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Abstract

Recent work showed the possibility of build-001
ing open-vocabulary large language models002
(LLMs) that directly operate on pixel repre-003
sentations. These models are implemented as004
autoencoders that reconstruct masked patches005
of rendered text. However, these pixel-based006
LLMs are limited to discriminative tasks (e.g.,007
classification) and, similar to BERT, cannot008
be used to generate text. Therefore, they can-009
not be used for generative tasks such as free-010
form question answering. In this work, we011
introduce PIXAR, the first pixel-based autore-012
gressive LLM that performs text generation.013
Consisting of only a decoder, PIXAR can per-014
form free-form generative tasks while keeping015
the number of parameters on par with previ-016
ous encoder-decoder models. Furthermore, we017
highlight the challenges of generating text as018
non-noisy images and show this is due to using019
a maximum likelihood objective. To overcome020
this problem, we propose an adversarial pre-021
training stage that improves the readability and022
accuracy of PIXAR by 8.1 on LAMBADA and023
8.5 on bAbI— making it comparable to GPT-2024
on text generation tasks. This paves the way025
to build open-vocabulary LLMs that operate026
on perceptual input only and calls into ques-027
tion the necessity of the usual symbolic input028
representation, i.e., text as (sub)tokens.029

1 Introduction030

In natural language processing (NLP) pipelines,031

tokenizers are an essential ingredient used to di-032

vide the raw text into a sequence of sub-units, such033

as sub-words (Wu et al., 2016), characters (Cui034

et al., 2020), sentence pieces (Kudo and Richard-035

son, 2018), and bytes (Sennrich et al., 2016). Nor-036

mally, NLP models represent these sub-units as037

symbols within an ID-based categorical vocabulary.038

This categorical representation highlights the039

following weaknesses of traditional NLP systems.040

First, to encode each item in the vocabulary, NLP041

split into patches

linear projection

D
e

co
d

e
r 

b
lo

ck

linear projection

rotary positional embeddings

"Alice was everywhere, until she"

render as a image

input text

p
re

p
ro

ce
ss

in
g

thresholding

Figure 1: PIXAR is the first generative language
model operating on pixels only. PIXAR accepts
texts as images and also generates texts in image
patches autoregressively, a challenging task.

systems have to allocate an embedding matrix that 042

grows linearly with vocabulary size. Modern large 043

language models (LLMs) allocate millions of pa- 044

rameters just for this.1 Additionally, fixing a vo- 045

cabulary a priori can lead to performance degrada- 046

tion due to unseen out-of-vocabulary (OOV) words 047

(Kaddour et al., 2023). Tokenizers with smaller 048

granularities, such as characters and bytes, can alle- 049

viate the OOV issue but are still brittle as they can 050

suffer from orthographic attacks (Eger et al., 2020). 051

On the other hand, humans are incredibly robust to 052

a variety of text permutations (Rayner et al., 2006) 053

because they leverage the graphical information in 054

text (Sun et al., 2021). 055

To tackle these problems, Rust et al. (2023) pro- 056

posed PIXEL, a pixel-based LLM that treats text 057

as images. Pixel-based embeddings remove the 058

need for a finite vocabulary and keep the visual 059

information of text, questioning whether we need 060

symbolic representations of text as input at all, or 061

if an LLM can learn symbols implicitly. PIXEL 062

achieved comparable performance with BERT (De- 063

1The embedding matrix of Vicuna-7B (∼130M) is compa-
rable to the size of bert-base-uncased (∼109M).
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vlin et al., 2019) in a range of downstream classifi-064

cation and regression NLP tasks while being robust065

to character-level visual attacks (Eger et al., 2020).066

However, because of its close architectural similar-067

ities with BERT, PIXEL cannot deal with free-form068

generative tasks, such as generative question an-069

swering (Lawrence et al., 2019).070

To fill this gap, we present PIXAR2, the first071

pixel-based autoregressive LLM that can generate072

short sequences of text as images. PIXAR is to073

GPT-like architectures as PIXEL is to BERT-like074

architectures: it consists of a Transformer decoder075

(Radford et al., 2019) that autoregressively gen-076

erates text image patches as output. Generating077

new text as pixels starting from pixels only is, how-078

ever, more challenging than selecting symbolic to-079

kens from a vocabulary (as GPT-like models) or080

reconstructing masked image patches (as in PIXEL).081

This is because the model has to learn to generate082

longer sequences of pixels. To this end, we intro-083

duce a two-stage pretraining strategy for PIXAR.084

First, following previous work on autoregressive085

LLMs (Radford et al., 2019) and image generation086

models (Chen et al., 2020a), PIXAR is trained by087

reconstructing the next patch of pixels derived from088

a large-scale corpus of rendered text using teacher-089

forcing. This maximum-likelihood approach, how-090

ever, can generate image patches containing noisy091

text. To mitigate this problem, we proposed a sec-092

ond pretraining stage, where PIXAR is trained with093

an additional adversarial loss.094

Our experiments in Section 4 show that 200 steps095

of stage 2 pretraining improve the readability of096

generated text significantly and achieve comparable097

performance with GPT-2 (Radford et al., 2019) on098

open-answer short generative tasks such as bAbI099

(Weston et al., 2015) and LAMBADA (Paperno100

et al., 2016). Additionally, PIXAR achieves bet-101

ter performance than PIXEL on the GLUE bench-102

mark (Wang et al., 2018) while using a computa-103

tional budget and a number of model parameters104

equivalent to the encoder part of PIXEL.105

2 Beyond token-based LLMs106

The idea of using pixel-based representations of107

text has been applied in various NLP tasks. For108

instance, Liu et al. (2017) used a CNN-based block109

to extract character-level visual representations of110

Chinese writing and similarly, Sun et al. (2018) for111

text classification. Graphical features of Chinese112

2The code is submitted with this submission.

characters are a good example where canonical 113

symbolic tokenizers miss important information, 114

as highlighted in Meng et al. (2020) exploiting the 115

Tianzige feature of Chinese characters or Dai and 116

Cai (2017) and ChineseBERT (Sun et al., 2021) 117

integrating character-level visual features into em- 118

bedding vectors for BERT-like models. 119

Sub-word tokenization as in character-level or 120

byte-level tokens is possible and partially solves 121

some issues.3 However, these approaches still 122

struggle with a medium that is inherently visual. 123

This is the case if we consider certain writing sys- 124

tems that are (partially) logographic such as in Chi- 125

nese, or when text contains emojis. 126

Pixel-based representations mitigate these issues. 127

Salesky et al. (2021) built machine translation mod- 128

els using visual information as input. However, 129

their output layers still rely on embeddings over a 130

fixed vocabulary. Inspired by Salesky et al. (2021), 131

PIXEL (Rust et al., 2023) pretrained a Masked Au- 132

toEncoder (MAE) (He et al., 2021) with a large 133

corpus of rendered text using a masked reconstruc- 134

tion objective. This can be considered the first 135

purely pixel-based LLM that can be applied to a va- 136

riety of downstream tasks such as POS tagging and 137

extractive question answering. This approach was 138

extended by Salesky et al. (2023) to deal with mul- 139

tiple languages as well. Moreover, visual text rep- 140

resentation can be utilized in multimodal models 141

to build a unified representation for both image and 142

text modalities. Specifically, CLIPPO (Tschannen 143

et al., 2023b) replaces the ID-based text encoder 144

of CLIP (Radford et al., 2021) with a single pixel- 145

based encoder to process both regular images and 146

rendered text for visual QA. Due to the encoder- 147

only architecture of PIXEL and CLIPPO, they still 148

cannot be used to generate text. GlyphDiffusion 149

(Li et al., 2023a) made attempts to use a diffusion 150

model to generate new texts as images from noise 151

and conditioned on encoded text features. However, 152

its encoder still relies on symbolic embeddings. On 153

top of the benefits of purely pixel-based LLMs, we 154

are interested in understanding if a deep learning 155

model can learn symbolic representation from per- 156

ceptual information only, a very challenging task, 157

as discussed next. 158

3 PIXAR 159

In contrast with the aforementioned approaches, 160

we design PIXAR as a PIXel-based AutoRegres- 161

3We discuss more related works in Appendix B.
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sive LLM whose inputs and outputs are only pixels162

representing textual information. PIXAR abandons163

the MAE architecture of PIXEL and instead applies164

the design choices of other generative LLMs like165

GPT-2 and LLaMA-2 (Touvron et al., 2023a,b).166

PIXAR is pretrained to predict the next patches of167

pixels, conditioning only on the previous patches168

of rendered text. While this allows PIXAR to tackle169

free-form generative tasks, it presents several chal-170

lenges. We start by reviewing its architecture.171

3.1 Model Architecture172

We design PIXAR as a decoder-only model with173

a stack of N = 12 Transformer layers. Specifi-174

cally, we extend the Transformer (Vaswani et al.,175

2017) by applying some of the improvements in-176

troduced with LLaMA-2: pre-normalization using177

RMSNorm (Zhang and Sennrich, 2019), SwiGLU178

activation functions (Shazeer, 2020), and rotary po-179

sitional embeddings (Su et al., 2023). Each Trans-180

former layer in PIXAR generates hout ∈ Rd hidden181

states as output. Further details are in Appendix G.182

Similarly to PIXEL, we represent the input text183

as a single (long) image containing several non-184

overlapping patches (Figure 1). Following He et al.185

(2021), each image patch x ∈ RH×W×C—where186

H and W are the patch height and width and C the187

number of channels—is then flattened into a vector,188

and then projected into a hidden embedding hin ∈189

Rd. The resulting sequence of patch embeddings190

{hin
1 , . . . , h

in
eos} is used as input to the Transformer191

backbone. We experiment with both RGB images192

(i.e., x ∈ [0, 1]H×W×3) and binary images (C = 1193

and x ∈ {0, 1}H×W ), finding the latter to provide194

equivalently good downstream performance while195

simplifying the learning problem (Section 4).196

A linear layer after the last Transformer layer197

projects the embedding hout
N back to pixel space as198

a vector x̃ representing a linearized H ×W × C199

patch (with C = 1 for binary images). We interpret200

x̃ in the following way. For text rendered as binary201

images, x̃ are the logits that then are squashed by202

an element-wise sigmoid with temperature T (T =203

1). To recover a hard binary vector from these204

probabilities, we apply a threshold θ (θ = 0.5).205

When dealing with RGB images, we first clip x̃206

element-wise to be within [0, 1], then linearly map207

each channel to {0-255} to construct RGB patches.208

3.2 Stage 1 training: MLE209

We train PIXAR by maximum likelihood esti-210

mation (MLE) by minimizing the negative log-211

prompt

noisy
readable

Figure 2: A second stage adversarial training
can improve the readability of text generated by
PIXAR when compared to noisy patches generated
by MLE only. The prompt is from the LAMBADA
test set, rendered as a binary image.

likelihood of L ground truth pixel patches xi:i+L−1 212

conditioned on a sequence of observed (gold) 213

patches x1:i−1 which is known as “teacher forc- 214

ing" (Williams and Zipser, 1989). We assume ev- 215

ery pixel in xi:i+L to be conditionally independent 216

given the last layer embedding hout
N . This yields to 217

minimize a reconstruction loss Lrec over xi:i+L−1 218

that ends up being the usual pixel-wise binary cross- 219

entropy loss for binary images, and the MSE loss 220

for RGB images under our assumptions (Kingma 221

and Welling, 2013; Ghosh et al., 2020). 222

This sequential prediction task is quite challeng- 223

ing, as we will need to predict H×W×C×L vari- 224

ables. Having text rendered as binary images sim- 225

plifies learning, but we observed that PIXAR can 226

easily get stuck in local optima that yield noisy gen- 227

eration: especially for L > 1, see Figure 2. This 228

is somehow expected and linked to the tendency 229

of MLE to put probability mass among possible 230

modes (Theis et al., 2015) i.e., readable patch con- 231

figurations in our case. In Section 3.3 we introduce 232

a way to quantify “readability” of the generated 233

patches, while we discuss next a practical solution 234

to avoid the pitfalls of MLE training. 235

3.3 Stage 2 training: Adversarial 236

Our solution to the noisy generated patches is an 237

adversarial loss to be used in conjunction with Lrec 238

in a second stage training. We name it patch-wise 239

context-aware adversarial (PCAA) loss, and no- 240

ticed that only 200 steps of minimizing it in our 241

experiments (Section 4.3) can greatly boost the 242

readability and generation performance of PIXAR. 243

Context-aware adversarial loss. Following pre- 244

vious work on GANs (Goodfellow et al., 2014), an 245

adversarial training regime consists of a genera- 246

tor and a discriminator. We consider PIXAR as 247

our generator. When designing our discriminator, 248

we tried to follow previous work that uses patch- 249
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Figure 3: PIXAR can generate readable and correct texts according to the prompt (darker) on both
bAbI (top) and LAMBADA (bottom). We folded images into rectangles for better visibility.

wise discriminators (Esser et al., 2021; Rombach250

et al., 2021). However, in preliminary experiments,251

we find that these solutions lead to catastrophic252

mode collapse because they only consider the pre-253

dicted patch as input and ignore previously pre-254

dicted patches, i.e., the “context".255

Our solution is the PCAA loss: LPCAA =256

Ex̃i:i+L−1
[− log(D(x̃i:i+L−1|x1:i−1))], which rep-257

resents how much the generator can “fool" the dis-258

criminator a generated patch x̃i is real. To compute259

the PCAA loss, we use a context-aware discrimina-260

tor implemented by appending a patch-wise clas-261

sification head to a copy of the pretrained PIXAR262

(stage 1). Then, for a sequence, the discriminator263

is trained to decide whether a patch xi is real or264

fake (i.e., “readable text” vs “noisy” one) given real265

previous patches x1:i−1.266

Due to the computational overhead of the Trans-267

former layers in PIXAR, we developed a patch-268

sampling algorithm to effectively calculate the269

PCAA loss. For a sequence of patches, we first270

generate fake patches and calculate the reconstruc-271

tion loss using the generator. Then we use the272

discriminator to calculate key and value vectors for273

each real patch and calculate the PCAA loss of fake274

patches. To accelerate the training, we only calcu-275

late the PCAA loss of 30 uniformly sampled fake276

patches for one sequence. We report additional277

implementation details in the Appendix K.278

Balancing MLE and PCAA. To mitigate the
notorious instability of training a GAN, we follow
Esser et al. (2021) and mix both the MLE loss Lrec
and our PCAA loss LPCAA. We do so by computing

Lstage2 = Lrec + λm · λauto · LPCAA,

where λm is a tunable hyperparameter, and λauto279

is a value automatically computed as λauto =280

∇GL
[Lrec]/(∇GL

[LPCAA] + δ) where ∇GL
[·] rep-281

resents the scale of gradients4 of the generator w.r.t. 282

its last layer N , and δ = 1e−8 is added to avoid 283

division by zero. 284

3.4 PIXAR in action 285

As previously mentioned, PIXAR is able to tackle 286

generative tasks that are out of the scope of PIXEL. 287

At the same time, it can handle the discriminative 288

tasks used in Rust et al. (2023). Depending on the 289

task, we use PIXAR’s learned representations in 290

different ways, as discussed next. 291

Discriminative tasks. Following previous work 292

on downstream discriminative tasks (e.g., Devlin 293

et al. (2019)), we add a lightweight prediction head 294

to PIXAR to make it output classification labels or 295

regression scores. Because of the causal masking 296

strategy of PIXAR (conditioning on patches from 297

left to right), only the last hidden state hout
eos asso- 298

ciated with the EOS patch can attend over all the 299

patches in the input sequence. Therefore, our added 300

head linearly projects hout
eos to logits then followed 301

by a softmax to output the probability of each class, 302

or used as is for regression tasks. 303

Generative tasks. PIXAR generates L image 304

patches at a time, containing newly rendered words 305

that complete a given prompt. We can use PIXAR in 306

generative tasks such as language modeling where, 307

given a text passage rendered as a sequence of im- 308

age patches, the model generates the next word 309

(Paperno et al., 2016). Similarly, we can also per- 310

form few-shot learning experiments for QA by 311

providing pairs of examples and solutions as ren- 312

dered prompts (Weston et al., 2015). We use ren- 313

dered pipe characters as visual delimiters to sepa- 314

rate prompts and generated text (see Figure 3 and 315

4The scale is the mean of the element-wise absolute gradi-
ents of the output linear projection layer. Because we accumu-
late the gradients of a batch from mini-batches, we calculate
the scale of every mini-batch and then average them.

4



Section 4.3). Note that common generative NLP316

benchmarks expect predictions as (sequences of)317

symbolic tokens. We discuss next how we can318

extract text from generated pixel patches, and quan-319

tify the readability issue linked to MLE.320

Text recognition. We concatenate the generated321

patches into one image and use OCR software to322

recognize the text within it. We found, however,323

that common OCR tools expect higher resolution324

images to be accurate, and furthermore, they do325

not work well with binary images, which leads to326

incorrect recognition even if they are readable by327

humans. To improve the OCR accuracy, we scale328

the generated image patches by a factor of 3 and329

place them in the middle of a square white image330

background. Also, we combine the results of Pad-331

dleOCR5 and Tesseract OCR6. If the recognized332

word from any of the OCRs matches the target333

word, we count it as a correct prediction.334

Readability metric. As discussed in Section 3.3,335

some of the generated patches can be noisy and un-336

readable by both humans and OCR tools. To quan-337

tify the quality of the generated text by PIXAR, we338

define readability as the ratio of generated image339

patches that contain at least one leading “legal” En-340

glish word, i.e., a word that could be recognized341

by the OCR software and that appears in a refer-342

ence vocabulary built by using 333k most common343

words from the English Word Frequency dataset7.344

As expected, this metric is correlated to higher pre-345

diction accuracy (Table 2).346

4 Experiments347

We aim to answer the following research questions:348

RQ1) how does PIXAR compare w.r.t., PIXEL on349

discriminative tasks? RQ2) how does it perform as350

a generative model? RQ3) how robust is generated351

text to orthographic attacks? and RQ4) what does352

PIXAR attend to in a prompt if no symbolic tokens353

are provided to it as in classical LLMs?354

4.1 Experimental setup355

Data. PIXAR is trained using the same pretraining356

dataset as PIXEL, consisting of Bookcorpus (Zhu357

et al., 2015) and English Wikipedia (see details in358

Rust et al. (2023)). We follow their preprocessing359

as described in Appendix C.360

Text rendering. We use the same PangoCairo361

render of PIXEL, but using H = W = 8 for the362

5PaddleOCR is available here
6Tesseract OCR is available here
7The vocabulary file could be downloaded here

division in patches. For better readability under this 363

low resolution, we use the pixel-style font “Pixeloid 364

Sans”.8 In initial experiments, we found this to be 365

performance-neutral compared with Noto font used 366

by PIXEL. For binary images, we render each pixel 367

to a gray-scale value first and then binarize each 368

pixel value by applying a threshold θ = 0.5. For 369

RGB images, we map each pixel value to the [0, 1] 370

interval. We follow PIXEL’s implementation that 371

uses a black patch to represent special EOS tokens, 372

which we use also for delimiting pairs of sentences. 373

Design choices and ablations. Due to computa- 374

tional constraints, we run preliminary experiments 375

to determine a) the number L of patches to pre- 376

dict during training, b) whether to use a linear pro- 377

jection layer to map from and to pixel space or 378

perform inference in latent space (Rombach et al., 379

2022), and c) RGB or binary encoding for images. 380

We found that L = 2 in binary (linear) pixel space 381

yields the best results and we adopt it for the rest of 382

the experiments. Appendix E details this process. 383

Stage 1 pretraining. In stage 1, PIXAR is opti- 384

mized by the AdamW optimizer (Loshchilov and 385

Hutter, 2019) for 1M steps with batch size set to 386

384. We linearly warmed up the learning rate to 387

3e-4 in the first 2000 steps and then annealed it 388

to 3e-6 using a cosine scheduler (Loshchilov and 389

Hutter, 2017). For discriminative tasks, we pre- 390

trained a PIXAR with 85M parameters, which is 391

equivalent to the size of the encoder of the PIXEL. 392

For generative tasks, we used a PIXAR with 113M 393

parameters instead to have a comparable size with 394

GPT-2. We report details of pretraining and model 395

architecture hyperparameters in Appendix G. 396

Stage 2. We experimented with different values 397

of λm. Specifically, we trained the stage 1 model 398

for 200 steps using different λm from 0.1 to 15, 399

selecting the one with best validation performance. 400

4.2 RQ1) Discriminative Tasks 401

We follow Rust et al. (2023) and evaluate the lan- 402

guage understanding ability of PIXAR using the 403

GLUE benchmark. GLUE consists of 8 classifi- 404

cation tasks and 1 regression task. For each task, 405

we finetune the pretrained PIXAR with a newly ini- 406

tialized prediction head using rendered data. The 407

rendering configuration is the same as the pretrain- 408

ing. In some tasks, an example consists of a pair 409

of sentences. To delimit the two sentences, we in- 410

serted a black patch between them. As discussed in 411

8The font file is available at the following link.
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model |θ| MNLI-m/mm QQP QNLI SST-2 COLA STSB MRPC RTE WNLI AVG392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k 635

BERT 110M 84.0/84.2 87.6 91.0 92.6 60.3 88.8 90.2 69.5 51.8 80.0
GPT-2 126M 81.0 89.4 87.7 92.5 77.0 74.9 71.5 52.0 54.9 75.6

PIXEL 86M 78.1/78.9 84.5 87.8 89.6 38.4 81.1 88.2 60.5 53.8 74.1
PIXAR (stage 1) 85M 78.4/78.6 85.6 85.7 89.0 39.9 81.7 83.3 58.5 59.2 74.0
PIXAR (stage 2) 85M 79.7/80.1 86.3 85.7 89.3 37.0 82.4 82.8 57.7 60.6 74.2

Table 1: PIXAR achieves on-par performance with PIXEL on GLUE with a simpler structure. We
report the F1 score for MRPC and QQP, Matthew’s correlation for COLA, Spearman’s ρ for STSB, and
accuracy for other tasks. We report BERT performance here as a reference. Scores of BERT and PIXEL

are originally reported in Rust et al. (2023). GPT-2 scores are reported from Huggingface. The best
performance of each task is marked in bold.

Section 3.4, we used the embedding from the last412

black patch as the input of the task head.413

We adopt the same hyperparameters for fine-414

tuning used by Rust et al. (2023). Additionally,415

during training, we use an early-stopping strategy416

based on the validation set of each corresponding417

dataset. For tasks with more than 300k samples,418

e.g. MNLI and QQP, we set the maximum training419

step as 8000 and batch size as 256. We found that420

PIXAR is robust to hyperparameters on tasks with421

more data and sensitive to batch size or learning422

rate for smaller datasets (see Appendix H).423

As shown in Table 1, PIXAR achieves on-par av-424

erage performance with PIXEL (74.0 vs 74.1) with425

a substantially simpler architecture, and scores very426

closely to GPT-2 (75.6). Note that PIXEL is a 112M427

encoder-decoder model but only the 86M encoder428

is used in this experiment and GPT-2 uses even429

more parameters (126M). We also highlight the430

stark improvement of 5.4 points on WNLI com-431

pared to PIXEL. Considering that WNLI is based432

on fictional books, the improvement in perfor-433

mance on WNLI might be associated with PIXAR’s434

ability to learn better representations from the pre-435

training dataset that includes books (i.e., BookCor-436

pus). We also note that stage-2 pretraining slightly437

increases performance for discriminative tasks. Ac-438

cording to our intuition, the adversarial training im-439

proves PIXAR’s hidden states representations mak-440

ing them more suitable for discriminative tasks.441

4.3 RQ2) Generative Tasks442

For generative tasks, we render the prompt into443

an image and insert a white space patch of 3 pix-444

els long to start the generation—intended as a445

reasonable space to delimit the beginning of a446

new word. Then PIXAR generates the next im-447

age patches autoregressively from there. We use448

Model |θ| LAMBADA bAbI
GPT-2 124M 17.1 26.8
PIXAR(stage1) 113M 5.7 (54.8) 11.1 (63.2)
PIXAR(stage2) 113M 13.8 (82.2) 19.6 (77.0)

Table 2: PIXAR with a 2-stage pretraining is com-
parable with GPT-2 on short generative tasks.
We report the zero-shot last word prediction ac-
curacy and readability ratio (in brackets) of the
LAMBADA test set and the few-shot accuracy of
10K synthesized samples from bAbI.

two datasets for the generative tasks evaluation: 449

LAMBADA, a benchmark designed to evaluate 450

the text-understanding capability of LLMs where 451

models have to predict the last word of a sentence 452

in a given context, and bAbI a QA task that evalu- 453

ates the model’s reading comprehension ability on 454

some given facts. For bAbI, since PIXAR and GPT- 455

2 are not directly trained on QA data, we show each 456

model 4 examples in the prompt and split the ques- 457

tion and answer using the “|" symbol (see Figure 3 458

and Section 3.4). 459

In LAMBADA the model needs to capture long- 460

range dependencies in a context that is exposed 461

only to the models during evaluation. From Ta- 462

ble 2, we can observe that after only 200 steps of 463

the second stage of pretraining, we can boost the 464

performance of PIXAR and its overall generation 465

readability (Section 3.4) by 8.1 points. Although 466

PIXAR cannot beat GPT-2, it is almost in the same 467

ballpark (13.8 versus 17.1), but it is 27% smaller 468

than GPT-2 and our automatic OCR pipeline might 469

not perfectly recognize some differently rendered 470

words. For bAbI, we confirm the benefit of stage 2 471

pretraining (as we can also generate 77% of “read- 472

able” answers), but PIXAR’s final performance is a 473

bit further away from GPT-2 (19.6 vs 26.8), hinting 474
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Figure 4: PIXAR is more robust than GPT-2
under high visual attack ratios, especially on
LAMBADA. We measured zero-shot accuracy on
LAMBADA and few-shot accuracy on bAbI.

that it is a more challenging task than LAMBADA.475

Nevertheless, our results on bAbI provide a promis-476

ing signal that few-shot learning is also possible477

with pixel-based generative models such as PIXAR.478

We complement this experiment by showing more479

generation examples in Figures 3 and 8 and in our480

analysis of attention in Section 4.5.481

4.4 RQ3) Robustness to orthographic attacks482

Following Rust et al. (2023), we use the procedure483

used in Eger and Benz (2020) to evaluate whether484

PIXAR can be more robust to “visual attacks" than485

GPT-2 when performing generative tasks such as486

LAMBADA and bAbI. First, we manually select487

a subset of look-alike characters for every English488

letter from the visually confusable characters of489

Unicode Technical Standard #39 set 9. In this way,490

we make sure that the characters used in the visual491

attacks can be displayed with the “Pixeloid Sans”492

font. During the evaluation, we randomly replaced493

a ratio of letters in a prompt with a random look-494

alike character and measured the accuracy of the495

generated word. The results in Figure 4 demon-496

strate that although both models suffer from the497

visual attack, PIXAR showcased higher robustness498

under higher visual attack ratios. We report details499

of the performance under visual attack in Table 7.500

4.5 RQ4) What is PIXAR looking at?501

Modeling text purely from perceptual information502

raises the question of how PIXAR processes such503

information to generate configurations of pixels504

that resemble symbolic information (words), some505

of which might not have been seen during training.506

This question is vast (and challenging!) and, in507

this work, we attempt to answer it by looking at508

which parts of the rendered pixels PIXAR attends509

to. To do so, we take inspiration from the atten-510

tion map analysis of Rust et al. (2023), and inspect511

9Confusables characters can be found here.

RQ4.1) how attention changes through the Trans- 512

formers layers, RQ4.2), what PIXAR is looking at 513

when generating one patch at a time, and RQ4.3) 514

if there is any correlation with (sub-)words that 515

are semantically meaningful for the generative task 516

at hand. For all the above questions, we exam- 517

ine the attention weights when generating image 518

patches given prompts from the LAMBADA task. 519

For each generated image patch, we calculate the 520

average attention weights across all attention heads 521

of all layers (RQ4.1) or just the last layer (RQ4.2,3). 522

We then plot these averaged weights as heatmaps, 523

which allow us to observe the areas of focus during 524

the generation process. We provide some examples 525

in Figures 5 to 7, and more in Appendix J. 526

RQ4.1) We visualize the attention weights of all 527

layers when generating the first image patch (Fig- 528

ure 5). A consistent pattern we observe is that the 529

bottom layers (e.g. first and third layers) tend to 530

focus on many parts of the input prompt at once. 531

Layers closer to the final one instead attend more 532

intensely to sub-words, filtering out irrelevant infor- 533

mation. This hints at a possible refinement process 534

in PIXAR’s attention mechanism as the informa- 535

tion propagates throughout layers and focuses on 536

patches representing potentially meaningful words. 537

RQ4.2) Similarly, looking at attended pixels be- 538

fore and after generating the first patch of a word 539

(Figure 6), suggests that PIXAR has two distinct 540

modes when generating a long word spanning mul- 541

tiple patches, and it distributes attention differently 542

depending on the stage of generation. Specifically, 543

when generating the first patch of a long word, 544

PIXAR tends to focus its attention on previous 545

patches, suggesting a reliance on contextual infor- 546

mation to decide which word to generate. Then, 547

after it commits to that word, long contexts be- 548

come less relevant and PIXAR systematically looks 549

more at patches closer to the generated word. This 550

second mode suggests a tendency of PIXAR to pre- 551

serve consistency and coherence within the ongo- 552

ing word generation process. 553

RQ4.3) Finally, we visualize attention when 554

PIXAR generates the correct or incorrect answer. 555

We notice that when the answer is present in the 556

prompt, PIXAR correctly attends to it with higher 557

importance. This is the case for correctly predicted 558

and highlighted “rope” and “Leo”, but also the not 559

predicted but still highlighted “bob” in Figure 7. 560

Even when wrongly predicting “water” (the correct 561

answer is “coffee”), the model attends to “water” 562

and other properties related to it in the prompt. 563
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Figure 5: PIXAR looks at longer patch sequences in the first layers and then focuses on specific
word-like sequences as shown by the above heatmaps of the attention weights for the first generated
patch of “yadira”. The same pattern is visible in many more examples in Figure 11.
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Figure 6: PIXAR focus on more context patch sequences when generating the first patch of a word,
then narrowing its focus, as shown by the above heatmaps of the attention weights for two consecutively
generated patches of the correctly predicted "hazard". Figure 9 shows more examples of the same pattern .
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Figure 7: PIXAR attends to sub-words that can be semantically relevant to generate correct answers
(top), even when the generated answer is wrong (bottom). Correct answers are on the left of each figure.
Figure 10 contains more examples.

More examples in Figure 10 showcase similar pat-564

terns. While not easy to quantify, this hints at the565

promising ability of PIXAR to be able to extract,566

perhaps not correct but still semantically meaning-567

ful, symbolic information from perceptual one.568

5 Conclusion569

We introduced PIXAR, an autoregressive pixel-570

based LLM that inherits the benefits of the first571

purely pixel-based LLM PIXEL but, differently572

from it, can support generative language tasks.573

We showcased the capabilities of PIXAR on dis-574

criminative tasks such as GLUE where it achieves575

comparable (or superior in some cases) perfor-576

mance w.r.t. PIXEL, and on generative free-text577

QA tasks, such as LAMBADA and bAbI, where578

it gets closer to GPT-2 while being more robust579

to orthographic attacks. While these results are 580

encouraging, PIXAR performance is still behind 581

more sophisticated LLMs that operate on symbolic 582

tokens. This is expected, as reading and generating 583

text as pure pixels is a much more challenging task, 584

and we expect to improve on PIXAR’s architecture 585

and performance in future work, e.g., by training 586

larger variants of PIXAR, on more text data ren- 587

dered as images, and with more language variants. 588

Furthermore, we highlighted how an adversarial 589

loss can greatly improve the quality and accuracy 590

of generated text. Overall, our work shed light on 591

the possibility of treating texts as image-domain 592

data paving the way towards more expressive lan- 593

guage models that can efficiently generalise across 594

languages and cultures (Liu et al., 2021). 595
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A Limitations & Risks1049

In this paper, we train and evaluate PIXAR on En-1050

glish language data only to compare with other1051

well-known autoregressive language models like1052

GPT-2. Salesky et al. (2023) showed promising1053

results for encoder-only models applied to multilin-1054

gual data. Due to the simplicity of PIXAR design,1055

we foresee that it can be pretrained using multilin-1056

gual data following previous work. In this paper,1057

we explore the training regime for autoregressive1058

pixel-based language models and find that a sim-1059

ple maximum likelihood regime is suboptimal for1060

these models. Although the short stage 2 adversar-1061

ial pretraining improved the generation readability1062

and accuracy, PIXAR still has limitations in gen-1063

erating long sentences due to the readability issue.1064

The notorious instability of adversarial training also1065

makes the result of stage 2 pretraining hard to op-1066

timise even with the help of automatic GAN ratio1067

balancing. Therefore, we believe that future work1068

should explore more stable pertaining methods as1069

an important research direction. Because experi-1070

ments with PIXAR cover only the English language,1071

we acknowledge that there might be challenges to1072

be solved when tackling different writing systems.1073

B More related works1074

B.1 Generative Language Models1075

Language models learn to predict probability dis-1076

tributions over a sequence of input elements which1077

can have different granularity including words, to-1078

kens, characters, or pixels, which is the approach1079

we follow in this work. This task is generally1080

referred to as next token prediction and it repre-1081

sents a crucial problem in natural language process-1082

ing (Shannon, 1948). The advent of transformers1083

brought about a huge improvement in this field,1084

especially in parallel training and capturing long-1085

range dependencies (Vaswani et al., 2017). Sur-1086

prisingly, the family of generative pre-trained trans-1087

formers (Radford et al., 2019; Brown et al., 2020;1088

Workshop et al., 2023; Touvron et al., 2023a,b;1089

Penedo et al., 2023) demonstrated their strong abil-1090

ity to understand and generate natural language.1091

B.2 Transformer-based Image Generative1092

Models1093

The task of image generation can be formulated1094

as pixel-based autoregressive modeling. In the lit-1095

erature, this task was attempted using different ar-1096

chitectures such as CNNs (Salimans et al., 2017),1097

RNNs (van den Oord et al., 2016) and Transform- 1098

ers (Chen et al., 2020b; Menick and Kalchbrenner, 1099

2018). However, the method of generating only 1 1100

pixel at each step is limited to low-resolution im- 1101

ages but not high-resolution images due to long 1102

sequence lengths and poor fidelity. Also, the se- 1103

quential generative modeling and teacher-forcing 1104

training of generative transformers are not suitable 1105

for flattened image vectors since they learn to pre- 1106

dict the probability distribution over a fixed finite 1107

vocabulary instead of image patches. 1108

To mitigate this issue, a two-stage approach is 1109

proposed to learn a Vector-Quantized Variational 1110

Autoencoder(VQ-VAE) (van den Oord et al., 2018) 1111

to map continuous pixel values into a sequence of 1112

discrete tokens and then use a transformer decoder 1113

to model the distribution of the latent image tokens. 1114

This two-stage image tokenization approach not 1115

only contributes to generative modeling for high- 1116

fidelity images (Chang et al., 2023, 2022; Ramesh 1117

et al., 2022; Tschannen et al., 2023a) but also shed 1118

the way for interleaved multimodal generation by 1119

simply concatenating the vocabularies for both text 1120

and images (Aghajanyan et al., 2022, 2023). Learn- 1121

ing from the discrete latent space of VQ-VAE be- 1122

comes a popular way for models to improve image 1123

generation quality and enable language-inspired 1124

self-supervised learning (Bao et al., 2022; Li et al., 1125

2023b). 1126

B.3 Byte-level tokenizers 1127

The idea of using character-level visual features is 1128

not limited to pixel-based models. For instance, 1129

MacBERT (Cui et al., 2020) and Jozefowicz et al. 1130

(2016) also used character-level encodings. How- 1131

ever, they still relied on traditional ID-based em- 1132

beddings and thus suffered from the vocabulary 1133

bottleneck problem. 1134

Alternatively, byte-level tokenization is also ca- 1135

pable of encoding any code sequence. Xue et al. 1136

(2021) trained mT5 on UTF-8 byte sequence to 1137

adapt to different languages. Perceiver (Jaegle 1138

et al., 2021) proposed an iterative transformer struc- 1139

ture which attended information directly through 1140

raw byte arrays. The increased sequence length 1141

poses challenges for Transformer-based architec- 1142

tures. For this reason, MEGABYTE (Yu et al., 1143

2023) proposes a hierarchical architecture where a 1144

low-level patch decoder is conditioned on a global- 1145

level learned patch representations. Another line of 1146

research uses recent state space models to extrapo- 1147

late over extremely long sequence lengths. This is 1148
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the case for Mamba byte (Wang et al., 2024) which1149

pretrains a Mamba model (Gu and Dao, 2023) us-1150

ing byte representations.1151

C Data Preprocessing1152

Dataset #samples avg. #characters

English Wikipedia 6,458,670 3,028
Bookcorpus 17,868 370,756
processed 26,759,562 987

Table 3: Pretraining dataset statistics.

Because the length of Wikipedia articles and1153

books is usually longer than PIXAR’s context win-1154

dow. We segment each article or book into several1155

samples using the algorithm 1. In particular, we1156

use the “PunktSentenceTokenizer" from the Natu-1157

ral Language Toolkit (NLTK) (Bird et al., 2009) to1158

segment each article or book into sentences. Then,1159

we concatenate short sentences to training samples1160

within a character limit. Finally, we filter out sam-1161

ples with less than 100 characters. Table 3 demon-1162

strates the length statistics of processed data.1163

During the pretraining, due to computational1164

constraints, we fix the window size of PIXAR as1165

360 patches. Thus, the model trained with a longer1166

patch length can process more texts in each forward1167

pass. We manually selected 1180 as the character1168

limit for patch length 2.1169

D Computational budget1170

The PIXAR’s pretraining stage was completed in1171

∼4 days using 16 NVIDIA V100 GPUs on an HPC1172

computing cluster by extending the codebase orig-1173

inally released by Rust et al. (2023). Finetuning1174

experiments are shorter and use the same comput-1175

ing infrastructure.1176

E Hyperparameter Ablations1177

In our preliminary experiments, we explored sev-1178

eral design choices for a PIXAR with 113M parame-1179

ters, including different patch lengths, CNN-based1180

projection layers, and the different formats of data.1181

Because of our limited computational budget, we1182

experimented with a selected number of variants1183

that could allow us to make informed decisions1184

about our model design. For each setting, we con-1185

ducted 0.1M stage 1 pretraining steps and evaluated1186

their performance on the GLUE benchmark (Wang1187

et al., 2018).1188

Patch Length Selection 1189

In this ablation, the height of image patches is 1190

fixed at 8 pixels and we render all texts as a long 1191

image with 8 pixels high. Thus, the length of each 1192

patch defines how many characters or words a patch 1193

can hold and also determines the complexity of 1194

predicting the next patch. 1195

We pretrained models on images with patch 1196

length [2, 5] for 0.1M stage 1 steps. The results in 1197

Table 5 show that in all combinations, patch length 1198

2 achieved the highest average score. Thus, we 1199

used patch length 2 as our reference value for all 1200

the experiments. 1201

Linear Projection vs CNN 1202

We experimented with two different strategies to 1203

convert image patches to vectors: 1) linear projec- 1204

tion of the patches; and 2) a CNN auto-encoder as 1205

the input and output layers (Rombach et al., 2022). 1206

We first trained a lightweight CNN auto-encoder 1207

with a bottleneck layer of dimension 8 on the pre- 1208

training data. Then we take the encoder part as the 1209

model input layer, and the decoder as the output 1210

layer. During the pretraining, the PIXAR backbone 1211

is trained in the latent space of the auto-encoder 1212

(Rombach et al., 2022). We freeze parameters from 1213

the auto-encoder and train PIXAR to minimize the 1214

MSE of the next latent vector rather than the next 1215

image patch. However, as results shown in Table 1216

5, the extra auto-encoder did not bring significant 1217

improvement compared with the simple linear pro- 1218

jection layer. Therefore, we opted for the simpler 1219

linear projection instead. 1220

RGB vs binary images 1221

As detailed in Section 3, we explored training 1222

with both continuous RGB images and binary im- 1223

ages. When we use linear projection layers, we 1224

flatten the values of each channel of the RGB im- 1225

age into a vector as the input and calculate the 1226

MSE between the predicted vector and the ground 1227

truth vector as the loss. When using the CNN auto- 1228

encoder as input and output layers, RGB image 1229

patches are converted to latent vectors with CNN 1230

layers with corresponding layers. 1231

The results in Table 5 indicate that models 1232

trained with continuous RGB images have ∼1.4 1233

points lower than their binary counterparts. We 1234

therefore used binary rendering in further pretrain- 1235

ing experiments. 1236
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Algorithm 1 Text Segmentation

Input: text s, maximum length lmax, minimum length lmin

Initialize sentList = SentTokenize(s), sampleList = EmptyList(), sample = EmptyString()
for i = 1 to ||sentList|| do

if len(sample) + len(sentListi) > lmax then
if len(sample) ≥ lmin then
Append(sampleList, sample)

end if
sample = sentListi

else
sample = Concat(sample, sentListi)

end if
end for
if len(sample) ≥ lmin then

Append(sampleList, sample)
end if
Output: sampleList

F Licensing1237

As mentioned before, the starting point for our1238

work was the PIXEL codebase released on GitHub1239

under Apache 2.0 license. We also used the same1240

pretraining datasets that was released on Hugging-1241

face. Upon acceptance, we will release our code-1242

base on GitHub following the same approach and1243

license.1244

G Pretraining Details & Model1245

Configurations1246

Table 4 demonstrates the stage 1 pretraining hy-1247

perparameters, render configuration, and model1248

architecture details of PIXAR.1249

H GLUE Finetuning Details1250

Table 6 displays the hyperparameter details of1251

GLUE finetuning.1252

I Generation Samples1253

Figure 8 shows more generation samples from1254

LAMBADA and bAbI datasets. Images are visual-1255

ized using a 0.5 threshold and reshaped to a more1256

square size for a better representation.1257

J Attention Heatmap Samples1258

Figure 9, Figure 10 and Figure 11 show more at-1259

tention heatmaps from LAMBADA datasets. The1260

first generated image patches are marked by red1261

rectangles. Samples are drawn using the attention1262

weights from the last transformer layer of the first 1263

generated image patch to the given prompt. 1264

K Adversarial Training 1265

PIXAR is trained using a second stage of pretrain- 1266

ing using an adversarial training regime that re- 1267

sembles the one used in GANs (Goodfellow et al., 1268

2014). Figure 12 exemplifies how PIXAR is used 1269

for the stage 2 pretraining. Each adversarial step 1270

can be divided into 3 stages: 1271

1) Calculate the Reconstruction Loss 1272

we fist sample a batch of sequences x from the 1273

pretraining dataset and generate the fake sequences 1274

x̃ using the generator. Then we calculate the recon- 1275

struction loss Lrec as well as generator’s gradients 1276

w.r.t. Lrec. Because we need to reuse the com- 1277

putational graph later for the PCAA loss, we thus 1278

set “retain_graph = True" while doing backward 1279

propagation using Pytorch. We record the current 1280

gradients of the last generator layer as g1 and cal- 1281

culate the scale of it ∇GL
[Lrec] = |g1|. 1282

2) Calculate the balanced PCAA and update 1283

the generator 1284

First, we calculate key and value vectors for ev- 1285

ery real patch using the discriminator and cache 1286

them for the PCAA calculation. To accelerate the 1287

calculation, we randomly sample 30 fake patches 1288

for each generated sequence and calculate the 1289

PCAA loss with the cached key and value vec- 1290

tors using the discriminator. Then we multiply 1291

the PCAA loss with λm and λauto which is cal- 1292

culated from the previous step, and backpropa- 1293
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Pretrain Hyperparameters Render Configuration Model Structure
peak lr 3e-4 patch length 2 #layers 12
lr scheduler CosineAnnealing #patches 360 #attention heads 12
min. lr 3e-5 max #char. 1180 hidden size 768
optimizer AdamW min. #char. 100 activation SwiGLU
β1 0.9 patch height 8 intermediate size 2048 / 3072
β2 0.95 render DPI 80 #parameters 85M / 113M
weight decay 0.1 font size 8
steps 1M font PixeloidSans
warm up 2000 binary true
batch size 384 Temperature (T) 1
precision fp16 & fp32 Threshold (θ) 0.5
random seed 42

Table 4: PIXAR pretrain configuration.

Embedding CNNAutoencoder Linear projection

Image type Binary Binary RGB RGB RGB Binary Binary RGB

Patch length L 5 2 2 5 2 2 5 5

MNLI-m/mm 72.5/74.1 75.8/76.2 75.8/76.4 72.4/73.4 74.9/76.3 76.4/77.6 72.5/74.0 72.0/73.1
QQP 81.2 87.8 83.4 81.8 83.5 84.3 82.1 82.3

QNLI 82.4 84.3 84.1 81.7 83.5 84.2 82.8 81.6
SST-2 83.3 86.2 86.2 84.2 86.6 88.0 82.6 83.3

COLA 15.2 30.5 26.6 13.2 30.4 27.7 16.7 10.8
STSB 69.2 74.2 74.7 68.9 73.5 81.2 71.5 75.2

MRPC 81.2 83.4 82.9 82.4 81.8 82.5 82.7 84.2
RTE 57.0 59.6 56.3 61.4 54.9 58.5 61.7 58.1

WNLI 57.7 56.3 57.7 56.3 56.3 56.3 56.3 56.3

AVG 67.4 71.4 70.4 67.6 70.2 71.6 68.3 67.7

Table 5: PIXAR trained with binary data, linear projection, and patch length 2 achieved the best
GLUE performance in our ablation tests where we compare variants pretrained and finetuned (only stage
1) with 0.1M steps and 113M parameters with identical hyperparameter selected heuristically as described
in Section 4.2 We therefore select this best setting and use it for the full 1M step pretraining.

gate all the way to the generator. Because Py-1294

torch accumulates gradients of multiple backwards1295

steps, to attain the gradients of the last generator1296

layer w.r.t. the PCAA loss, we subtract the previ-1297

ously recorded gradients g1 and calculate the scale1298

∇GL
[LPCAA] = |g2 − g1|/λm/λauto. Because the1299

PCAA is balanced, we re-scale it to get the true1300

gradients scale. The scale is recorded for the next1301

batch. During the first step, because we initial-1302

ize λauto as 1. Now gradients w.r.t. PCAA and1303

reconstruction loss are ready and we can update1304

the parameters of the generator using the specified1305

optimizer.1306

3) Update the discriminator1307

Finally, we calculate the classification loss us-1308

ing the cross entropy loss of the discriminator and1309

update its parameters. The procedure is similar1310

to the PCAA calculation, we calculate the loss on 1311

real patches and cache key and value vectors, then 1312

calculate the loss on 30 randomly sampled fake 1313

patches for each sequence. 1314

L Performance under Visual Attack 1315

Table 7 records the accuracy details of GPT-2 and 1316

LAMBADA under different visual attack ratios. 1317

While evaluating the accuracy, we randomly se- 1318

lect a ratio of letters from the prompt and replace 1319

them with random look-alike symbols. If the first 1320

word the model predicts matches the target word 1321

regardless of its casing, we count it as a correct 1322

prediction. 1323
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PIXAR (stage 1) MNLI QQP QNLI SST-2 COLA STSB MRPC RTE WNLI
lr 3e-5 3e-5 3e-5 3e-5 3e-5 3e-5 6e-5 3e-5 3e-5

Optimizer AdamW
β1 0.9
β2 0.95

weight decay 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.01
warmup Linear Warmup

warmup steps 1000 1000 500 200 50 100 20 50 2
max steps 8000 8000 4000 2000 500 2000 500 500 20
batch size 256 256 256 256 256 32 64 32 128

evaluation freq. 500 500 200 200 100 100 50 50 ∼ 1 epoch
random seed 42

PIXAR (stage 2) MNLI QQP QNLI SST-2 COLA STSB MRPC RTE WNLI
lr 3e-5 3e-5 3e-5 3e-5 3e-5 3e-5 3e-5 6e-5 3e-5

Optimizer AdamW
β1 0.9
β2 0.95

weight decay 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.01
warmup Linear Warmup

warmup steps 1000 1000 500 200 50 100 20 50 2
max steps 8000 8000 4000 2000 500 2000 500 500 20
batch size 256 256 256 256 256 128 128 128 128

evaluation freq. 500 500 200 200 100 100 50 50 ∼ 1 epoch
random seed 42

Table 6: Hyperparameters we used to finetune PIXAR on the GLUE benchmark.

attack LAMBADA bAbI
ratio GPT-2 PIXAR GPT-2 PIXAR
0.0 17.1 13.8 26.8 19.6
0.01 15.0 9.1 21.6 11.4
0.05 7.1 6.0 12.1 7.4
0.1 2.4 4.4 6.2 4.8
0.2 0.3 1.8 1.3 1.6
0.3 0.0 1.0 0.2 1.0
0.4 0.0 0.5 0.1 0.3
0.5 0.0 0.1 0.0 0.1

Table 7: Accuracy on the LAMBADA and bAbI
benchmarks that we used to assess the robustness
of PIXAR to visual attacks generated following the
procedure proposed by Eger and Benz (2020).
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Prompt Generated
LAMBADA

Target

bAbI

"office"

"kitchen"

"hallway"

"bedroom"

"story"

"robot"

"track"

"hercules"

Figure 8: PIXAR generation samples from LAMBADA and bAbI dataset. Images are folded into rectangles
for better readability.
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Figure 9: Heatmaps of the attention weights of consecutively generated image patches. The attention
weights are collected from the last transformer layer of PIXAR. The corresponding image patches of the
sub-figure are mark by the red rectangles.
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Figure 10: Heatmaps of the attention weights of PIXAR in correct and incorrect generations. The attention
weights are collected from the last transformer layer of the first generated patches, as marked by the red
rectangles.
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Figure 11: Heatmaps of the attention weights from the selected transformer layers of first generated image
patches, as marked by the red rectangles.
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real / fake

real patches

generator

real or fake patch

discriminator

Figure 12: We copied the PIXAR from stage 1
pretraining as both the generator and the dis-
criminator for the adversarial training in stage 2.
The generator is optimized by both reconstruction
loss Lrec and adversarial loss LPCAA to improve the
generation readability.

22


	Introduction
	Beyond token-based LLMs
	Pixar
	Model Architecture
	Stage 1 training: MLE
	Stage 2 training: Adversarial
	Pixar in action

	Experiments
	Experimental setup
	RQ1) Discriminative Tasks
	RQ2) Generative Tasks
	RQ3) Robustness to orthographic attacks
	RQ4) What is Pixar looking at?

	Conclusion
	Limitations & Risks
	More related works
	Generative Language Models
	Transformer-based Image Generative Models
	Byte-level tokenizers

	Data Preprocessing
	Computational budget
	Hyperparameter Ablations
	Licensing
	Pretraining Details & Model Configurations
	GLUE Finetuning Details
	Generation Samples
	Attention Heatmap Samples
	Adversarial Training
	Performance under Visual Attack

