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ABSTRACT

Treatment effect estimation (TEE) refers to the estimation of causal effects, and
it aims to compare the difference among treatment strategies on important out-
comes. Current machine learning based methods are mainly trained on labeled
data with specific treatments or outcomes of interest, which can be sub-optimal if
the labeled data are limited. In this paper, we propose a novel transformer-based
pre-training and fine-tuning framework called CURE for TEE from observational
data. CURE is pre-trained on large-scale unlabeled patient data to learn repre-
sentative contextual patient representations, and then fine-tuned on labeled patient
data for TEE. We design a new sequence encoding for longitudinal (or structured)
patient data and we incorporate structure and time into patient embeddings. Eval-
uated on 4 downstream TEE tasks, CURE outperforms the state-of-the-art meth-
ods in terms of an average of 3.8% and 6.9% absolute improvement in Area under
the ROC Curve (AUC) and Area under the Precision-Recall Curve (AUPR), and
15.7% absolute improvement in Influence function-based Precision of Estimating
Heterogeneous Effects (IF-PEHE). We further demonstrate the data scalability of
CURE and verify the results with corresponding randomized clinical trials. Our
proposed method provides a new machine learning paradigm for TEE based on
observational data.

1 INTRODUCTION

Treatment effect estimation (TEE) is to evaluate the causal effects of treatment strategies on some
important outcomes, which is a crucial problem in many areas such as healthcare (Glass et al.,
2013), education (Dehejia & Wahba, 1999) and economics (Imbens, 2004). Randomized clinical
trials (RCTs) are the de-facto gold standard for identifying causal effects through randomizing the
treatment assignment and comparing the responses in different treatment groups. However, con-
ducting RCTs is time-consuming, expensive and sometimes unethical. Observational data such as
medical claims provide a promising opportunity for treatment effect estimation when RCTs are ex-
pensive or impossible to conduct.

Recently, many works have been proposed to adopt neural networks (NNs) for TEE from obser-
vational data (Shalit et al., 2017; Shi et al., 2019; Hassanpour & Greiner, 2019; Curth & van der
Schaar, 2021b;a; Zhang et al., 2022b; Guo et al., 2021). Compared to classical TEE methods such
as regression trees (Chipman et al., 2010) or random forests (Wager & Athey, 2018), NN-based
methods achieve better performance in handling the complex and nonlinear relationships among co-
variates, treatment and outcome. However, there are still some common limitations of existing TEE
methods: 1) Most model designs are task-specific or data-specific so it is hard to adapt the model
to a more generalized setting. 2) Existing labeled dataset often has small-scale data size, whereas
training neural models requires large and high-quality labeled data for capturing inherent complex
relationships of the input data.

Recently, Transformer (Vaswani et al., 2017) has been widely adopted as a critical and unified
building block in the pre-training and fine-tuning paradigm across data modalities. The pre-trained
Transformer-based models (PTMs) have become the model of choice in many deep learning do-
mains such as natural language processing (NLP) (Devlin et al., 2018; Radford et al., 2018; 2019;
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Figure 1: The overall pipeline of CURE. It mainly consists of three parts: 1) data encoding of lon-
gitudinal patient data; 2) unsupervised pre-training on unlabeled data and 3) fine-tuning on down-
stream labeled data for treatment effect estimation. In TEE, labels mean the studied treatment α and
outcome y of the patient sequence x.

Brown et al., 2020; Liu et al., 2019) and computer vision (CV) (Carion et al., 2020; Dosovitskiy
et al., 2020; Parmar et al., 2018). The dominant approach is to pre-train on a large-scale dataset
with unsupervised or self-supervised learning and then fine-tune on a smaller task-specific dataset.
Nonetheless, applying this pre-training and fine-tuning paradigm to treatment effect estimation prob-
lems faces the following three major challenges: 1) encoding structured longitudinal observational
patient data into sequence input; 2) lack of well-curated large-scale pre-training dataset; 3) lack of
real-world downstream treatment effect estimation tasks to benchmark baselines.

In this paper, we propose a new pre-training and fine-tuning framework for estimating causal effect
of a treatment: CaUsal tReatment Effect estimation (CURE). As shown in Fig. 1, the large-scale
structured patient data are extracted from a real-world medical claims data (MarketScan Research
Databases 1). We first encode the structured data as sequential input by chronologically flattening
and aligning all observed covariates. We obtain around 3M processed unlabeled patient sequences
for pre-training. And the downstream datasets with labeled treatment and outcome are created ac-
cording to specific TEE tasks from established RCTs. Based on the retrospective study design
and domain knowledge, we obtain 4 downstream tasks and each of them containing 10K-20K pa-
tient samples. The task is to evaluate the comparative effectiveness of two treatment effects in
reducing the risk of stroke for patients with coronary artery disease (CAD). Second, we pre-train a
Transformer-based model on the unlabeled data with an unsupervised learning objective to generate
contextualized patient representations. To accommodate the issues of complex hierarchical structure
(i.e., the patient record contains multiple visits and each visit contains multiple types of medications
or diagnoses) and irregularity of the observational patient data, we propose a comprehensive embed-
ding method to incorporate the structure and time information. Finally, we fine-tune the pre-trained
model on various downstream TEE tasks.

We are the first study to demonstrate the success of adopting the pre-training and fine-tuning frame-
work to representation learning of patient data for TEE, together with necessary but minimal changes
on the transformer architecture design, and real-world case studies on randomized clinical trials. We
summarize our main contributions as follows.

• We propose CURE, a novel transformer-based pre-training and fine-tuning framework for TEE.
We present a new patient data encoding method to encode structured observational patient data
and incorporate covariate type and time into patient embeddings.

• We obtain and preprocess large-scale patient data from real-world medical claims data as our pre-
training resource. We derive 4 downstream TEE tasks according to study designs and domain
knowledge from established RCTs for model evaluation.

• We conduct thorough experiments and show that CURE yields superior performance on all down-
stream tasks compared to state-of-the-art TEE methods. We achieve, on average, 3.8% and 6.9%
absolute improvement in AUC and AUPR respective for outcome prediction, and 15.7% abso-
lute improvement in IF-PEHE for TEE over the best baseline among 4 tasks. We also verify the
estimated treatment effects with the conclusion of corresponding RCTs.

• We further explore the effectiveness of CURE in several ablation studies including the proposed
patient embedding, the influence of pre-training data size on downstream tasks, and the generaliz-
ability of low-resource fine-tuning data.

1https://www.ibm.com/products/marketscan-research-databases
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2 BACKGROUND AND RELATED WORK

Treatment effect estimation from observational data. In this paper, we are interested in obser-
vational patient data. Each patient sample consists of pre-treatment covariates x (i.e., historical
co-medication, co-morbidities and demographics) and a treatment a of interest. Following the po-
tential outcome framework (Rubin, 2005), the potential outcome ya is defined as the response to
treatment a out of all available treatment options. Typically, we consider the comparative treatment
effects of two treatments and denote two potential outcomes as y1 and y0 for simplicity.

We aim to estimate the individual-level treatment effect (ITE) as the difference between the potential
outcomes under two treatment arms as y1(x)−y0(x). We are also interested in the average treatment
effect (ATE) which is the average effect among the entire population, denoted as E[y1(x)− y0(x)].
In observational data, only one of the potential outcomes is available and the remaining counterfac-
tual outcomes are missing in nature, which makes this task more difficult than classical supervised
learning. We follow the standard assumptions (Imbens & Rubin, 2015) (i.e., consistency, positivity
and strong ignorability). The potential outcome can be defined as ya(x) = E[y|a,x], and can be
estimated from observational data. More details of assumptions are illustrated in Appendix A.

Deep learning for treatment effect estimation. Generally, existing NN-based methods formulate
the TEE as several regression tasks (i.e., regression on potential outcomes and treatment) with differ-
ent levels of information shared among the nuisance estimation tasks using representation learning.
TARNet (Curth & van der Schaar, 2021b), for example, learns one shared representations for two
potential outcomes, while SNet (Curth & van der Schaar, 2021b) learns five different representa-
tions on the combinations of treatment and potential outcomes. Recently, Transformer has been
introduced as an encoder block for TEE (Zhang et al., 2022b; Guo et al., 2021) and yields better
performance compared to the state-of-the-art methods. Despite the promising results, the main lim-
itation is that the model performance can be diminished if the labeled dataset is limited. The model
trained for one particular problem or data may fail to generalize to other scenarios.

Pre-train and fine-tune of Transformer. Since Transformer is based on a flexible architecture with
few assumptions on the input data structure, it is difficult to directly train the model on small-scale
data. Therefore, various pre-trained Transformer-based models (PTMs) are first pre-trained on the
large-scale unlabeled data and then fine-tuned for labeled tasks at hand. PTMs learn universal and
contextualized representations, which can boost various downstream tasks, and avoid developing and
training a new model from scratch. Among the existing PTMs in NLP, BERT (Devlin et al., 2018) is
one of the most popular models. BERT (Devlin et al., 2018) is pre-trained on large-scale unlabeled
corpus via self-supervised pre-training tasks (i.e., masked language modeling and next sentence
prediction) and fine-tuned on downstream tasks with an additional linear head. Our observational
patient data are close to natural language text as they both contain sequential information. However,
patient data have some unique characteristics that distinguish them from the text. Compared to the
text, patient data contain a more complex hierarchical structure and time information. Therefore,
existing BERT pre-training architecture can not be directly applied to modeling patient data.

3 CURE: A PRETRAINING AND FINE-TUNING FRAMEWORK FOR TEE

In this section, we introduce our CURE framework (as shown in Fig. 1) which includes three key
steps: (1) Encoding structured patient data as sequential input by aligning medications and diagnosis
in each visit chronologically (Sec. 3.1), (2) Pre-training on a large-scale unlabeled patient data by
minimizing the unsupervised objective and obtaining the optimized parameters θ∗ (Sec. 3.2), and
(3) Fine-tuning on a small-scale labeled downstream dataset for TEE by jointly optimizing θ∗ and a
linear head parameterized as ϕ (Sec. 3.3).

3.1 ENCODING STRUCTURED PATIENT DATA

In this work, we focus on longitudinal observational patient data. We first introduce the data for
pre-training and fine-tuning respectively. Then we illustrate how to convert structured patient data
into sequential input for the Transformer encoder.

Pre-train data structure. The pre-training is based on large-scale unlabeled patient data. Here, to
distinguish from downstream data, we denote the pre-train data as unlabeled data (x ∼ X ), while
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Figure 2: Illustration of the downstream data
construction with retrospective study design.
Index date refers to the first prescription of
the target treatment or the compared treatment,
which should be no prior to the disease initia-
tion date. The baseline period is no less than
one year and the follow-up period as outcome
observation is also one year. The treatments of
interests and outcomes are obtained at the index
date and follow-up period respectively.
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Figure 3: Illustration of encoding structured
patient data into sequential input. The patient
data are recorded in an hierarchical structure
such that a patient contains multiple visits and
each visit contains multiple medications and
diagnoses. The structured data are converted
into a sequence by flattening all covariates in
each visit and aligning them chronologically.

downstream data with treatment a and outcome y as labeled data ({x, a, y} ∼ Z). The unlabeled
patient data consist of: (1) Co-medication m1,m2, ...,m|M| ∈ M, where |M| is the number of
unique medication names. (2) Co-morbidities d1, d2, ..., d|D| ∈ D, where |D| is the number of
unique diagnosis codes. (3) Demographics c: age encoded as categorical value and gender encoded
as binary value. A patient can have multiple visits {v1, . . . , vT }, where each of visit vt contains a
subset of medication and diagnosis codes (vt ∈ M ∪ D). We denote the unlabeled patient data as
x = {c, {vt}Tt=1} and all the covariates are obtained from the baseline period as shown in Figure 2.
We build a medical vocabulary from all patient covariates as V = {M,D, c}.

Fine-tune data structure. The fine-tuning is based on a small-scale labeled patient data, which
are not used for pre-training. Besides the co-medication, co-morbidities and demographics, the
labeled patient data contain treatment a ∈ Mtask (i.e., can be either the target treatment or com-
pared treatment from task-specific medication group Mtask) and outcome ya ∈ {0, 1} under the
observed treatment a. In Figure. 2, we show the retrospective study design of how to construct
downstream data and obtain labels for treatments and outcomes. Specially, we collect patient data
from two different treatment groups for comparison. For each group of patients, the covariates (i.e.,
co-medication, co-morbidities and demographics) are obtained from the baseline period (a.k.a., pre-
treatment covariates) as potential confounders, and the outcomes are obtained from the follow-up
period. More illustrations of the study design can be found in Appendix C.

Structured patient data to sequential input. As introduced above, the original patient data are
recorded naturally in a hierarchical structure. Unlike natural language text, which is inherently en-
coded as a sequence of words, the patient data need to be preprocessed into a ”sequence-like” format
before sending to the Transformer encoder. As shown in Fig. 3, we flatten the structured patient data
by chronologically going through each medication and diagnosis in each visit and aligning them in
one sequence. Each medication or diagnosis is encoded as an individual token, which is comparable
to text tokenization. The token ids are obtained from the medical vocabulary V .

3.2 PRE-TRAINING CURE

As shown in Fig. 4, the pre-training consists of three modules: (1) an embedding layer to convert
input patient data into embedding representations, (2) Transformer encoders to generate contextual-
ized hidden representations and (3) a final project layer for pre-training objective. More formally,
given the encoded patient sequence x = [x1, . . . , xm, . . . , xT ] as specified in Sec. 3.1, the pre-
training procedure can be decomposed into the following steps:

x
Mask−−→

[
x1, . . . ,[MASK]m, . . . , xT

]
Embedding−−−−−→ {ei}Ti=1

fθ−→ {hi}Ti=1
MLM−−−→ LMLM(θ) (1)

We randomly replace 15% of input tokens with special [MASK] tokens, e.g., token xm in the se-
quence. ei ∈ RB denotes the embedding representation with embedding dimension B generated
by the comprehensive embedding layer. hi ∈ RH denotes the contextualized representation with
hidden dimension H generated by Transformer encoder fθ. The masked language modeling (MLM)
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[SEP]
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Figure 4: Illustration of pre-training and fine-tuning of CURE. The unlabeled structured patient
data are first converted into a sequential input, and processed for the embedding layer and encoder.
During the fine-tuning, the treatments of interest are appended for potential outcome prediction.
(Devlin et al., 2018) aims to predict the masked tokens xm from the established vocabulary V us-
ing hidden representation hm. The pre-training loss function of MLM is denoted as LMLM(θ) with
optimization parameters θ.

Comprehensive embedding layer. The pre-trained language models like BERT (Devlin et al.,
2018) have achieved great success in natural language text demonstrating strong power in modeling
sequential data. Though longitudinal patient data can be deemed as a kind of sequential data when
organized by the chronological order, there exist substantial and unignorable discrepancies between
the text and patient data. It is hard to directly apply the existing pre-trained language model to our
unique patient data. Our ablation study shows that the standard embedding design adopted in NLP
(i.e., token embedding and position embedding) will be sub-optimal in our scenario (see Sec. 4.3
for more details).

Compared to the natural language text, (1) longitudinal patient data contain a more complex hierar-
chical structure than the text data: a patient record contains a number of visits and each visit also
contains a number of different types of medical codes (i.e., medication or diagnosis). (2) The patient
data are irregularly sampled (i.e., the time interval among visits is not regular) while the text data
are regularly organized. As shown in Fig. 3, the visit dates are not regularly distributed along the
time: the first visit happened on day 0, the second visit happened on day 14 and the third one on day
33, etc. On visit 2 (day 33), the patient received two types of codes: montelukas and lisinopril as
medications, and chest pain and paralysis as diagnoses.

To accommodate the above issues of complex hierarchical structure and irregularity of the obser-
vational patient data, we propose a more comprehensive embedding layer than the original BERT
(Devlin et al., 2018) embedding layer by including associated code type information and time infor-
mation. For each input token, the patient embedding ei is obtained as:

ei = wtoken + ttype + vvisit + pphysical (2)
where wtoken is the original input token embedding. ttype is the type embedding of the input token.
According to our data, there are three types in total: {Demographics, Medication, Diagnosis}. The
visit time embedding vvisit is the visit time corresponding to a visit. The physical time embed-
ding pphysical is the physical time associated with the visit. Here, the physical time is measured
by month (i.e., 30-day fixed window). Both visit and physical time are organized relative to the
treatment index date (i.e., the absolute distance between the visit/physical time to the index date).

As an illustration, in Fig. 4, the input is a sequence of patient data containing the type and time
information: rivaroxaban is from Medication type prescribed on visit 1 (day 14) and chest pain is
from the Diagnosis type received on visit 2 (day 33). The input token embedding, time embedding
and type embedding are integrated and used as the input to the Transformer encoder.

Transformer encoder and pre-training objective We use an N-stacked Transformer as our encod-
ing backbone as it has been a widely adopted architecture. For each single Transformer encoder
block, it consists of a multi-head self-attention layer followed by a fully-connected feed-forward
layer (Vaswani et al., 2017). More details of the Transformer architecture are in Appendix B.

The Transformer encoder fθ takes the comprehensive embedding representations as input and gener-
ates contextualized hidden representations as fθ(e). Given unlabeled patient data X , the pre-training
is to minimize the MLM loss of predicting the masked token with position j ∈ J using the input
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token embedding and hidden representation:

LMLM(θ) = Ex∼X

[
−

∑
j∈J

log(P(wj |fθ(e)))
]

(3)

where P(wj |fθ(e)) is the softmax probability of the masked token over all tokens in the vocabulary.

3.3 FINE-TUNING CURE FOR TEE

Given downstream labeled data {x, a, y} ∼ Z , we fine-tune the model on different downstream
TEE tasks. Here, we are interested in the comparative causal treatment effect of the target treatment
over another compared treatment according to the downstream tasks. For each task, we plug in the
task-specific input and outputs into CURE. We add a linear head fϕ to the hidden representations
learned from the pre-training stage. We fully fine-tune all model parameters end-to-end by jointly
updating θ∗ obtained from optimizing Eq. 3 and a randomized ϕ.

Specially, we append the original input sequence with the index treatment (i.e., target treatment
or compared treatment) which is separated by the special [SEP] token. As shown in Fig. 4, the
treatment ”valsartan” is appended to the original inputs to indicate that the patient is from the treat-
ment group of ”valsartan”. The model processes the new inputs through the embedding layer and the
Transformer encoder with parameters initialized with θ∗. We use the final hidden vector correspond-
ing to the first input token ([CLS]) as the pooled representation h[CLS] from the pooling layer. We
predict the potential outcomes under the treatment a via the linear head as f

ϕ
◦ fθ∗(h[CLS](a)). The

fine-tuning objective is the binary cross entropy (BCE) of the potential outcome prediction:

LTEE(θ
∗, ϕ) = E{x,a,y}∼Z [BCE(fϕ ◦ fθ∗(h[CLS](a)), y)] (4)

Here, only the factual outcome are used for training loss computation as the counterfactual outcomes
are unavailable in the observational data. After model fine-tuning, we infer the ITE δ and ATE ∆ as
the difference between two predicted potential outcomes under the target and compared treatment:

δ̂ = ŷa=Target − ŷa=Compared; ∆̂ = E[ŷa=Target − ŷa=Compared] (5)

4 EXPERIMENTS

In this section, we evaluate the proposed CURE from three aspects: 1) Quantitative analysis of the
comparison performance with state-of-the-art TEE methods on 4 downstream tasks; 2) Qualitative
analysis including the validation of the estimated treatment effects with corresponding RCTs, and
self-attention feature weights visualization; 3) Ablation studies including proposed feature embed-
ding, pre-training data size, and generalizability of low-resource fine-tuning data.

Pre-training data. We extract patient data from MarketScan Commercial Claims and Encounters
(CCAE) 2 from 2012 to 2017, which contains individual-level, de-identified healthcare claims infor-
mation from employers, health plans and hospitals. In this paper, we evolve patients who have ever
been diagnosed with coronary artery disease (CAD) as our disease cohort. The definition of CAD is
in Appendix C. After conducting data preprocessing and study design, we obtain 2,955,399 patient
sequences for pre-training. We obtain 9,435 medical codes including 282 diagnosis codes (i.e., we
map the original ICD-9/10 billing codes into Clinical Classifications Software [CCS] 3) and 9,153
medication codes (i.e., we map medications based on generic names from RED BOOK 4).

Downstream tasks. As the ground truth treatment effects are not available in observational data,
we use RCTs as the gold standard to verify our results. We focus on CAD-related RCTs which
study the comparative effectiveness of two treatments for reducing the risk of stroke after CAD.
We first collect all available Phase 2 and Phase 3 RCTs with CAD as disease name and stroke
as disease outcome from https://clinicaltrials.gov/. Stroke is selected because it is
commonly used as the primary outcome measurement in various CAD studies and it is well-defined
in observational data. Then we select completed RCTs with published results. Finally, we end
up with 4 RCTs that meet all the above criteria. We derive corresponding downstream tasks from
our data based on the study design as specified in Fig. 2. More details of screening RCTs are in
Appendix C. An additional semi-synthetic setting with comparison results are in Appendix D.

2https://www.ibm.com/products/marketscan-research-databases
3www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
4https://www.ibm.com/products/micromedex-red-book
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Baselines. We compare CURE with 8 neural network models for TEE, including state-of-the-art
methods. For models designed for continuous outcomes with mean square error (MSE) as a training
objective, we change the objective function to binary cross entropy for consistency. All the baselines
are only trained on downstream data and are summarized below:
• TARNet (Shalit et al., 2017) predicts the potential outcomes based on balanced representations
among treated and controlled groups.
• DragonNet (Shi et al., 2019) jointly optimizes treatment prediction and potential outcome pre-
diction. The model first learns shared representations given the input data and then does prediction
tasks via a three-head neural network: one for treatment prediction and two for potential outcomes.
• DR-CFR (Hassanpour & Greiner, 2019) learns disentangled representations for counterfactual re-
gression and assumes that the observed covariates can be disentangled into three components: only
contributing to treatment selection, only contributing to outcome predication, and both.
• TNet (Curth & van der Schaar, 2021b) is a neural network based T-learner (Künzel et al., 2019)
(i.e., a type of meta-learners that decomposes the TEE into two sub-regression problems). TNet
adopts two neural models as base learners for two potential outcomes.
• SNet (Curth & van der Schaar, 2021b) also learns disentangled representations and assumes that
the observed covariates can be disentangled into five components by considering two potential out-
comes separately.
• FlexTENet (Curth & van der Schaar, 2021a) incorporates the idea of inductive bias for the shared
structure of two potential outcomes into TEE. The model adaptively learns what to share between
the potential outcome functions.
• TransTEE (Zhang et al., 2022b) is a recently proposed Transformer-based TEE model. The co-
variates and treatments are encoded via a Transformer and aggregated for outcome prediction via a
cross-attention layer.
• Base Model directly trains on the downstream datasets using the same architecture as CURE.

Metrics. We evaluate the factual prediction performance using the standard classification metrics:
Area under the ROC Curve (AUC) and Area under the Precision-Recall Curve (AUPR). We evaluate
the counterfactual prediction performance using the influence function-based precision of estimating
heterogeneous effects (IF-PEHE) (Alaa & Van Der Schaar, 2019), which helps to benchmark TEE
methods when the ground truth effects are not available. Compared to the widely adopted precision
of estimating heterogeneous effects (PEHE) that measures the mean squared error between estimated
treatment effects and true treatment effects, IF-PEHE measures the mean squared error between
estimated treatment effects and approximated true treatment effects. The output of the IF-PEHE
metric is a numeric value and the lower the better. More details of this metric are in Appendix C.

Implementation details. Our pre-training uses the BERTbase architecture (Devlin et al., 2018) with
768 hidden size, 12 attention heads, 12 layer Transformer and 3072 intermediate size. The maximum
input sequence length is 256. The pre-training is conducted on 3 NVIDIA GeForce RTX 2080 Ti
11GB GPUs with a batch size of 96. We train our model using the adaptive moment estimation
(Adam) optimizer, with an initial learning rate of 1e − 4 and learning rate warmup in the first 10%
training steps. During the fine-tuning, the learning rate is 5e− 5 without learning rate warmup. We
fine-tune the model on each task for 2 epochs. The downstream data are randomly split into training,
validation and test sets with percentages of 90%, 5%, 5% respectively. All results are reported on
the test sets. More implementation details are mentioned in Appendix C. The code of our proposed
CURE is available in Supplementary material.

4.1 QUANTITATIVE ANALYSIS

Comparison with state-of-the-art methods. Table 1 shows the performance of factual outcome
prediction (measured by AUC and AUPR) and TEE (measured by IF-PEHE) on four different down-
stream tasks. We compare CURE with the state-of-the-art TEE methods and report the results under
20 random runs. We observe that the proposed CURE has more than 3.8%, 6.9% and 15.7% respec-
tive average AUC, AUPR and IF-PEHE improvement over the best baseline on these tasks. The
results illustrate the promise and effectiveness of our proposed pre-training and fine-tuning method-
ology for TEE. Notably, even without pre-training, the base model of CURE attains similar perfor-
mance as the best baseline, which suggests the effectiveness of our architecture and data encoding
designs. We demonstrate the model performance on addressing the treatment selection bias from
quantitative and qualitative perspectives in Appendix D.
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Table 1: Comparison with state-of-the-art methods on four downstream datasets. The results are the
average and standard deviation over 20 runs.

Method Rivaroxaban v.s. Aspirin Valsartan v.s. Ramipril
AUC ↑ AUPR ↑ IF-PEHE ↓ AUC ↑ AUPR ↑ IF-PEHE ↓

TARNet 0.719± 0.015 0.327± 0.023 0.546± 0.044 0.683± 0.028 0.263± 0.029 0.545± 0.061
DragonNet 0.757± 0.013 0.381± 0.023 0.715± 0.082 0.683± 0.026 0.263± 0.027 0.533± 0.109
DR-CFR 0.759± 0.015 0.381± 0.026 0.653± 0.118 0.751± 0.019 0.333± 0.032 0.642± 0.135
TNet 0.715± 0.016 0.318± 0.028 0.500± 0.059 0.673± 0.021 0.256± 0.024 0.494± 0.065
SNet 0.756± 0.014 0.380± 0.028 0.247± 0.054 0.752± 0.022 0.333± 0.033 0.526± 0.097
FlexTENet 0.717± 0.014 0.319± 0.022 0.565± 0.054 0.662± 0.028 0.241± 0.027 0.602± 0.088
TransTEE 0.717± 0.011 0.299± 0.021 0.557± 0.042 0.773± 0.013 0.380± 0.025 0.427± 0.089

Base Model 0.758± 0.029 0.406± 0.037 0.180± 0.038 0.780± 0.050 0.365± 0.066 0.190± 0.065
CURE 0.803± 0.011 0.469± 0.023 0.173± 0.038 0.811± 0.018 0.428± 0.041 0.158± 0.062

Method Ticagrelor v.s. Aspirin Apixaban v.s. Warfarin
AUC ↑ AUPR ↑ IF-PEHE ↓ AUC ↑ AUPR ↑ IF-PEHE ↓

TARNet 0.714± 0.008 0.359± 0.016 0.520± 0.048 0.748± 0.012 0.447± 0.030 0.535± 0.043
DragonNet 0.741± 0.009 0.397± 0.020 0.433± 0.096 0.792± 0.018 0.519± 0.035 0.461± 0.095
DR-CFR 0.745± 0.007 0.403± 0.021 0.580± 0.108 0.798± 0.015 0.531± 0.032 0.503± 0.073
TNet 0.709± 0.009 0.360± 0.020 0.490± 0.061 0.741± 0.015 0.432± 0.032 0.519± 0.039
SNet 0.742± 0.008 0.400± 0.020 0.298± 0.053 0.795± 0.014 0.525± 0.034 0.414± 0.054
FlexTENet 0.710± 0.010 0.351± 0.015 0.487± 0.046 0.735± 0.012 0.413± 0.033 0.578± 0.030
TransTEE 0.747± 0.022 0.385± 0.015 0.387± 0.021 0.799± 0.011 0.517± 0.031 0.409± 0.059

Base Model 0.751± 0.025 0.425± 0.04 0.206± 0.031 0.791± 0.029 0.539± 0.039 0.251± 0.045
CURE 0.793± 0.008 0.489± 0.024 0.198± 0.068 0.826± 0.014 0.588± 0.024 0.224± 0.066

4.2 QUALITATIVE ANALYSIS

Validate with RCT conclusion. As the ground truth treatment effects are not available in obser-
vational data, we further evaluate the estimated treatment effects with corresponding ground truth
RCTs. In Table 4.2, we show the confidence intervals of estimated effects under 20 runs and RCT
conclusions of each downstream task.

Table 2: Comparison of the estimated treatment effects with corresponding ground truth RCT. The
estimated effects are shown in 95% confidence intervals (CI) under 20 bootstrap runs. The RCT
conclusions are obtained from published articles.

Target v.s. Compared Estimated Effect (CI) P value Generated Hypothesis RCT Conclusion

Rivaroxaban v.s. Aspirin [-0.009, 0.006] 0.452 No significant difference No significant difference (Anand et al., 2018)
Valsartan v.s. Ramipril [-0.003, 0.014] 0.103 No significant difference No significant difference (Pfeffer et al., 2021)
Ticagrelor v.s. Aspirin [0.022, 0.040] 6e-14 T. is less effective than A. No significant difference (Sandner et al., 2020)
Apixaban v.s. Warfarin [-0.039, -0.002] 4e-4 A. is more effective than W. A. is more effective than W. (Granger et al., 2011)

We use the direct difference to estimate the treatment effects (Hernán, 2004). The results can be
interpreted as two potential conclusions: 1) The target treatment is significantly more effective than
the compared treatment in reducing the risk of the outcome if the upper bound of the confidence
interval is lower than zero. (2) The target is not significantly more effective than the compared
treatment if the confidence interval covers zero (i.e., no significant difference) or the lower bound is
higher than zero (i.e., the compared treatment is more effective than the target treatment). As we can
see, our estimated treatment effects are mostly consistent with each corresponding RCT conclusion.
Though the generated hypothesis and RCT conclusion are not exactly the same for the third pair
(Ticagrelor v.s. Aspirin), they both indicate that there is no significant reduced treatment effect of
the target treatment over the compared treatment. The results demonstrate that our proposed CURE
successfully identifies correct treatment effects using only observational patient data. The full results
of all the baselines can be found in Appendix D.

Self-attention visualization. The self-attention mechanism of the Transformer enables the explo-
ration of interaction among input covariates and provides a potential interpretation of the prediction
results. We use a Transformer visualization tool called bertviz (Vig, 2019) to help visualize learned
attention weights. We show the visualization results of some patient samples in Appendix D.

4.3 ABLATION STUDIES

Effect of embedding layer. We evaluate the effect of proposed time embedding (visit time and
physical time) and type embedding respectively. As shown in Fig. 5, the model with both time
and type embedding generally performs better than the other two embedding ablations. Especially,
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incorporating time embedding yields larger performance improvement than the type embedding.
This indicates that the proposed embedding method is better than the standard embedding method
and time information plays a more important role in TEE than the type information.
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Figure 5: The effect of different embedding layer designs on four downstream tasks.
Effect of downstream data size. We demonstrate the model’s effectiveness on the low resource of
downstream data in Fig. 6. The plots show the model performance with different fractions of labeled
downstream data. Generally, given only 5% 10% labeled data, the CURE achieves comparable per-
formance to the Base Model which is trained on the fully labeled data. Specifically, the performance
gains are large when given a small fraction of labeled data (1%-5%) and the curve tends to gently
increase after the fraction is larger than 10%. With increased data size, the performance gradually
achieves the upper bound of fine-tuning on fully labeled data. The results demonstrate that unsu-
pervised pre-training benefits low-resource downstream tasks even when only a limited number of
labeled data are available for fine-tuning. More results of other metrics are in Appendix D.
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Figure 6: The effect of low resource in fine-tuning datasets on four downstream tasks with different
fractions of labeled training set (x-axes). The results are the average of 20 runs.
Effect of pre-training data size. We further explore the effect of pre-training data volume on
the performance of downstream tasks. In Fig. 7, we show the AUC given different fractions of pre-
training data. Here, 0% training set size denotes the Base Model, which is trained on the downstream
data from scratch. Generally, the performance improves with the increase of pre-train data. The
results indicate that pre-training is beneficial for downstream tasks by learning contextualized patient
representations from large-scale unlabeled patient data. Other metrics are show in Appendix D.
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Figure 7: The effect of pre-training data volume on four downstream tasks (average of 20 runs).

5 CONCLUSION

In this paper, we study the problem of TEE from observational data. We propose a new transformer-
based TEE framework called CURE, which adopts the pre-training and fine-tuning paradigm.
CURE is pre-trained on large-scale unlabeled patient data and then fine-tuned on labeled patient
data for TEE. We convert the structured patient data into sequence and design a new sequence en-
coding method to encode the structure and time into a comprehensive patient embedding. Thorough
experiments show that pre-training significantly boosts the TEE performance on 4 downstream tasks
compared to state-of-the-art methods. We further demonstrate the data scalability of CURE and ver-
ify the results with corresponding published RCTs.
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Ethics Statement. The observational data used in the paper are from MarketScan Research
Database, which is fully HIPAA-compliant de-identified, have very minimal risk of the potential
for loss of privacy. Moreover, Per the DUAs with MarketScan, all users to access the data will
need to take full research, ethics, and compliance training courses and be covered by IRBs. Thus,
potential privacy and security risk would be eliminated and/or mitigated.

Reproducibility Statement. We provide the code and instructions needed to reproduce the results in
supplemental material. The experimental data can be obtained from https://www.ibm.com/
products/marketscan-research-databases.
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APPENDIX

A CAUSAL ASSUMPTIONS

We follow the standard causal assumptions (Imbens & Rubin, 2015) to help guarantee that the treat-
ment effects are identifiable from the observational data.

Assumption 1 (Consistency) The potential outcome under the treatment a equals to the observed
outcome if the actual treatments is a.

Assumption 2 (Positivity) Given the observational data of the history, if the the probability P (a =
1|x) ̸= 0, then the probability of receiving treatment 0 or 1 is positive, i.e., 0 < P (A = a|X =
x) < 1, for all a ∈ A and x ∈ X .

Assumption 3 (Strong Ignorability) Given the observational data of the history, the treatment as-
signment is independent of the potential outcome, i.e., Y (A = a) ⊥⊥ A|X = x, for all a ∈ A.

Assumption 1 is fundamental to the potential outcome framework used to define counterfactuals
and infer treatment effects. Essentially, this assumption requires that the treatment specified in the
study must be precise enough that any variation within the treatment specification will not lead to a
different outcome. Assumption 2 implies that all patients may receive the treatment whatever their
observed covariates. Otherwise, it is impossible to derive the counterfactuals for patients who do
not have any chance of being in the other treatment group. Assumption 3 states that the poten-
tial outcomes are independent of treatment assignment given the set of observed covariates. This
assumption guarantees that the treatment effects are identifiable given the treatment, outcome and
observed covariates as: E[Y (A = 1)− Y (A = 0)] = Ex∈X [E[Y |A = 1,x]− E[Y |A = 0,x]].

Positivity in our data. We investigate the positivity assumption in each downstream data respec-
tively. Following the positivity evaluation in Shimoni et al. (2019), we estimate the propensity
score of each individual via a propensity score model. The positivity can be evaluated through the
distribution of propensity: whether the distribution is generally smooth with propensities normally
distributed instead of much accumulation in either propensity equals 0 or propensity equals 1. As
shown in Figure A1, the estimated propensity scores in each downstream dataset are generally nor-
mally distributed without accumulation on either side. The empirical results demonstrate that our
data generally satisfy the positivity assumption.

Figure A1: Propensity distribution in each downstream dataset.

Strong ignorability in our data. The strong ignorability assumption should be generally valid
in our data. First, the pre-training data have around 3M unlabeled patient sequences with 9,452
unique covariates. With such large patient data and rich covariate space, the model can identify
sufficient potential confounders and effectively adjust the confounding bias. Moreover, a recent
study Zhang et al. (2022a) of treatment effect estimation further demonstrates that the model trained
on tens of thousands of covariates from observational data can even adjust for indirectly measured
confounders. Second, according to our study design (as illustrated in Section 3.1 and Figure 2),
all the covariates are obtained from the baseline period (time before the target treatment initiation)
as potential confounders, and the outcomes are obtained from the follow-up period (time after the
target treatment initiation). In this design, all the potential confounders are collected prior to the first
target treatment prescription (a.k.a., pre-treatment covariates) thus simple collider bias or mediator
bias will be mitigated.
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B TRANSFORMER ARCHITECTURE

For each single Transformer encoder block, it consists of a multi-head self-attention layer followed
by a fully-connected feed-forward layer (Vaswani et al., 2017). The multi-head attention is the most
crucial part which can be calculated as,

MultiHead(h) = Concat(head1, . . . , headh)WO;

headi = Attention(hWQ
i ,hWK

i ,hWV
i )

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V

(1)

where h ∈ Rd×dmodel denotes the hidden representations and d is the input sequence length.
WQ

i ∈ Rdmodel×d , WK
i ∈ Rdmodel×d , WV

i ∈ Rdmodel×d, WO ∈ Rnd×dintermediate are learnable pa-
rameter matrices. d = dmodel/n and n is the number of attention heads. We show the detailed model
configuration in Fig. A2.

Figure A2: Model configuration.
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C ADDITIONAL DETAILS ON EXPERIMENTAL SETUPS

Pre-training data. The pre-training data are obtained from MarketScan Commercial Database
5, which consists of medical and drug data from employers and health plans for over 215 million
individuals. In this study, we focus on CAD as the studied disease and stroke as the outcome. The
definitions of CAD and stroke are shown in Table A1 and Table A2 respectively.

Table A1: The definition of coronary artery disease (CAD) from observational health data.

Reference (PMID) 16159046, 26524702, 28008010

Criteria
A history of coronary revascularization in the EHR
Or, history of acute coronary syndrome, ischemic heart disease, or exertional angina

Diagnostic codes

ICD-9 codes:
410* to 414*
ICD-10 codes:
The best approximation are the following codes:
I20* Angina pectoris
I21* Acute myocardial infarction
I22* Subsequent ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial
infarction
I23* Certain current complications following ST elevation (STEMI) and non-ST
elevation (NSTEMI) myocardial infarction (within the 28 day period)
I24* Other acute ischemic heart diseases
I25* Chronic ischemic heart disease

Table A2: The definition of stroke from observational health data
Reference (PMID) 29202795

Diagnostic codes

ICD-9 codes:
V12.54,
438.0–438.9
ICD 10 codes:
Z86.73
I60-I69
subarachnoid hemorrhage (I60);
intracerebral hemorrhage (I61);
cerebral infarction (I63);
and other transient cerebral ischemic attacks and related syndromes and
transient cerebral ischemic attack (unspecified) (G458 and G459)

5https://www.ibm.com/products/marketscan-research-databases
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Downstream tasks. We demonstrate the flowchart for RCT extraction in Fig. A3. All RCTs are
extracted from https://clinicaltrials.gov/. We start from 1,593 CAD-related RCTs
with stroke as the outcome and end up with 4 RCTs that satisfy all the above criteria. We have
included all those 4 RCTs for downstream task construction.

RCTs of CAD as disease and
Stroke as outcome 

(n=1,593) 
RCTs not in Phase 2  

or Phase 3 
(n=1,301)

RCTs are completed  
with results

(n=71) 

RCTs are not completed or
without results 

(n=221)

RCTs in Phase 2 or Phase 3 
(n=292) 

The studied drugs are valid and
available in observational data 

(n=4) 

The studied drugs are neither
valid nor available 

(n=67)

Figure A3: The data flow for RCT extraction. The downstream tasks constructed based on the
extracted RCTs.

Table A3: The statistics of the downstream dataset.
Target v.s. Compared Rivaroxaban v.s. Aspirin Valsartan v.s. Ramipril Ticagrelor v.s. Aspirin Apixaban v.s. Warfarin

# of patients (Target; Compared) 26340 (9569; 16771) 12850 (7306; 5544) 29248 (12477; 16771) 18187 (6701; 11486)
Female (%) 30.4 32.4 27.1 31.8
Age (group) on index date 55-64 55-64 55-64 55-64
Patients with stroke (%) 13.7 11.9 18.9 16.7
Average # of visits per patient 83.4 74.0 70.7 97.1
Average # of codes per patient 182.3 157.2 152.0 215.9

Pre-training and fine-tuning data preparation. The pre-training is based on large-scale unla-
beled patient data, and the fine-tuning is based on small-scale labeled patient data, which are not
used for pre-training. We first construct 4 datasets for downstream tasks according to the study de-
sign of related randomized clinical trial (RCT). The patients who satisfy the eligibility criteria of the
RCT are included in each dataset respectively (see more details of the study design in Fig. 2). Then
we construct the unlabeled pre-training data based on all the remaining patients who are not included
in any of the 4 downstream datasets. Therefore, the same patients do not appear simultaneously in
both the pre-training stage and the fine-tuning stage.

Evaluation metrics. As the true treatment effects are not available in real-world data, we use
the influence function-based precision of estimating heterogeneous effects (IF-PEHE) (Alaa & Van
Der Schaar, 2019) for model evaluation. Following the same experimental setup, we calculate IF-
PEHE as,

• Step 1: Train two XGBoost (Chen & Guestrin, 2016) classifiers for potential outcome
prediction denoted by µ0 and µ1, where µa = P (ya = 1|X = x) using the training
set Ztrain. Then calculate the plug-in estimation T̃ = µ1 − µ0 Train a XGBoost (Chen
& Guestrin, 2016) classifier propensity score function (i.e., the probability of receiving
treatment) π̃ = P (a = 1|X = x).
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• Step 2: Given the estimated treatment effect T̂ (xi) on the test set Ztest, calculate the IF-
PEHE with the influence function l̂ as,

IF-PEHE =
∑

xi∈Ztest

[(T̂ (xi)− T̃ (xi))
2 + l̂(xi)]

l̂(x) = (1−B)T̃ 2(x) +By(T̃ (x)− T̂ (x))−W (T̃ (x)− T̂ (x))2 + T̂ 2(x)

(2)

where W = (a− π̃(x)), B = 2a(a− π̃(x))C−1, C = π̃(x)(1− π̃(x)).

Implementation details. The pre-training model architecture follows the BERTbase (Devlin et al.,
2018) and most hyperparameters remain the same as default setting. The detailed hyperparameters
setup is shown in Table A4 for pre-training , and Table A5 for fine-tuning. With 3 NVIDIA GeForce
RTX 2080 Ti 11GB GPUs, the pre-training takes about 20 hours with current setup. We have
provided all code in supplemental material.

Table A4: Hyperparameters used in pre-training.
Parameters CURE
Maximum Steps 100K
Initial Learning Rate 1e-4
Batch Size 96
Warm-Up Steps 10K
Sequence Length 256
Dropout 0.1

Table A5: Hyperparameters search space and optimal parameters used for fine-tuning.
Parameters Search Space Optimal Value

Maximum Epochs {1,2,3,4,5} 2
Initial Learning Rate {1e-5, 3e-5, 5e-5} 5e-5
Batch Size {16, 32, 64} 32
Sequence Length 256 256
Fixed Window Length 30 30
Baseline Window {90, 180, 360, 720} 360
Dropout 0.1 0.1

Table A6: The parameter size of the proposed method and baselines.
Method Model parameters

TARNet 2M
DragonNet 2M
DR-CFR 3M
TNet 4M
SNet 3M
FlexTENet 3M
TransTEE 7M

CURE 93M
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Table A7: The influence of weight (α) associated with the discriminator in DragonNet to the model
performance on the Valsartan v.s. Ramipril dataset (random seed =42).

α AUC AUPR IF-PEHE

0.2 0.677 0.304 0.768
0.4 0.679 0.308 0.689
0.6 0.680 0.310 0.660
0.8 0.682 0.312 0.644
1.0 0.683 0.314 0.643
1.2 0.679 0.315 0.593
1.4 0.681 0.317 0.584
1.6 0.682 0.318 0.589
1.8 0.683 0.319 0.586
2.0 0.685 0.321 0.595

CURE 0.805 0.428 0.161
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D ADDITIONAL EXPERIMENTAL RESULTS

Visualization. The self-attention mechanism of the Transformer enables the exploration of inter-
action among input covariates. The purpose of visualizing learned attention weights is to better
understand our data and interpret what our model learns, how our model makes decisions, and in-
vestigate whether the model learns the right associations or not.

As an example, we show the attention weights of a patient from Apixaban treatment group of Apix-
aban v.s. Warfarin study in Fig. A4. Different colors denote the attention heads and there are 12
heads in total. The medications and diagnosis codes highlighted in the figure are the most related
features to the outcome prediction and treatment effect estimation. For example, Amiodarone is
an antiarrhythmic medication used to treat and prevent a number of types of cardiac dysrhythmias
including atrial fibrillation 6. A study (Stanifer et al., 2020) shows that apixaban is superior to war-
farin in preventing stroke in patients with atrial fibrillation. Those attention weights could be used
to analyze the treatment effects in some subgroups that characterized by the attended feature set.

Figure A4: The visualization of Top 10 attention weights associated with the special token [CLS]
of a patient from Apixaban treatment group.

Ablation studies in effect of embedding layer. We note that in Figure 5, type embedding is
helpful to 3 out of 4 datasets as excluding type embedding (w/o. type embedding) yields an increase
in IF-PEHE scores in 3 datasets (R v.s. A, V v.s. R and T v.s. A) and a drop in IF-PEHE score
in 1 dataset (A v.s. W). According to the basic statistics of 4 datasets (Table A3), we find that the
average number of visits per patient and the average number of codes per patient is the largest in A
v.s. W dataset among all the 4 datasets. In this case, the type embedding for the data with a larger
number of visits/codes may not be as helpful as in the data with a smaller number of visits/codes.
And this characteristic is captured by the IF-PEHE metric. Oppositely, excluding type embedding
in T v.s. A (which contains the smallest number of visits/codes per patient) yields a significant
performance drop (i.e., type embedding is important to T v.s. A dataset). The results demonstrate
that each embedding plays a different role in different datasets.

Ablation studies in effect of downstream data size. As shown in Fig. A5, our model can achieve
comparable performance as measured by AUPR to the Base Model with only around 5%˜10% la-
beled downstream data.

Ablation studies in effect of pre-training data size. As shown in Fig. A6, the model gradually
yields better performance in terms of AUPR scores when the pre-train data size increases.

Evaluation on non-random assignment. We show the t-SNE visualization of learned patient
representations of treatment and control group respectively (see Fig. A7). The visualization of our
model (CURE) demonstrates that the distribution variance between two groups is marginal and the
non-random assignment issue is alleviated.

6https://www.drugs.com/monograph/amiodarone.html

19

https://www.drugs.com/monograph/amiodarone.html


Under review as a conference paper at ICLR 2023

1 5 10 20
Training Set Size (%)

0.25
0.30
0.35
0.40
0.45

AU
PR

Rivaroxaban v.s. Aspirin

1 5 10 20
Training Set Size (%)

0.20
0.25
0.30
0.35
0.40

AU
PR

Valsartan v.s. Ramipril

1 5 10 20
Training Set Size (%)

0.30
0.35
0.40
0.45

AU
PR

Ticagrelor v.s. Aspirin

1 5 10 20
Training Set Size (%)

0.30
0.35
0.40
0.45
0.50
0.55
0.60

AU
PR

Apixaban v.s. Warfarin

Low resource w. pre-training Base Model Full set w. pre-training

Figure A5: The effect of low resource in fine-tuning datasets on four downstream tasks with different
fractions of labeled training set (x-axes). The results are the average of 20 runs.
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Figure A6: The effect of pre-training data volume on four downstream tasks (average of 20 runs).

We further adapt the design in DragonNet (Shi et al., 2019) in our model’s fine-tuning stage. Specif-
ically, we add an additional prediction head for propensity score estimation and modify the loss
function to incorporate both outcome prediction and propensity prediction. We compare the new
model (CURE+propensity) with the proposed CURE model on 4 downstream tasks respectively. As
shown in Table A8, the performance of these two models is comparable in terms of both factual
prediction and treatment effect estimation.

Figure A7: The t-SNE visualization of learned patient representations on Valsartan v.s. Ramipril
dataset.
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Table A8: Comparison of the proposed model (CURE) and a new model based on CURE but adapt-
ing propensity module in DragonNet (Shi et al., 2019) (CURE + propensity) on 4 downstream tasks
(random seed=42).

Rivaroxaban v.s. Aspirin Valsartan v.s. Ramipril
Method AUC AUPR IF-PEHE AUC AUPR IF-PEHE

CURE 0.786 0.419 0.186 0.805 0.428 0.161
CURE+propensity 0.789 0.427 0.178 0.804 0.428 0.156

Ticagrelor v.s. Aspirin Apixaban v.s. Warfarin
Method AUC AUPR IF-PEHE AUC AUPR IF-PEHE

CURE 0.807 0.502 0.211 0.838 0.597 0.182
CURE+propensity 0.806 0.505 0.239 0.844 0.602 0.253
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Evaluation with RCT conclusion. We use the bootstrap percentile method which approximates
the data sample statistic from the distribution of the bootstrap sample statistic. Specifically, for
each downstream data, we first obtain the estimated (individual) treatment effects under 100 ran-
dom runs with different random seeds. We then calculate the average treatment effects (c) of
each bootstrap and sort them from smallest to biggest. Finally the (95%) CIs are estimated as
CIs = (c0.05/2, c1−0.05/2) where cα denotes the α× 100 percentile of the sorted list.

We evaluate the estimated treatment effects on 100 bootstrap samples. As shown in Table D, the
results are consistent with the reported results on 20 bootstrap samples: only a little change in
numerical values but no influence on the generated hypothesis.

Table A9: Comparison of the estimated treatment effects with corresponding ground truth RCT. The
estimated effects are shown in 95% confidence intervals (CI) under 100 bootstrap runs. The RCT
conclusions are obtained from published articles.

Target v.s. Compared Estimated Effect (CI) P value Generated Hypothesis RCT Conclusion

Rivaroxaban v.s. Aspirin [-0.009, 0.008] 0.4140 No significant difference No significant difference Anand et al. (2018)
Valsartan v.s. Ramipril [-0.004, 0.011] 0.0582 No significant difference No significant difference Pfeffer et al. (2021)
Ticagrelor v.s. Aspirin [0.019, 0.043] 5.7814e-25 T. is less effective than A. No significant difference Sandner et al. (2020)
Apixaban v.s. Warfarin [-0.037, -0.002] 1.3257e-15 A. is more effective than W. A. is more effective than W. Granger et al. (2011)

We evaluate the treatment effects estimated by all the baselines and conduct the same hypothesis
testing. As shown in Table A10 below, our method correctly generates 3 (out of 4) RCT conclusions
that match the ground truth RCT conclusions while the best baselines only identify 2 (out of 4) RCT
conclusions.

Table A10: Comparison of the estimated treatment effects with corresponding ground truth RCT of
all methods.

Rivaroxaban v.s. Aspirin Valsartan v.s. Ramipril
Method Estimated Effect (CI) P value Match RCT Conclusion? Estimated Effect (CI) P value Match RCT Conclusion?

TARNet [0.066, 0.095] 5.678e-10 No [-0.037, -0.003] 0.026 No
DragonNet [0.18, 0.236] 5.979e-12 No [0.03, 0.07] 4.681e-05 No
DR-CFR [0.13, 0.183] 2.783e-10 No [0.002, 0.04] 0.033 No
TNet [0.041, 0.07] 2.509e-07 No [-0.038, -0.001] 0.039 No
SNet [-0.002, 0.008] 0.231 Yes [-0.051, -0.026] 3.168e-06 No
FlexTENet [0.064, 0.108] 1.529e-07 No [-0.079, -0.035] 3.184e-05 No
TransTEE [-0.013, -0.002] 0.018 No [-0.019, 0.034] 0.420 Yes

CURE [-0.009, 0.006] 0.452 Yes [-0.003, 0.014] 0.103 Yes

Ticagrelor v.s. Aspirin Apixaban v.s. Warfarin
Method Estimated Effect (CI) P value Match RCT Conclusion? Estimated Effect (CI) P value Match RCT Conclusion?

TARNet [0.064, 0.101] 2.861e-08 No [-0.006, 0.028] 0.207 No
DragonNet [-0.013, 0.01] 0.821 Yes [0.018, 0.056] 6.284e-04 No
DR-CFR [-0.068, -0.029] 4.915e-05 No [-0.026, -0.002] 0.047 Yes
TNet [0.046, 0.069] 6.474e-09 No [0.009, 0.023] 2.329e-04 No
SNet [0.005, 0.016] 4.398e-04 No [-0.046, -0.017] 2.112e-04 Yes
FlexTENet [0.045, 0.068] 5.243e-09 No [0.012, 0.042] 0.001 No
TransTEE [-0.014, -0.009] 0.0216 No [-0.027, -0.002] 0.027 Yes

CURE [0.022, 0.040] 5.982e-14 No [-0.039, -0.002] 4e-04 Yes

Semi-synthetic experiment. We generate a semi-synthetic dataset based on real patient data ob-
tained from the MarketScan data. Specifically, we simulate treatment assignment a and potential
outcome y using pre-treatment covariates x (i.e., historical co-medication, co-morbidities and de-
mographics). The treatment assignment is simulated by a|x ∼ Bernoulli(Sigmoid(sTx + m)),
where s ∼ N (0|V|, 0.1 · I), |V| is the cardinality of medical feature vocabulary, m ∼ N (0, 0.1),
x denotes the aggregation of all historical covariates. The outcome is simulated by y|x, a ∼
Bernoulli(Sigmoid(wTx+ βa+ n)), where w ∼ N (0|V|, 0.1 · I), β ∼ N (0, 1), n ∼ N (0, 0.1).

As we have all potential outcomes under both treatment and control arms available in the semi-
synthetic data, the model performance is evaluated with Precision of Estimating Heterogeneous
Effects (PEHE), which measures the root mean square error between the true treatment effect and
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estimated treatment effect. The comparison results from the semi-synthetic dataset are shown in
Table A11. The proposed model CURE yields the best performance among all the baselines. We
will add the results for the semi-synthetic dataset in revision.

Table A11: Comparison with state-of-the-art methods on semi-synthetic Valsartan v.s. Ramipril
dataset. The results are the average and standard deviation over 20 runs.

Method PEHE

TARNet 0.768± 0.012
DragonNet 0.759± 0.015
DR-CFR 0.714± 0.014
TNet 0.784± 0.017
SNet 0.776± 0.022
FlexTENet 0.791± 0.014
TransTEE 0.689± 0.012

CURE 0.596± 0.010
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Additional related work in clinical risk prediction. Though some existing works Choi et al.
(2016b;a); Ma et al. (2017); Che et al. (2018); Luo et al. (2020) in clinical risk prediction using
electronic medical records (EHRs) also have patient encoding before sending the input into the
model, the patient encoding is unique in our problem scenario and more comprehensive than the
existing patient encoding in clinical risk prediction.

Fundamentally, clinical risk prediction is very different from treatment effect estimation in prob-
lem formulation, model design, and experiment setup. To the best of our knowledge, we are the
first study to incorporate this comprehensive patient encoding with the following pre-training and
fine-tuning framework as a whole to representation learning of patient data for treatment effect es-
timation problems. Even if ignoring the great differences between these two tasks, our patient data
encoding is not exactly the same as the encoding methods in existing work in clinical risk prediction
(as shown in Table A12). Specifically, besides the token embedding, the proposed patient encoding
considers 1) physical time information, which denotes the time gap between the observation and in-
dex date, can capture the (irregular) time information; 2) visit time information is crucial to identify
the relationship between each medical code and corresponding visit time; 3) type information to help
capture the heterogeneity of the medical data (i.e., medications, diagnosis codes and demographics).

Table A12: Patient encoding methods in the clinical risk prediction literature. * Time interval
between two observations. ** Position embedding in Transformer Vaswani et al. (2017)

Backbone token (variable) emb. physical time emb. visit time emb. type emb.

RETAIN Choi et al. (2016b) RNN Yes No No No
Doctor AI Choi et al. (2016a) RNN Yes Yes* No No
Dipole Ma et al. (2017) RNN Yes No No No
GRU-D Che et al. (2018) RNN Yes Yes* No No
HiTANet Luo et al. (2020) Transformer Yes Yes Yes** No
Med-BERT Rasmy et al. (2021) Transformer Yes No Yes No

CURE (Ours) Transformer Yes Yes Yes Yes

To further verify that our proposed embedding gives better performance, We compare our method
with GRU-D Che et al. (2018) which is one of the most representative works in clinical risk pre-
diction that explicitly considers the time information. The patient encoding in GRU-D uses the
time interval between two observations as the input to the GRU unit in order to capture the time
information. We implement the patient encoding method in GRU-D in our model by integrating the
token embedding and time interval embedding as the patient embedding and keeping the remaining
model architecture the same. We conduct comparison experiments on 4 downstream data respec-
tively. As shown in Table A13, our proposed patient coding method has more than 1.1%, 2.8% and
2.4% respective average AUC, AUPR and IF-PEHE improvement over the patient encoding method
in GRU-D.

Compared to the patient encoding method in GRU-D, our proposed patient encoding method is
more comprehensive. For time information, we consider both visit time information and physical
time information. Here, the physical time information can capture the (irregular) time information
and plays a similar role as the time interval embedding in GRU-D. The visit time information, which
is not considered in GRU-D, is crucial to identify the relationship between each medical code and
the corresponding visit. Besides the time information, we additionally consider the type information
to help better capture the heterogeneity of the medical data.
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Table A13: Comparison of the patient encoding in CURE with the patient encoding in GRU-D Che
et al. (2018) on 4 downstream tasks.

Rivaroxaban v.s. Aspirin Valsartan v.s. Ramipril

Method AUC AUPR IF-PEHE AUC AUPR IF-PEHE
GRU-D 0.791 0.448 0.179 0.802 0.395 0.176
CURE 0.803 0.469 0.173 0.811 0.428 0.158

Ticagrelor v.s. Aspirin Apixaban v.s. Warfarin

Method AUC AUPR IF-PEHE AUC AUPR IF-PEHE
GRU-D 0.784 0.458 0.244 0.813 0.561 0.248
CURE 0.793 0.489 0.198 0.826 0.588 0.224
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