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Abstract

Probabilistic inference over time series data is challenging when observations
are high-dimensional. In this paper, we show how inference questions relating
to prediction and planning can have compact, closed form solutions in terms of
learned representations. The key idea is to apply a variant of contrastive learning
to time series data. Prior work already shows that the representations learned by
contrastive learning encode a probability ratio. By first extending this analysis to
show that the marginal distribution over representations is Gaussian, we can then
prove that conditional distribution of future representations is also Gaussian. Taken
together, these results show that a variant of temporal contrastive learning results
in representations distributed according to a Gaussian Markov chain, a graphical
model where inference (e.g., filtering, smoothing) has closed form solutions. We
provide brief empirical results validating our theory.

1 Introduction
Probabilistic modeling of time-series data has applications ranging from robotic control (Theodorou
et al., 2010) to material science (Jónsson et al., 1998) to cell biology (Saelens et al., 2019) to
astrophysics (Majewski et al., 2017). These applications domains are often concerned with two
questions: predicting future states (e.g., what will this cell look like in an hour); and inferring
trajectories between two given states. However, answering these questions often require reasoning
over high-dimensional data, which can be challenging as most tools in the standard probabilistic
toolkit require generation.

Figure 1: We will apply temporal con-
trastive learning to observations (s, g) to ob-
tain representations (ψ(s), ψ(g)) such that
Aψ(s) is close to ψ(g). Using these repre-
sentations, the distribution over intermediate
representations has a closed form solution
corresponding to linear interpolation between
the initial and final representations.

One common approach is to learn compact representations
of the data and then reason about those representations.
The key challenge is to learn meaningful representations
such that they continue to retain salient bits of informa-
tion – simply optimizing for representations that are easy
to predict results in degenerate representations (e.g., as-
sign all observations a the zero-vector representation). For
time-series data, we want the representation to remain
a sufficient statistic for distributions related to time; for
example, they should retain bits required to predict fu-
ture states (or representations thereof). One approach that
has this sufficiency property is reconstruction-based meth-
ods (Zhao et al., 2017; Zhu et al., 2020a; Makhzani et al.,
2015; Dumoulin et al., 2016) – these methods aim to learn
representations that contain all of the bits required to con-
struct the high-dimensional observation x, so they must
also contain the bits required to solve prediction and in-
ference problems concerning x. However, reconstruction-
based methods tend to be computationally expensive (see,
e.g., (Razavi et al., 2019)) and can be challenging to scale
to high-dimensional observations.
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In this paper, we start by observing that we want the learned representation to be a sufficient statistic
for one observation’s temporal relationship with other observations. In other words, our aim is to
learn representations that contain information about observation x’s temporal relationships with other
observations, but which need not retain other information in x (e.g. pixel information). This intuition
motivates us to study how contrastive representation learning methods (Oord et al., 2018; Sohn, 2016;
Chen et al., 2020b; Tian et al., 2020b; Wu et al., 2018) might be used to solve prediction and planning
problems on time series data. While prior works in computer vision (Chen et al., 2020a; Oord et al.,
2018) and natural language processing (NLP) (Mikolov et al., 2013) often study the geometry of
learned representations, our results show why such interpolation is provably related to performing
inference. Following prior work (Botvinick and Toussaint, 2012; Attias, 2003), we will use planning
to refer to the problem of inferring intermediate states, not to refer to an optimal control problem.

The main contribution of this paper is showing that a certain form of temporal contrastive learning
acquires representation wherein prediction and planning have closed form solutions. Specifically, we
analyze symmetrized infoNCE objective (Radford et al., 2021), generating positive examples by sam-
pling pairs of observations from the same time series data. Rather than constraining representations
to have a fixed length, as done in prior work, we apply L2 regularization to the representations. We
provide analysis showing that the marginal distributions over learned representations should therefore
be an isotropic Gaussian distribution, with variance corresponding to the average representation
norm. By parametrizing the critic function as the negative MSE between representations of these
observations, the learned probability ratio looks like a Gaussian potential function. With these pieces,
we prove that the distribution over future representations has a Gaussian distribution, with a mean
that is a linear function of the initial state representation. We extend this result to inference (i.e.,
planning): given an initial and final state, we show that the posterior distribution over an intermediate
state’s representation also follows a Gaussian distribution. We finally show that both of these results
are special cases of a more general result: the distribution over representations behaves according to
a Gaussian Markov chain, for which inference is easy (Malioutov et al., 2006; Weiss and Freeman,
1999) (See Fig. 1). In one special case, we show that intermediate representations have means evenly
spaced on the line between the initial state representation and the final state representation.

2 Related Work

Representations for time-series data. Time series representations are used in applications ranging
from robotics to vision to NLP, where they enable users to reason about the temporal relationships
between examples in terms of the spatial relationships of learned representations (Oord et al., 2018;
Mikolov et al., 2013; Qian et al., 2021; Eysenbach et al., 2020). Ideally, these representations should
retain information required to predict future observations and infer the likely plans (or trajectories)
between pairs of observations. Many successful prior methods leverage reconstruction-based methods
to learn such representations are able to reason about the sequential/temporal relationship of events
along a trajectory to model similarity (Karamcheti et al., 2023; Park and Lee, 2021; Devlin et al.,
2019; Carroll et al., 2022; Zhu et al., 2020b; Chung et al., 2015). While methods like a sequential
VAE (Zhao et al., 2017) are transparent about how prediction and planning problems should be
handled (as inference on the corresponding graphical model), they can be computationally expensive
and challenging to scale to high-dimensional observations.

Contrastive learning methods circumvent reconstruction by learning representations that merely
classify if two events were sampled from the same joint distribution (Gutmann and Hyvärinen, 2010;
Chen and He, 2020; Radford et al., 2021). When applied to representing states along trajectories,
contrastive representations learn to classify whether two points lie on the same trajectory or not
(Oord et al., 2018; Sermanet et al., 2018; Eysenbach et al., 2022; Qian et al., 2021; Xu et al.,
2023). Empirically, prior work in computer vision and NLP has observed that representations
learned by various forms of contrastive learning acquires representations where interpolation between
representations corresponds to changing the images in semantically meaningful ways (Wiskott and
Sejnowski, 2002; Yan et al., 2021; Oring et al., 2020; Chen et al., 2019; Liu et al., 2018; Mikolov
et al., 2013). Despite the computational benefits of contrastive representations, it is often unclear
whether the learned representations are sufficient statistics for certain inference problems, and
how such representations should be used for prediction and planning. The analysis in this paper
shows how representations learned via temporal contrastive learning (i.e., without reconstruction)
are sufficient statistics for inferring future outcomes, and can be reasoned about using the same
language of graphical models typically associated with representations learned via reconstruction
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(e.g., the sequential VAE). Our analysis will provide a rigorous explanation for why we should expect
representation interpolation to be meaningful for some contrastive methods.

Gaussian process methods (Roberts et al., 2013; Williams and Rasmussen, 2006) are an important
class of models for time series data and have been successfully applied to control problems (Deisenroth
and Rasmussen, 2011; Deisenroth et al., 2013). Unlike the Gaussian process, our method avoids
having to invert a matrix whose size depends on the number of data points. Additionally, while these
prior methods typically assume that the input data are jointly Gaussian, we will look at learning
compact representations that are jointly Gaussian.

Goal-oriented decision making. Many algorithms for goal-conditioned RL and similar settings
employ spatiotemporal representations. This problem of goal-reaching dates to the early days of
AI (Newell et al., 1959; Laird et al., 1987) but has received renewed attention in recent years (Chen
et al., 2021; Chane-Sane et al., 2021; Colas et al., 2021; Yang et al., 2022; Ma et al., 2022b; Schroecker
and Isbell, 2020; Janner et al., 2021; Hejna et al., 2023). Some of the excitement in goal-conditioned
RL is a reflection of the recent success of self-supervised methods in computer vision (e.g., Rombach
et al. (2022)) and NLP (e.g., OpenAI (2023)). Our analysis will study a variant of contrastive
representation learning proposed in prior work for goal-conditioned RL (Eysenbach et al., 2022;
Sermanet et al., 2018). These methods are widespread, appearing as learning objectives for learning
value functions (Eysenbach et al., 2020, 2022; Zheng et al., 2023; Tian et al., 2020a; Agarwal et al.,
2019; Ma et al., 2022a, 2023; Nair et al., 2022; Liu et al., 2022; Wang et al., 2023), as auxiliary
objectives (Schwarzer et al., 2020; Tang et al., 2022; Nair et al., 2022; Stooke et al., 2021; Bharadhwaj
et al., 2022; Anand et al., 2019; Castro et al., 2021), in objectives for model-based RL (Shu et al.,
2020; Ghugare et al., 2022; Allen, 2021; Mazoure et al., 2022), and in exploration methods (Guo
et al., 2022; Du et al., 2021).

Planning. Planning lies at the core of many RL and control methods, allowing methods to infer
the sequence of states and actions that would occur if the agent navigated from one state to a goal
state (Attias, 2003; Thijssen and Kappen, 2015; Williams et al., 2015). These methods are often based
on probabilistic inference, though the inference problem becomes challenging in high-dimensional
settings. Some prior methods lift this limitation through non-parametric planning, inferring just a
few intermediate states (Fang et al., 2022; Eysenbach et al., 2019; Zhang et al., 2021); however, it
remains unclear how to scale these methods to high-dimensional settings when states do not lie on
a low-dimensional manifold. Our analysis will show how planning in high-dimensional settings
can be performed over (learned), low-dimensional representations, lifting the limitations of the
aforementioned planning methods.

3 Preliminaries
Broadly, our aim is to learn representations of time series data such that the spatial arrangement of
representations corresponds to the temporal arrangement of the underlying data – if one example
occurs shortly after another, then they should be mapped to similar representations. This problem
setting arises in many areas, including video understanding and reinforcement learning. To define
this problem formally, we will define a Markov process with states xt indexed by time t: p(x1:T |
x0) =

∏T
t=0 p(xt+1 | xt). The standard RL setting can be subsumed into this by augmenting states

with the previous action. The dynamics p(xt+1 | xt) tell us the immediate next state, and we can
define the distribution over states t steps in the future by marginalizing over the intermediate states,
pt(xt | x0) =

∫
p(x1:t | x0)dx1:t−1. A key quantity of interest will be the γ-discounted state

occupancy measure, which corresponds to a time-averaged distribution over future states:

pt+(xt+ = x) = (1− γ)

∞∑
t=0

γtpt(xt = x). (1)

Contrastive learning. Our analysis will focus on applying contrastive learning to a particular data
distribution. Contrastive learning (Gutmann and Hyvärinen, 2010; Oord et al., 2018; Arora et al.,
2019) acquires representations using “positive” pairs (x, x+) and “negative” pairs (x, x−). While
contrastive learning typically learns just one representation, we will use two different representation
for the two elements of the pair; that is, our analysis will use terms like ϕ(x), ψ(x+) and ψ(x−). We
assume all representations lie in Rk.

The aim of contrastive learning is to learn representations such that positive pairs have similar
representations (ϕ(x) ≈ ψ(x+)) while negative pairs have dissimilar representations (ϕ(x) ̸=
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ψ(x−)). Let p(x, x) be the joint distribution over positive pairs (i.e., (x, x+) ∼ p(x, x)); we will
use the product of the marginal distributions to sample negative pairs ((x, x−) ∼ p(x)p(x)). Our
analysis will use an infoNCE objective without resubstitution (Sohn, 2016; Oord et al., 2018):

min
ϕ(·),ψ(·)

E(x,x+)∼p(x)
x−
1:B−1∼p(x)

[
log ef(ϕ(x),ψ(x+))

e
∑B−1
i=1

e
f(ϕ(x)T ,ψ(x

−
i

))

]
. (2)

Contrastive learning is typically applied to an example x and an augmentation x+ of that same
example; for example, in computer vision we might have image x+ ∼ p(x | x) be a cropped version
of image x. While prior work typically constrains the representations to have a constant norm (i.e., to
lie on the unit hypersphere) (Oord et al., 2018), we will instead constrain the expected norm of the
representations is bounded, a difference that will be important for our analysis:

1
kEp(x)

[
∥ψ(x)∥22

]
≤ c. (3)

Because the norm scales with the dimension of the representation, we have scaled down the left
side by the representation dimension, k. In practice, we will impose this constraint by adding a
regularization term λEp(x)

[
∥ψ(x)∥22

]
to the infoNCE objective (Eq. 2) and dynamically tuning the

weight λ via dual gradient descent.

Because our aim is to learn representations that encode temporal information, we will follow prior
work (Sermanet et al., 2018; Oord et al., 2018) in using some function of the dynamics to generate
the positive pairs.

3.1 Key assumptions

This section outlines the two key assumptions behind our analysis.
Assumption 1. the symmetrized infoNCE objective results in representations that encode a probability
ratio, up to a constant C1:

e−
1
2∥ϕ(x0)−ψ(x)∥2

2 =
pt+(xt+ = x | x0)

p(x)C
. (4)

While prior work (Ma and Collins, 2018) has proven that the optimum of the contrastive learning
objective satisfies this assumption, we nonetheless call this an “assumption” because this identity
may not always hold in practice due to sampling and function approximation error. This identity
means that the representations will encode the discounted state occupancy measure, up to a constant.
Moreover, this assumption means the learned representations are sufficient statistics for predicting the
probability (ratio) of future states. This property is essential, as it means that contrastive methods will
not acquire degenerate representations (e.g., the zero-vector) that are easy to predict. Intuitively, these
representations must retain all the information pertinent to reasoning about temporal relationships,
but need not retain information about the precise contents of the observations. As such, they may be
much more compressed than representations learned via reconstructive methods (e.g., a VAE).

Our analysis will also look at the marginal distribution over representations,

p(ψ) ≜
∫
p(x)1(ψ(x) = ψ)dx.

Assumption 2. this marginal distribution is an isotropic Gaussian distribution:
p(ψ) = N (ψ;µ = 0, σ = c · I). (5)

This assumption is important because it will allow us to express the distribution over sequences
of representations as a Gaussian Markov chain. The denominator in Assumption 1 p(x) may have
a complex distribution, but Assumption 2 tells us that the distribution over representations has a
simpler form. This will allow us to rearrange Assumption 1 to express the conditional distribution
over representations as the product of two Gaussian likelihoods (note that the left hand side of
Assumption 1 looks like a Gaussian likelihood).

In Appendix A.1 we provide some theoretical justification for why the marginal distribution over
representations should be Gaussian; this is a minor extension of prior work (Wang and Isola, 2020).
The key idea there (similar to (Shannon, 1948; Jaynes, 1957; Conrad, 2010)) is that maximum entropy
distribution subject to an expected L2 norm constraint (Eq. 3) is an isotropic Gaussian distribution.

1While the result of Ma and Collins (2018) has C(x) depending on x, the symmetrized version removes this
dependence.
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4 Contrastive Representations Make Planning Easy
While inferring plans over arbitrary time series data is challenging, inference of Gaussian Markov
chains is straightforward. In this section, we will show how representations learned by contrastive
learning (with L2 regularization) are distributed according to a Gaussian Markov chain, making it
straightforward to perform inference (e.g., planning, prediction) over these representations. Our proof
technique will not contribute new analysis of Gaussian distributions, but rather combine (known)
results about Gaussian distributions with (known) results about contrastive learning to produce a result
that is not known (to the best of our knowledge): representations learned by temporal contrastive
learning are distributed according to a Gaussian Markov chain. In the special case where dynamics are
reversible (i.e., p(xt | x0) = p(x0 | xt)), planning will be equivalent to simple linear interpolation.

4.1 A Parametrization for Shared Encoders

This section describes the two encoders (x 7→ ψ) we use to compute representations ψ of x and x+.
While prior work in computer vision and NLP literature use the same encoder for both x and x+,
this decision does not make sense for many time-series data. Using the same encoder would imply
that our prediction for p(xt | x0) is the same as our prediction for p(x0 | xt), which does not make
sense for most Markov processes; the difficulty of transiting from x0 to xt (e.g., climbing to the
peak of a mountain) might be more difficult that the reverse (e.g., sledding down a mountain). At
the same time, using entirely separate encoders is also insufficient for a subtle reason: it is unclear
which encoder retains temporal information. It is plausible that ϕ(x0) is a forward prediction of the
future representation ψ(xt); it is equally plausible that ψ(xt) is a backward prediction of the previous
representation ϕ(x0). We will propose a parametrization that disambiguates which representation
contains temporal information, which will be important for using these representations for planning.

We will treat the encoder ψ(·) as encoding the contents of the state. We will additionally learn a matrix
A so that the function ψ 7→ Aψ corresponds to a (multi-step) prediction of the future representation.
To map this onto contrastive learning, we will use ϕ(x) ≜ Aψ(x) as the encoder for the initial state.
One way of interpreting this encoder is as an additional linear projection applied on top of ψ(·), a
design similar to those used in other areas of contrastive learning (Chen and He, 2020). Once learned,
we can use these encoders to answer questions about prediction (Sec. 4.2) and planning (Sec. 4.3).

4.2 Representations Encode a Predictive Model

Given an initial state x0, what states are likely to occur in the future? Answering this question
directly in terms of high-dimensional states is challenging, but our learned representations provide
a straightforward answer. Let ψ0 = ψ(x0) and ψt+ = ψ(xt+) be random variables representing
the representations of the initial state and a future state. Our aim is to estimate the distribution over
these future representations, p(ψt+ | ψt). We will show that the learned representations encode this
distribution.

Lemma 4.1. Under the assumptions from Sec. 3, the distribution over representations of states from
the discounted state occupancy measure follows a Gaussian distribution with mean parameter given
by the initial state representation:

p(ψt+ = ψ | ψ0) = N
(
µ =

c

c+ 1
Aψ0,Σ =

c

c+ 1
I
)
. (6)

The main takeaway here is that the distribution over future representations has a convenient, closed
form solution. The representation norm constraint, c, determines the shrinkage factor c

c+1 ∈ [0, 1);
highly regularized settings (small c) move the mean closer towards the origin and decrease the
variance. Regardless of the constraint c, the predicted mean is a linear function ψ 7→ c

c+1Aψ.

Proof. Our proof technique will be similar to that of the law of the unconscious statistician:

p(ψt+ | ψ0)
(a)
= p(ψt+|ψ0)

���p(ψ0)

∝
∫∫

p(ψt+, xt+, ψ0, x0)dxt+dx0

(b)
=

∫∫
p(ψt+ | xt+)p(ψ0 | x0)p(xt+ | x0)p(x0)dxt+dx0
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(c)
∝
∫∫

1(ψ(xt+) = ψt+)1(ψ(x0) = ψ0)p(xt+)e
− 1

2∥Aψ(x0)−ψ(x)∥2
2p(x0)dxt+dx0

(d)
= e−

1
2∥Aψ0−ψt+∥2

2

∫∫
1(ψ(xt+) = ψt+)1(ψ(x0) = ψ0)p(xt+)p(x0)dxt+dx

(e)
= e−

1
2∥Aψ0−ψt+∥2

2

(∫
p(xt+)1(ψ(xt+))dxt+

)
︸ ︷︷ ︸

p(ψt+)

(∫
p(x0)1(ψ(x0)dx0

)
︸ ︷︷ ︸

p(ψ0)

(f)
∝ e−

1
2∥Aψ0−ψt+∥2

2e−
1
2c∥ψt+∥2

2e−
1
2c∥ψ0∥2

2

(g)
∝ e

−
1+ 1

c
2 ∥ 1

1+ 1
c

Aψ0−ψt+∥2
2 ∝ N

(
ψt+;µ = c

c+1Aψ0,Σ = c
c+1I

)
.

In (a) we applied Bayes’ Rule and remove the denominator, which is a constant w.r.t. ψt+. In (b)
we factored the joint distribution, noting that ψt+ and ψ0 are deterministic functions of xt+ and x0
respectively, so they are conditionally independent from the other random variables. In (c) we used
Assumption 1 after solving for p(xt+ | x0) = p(xt+)e

− 1
2∥Aψ(x0)−ψ(x)∥2

2 . In (d) we noted that when
the integrand is nonzero, it takes on a constant value of e−

1
2∥Aψ0−ψt+∥2

2 , so we can move that constant
outside the integral. In (e) we use the definition of the marginal representation distribution (Eq. 6). In
(f) we use Assumption 2 to write the marginal distributions p(ψt+), p(ψ0) as Gaussian distributions;
we removed the normalizing constants, which are independent of ψt+. In (h) we completed the
square and then recognized the expression as the density of a multivariate Gaussian distribution.

4.3 Planning over One Intermediate State

We now show how these representations can be used for planning. We refer to one specific type
of planning problem: given an initial state x0 and a future state xt+, our aim will be to infer (the
representation of) an intermediate “waypoint” state xw. Our aim is not to infer the entire sequence of
intermediate states. We assume x0 → xw → xt+ form a Markov chain where xw ∼ p(xt+ | x0 =
x0) and xt+ ∼ p(xt+ | x0 = xw) are both drawn from the discounted state occupancy measure
(Eq. 1). Let random variable ψw = ψ(xw) be the representation of this intermediate state. Our main
result is that the posterior distribution over waypoint representation has a closed form solution in
terms of the initial state representation and future state representation:
Lemma 4.2. Under Assumptions 1 and 2, the posterior distribution over waypoint representations is
a Gaussian whose mean and covariance are linear functions of the state and goal representations:

p(ψw | ψ0, ψt+) = N
(
ψw;µ= Σ−1(ATψt+ +Aψ0),Σ= c

c+1A
TA+ c+1

c I
)

The proof (Appendix A.2) uses the Markov property together with Lemma 4.1. The main takeaway
from this lemma is that the posterior distribution takes the form of a simple probability distribution (a
Gaussian) with parameters that are linear functions of the initial and final representations.

We give three examples to build intuition:

Example 1: A = I and the c is very large (little regularization). Then, the covariance is Σ ≈ 2I
and the mean is the simple average of the initial and final representations µ ≈ 1

2 (ψ0 + ψt+).
In other words, the waypoint representation is the midpoint of the line ψ0 → ψt+.

Example 2: A is a rotation matrix and c is very large. Rotation matrices satisfy AT = A−1 so
the covariance is again Σ ≈ 2I . As noted in Sec. 4.2, we can interpret Aψ0 as a prediction
of which representations will occur after ψ0. Similarly, A−1ψt+ = ATψt+ is a prediction
of which representations will occur before ψt+. Lemma 4.2 tells us that the mean of the
waypoint distribution is the simple average of these two predictions, µ ≈ 1

2 (A
Tψt++Aψ0).

Example 3: A is a rotation matrix and c = 0.01 (very strong regularization). In this case
Σ = 0.01

0.01+1A
TA + 0.01+1

0.01 I ≈ 100I , so µ ≈ 1
100 (ψ0 + ψt+) ≈ 0. Thus, in the case of

strong regularization the posterior is highly concentrated around the origin.

4.4 Planning over Many Intermediate States

This section extends the previous section to consider multiple intermediate states. Again, we will
infer the posterior distribution of the representations of these intermediate states, ψw1

, ψw2
, · · · . As
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before, we will assume that these states form a Markov chain where the conditional distribution is
given by the discounted state occupancy measure. For example, in the case of two intermediate states,
we can write the posterior as:

p(ψw1
, ψw2

| ψ0, ψt+) =
p(ψt+|ψw2

)p(ψw2
|ψw1

)p(ψw1
|ψ0)

p(ψt+|ψ0)

∝ e−
1+ 1

c
2 ∥ c

c+1Aψw2−ψt+∥2
2−

1+ 1
c

2 ∥ c
c+1Aψw1−ψw2∥

2
2−

1+ 1
c

2 ∥ c
c+1Aψ0−ψw1∥

2
2 .

In the general case of n intermediate states, the posterior distribution is

p(ψw1
, · · · , ψwn | ψ0, ψt+) ∝ e−

1+ 1
c

2

∑n
i=1 ∥ c

c+1Aψwi−ψwi+1
∥2
2 ,

where ψw0
= ψ0 and ψwn+1

= ψt+. This corresponds to a chain graphical model with edge poten-

tials f(ψ,ψ′) = e−
1+ 1

c
2 ∥ c

c+1Aψ−ψ
′∥2

2 . This posterior distribution corresponds to a joint Gaussian
distribution over a long vector of concatenated representations ψ1:n = (ψw1

, · · · , ψwn):

p(ψ1:n) ∝ exp
(
− 1

2ψ
T
1:nΣ

−1ψ1:n + ηTψ1:n

)
,

where Σ is a tridiagonal matrix

Σ−1 =

(
c
c+1A

TA+ c+1
c I −AT

−A c
c+1A

TA+ c+1
c I −AT . . .

)
, and η =

 Aψ0

0...
ATψt+

 .

This distribution can be written in the canonical parametrization as Σ = Λ−1 and µ = Ση. Recall that
Gaussian distributions are closed under marginalization. Thus, once in this canonical parametrization,
the marginal distributions can be obtained by reading off individual entries of these parameters:

p(ψi | ψ0, ψt+) = N
(
ψi;µi = (Ση)(i),Σi = (Λ−1)(i,i)

)
.

The key takeaway here is that this posterior distribution over waypoints is Gaussian, and it has a
closed form expression in terms of the initial and final representations (as well as the learned matrix
A and regularization parameter c).

Special case. To build intuition, consider the special case where A is a rotation matrix and c is very
large, so c

c+1A
TA + c+1

c ≈ 2I . In this case, Σ−1 is a (block) second difference matrix (Higham,
2022):

Σ−1 =

(
2I −I
−I 2I −I . . .

)
.

The inverse of this matrix has a closed form solution (Newman and Todd, 1958, Pg. 471), allowing us
to obtain the mean of each waypoint in closed form:

µi = (1− λ(i))ψ0 + λ(i)ATψt+, where λ(i) = i
n+1 .

Thus, each posterior mean is a convex combination of the (forward prediction from the) initial
representation and the (backwards prediction from the) final representation. When A is the identity
matrix, the posterior mean is simple linear interpolation between the initial and final representations!

5 Numerical Simulation
While the contributions of this paper are theoretical, we include several didactic experiments to
illustrate our results. Code to reproduce these results, including all hyperparameters, is included in
the Supplemental Materials.

5.1 Synthetic Dataset

Fig. 2 (top left) shows a dataset of time series data, starting at the origin and spiraling outwards.
We applied contrastive learning with the parametrization in Sec. 4.1 to these data. We then used
these representations to solve prediction and planning problems using the derivations in Sec. 4.2 and
Sec. 4.3.
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Figure 2: Numerical simulation of our analysis. (Top Left) Toy dataset of time-series data consisting of many
outwardly-spiraling trajectories. We apply temporal contrastive learning to these data. (Top Right) For three
initial observations (■), we use the learned representations to predict the distribution over future observations.
Note that these distributions correctly capture the spiral structure. (Bottom Left) For three initial observations
(⋆), we use the learned representations to predict the distribution over preceding observations. (Bottom Right)
We plot the distribution over one waypoint (Sec. 4.3). The representations capture the shape of the distribution,
though they do mistakenly assign non-zero probability mass to parts of the spiral inside of ■ and outside of ⋆.
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Figure 3: Using inferred paths over our contrastive representations
for control boosts success rates by 4.5× on the most difficult goals
(18% → 84%). Baseline representation learning techniques fail to
improve performance when used for planning.

Fig. 2 (top right) shows forward
predictions, while Fig. 2 (bot-
tom left) shows backwards pre-
dictions. Note that these predic-
tions correctly handle the non-
linear structure of these data –
states nearby the initial state in
Euclidean space that are not tem-
porally adjacent are assigned low
likelihood. Fig. 2 (bottom right)
shows the posterior distribution
over one waypoint (planning).

5.2 Solving Mazes
with Inferred Representations

Our next experiment studies
whether the inferred representa-
tions are useful for solving a con-
trol task. We took a 2d maze environment and dataset from prior work (Fig. 3, left) (Fu et al., 2020)
and learned encoders from this dataset. To solve the maze, we take the observation of the starting
state and goal state, compute the representations of these states, and use the analysis in Sec. 4.3 to
infer the sequence of intermediate representations. We visualize the results using a nearest neighbor
retrieval (Fig. 3 left). Appendix Fig. 5 contains additional examples.

Finally, we studied whether these representations are useful for control. We implemented a simple
proportional controller for this maze. As expected, this proportional controller can successfully
navigate to close goals, but fails to reach distant goals (Fig. 3, right). However, if we use the
proportional controller to track a series of waypoints planned using our representations (i.e., the
orange dots shown in Fig. 3 (left)), the success rate increases by up to 4.5×. Unlike our contrastive
representations, baseline representation approaches like PCA and VIP (Ma et al., 2022a) fail to
generate waypoints for planning that improve performance.

5.3 Higher dimensional tasks

In this section we provide preliminary experiments showing the planning approach in Sec. 4 scales to
higher dimensional tasks. We used two datasets from prior work (Fu et al., 2020): door-human-v0
(39-dimensional observations) and hammer-human-v0 (46-dimensional observations). After learning
encoders on these tasks, we evaluated the inference capabilities of the learned representations. We
sampled (unseen) trajectories and compared the inferred sequence of planned waypoints (using a
nearest neighbor) to the ground truth sequence of states. As shown in Fig. 4 and Appendix Fig. 6, the
inferred representations roughly align with the ground truth plan, seeming to do so more accurately
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than representations from PCA and VIP (with simple linear interpolation). Further, Fig. 4 shows
quantitative comparisons of the error of predicted waypoint plans across our approach, PCA and VIP
representations, and a naive no-planning baseline. According to the MSE error metric, our approach
produces significantly better plans than all the baselines (Fig. 4, top right).

1 2 3 4 5
Waypoint index

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

W
ay

po
in

t M
SE

MSE of waypoint prediction for door opening
contrastive planning (ours)
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no planning
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xT
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x0

xT

PCA planning

x0

xT
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Figure 4: Planning for 39-dimensional robotic door opening. (Top Left) We use a dataset of trajectories
demonstrating door opening from prior work (Fu et al., 2020) to learn representations. (Top Right) We
compute the MSE for the five planned waypoints produced by our method against the true observations at the
corresponding points in the trajectory in 39-dimensional space (error bars ± 1 standard error). We compare
against baseline plans generated by interpolating PCA and VIP representations, as well as a “no planning”
baseline which simply always predicts the goal of the trajectory as each waypoint. (Bottom) We visualize a
TSNE of the states along sample trajectory as blue circles, with the transparency indicating the index along the
trajectory. (Bottom Left) We visualize the inferred plan (Sec. 4.3) as red circles connected by arrows. (Bottom
Right) We also visualize the plans generated by the PCA and VIP representations in the TSNE space. Our
contrastive representations plan waypoints that better fit the intermediate states of trajectory.

6 Discussion

Representation learning is at the core of many high-dimensional time-series modeling questions,
yet how those representations are learned is often disconnected with the inferential task. The main
contribution of this paper is to show how discriminative techniques can be used to acquire compact
representations that make it easy to answer inferential questions about time. The precise objective and
parametrization we studied is not much different from that used in practice, suggesting that either our
theoretical results might be adapted to the existing methods, or that practitioners might adopt these
details so they can use the closed-form solutions to inference questions. Our work may also have
implications for studying the structure of learned representations. While prior work often studies the
geometry of representations as a post-hoc check, our analysis may provide tools for studying when
interpolation properties are guaranteed to emerge, as well as how to learn representations with certain
desired geometric properties.

Limitations. Our analysis hinges on the two assumptions mentioned in Sec. 3.1, and it remains
open how errors in those approximations translate into errors in our analysis. Structurally, this paper
aims to provide some mathematical tools for studying these contrastive representations, but applying
these techniques in real-world application domains remains an important problem for future work.
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A Proofs
A.1 Marginal Distribution over Representations is Gaussian

The infoNCE objective (Eq. 2) can be decomposed into an alignment term and a uniformity
term (Wang and Isola, 2020), where the uniformity term can be simplified as follows:

Ex∼p(x)
[
logEx−∼p(x)

[
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= −Ĥ[ψ(x)] +
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log(2π).

The derivation above extends that in Wang and Isola (2020) by considering a Gaussian distribution
rather than a von Mises Fisher distribution. We are implicitly making the assumption that the marginal
distributions satisfy p(x) = p(x−). This difference corresponds to our choice of using a negative
squared L2 distance in the infoNCE loss rather than an inner product, a difference that will be
important later in our analysis. A second difference is that we do not use the resubstitution estimator
(i.e., we exclude data point xi from our estimate of p̂GMM when evaluating the likelihood of xi),
which we found hurt performance empirically. The takeaway from this identity is that maximizing
the uniformity term corresponds to maximizing (an estimate of) the entropy of the representations.

We next prove that the maximum entropy distribution with an expected L2 norm constraint is a
Gaussian distribution. Variants of this result are well known (Shannon, 1948; Jaynes, 1957; Conrad,
2010), but we include a full proof here for transparency.

Lemma A.1. The maximum entropy distribution satisfying the expected L2 norm constraint in Eq. 3
is a multivariate Gaussian distribution with mean µ = 0 and covariance Σ = c · I

Proof. We start by defining the corresponding Lagrangian, with the second constraint saying that
p(x) must be a valid probability distribution.

L(p) = Hp[x] + λ1
(
Ep(x)

[
∥x∥22

]
− c · k

)
+ λ2

(∫
p(x)dx− 1

)
We next take the derivative w.r.t. p(x):

∂L
∂p(x)

= −p(x)/p(x)− log p(x) + λ1∥x∥22 + λ2

Setting this derivative equal to 0 and solving for p(x), we get

p(x) = e−1+λ2+λ1∥x∥2
2 .

We next solve for λ1 and λ2 to satisfy the constraints in the Lagrangian. Note that x ∼ N (µ =
0,Σ = c · I) has an expected norm E[∥x∥22] = c · k, so we must have λ1 = − 1

2c . We determine λ1
as the normalizing constant for a Gaussian, finally giving us:

p(x) =
1

(2cπ)k/2
e

−1
2c ∥x∥

2
2

corresponding to an isotropic Gaussian distribution with mean µ = 0 and covariance Σ = c · I .
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A.2 Proof of Lemma 4.1: Waypoint Distribution

Proof.

p(ψw | ψ0, ψt+)
(a)
=

p(ψt+ | ψw)p(ψw | ψ0)

������
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= N (ψw;µ,Σ).

In line (a) we used the definition of the conditional distribution and then simplified the numerator
using the Markov property. Line (b) uses the Lemma 4.1. Line (c) completes the square, using const.

=
to denote equality up to an additive constant that is independent of ψw, and using the definitions of µ
and Σ above:
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B Additional Experiments
Fig. 5 visualizes the inferred waypoints from the task in Fig. 3.

Figure 5: Our approach enables a goal-conditioned policy to reach farther targets (red) from the start
(green) by planning over intermediate waypoints (orange).

Fig. 6 visualizes the representations learned on a 46-dimensional robotic hammering task (see
Sec. 5.3).

(a) Contrastive representations (b) PCA representations

Figure 6: Planning for 46-dimensional robotic hammering. (Left) A dataset of trajectories demon-
strating a hammer knocking a nail into a board (Fu et al., 2020). (Center) We visualize the learned
representations as blue circles, with the transparency indicating the index of that observation along the
trajectory. We also visualize the inferred plan (Sec. 4.3) as red circles connected by arrows. (Right)
Representations learned by PCA on the same trajectory as (a, left).
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