ± .062 .262 ± .154

Cloud – Forest ♠ .013 ± .052 .013 ± .048 .654 ± .215 .011 ± .050 .482 ± .133
Cloud – Bus ♢ .015 ± .060 .018 ± .055 .220 ± .196 .014 ± .053 .201 ± .153
Forest – Bus ♢ .033 ± .086 .041 ± .091 .357 ± .264 .025 ± .074 .275 ± .181

ResNet18 pretrained
Subclass (100) .621 ± .003 .624 ± .005 .635 ± .002 .611 ± .004 .646 ± .006
Superclass (20) .638 ± .004 .639 ± .004 .646 ± .003 .627 ± .009 .658 ± .007

For the experiments, we pretrained the ResNet18 model (initialized with ImageNet-1K pretrained
weights) using different loss functions, which are the standard contrastive loss Lnce, the weighted
contrastive loss Lw, the dissimilarity alignment loss Ld, Lnce +Ld, and our proposed Lw +Ld. The
models were trained for 50 epochs with a batch size of 256, optimized using the AdamW optimizer
with an initial learning rate of 1× 10−3. A Cosine Annealing learning rate schedule was used, and
we stop the training when the training loss does not decrease over 10 epochs.

Inter-class similarity analysis. We first analyzed the similarity relationships between groups by
randomly selecting 5 sets of triplet classes. Each triplet consisted of 2 subclasses from the same
superclass and one subclass from a different superclass. For each triplet, we obtain the similarity
scores between all pairs of samples (resulting in 10,000 scores per subclass pair, given 100 samples
per subclass), and report the mean and standard deviation across groups. Results are summarized on
the left of Figure S2 and detailed in the upper part of Table S15. It can be observed that training the
model with only Lnce yields minimal distinction between similarity scores of samples within the same
superclass (intra-class) compared to those from different superclasses (inter-class). When training
with Lw, the inter-class differentiation becomes marginally more pronounced, although it remains
insufficiently distinct. Meanwhile, training with Ld produces substantially more distinguishable
inter-class similarity differences. However, this loss function enforces hard mapping of inter-class
distances to align with risk scores without constraining intra-class clustering, consequently increasing
the intra-class similarity variance. This indicates that samples of the same class are scattered rather
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Figure S2: Ablation study on CIFAR-100 dataset. Left: Cosine similarity between samples from the
same vs. different superclasses. Results averaged across 5 randomly selected triplet groups, with 2 of
them from the same superclass. Right: Classification accuracy on CIFAR-100 subclass (100 classes)
and superclass (20 classes) tasks.
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Table S16: Effect of weighting over loss. All combinations are normalized by dividing by the
sum of their coefficients to maintain comparable loss scales. Experiments were conducted over all
classification tasks. For the 12-lead ECG datasets, we use lead I as input. Table cells are colored
where darker blue indicates better performance and lighter blue indicates worse performance. Best
results are bolded.

Loss MIMIC-IV PTB-XL Chapman MUSIC Icentia11K MC-MED
LVEF Dx SubDx SupDx Form Rhyth Arrhy Outcome Beat Rhyth ED Dispo DC Dispo Acuity

Ld 0.8051 0.7990 0.8135 0.8363 0.6451 0.9206 0.8808 0.4767 0.9803 0.9251 0.6016 0.6475 0.6222
Lw + 5Ld 0.8096 0.8195 0.8536 0.8467 0.6917 0.9581 0.9028 0.4747 0.9780 0.9224 0.6070 0.6341 0.6179
Lw + 2Ld 0.7965 0.8253 0.8518 0.8396 0.7365 0.9325 0.9088 0.5513 0.9755 0.9289 0.6148 0.6416 0.5861
Lw + Ld 0.8083 0.8292 0.8566 0.8430 0.7409 0.9361 0.9061 0.5304 0.9792 0.9328 0.6397 0.6607 0.6510
Lw + .5Ld 0.8204 0.8271 0.8503 0.8473 0.7471 0.9360 0.9130 0.5496 0.9858 0.9350 0.6026 0.6492 0.6221
Lw + .2Ld 0.8118 0.8158 0.8520 0.8484 0.7325 0.9593 0.9032 0.4747 0.9794 0.9211 0.6082 0.6369 0.6216

Lw 0.8018 0.7990 0.8188 0.8387 0.6494 0.9215 0.8838 0.4701 0.9786 0.9241 0.6017 0.6446 0.6153

than forming compact clusters, which is a less desirable property for downstream classification.
Meanwhile, the combination of Lnce with Ld offered limited gains compared to Lnce. In contrast,
our proposed combination Lw + Ld achieves notable differentiation in similarity scores whilst
maintaining consistency, which can be inferred from the reduced standard deviation.

Classification accuracy on CIFAR-100. We also provide classification accuracy over the 100
subclasses and also 20 superclasses, experiment initialized with 6 random seeds, which are ‘10,
42, 111, 123, 1111, 1234’, and we present the average and standard deviation of the
classification accuracy. Results are summarized on the right of Figure S2 and enumerated in the
lower part of Table S15. For subclass classification (100 classes), our proposed Lw +Ld combination
achieves the highest accuracy of 64.6%± 0.6%, outperforming all baseline approaches by at least
(1.7%). Notably, whilst Ld alone yields the second best performance (63.5%±0.2%), the combination
of Lnce + Ld exhibits degraded classification accuracy by (3.8%) (61.1%± 0.4%), indicating that
simply combining the InfoNCE loss with the difference alignment loss would contrarily harm the
model performance, which is consistent with our similarity score observations. For superclass
classification (20 classes), the performance remains consistent, with our proposed method achieving
65.8%± 0.7%, bringing a substantial improvement by (1.9%) over the best-performance baseline
(64.6%± 0.3%) and by 3.0% compared to the naïve contrastive baseline (63.8%± 0.4%).

D.7 ANALYSIS OVER DIFFERENT LOSS WEIGHTING

In Appendix D.6, we used CIFAR-100 to investigate how different combinations of losses influence
the cosine similarity between representation pairs and classification accuracy. In this section, we
extend this analysis to ECG tasks to examine the effect of having different weighting between the
two proposed losses, Lw and Ld. Specifically, we evaluated four configurations: (1) Lw only, (2)
Ld only, (3) our default balanced weight Lw + Ld, and (4) unbalanced mixes with coefficients
λ = {5, 2, 0.5, 0.2} applied to Lw + λLd. All combinations have been normalized by dividing
the sum of their corresponding coefficients to maintain comparable loss scales. It can be observed
that CLEF is not particularly sensitive to the loss weight ratio (with an averaged standard deviation
of 0.016 across all tasks), and the two components provide complementary guidance. Using balanced
weights for Lw and Ld consistently provides strong performance, confirming our initial motivational
analysis using CIFAR100.

D.8 ANALYSIS OVER PRETRAINING PARAMETERS

Effect of parameter α: We provide experiments on the effect of α, using the medium variant of the
CLEF model backbone, and pretrained the model with α = {.1, .2, .3, .4, .5}. Results are enumerated
in Table S17. The model remains robust when α is within the range 0.1˘0.3, with 0.007 standard
deviation averaged across all tasks. Increasing α beyond 0.3 results in a performance degradation,
indicating that over-compressing the weighting factor can lead to suboptimal representation learning.
Interestingly, if we compare the performance with Table 4, it can be observed that the performance
when α = 0.5 is similar to SimCLR, implying the weighting factor is over-compressed and becomes
less effective. Overall, our results confirm that while α can affect the shape of the embedding space,
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Table S17: Sensitivity analysis regarding α. Experiments were conducted over all classification tasks.
For the 12-lead ECG datasets, we use lead I as input. Table cells are colored where darker blue
indicates better performance and lighter blue indicates worse performance. Best results are bolded.

α MIMIC-IV PTB-XL Chapman MUSIC Icentia11K MC-MED
LVEF Dx SubDx SupDx Form Rhyth Arrhy Outcome Beat Rhyth ED Dispo DC Dispo Acuity

0.5 0.8050 0.8084 0.8452 0.8357 0.7111 0.9212 0.8904 0.4737 0.9662 0.9381 0.6053 0.6112 0.5694
0.4 0.7983 0.8117 0.8550 0.8419 0.7291 0.9213 0.8950 0.4767 0.9550 0.9251 0.6019 0.6475 0.6407
0.3 0.8030 0.8295 0.8699 0.8515 0.7524 0.9338 0.9023 0.5513 0.9848 0.9475 0.6260 0.6491 0.6548
0.2 0.8083 0.8292 0.8566 0.8430 0.7409 0.9361 0.9061 0.5304 0.9792 0.9328 0.6397 0.6607 0.6510
0.1 0.8176 0.8203 0.8596 0.8484 0.7625 0.9360 0.9119 0.5476 0.9733 0.9397 0.6186 0.6593 0.6427

it does not directly drive the performance gains. The main improvements in the performance are due
to using clinically-guided relative risk scores rather than the exact margin offset defined by α.

Effect of parameter τ In our experiment, τ is set to 0.07 following prior work in contrastive
learning (Wu et al., 2018; He et al., 2020). To further validate the sensitivity of the model to τ we
conducted further experiments using the small and medium variants of the CLEF model backbone,
with τ set to {0.01, 0.1, 0.5}. Results are enumerated in Table S18. Performance is best at small
τ (τ = {0.07, 0.1}) and degrades by little as τ increases. This indicates that lower τ enhances the
discrimination between positives and negatives and is beneficial for learning clinical-informed ECG
representations.

D.9 COMPUTATIONAL COMPLEXITY ANALYSIS

The proposed clinically-guided pretraining framework introduces minimal computational overhead
compared to the baseline SimCLR. Specifically, risk scores are computed once per patient from
clinical metadata during the preprocessing stage, prior to model training. Following the SCORE2
algorithm detailed in Appendix C.6, each patient’s risk score is derived from 7 clinical covariates
through a series of operations (Equations S1–S3). For a single patient, this requires O(1) operations,
as the number of covariates and parameters is fixed.

Additionally, during training, the clinical guidance adds two operations per mini-batch: (i) obtaining
weight matrix Wi,k from pairwise risk score dissimilarities Di,k and missing metadata matrix M,
and (ii) computing the dissimilarity alignment loss Ld (Eq. 7). Both operations require O(B2)
computations for batch size B. In contrast, the standard SimCLR contrastive loss requires O(B2d)
operations for d-dimensional embeddings. Since for CLEF , d ∈ {256, 1024, 2048}, the additional
O(B2) cost results in no significant increase in complexity.

E ALGORITHMS

Algorithm 1 summarizes our clinically-guided contrastive pretraining and downstream evaluation
procedure. In the pretraining phase, we sample minibatches of ECG embeddings and generate
stochastic augmentations, which are encoded by the foundation model F(·). Risk scores from clinical
metadata are used to compute pairwise dissimilarities, which are combined with multipliers weighted
by the number of missing metadata to form the final pairwise weights. The foundation model F is
updated by minimizing a combination of weighted contrastive loss Lw and dissimilarity alignment
loss Ld. In the evaluation phase, embeddings of downstream labeled ECGs are extracted and used
to train a linear classifier or regressor G(·). Model selection is performed by choosing the model

Table S18: Sensitivity analysis regarding τ . Experiments were conducted over all classification tasks.
For the 12-lead ECG datasets, we use lead I as input. Table cells are colored where darker blue
indicates better performance and lighter blue indicates worse performance. Best results are bolded.

τ MIMIC-IV PTB-XL Chapman MUSIC Icentia11K MC-MED
LVEF Dx SubDx SupDx Form Rhyth Arrhy Outcome Beat Rhyth ED Dispo DC Dispo Acuity

.07 .8083 .8292 .8566 .8430 .7409 .9361 .9061 .5304 .9792 .9328 .6397 .6607 .6510
.1 .7809 .8405 .8568 .8519 .7988 .9604 .9024 .4737 .9440 .9265 .6033 .6432 .6463
.5 .7760 .8416 .8440 .8429 .7742 .9220 .9022 .4708 .9345 .9255 .6038 .6421 .6308
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that achieves the lowest validation loss. The final model is evaluated on the held-out test set using
AUROC (classification) or MAE (regression).

F DISCUSSION OF CHOICE OF RISK SCORE

In this work, we used the SCORE2 risk score to guide contrastive learning. SCORE2 was selected
because it is a standard cardiovascular risk score relevant to ECG data, which has been externally
validated on data from over one million individuals from 15 countries, and its required input variables
overlap with the metadata in the MIMIC-IV-ECG pretraining dataset. However, we do not claim
that SCORE2 is the optimal risk score for CLEF as we did not test other risk scores. Furthermore,
the optimal risk score might vary across applications. For instance, SCORE2 was developed using
data from European subjects, for adults aged 40-69, and for long-term cardiovascular risk prediction.
Alternative risk scores may be more appropriate for non-European populations, for different age
groups, and for non-cardiovascular risk assessment. In addition, the optimal risk score will likely
vary depending on the available metadata in a pretraining dataset.

LLM USAGE STATEMENT

LLMs are used to aid in the writing of this paper. We use LLMs to improve the phrasing clarity
to better convey our contributions and research findings to the readers. Specifically, this involves

Algorithm 1: Clinically-Guided Contrastive Pretraining and Evaluation
Pretraining Phase:
Input: Unlabeled ECG datasetD = {(es = (e1s, . . . , e

12
s ),as)}Ns=1, risk score function R(·),

Output: Foundation ECG model F(·)
for each minibatch {els}Bs=1 do

for each els do
Sample stochastic augmentations xi = T (els), xj = T (els) ;
Compute embeddings zi = F(xi), zj = F(xj) ;
Obtain risk score rs = R(as) from clinical metadata (Eq. (3)) ;

for each pair (xi,xk) in batch do
Compute risk dissimilarity δik = (ri − rk)2 ;
Normalize to Dik∈ [α, 1] (Eq. (5)) ;
Compute metadata missingness weight Mik (Eq. (4)) ;
Set final weight Wik = Dik ·Mik ;

Compute weighted contrastive loss Lw (Eq. (6)) ;
Compute dissimilarity alignment loss Ld (Eq. (7)) ;
Update encoder F(·) by minimizing L = Lw + Ld ;

Evaluation Phase:
Input: downstream labeled dataset C = {(zs = F(els), ys)}Ms=1
Output: downstream linear model G(·)
for each labeled ECG (es, ys) in Ctrain do

Extract embedding zs = F(es) ;
Train/update a linear classifier/regressor ŷs = G(zs) ;

for each labeled ECG (es, ys) in Cval do
Extract embedding zs = F(es) ;
Predict discrete/continuous values ŷs = G(zs) ;

Select G with best validation loss ;
for each labeled ECG (es, ys) in Ctest do

Extract embedding zs = F(es) ;
Predict discrete/continuous values ŷs = G(zs) ;

Evaluate {ŷs} against {ys} using AUROC (classification) or MAE (regression) ;
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grammar correction, wording polishing, and sentence structure refinement. The extent of LLM
assistance was minimal relative to the overall manuscript content. We note that LLMs are not
involved in any aspect of data analysis, the development of methods, the design of the experiment, or
results interpretation. The usage of LLMs is strictly limited to linguistic refinement. All scientific
content originates entirely from the author’s research work. The authors take full responsibility for
all content presented in the paper and have verified that the usage of LLMs has not resulted in any
form of plagiarism. All claims, findings, and contributions presented are the authors’ own work and
have been thoroughly validated for originality and accuracy.
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