
ChemOrch: Empowering LLMs with Chemical
Intelligence via Synthetic Instructions

Yue Huang1∗, Zhengzhe Jiang∗, Xiaonan Luo1, Kehan Guo1, Haomin Zhuang1, Yujun Zhou1

Zhengqing Yuan1, Xiaoqi Sun2, Jules Schleinitz3, Yanbo Wang4, Shuhao Zhang5
Mihir Surve6, Nitesh V Chawla1, Olaf Wiest6, Xiangliang Zhang1

1Department of Computer Science and Engineering, University of Notre Dame
2MIT 3CalTech 4MBZUAI 5CMU

6Department of Chemistry & Biochemistry, University of Notre Dame

Abstract

Empowering large language models (LLMs) with chemical intelligence remains a
challenge due to the scarcity of high-quality, domain-specific instruction-response
datasets and the misalignment of existing synthetic data generation pipelines with
the inherently hierarchical and rule-governed structure of chemical information.
To address this, we propose ChemOrch, a framework that synthesizes chemically
grounded instruction–response pairs through a two-stage process: task-controlled
instruction generation and tool-aware response construction. ChemOrch enables
controllable diversity and levels of difficulty for the generated tasks, and ensures
response precision through tool planning & distillation, and tool-based self-repair
mechanisms. The effectiveness of ChemOrch is evaluated based on: 1) the high
quality of generated instruction data, demonstrating superior diversity and strong
alignment with chemical constraints; 2) the reliable generation of evaluation
tasks that more effectively reveal LLM weaknesses in chemistry; and 3) the
significant improvement of LLM chemistry capabilities when the generated
instruction data are used for fine-tuning. Our work thus represents a critical step
toward scalable and verifiable chemical intelligence in LLMs. The code is available
at https://github.com/HowieHwong/ChemOrch.

1 Introduction
Large Language Models (LLMs) have exhibited exceptional capabilities across a wide range of
tasks, to be widely applied in various downstream tasks [1–5]. Among these, chemistry represents a
particularly promising field where LLMs can assist in accelerating molecular design [6, 7], facilitating
scientific discovery [8, 9], and democratizing access to expert-level chemical knowledge [10, 11].
Empowering LLMs with strong chemical reasoning capabilities could significantly impact areas such
as drug discovery, materials development, and organic synthesis [12, 13].

Despite this potential and existing efforts [9, 10], empowering LLMs with chemistry domain knowl-
edge remains challenging. First of all, there exists Challenge 1: data scarcity in both training and
testing, as disclosed in recent benchmarking studies [14]: LLMs have not yet achieved the level of
performance expected by chemistry scientists. High-quality instruction datasets for guiding LLMs to
learn chemistry knowledge are extremely limited. While chemistry-related corpora have been utilized
during pretraining [4], constructing task-specific fine-tuning datasets and fine-grained evaluation sets
often requires intensive expert annotation [15], leading to high costs and limited scalability.

To overcome data scarcity, synthetic data generation offers a promising alternative. However, there
exists Challenge 2: mismatch between general-purpose synthetic frameworks and chemistry-

∗Equal Contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/HowieHwong/ChemOrch

specific requirements. Most existing instruction generation frameworks are built for general text
understanding, and are fundamentally misaligned with the structured and rule-bound nature of
chemical tasks [16–18]. Chemical problems often involve operations over molecular structures,
require strict adherence to conservation laws or valence constraints, and demand accurate function
grounding. Even minor errors, e.g., invalid atoms or incorrect stereochemistry, can lead to chemically
meaningless or unreliable results, a failure mode less critical in standard NLP.

Even when domain-specific generation is attempted, there remains Challenge 3 for ensuring diversity,
executability, and controllability in the data synthesis process. Effective chemical instruction
datasets must span a wide range of tasks, from basic property prediction to complex retrosynthesis
planning, while ensuring that generated responses are chemically valid and verifiable. Beyond
diversity, maintaining executability, the ability for model outputs to conform to domain rules and
withstand external verification, is crucial for scientific reliability. Furthermore, controlling the
difficulty, specificity, and complexity of generated instructions is important for effective training of
LLMs (enabling progressive skill development and robust understanding), but remains particularly
difficult in current automated instruction generation pipelines.

To address these challenges, we propose ChemOrch, a framework for constructing synthetic
instruction-response pairs that enable LLMs to acquire chemistry domain knowledge. ChemOrch
consists of a two-stage pipeline: (1) Task-Controlled Instruction Generation. Given a chemistry
task (e.g., property prediction) along with user-defined constraints (e.g., target difficulty, required
keywords) and metadata (e.g., reference files, extra tool configuration), ChemOrch enables the
generation of diverse and controllable instructions (e.g., different molecules with various types of
properties to predict, at varying levels of prediction difficulty). While the diversity is ensured by
specifying constraints, the difficulty level is controlled by a difficulty reward model with feedback,
which evaluates and iteratively refines instructions to align with user-specified complexity levels. (2)
Tool-Aware Response Construction. To ensure precise responses, ChemOrch leverages a set of tools
to ground its outputs, as certain chemical tasks are straightforward for these tools but challenging for
LLMs due to their lack of domain knowledge. For example, tasks like name translation can be easily
handled by chemical tools, but are difficult for LLMs to generate accurately. For the given instruction
generated before, ChemOrch decomposes the associated problem into intermediate reasoning steps,
retrieves and distills relevant tools, and generates code scripts to produce accurate outputs. This
process includes multi-stage self-repair mechanisms and sufficiency checks, ensuring that generated
responses are verifiable, executable, and faithfully satisfy the original instruction intent (e.g., see
several instruction-response examples in Figure 15, Figure 16, Figure 17).

We conduct extensive experiments based on ChemOrch, evaluating its effectiveness across multiple
dimensions, including the diversity, response quality, and constraint adherence of the generated
instruction-response pairs, and its usefulness on two important applications. First, ChemOrch serves
as a reliable evaluation framework that identifies LLM weaknesses, and enables scalable, task-specific
assessments with high fidelity. Second, it enhances LLM performance in chemical QA and reasoning
tasks, when the generated instructions are used for fine-tuning.

Overall, our contributions are threefold: 1) We introduce ChemOrch, breaking the limits of instruction
data scarcity to enable LLMs to solve chemistry-related challenges more effectively. The synthetic
instruction-response pairs are diverse in topics, challenging at controllable levels, and comprehensive
for covering a wide range of chemical tasks with precise answers guaranteed, as validated by human
experts. 2) We propose a novel synthesis framework featuring a two-stage pipeline, incorporating
difficulty control, tool decomposition, and distillation, as well as self-repair mechanisms, allowing
scalable and high-quality instruction response generation. 3) Importantly, we showcase the significant
impact of ChemOrch on two key applications: facilitating chemistry evaluation and improving the
chemistry capability of LLMs, demonstrating the effectiveness of our framework.

2 Preliminary: Harnessing Chemical Tools within ChemOrch

Leveraging chemistry tools is a core aspect of our work, ensuring that the responses in the curated
instruction dataset are both accurate and reliable. Furthermore, the tool execution process itself can be
utilized to evaluate and enhance LLM’s proficiency in using tools—an important long-term objective
of our research (Our experiments presented in section 4 demonstrate that ChemOrch significantly
improves LLMs’ tool usage capabilities). Before introducing the framework of ChemOrch, this
section outlines how chemical tools are constructed and integrated.

2

1
2

3

4

5

Foundational
Tool Resources

Tool
Documents

Function
Parsing

Manual
Review

Sub-Tool 1 Sub-Tool 2

Sub-Tool n

Figure 1: An example of a sub-tool (left) and the tool decomposition pipeline (right). Each sub-tool
includes five components: 1) a high-level operation description, 2) formal argument specification, 3)
expected return values, 4) minimal working example, and 5) real-world use case.

Tools Overview. ChemOrch leverages two categories of tools: chemistry-related tools such as
RDKit [19] and PubChem [20] and general-purpose tools that include web search and the Python
environment for code scripting. More details about tools selection are provided in Appendix I.

Motivation. In real-world scenarios, humans typically interact with chemistry tools at the function
level, selecting specific operations rather than engaging with the tool as a monolithic system. Inspired
by this, we aim to enhance the usability of foundational chemistry tools (e.g., RDKit) in instruction-
driven response generation by decomposing them into fine-grained sub-tools. This decomposition
serves three purposes: (1) it enables precise control by isolating individual functions, (2) it simplifies
tool semantics, making them more interpretable and accessible for LLMs, and (3) it mitigates the
challenges LLMs face when handling complex, multi-step operations with minimal context.

Sub-Tool Construction. We begin by feeding the official documentation of RDKit and PubChem into
an LLM (i.e., GPT-4o) and applying a few-shot learning approach to guide the extraction of function-
level operations. These operations, which represent the atomic units of functionality, are identified
based on their relevance to common chemistry tasks. The LLM is then prompted to synthesize these
operations into callable Python code, each encapsulated as a sub-tool. Every sub-tool is constructed
following a schema consisting of five components, as illustrated in Figure 1. This semi-automated
process significantly accelerates tool decomposition while maintaining structural consistency. To
ensure correctness and usability, we subsequently perform a manual review of all generated sub-tools,
with review procedures introduced in Appendix C. In total, we constructed 74 sub-tools, 57 derived
from RDKit and 17 from PubChem. For each sub-tool, we provide both a minimal working example
and a real-world use case. The real-world use case demonstrates how the operation is applied in
meaningful task contexts, e.g., using a molecular descriptor computation sub-tool within a solubility
prediction pipeline. The examples help LLMs understand how to invoke a sub-tool and why and
when to use it. These sub-tools are integrated with other general-purpose tools to form a tool pool,
which is then used in the instruction-response generation process of ChemOrch.

Extensibility. While ChemOrch currently integrates a limited set of tool types, it is designed to be
extensible. A key enabler of this extensibility is the use of metadata (as shown in Figure 2), which
allows users to specify additional tool configurations at runtime. For instance, users can upload
custom wrappers or specify endpoints for private APIs, as shown in Appendix N. By doing this,
ChemOrch is able to dynamically recognize and utilize new capabilities, enabling broader coverage
of specialized chemistry tasks.

3 ChemOrch

We formalize ChemOrch as a framework consisting of a two-stage generation pipeline that produces
instruction–response pairs tailored for chemistry-related tasks.

3

Metadata (Optional): CSV/JSON or reference files, extra
tool configuration, and necessary text.

Task Name: Transition State Identification
Task Description: The task is identifying the likely
transition state structure for a given chemical reaction.

Difficulty Reward Model w/ Feedback
 Difficulty Score
 Reason for easy
 Reason for difficult

Constraint (Optional): The instruction should focus on
specific chemical problems but not general problems.

IG Model
1 Generate
Instruction

2 Difficulty
Evaluation

3 Instruction
Refinement

Generated
Instructions

Generated
Instructions

Step 1: Calculate ...
Step 2: Determine ...
...

Expected Tool 1: ...
Expected Tool 2: ...
...

Instruction Decomposition Expected Tool Specification

Tool Pool

Retrieval

Tool 1: get_properties
Tool 2: ...
...

Selected Tools

 Usefulness Check
 Expert Extent
 Function Budget

Refinement

Tool Distillation

Code Script Generation w/ Self-Repairing

Code
Script

Catch
 Error

Tool
Docs.

RG Model

Early Stopping Checking
and Sufficiency Validation

Do all results fulfill the instruction?

Generated
Responses+

Final Data

Instruction
Generation

Response
Generation

Effectiveness
Checking

+

Figure 2: ChemOrch Framework. It consists of instruction generation (IG) with difficulty evaluation,
and response generation (RG) by calling tools from the tool pool.

3.1 Instruction Synthesis
Let T denote the space of chemistry-related tasks, and let C represent a set of user-defined constraints
(e.g., instruction length, complexity, keyword requirements, formatting, or few-shot examples for
guiding generation) that enable more controllable generation. In addition to constraints, we also
introduce a metadata set M , which includes auxiliary inputs such as reference files, specialized tool
configurations, or essential textual descriptors. These metadata items serve as seed data to guide and
condition the instruction generation process more precisely (e.g., by providing molecular structures
as input when generating instructions for reaction prediction tasks), as shown in top-left of Figure 2.

Given a task t ∈ T , constraint c ∈ C, and metadata m ∈ M , the instruction generation (IG)
modelMinst (i.e., an LLM) synthesizes an instruction x =Minst(t, c,m). The details of instruction
generation are presented in Algorithm 1 in Appendix M. For all tasks in T , by varying the constraint
in each running iteration alongside the metadata (check implementation details in Appendix B), the
IG model generates diverse instructions X = {xi}Ni=1.

Difficulty Controlling. Previous studies have shown that controlling the complexity or difficulty of
LLM-generated instructions remains a non-trivial challenge [21, 22]. Maintaining calibrated difficulty
levels in the chemistry domain is essential for supporting progressive skill acquisition.

To address this, we introduce a difficulty reward model with feedback, denotedMdiff, which evaluates
the generated instruction x and outputs both a scalar difficulty score d (from 1–5) and a set of localized
difficulty explanations: (d, e) =Mdiff(x), where e indicates which aspects of the instruction (e.g.,
terminology, structure, domain scope) contribute to its simplicity or complexity.

This feedback is used to guide the instruction generation process (see Algorithm 1). Specifically,
Minst receives (t, c,m, e) as input and is prompted to revise or regenerate x such that the resulting
difficulty better aligns with user intent or target distributions. We buildMdiff by applying supervised
fine-tuning (SFT) on Meta-Llama-3.1-8B-Instruct on 3,390 annotated samples. Evaluation by human
experts indicates thatMdiff successfully captures the nuances of chemistry instruction complexity.
See more details of implementation and evaluation aboutMdiff in Appendix D.

3.2 Response Construction: Overall Procedure
Given an instruction x, the response generation (RG) modelMresp (i.e., an LLM) is responsible for
generating an executable and chemically accurate output y ∈ Y for the associated question in x.
Several examples of instruction-response pairs are presented in Figure 15 and Figure 16. To ensure
factual grounding and modularity,Mresp does not directly generate free-form responses; instead,
it leverages a tool pool F = {f1, f2, . . . , fK}, as well as metadata m (the same as used in the
instruction generation), to generate the responses.

Instruction Decomposition and Tool Planning. The response model first decomposes the in-
struction into a sequence of intermediate reasoning steps, denoted as s = Decompose(x) =

4

(s1, s2, . . . , sL). Each step sℓ reflects a sub-goal necessary to fulfill the instruction, such as data
retrieval, property computation, or output formatting. Not all steps necessarily require tool usage.

TheMresp model considers the entire sequence of reasoning steps and generates a set of expected
tool descriptions {d1, d2, . . . , dM} ⊂ D, where each dm represents a distinct functional capability
that may be needed to support one or more steps, denoted as {d1, . . . , dM} =Mresp(s,m).

Tool Retrieval and Distillation. To map these expected tool descriptions to actual executable tools,
semantic retrieval is performed over the tool pool. For each dm, cosine similarity is computed between
its embedding and the embeddings of available tools: Top-k(dm) = arg top-k

fk∈F
cos (ϕ(dm), ϕ(fk)).

The retrieval yields a candidate set F raw
m for each expected tool description. The union of all retrieved

candidates forms the raw tool pool for the response: F raw =
⋃M

m=1 F raw
m .

Tool distillation is then performed globally usingMresp, given the instruction x, reasoning steps
s, metadata m, and candidate tools F raw. The model iteratively refines the toolset by eliminating
redundant or ineffective tools, adhering to:

• Usefulness Check: Remove tools that do not contribute actionable results for subgoals.
• Expert Extent: Prefer tools that align closely with reasoning intents, minimizing auxiliary steps.
• Tool Budget: Enforce a size limit τ by pruning low-utility tools.

Formally denoted as: F⋆ = Distill (F raw, x, s,m, τ).

Tool Execution and Answer Assembly. With the distilled tool setF⋆, the response model generates
and executes scripts for each f ∈ F⋆, incorporating metadata m where applicable (e.g., tool
configuration or guidance, molecule information). Outputs are denoted of = f(af). The model then
synthesizes the final response using the collected outputs: y =Mresp (x, {of}f∈F⋆ ,m).

We describe the detailed procedure of tool calling and validation in the following subsection.

3.3 Response Construction: Tool Calling
Code Script Generation. For each selected tool f ∈ F⋆, the model generates an executable
code script Sf based on tool specification, instruction, reasoning steps, and metadata, denoted as
Sf = Mresp(f, x, s,m), where metadata m may contain pre-specified input files, configuration
parameters, or external resources relevant to the tool.

Self-Repairing. Script execution errors are common due to issues such as incorrect input formats
or API usage. We adopt a multi-stage self-repair protocol:

❶ Error Catching: If execution of Sf fails, the model captures the error trace e and attempts repair:

S(i+1)
f =Mresp(e,S(i)f ,m).

This process is repeated until success or a retry limit Rmax is reached.

If all attempts fail, the model consults external documentation (e.g., from RDKit or PubChem)
through web retrieval and regenerates the script based on the retrieved content and metadata.

❷ Effectiveness Checking: Even successful executions are not assumed to be sufficient. If the returned
result does not meet user intent, e.g., missing keyword-level constraints or incorrect computation
granularity, the model re-evaluates and refines the tool usage.

Early Stopping & Sufficiency Validation. After each tool execution, the model assesses whether
the currently accumulated outputs {of} already satisfy the instruction x. If so, the pipeline stops
early, skipping the execution of remaining tools to improve efficiency.

After the finish of all selected tools,Mresp will check whether the outputs {of} are incomplete or
insufficient for fully answering the instruction. If yes, Mresp triggers a web-based retrieval step:
oextra = WebSearch(x,m). The final output set used for response synthesis is:

O = {of}f∈F⋆ ∪ {oextra}.

The final response is constructed by composing all outputs in O, grounded in the reasoning trace
and enriched with any metadata-derived context. The details of response generation are shown in
Algorithm 2 in Appendix M.

5

4 Experiments
4.1 Experiment Setup

Models. We employ GPT-4o [23] as the IG model across all experiments. For response generation,
we adopt a hybrid setting: GPT-4o is used for general-purpose reasoning tasks such as decomposition,
validation, and web retrieval. For components requiring fine-grained decision-making or complex
reasoning (specifically, tool distillation, code script generation, and self-repairing), we utilize the
o1-mini model [24], which demonstrates stronger reasoning capabilities. For text embedding, we
adopt the text-embedding-3-small model [25]. All generation temperatures in our experiments are set
to 1.0. Notably, ChemOrch is compatible with other models as IG/RG models as well; however, we
adopt this configuration in our experiments to ensure consistency and facilitate controlled evaluation.

Chemical Tasks in Instruction Generation. We focus on two main categories of tasks: General
Chemistry Q&A and Task-Specific Challenges. The former involves answering open-ended questions
within the chemistry domain (e.g., What are the main steps involved in synthesizing aspirin in
the laboratory?), which could be later used for evaluating/enhancing LLMs’ chemistry knowledge
and generation quality. The latter focuses on domain-specific tasks commonly used in existing
benchmarks, requiring more sophisticated chemical reasoning and planning capabilities. These
include property prediction (PP), molecule captioning (MC), name prediction (NP), and reaction
prediction (RP), among others. See task examples in Table 11 and Table 12. Moreover, we introduce
an agent-oriented task (tool usage) to assess LLM’s capability on operating chemistry-related tools.

Due to space limitations, we refer the reader to Appendix B for additional details on experimental
setup, including evaluation protocols, datasets used for analysis, training, and testing configurations.

4.2 Statistical Analysis of Generated Instruction–Response Pairs
Word Count. The distribution of generated data is shown in Figure 3. On average, each instruction
contains 17.52 words, while the corresponding response is substantially longer, averaging 320.66
words, reflecting the detailed and comprehensive nature of model-generated outputs. Furthermore,
each response utilizes approximately 1.24 tools on average (see examples in Figure 15, Figure 16).

Topic Diversity and Coverage. To assess the instruction dataset diversity and coverage, we have
referred to the study [26, 27], and adopted two quantitative metrics: Average Pairwise Sample Similar-
ity (APS) and Remote-Clique Score. APS captures the average similarity between sample instruction
pairs–lower values indicate greater internal diversity. Remote-Clique identifies a maximally dissimilar
subset of instruction samples, with higher scores suggesting broader input space coverage.

Dataset APS ↓ Remote-Clique ↑

ChemOrch (our) 0.779 0.661
ChemLLMBench [14] 0.884 0.453
Mol-Instructions [15] 0.765 0.683
ChemBench [28] 0.784 0.613

Table 1: Diversity and coverage analysis,
ChemOrch vs other datasets.

10 20 30 40
0.00

0.02

0.04

0.06

0.08

De
ns

ity

0 200 400 600 800
0.000

0.001

0.002

0.003

0.004

0.005

Figure 3: Word-count distribution of instruc-
tions (left) and responses (right).

As shown in Table 1, datasets generated by our proposed ChemOrch achieve significantly lower
APS and higher Remote-Clique scores compared to ChemLLMBench [14] and ChemBench [28],
suggesting that ChemOrch offers improved diversity and better structural spread in generation. Its
diversity profile is comparable to that of Mol-Instructions [15], a dataset with well-curated human-
annotated molecular tasks. These results indicate that data generated by ChemOrch effectively
balances diversity and coverage, making it a competitive and diverse instruction dataset for chemistry
learning.

Generation Cost (token usage, expenses). The instruction and response generation models are both
based on LLMs. We analyze the generation cost in terms of token usage. Figure 4 shows the average
token usage per generation, in different modules of ChemOrch. Tool Selection dominates the token
usage (4094 tokens), followed by Validation (1472), Answer Generation (1165), and Web Search
(1106). These four modules together consume the majority of tokens, indicating their central role in
reasoning and verification. In contrast, modules like Embedding Token and Self-Repairing contribute
minimally. This suggests that most token cost arises from tool planning and factual grounding rather

6

than lightweight utility steps. The total cost per instruction-response pair remains highly affordable,
typically up to $0.05 per interaction, assuming the use of advanced reasoning models o3-mini[29].
Thus, even extensive reasoning processes involving multiple verification and generation steps are
economically viable, highlighting the practical affordability of deploying ChemOrch.

Moreover, we also analyze the reasoning steps of generated responses in Appendix G.

0 500 1000 1500 2000
Token Consumption

Embedding Token
Tool Selection

Tool Distillation
Code Script

Self-Repairing
Validation

Web Search
Answer Generation

120

1095
902

231
1472

1106
1165

4000 4250

4094

Figure 4: Token usage per generation in differ-
ent modules of ChemOrch. “Answer generation”
denotes the final assembly of the output.

80 85 90 95 100 105 110
Percentage

Sentence Length
Language Style

Application Domain
Knowledge Level

Knowledge Source
Concreteness Extent

Problem Context
Problem Attribution

Specific Knowledge Usage
Quantitative Level

90%
100%
100%

85%
85%

95%
100%

85%
100%

90%

Figure 5: Constraint-following accuracy evalu-
ated by human annotator across 10 categories in
instruction generation.

4.3 Quality Analysis of Generated Instruction–Response Pairs

Human Evaluation of Response. To assess the quality of the responses generated by ChemOrch,
we conduct a human evaluation along two key dimensions: 1) Instruction Following–whether
the response directly addresses the instruction; 2) Factual Correctness–whether the content is
scientifically accurate. Details of the evaluation protocol and results of each task are provided in
Appendix E. On average, the responses achieve an instruction following rate of 82.64% and a
factual correctness rate of 85.14%. These results indicate that ChemOrch can generate responses
that are aligned with user intent and maintain a high level of scientific reliability. Notably, the
gap between instruction following and factual correctness suggests that factual errors are not the
primary limitation; rather, improving instruction grounding, especially for complex multi-step queries,
remains a potential area for enhancement. It is worth noting that integrating the tool pool significantly
enhances ChemOrch’s ability to generate factual responses. On name and property prediction
tasks, ChemOrch achieves 75.00% accuracy, significantly outperforming GPT-4o’s 22.50% without
tool usage (see Appendix F). Moreover, we identify some failure modes of ChemOrch in human
evaluation, providing some insights for future improvement, as detailed in Appendix K.

Constraint Following. To evaluate whether the instruction generation model adheres to user-specified
constraints, we conduct a targeted constraint-following experiment. Specifically, we define 10 distinct
categories of constraints, each encompassing multiple concrete constraint types. These categories
cover aspects such as linguistic properties (e.g., sentence length, style), domain grounding (e.g.,
application domain, problem context), and knowledge control (e.g., knowledge level, concreteness,
quantitative expression), as detailed in Appendix L.

To evaluate them, human annotators were asked to judge whether the generated instruction satisfies
the specified requirement. The evaluation results are summarized in Figure 5. We observe that the
instruction generation model demonstrates strong constraint alignment across most categories. In
particular, it achieves 100% adherence in language style, application domain, problem context, and
specific knowledge usage, indicating excellent controllability in terms of surface form and task seman-
tics. The model also performs well on sentence length and quantitative level constraints, achieving
90% consistency. Notably, slightly lower scores are observed for knowledge level, knowledge source,
and problem attribution (all at 85%), suggesting that while the model captures the intent of most
constraints, nuanced knowledge-related instructions remain more challenging.

4.4 Application 1: Facilitating LLMs’ Evaluation in Chemistry
In this section, we demonstrate the effectiveness of ChemOrch in facilitating both alignment of
evaluation signals and the identification of weaknesses in LLMs on chemistry tasks. While many
benchmarks have been proposed for evaluating the chemical abilities of LLMs [30, 11, 31, 32],
constructing such datasets is often time-consuming and labor-intensive. ChemOrch offers a scalable

7

alternative by enabling the automatic generation of evaluation datasets for a given task, especially for
those that are underrepresented, rarely addressed, or incorrectly handled in existing benchmarks. To
assess ChemOrch’s effectiveness in evaluation, we conduct two experiments: 1) Comparing LLM
performance on ChemOrch-generated vs. existing benchmarks for consistency in trends; 2) Testing
whether ChemOrch can expose LLM weaknesses in underrepresented chemical tasks. Additional
experimental setup details are provided in Appendix B.

1) ChemOrch vs. Existing Benchmarks: Aligning Evaluation Signals. To assess whether
ChemOrch is comparable to existing benchmarks, we select two chemical tasks, property prediction
(PP) and molecular captioning (MC), with expert-curated evaluation samples from [31]. We run
ChemOrch to generate 400 test samples for the same benchmarking tasks (used as few-shot examples
as a constraint in ChemOrch), ensuring they are comparable in scope and difficulty to those in the
benchmark. The results in Table 2 show that ChemOrch evaluation exhibits strong correlations with
the original benchmarks: for PP, the Pearson correlation is 0.735 with a p-value of 0.024; for MC,
the correlation is 0.948 with a p-value less than 0.001. While absolute error values vary across
evaluated LLMs, their relative ranking remains largely preserved, indicating ChemOrch’s consistency
in comparative evaluation. This validates the reliability of ChemOrch, and highlights its potential for
future use in scalable and adaptive evaluation.

Table 2: The evaluation results (PP: Accuracy (0-
1), MC: Score (1-5)) of two chemistry tasks on the
original dataset (Ori.)[31] and generated dataset
powered by ChemOrch (Ours).

Model Property Pred. Molecule Cap.

Ori. Ours Ori. Ours

Llama-3.1-8B-Ins. 0.203 0.051 3.28 3.52
Qwen2.5-7B-Ins. 0.580 0.277 4.54 5.34
GPT-4o-mini 0.418 0.292 5.52 6.56
GPT-4o 0.548 0.441 5.90 6.60
Qwen3-14B 0.593 0.549 5.66 6.60
gemma-3-27b-it 0.300 0.328 4.96 6.56
DeepSeek-V3 0.450 0.523 5.92 6.96
Llama-3.3-70B-Ins. 0.470 0.364 4.96 6.14
Claude3.5-haiku 0.565 0.535 5.86 6.62

2) ChemOrch excels at revealing LLM weak-
nesses in chemistry by generating test data.
We identify several important chemical tasks
that have not been widely covered in existing
LLM benchmarks such as Lipophilicity Predic-
tion. As shown in Table 3, we evaluate vari-
ous models on samples generated by ChemOrch
solely from the task metadata (from authoritative
databases) and its description, without using any
annotated examples. The results show that most
models perform poorly on these tasks, revealing
significant gaps in their chemical reasoning ca-
pabilities. This not only highlights the need for
further improvement in LLMs but also demon-
strates ChemOrch’s effectiveness in identifying
their weaknesses.

Table 3: Model performance (Accuracy) on fine-grained tasks in chemistry. B3D3 means Blood-Brain
Barrier Penetration Prediction, DDI means Drug-Drug interaction.

Model B3D3 Prediction DDI Prediction Lipophilicity Prediction

Llama-3.1-8B-Instruct 0.058±0.010 0.000±0.000 0.013±0.000

Qwen2.5-7B-Instruct 0.236±0.010 0.224±0.010 0.036±0.004

GPT-4o-mini 0.256±0.010 0.176±0.015 0.036±0.004

GPT-4o 0.285±0.020 0.133±0.012 0.027±0.007

Qwen3-14B 0.471±0.004 0.347±0.007 0.088±0.010

gemma-3-27b-it 0.342±0.004 0.520±0.013 0.042±0.007

DeepSeek-V3 0.313±0.018 0.280±0.012 0.062±0.004

Llama-3.3-70B-Instruct 0.133±0.007 0.140±0.000 0.036±0.008

Claude3.5-haiku 0.287±0.013 0.107±0.007 0.056±0.004

4.5 Application 2: Improving LLMs’ Chemistry Intelligence
In this section, we demonstrate the effectiveness of the samples generated by ChemOrch in enhancing
the chemistry capabilities of LLMs. ChemOrch is used to create diverse samples across a range
of tasks, including task-specific questions, general Q&A, chemistry reasoning, and tool usage. We
finetune Llama-3.1-8B-Instruct [33] and Qwen-2.5-7B-Instruct [34] by SFT on generated samples.
More details are provided in Appendix B.

Improvement on both the chemistry general-purpose Q&A and task-specific questions. As
shown in Figure 6, property prediction accuracy increased by around 35% for Llama-3.1-8B-Ins.,
indicating a stronger ability to infer molecular properties. For Molecule Captioning, scores improved
from 0.5 to 1.2 for Llama-3.1-8B-Ins. and Qwen-2.5-7B-Ins., showing that models generated

8

Property Prediction Tool Usage
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Molecule Captioning General Q&A
0.0

2.5

5.0

7.5

Sc
or

e

LLaMA Vanilla LLaMA Fine-tuned Qwen Vanilla Qwen Fine-tuned

Figure 6: Fine-tuning results of Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct on tasks such as
property prediction, molecule captioning, General QA and tool usage.

more accurate and informative descriptions. Similarly, in general, chemistry Q&A, we observed a
comparable increase, suggesting enhanced domain understanding and reasoning ability. These results
demonstrate that ChemOrch effectively boosts both specialized and general-purpose chemical Q&A.

Improvement on the chemistry reasoning capability. We evaluate how LLMs can improve their
reasoning capability by fine-tuning on ChemOrch-generated data, promoted by chemistry reasoning
questions from MMLU-Pro [32]. As shown in Table 4, both models show notable improvements
over their vanilla baselines. For Llama-3.1-8B-Instruct, accuracy rises from 13.9% to 28.99% with
500 training samples. However, gains plateau beyond 200 samples, possibly due to the model’s
limited capacity or a distributional mismatch between ChemOrch data and Llama’s generation style,
which may hinder effective learning. In contrast, Qwen-2.5-7B-Instruct benefits more significantly
from larger sample sizes, improving from 24.64% to 37.97%, suggesting stronger alignment with
ChemOrch data and better instruction-following ability. Overall, these results demonstrate that
ChemOrch can substantially enhance LLMs’ chemistry reasoning capability.

Improvement on the agentic capability. The agentic framework has begun to receive attention
within the chemistry domain [8], where tool-use capability is considered one of the most critical
aspects of agentic models. To investigate whether ChemOrch can enhance a model’s ability to use
tools, we leveraged it to dynamically generate instructions and corresponding code snippets for two
widely used chemistry tools: RDKit and PubChem. These generated examples were then used to
fine-tune the model. As shown in Figure 6, the tool-use accuracy of the models improved significantly
after fine-tuning. Notably, Llama-3.1-8B-Instruct achieved a relative improvement of over 50%,
highlighting ChemOrch’s effectiveness in facilitating tool-oriented skill acquisition.

Sample Llama-3.1-8B-Ins. Qwen-2.5-7B-Ins.

Vanilla 0.1391±0.0071 0.2464±0.0041

n=200 0.2812±0.0041 0.2870±0.0123

n=300 0.2464±0.0082 0.2928±0.0147

n=400 0.2725±0.0082 0.3478±0.0213

n=500 0.2899±0.0041 0.3797±0.0041

Table 4: Model performance (Accuracy) on chemistry
reasoning questions of MMLU-Pro [32] under differ-
ent training sample sizes.

Failed w/o
self-repairing

Failed w/
 self-repairing

Sufficiency
validation

Avg. tools
w/o distill.

Avg. tools
w/ distill.

10

20

30

40

50

Pe
rc

en
ta

ge
 (%

)

47%

18%
13%

The effectiveness
of self-repairing

1.2

1.3

1.4

1.5

1.6

1.7

Av
er

ag
e

To

ol
s1.58

1.24

The effectiveness
of tool distillation

Figure 7: Ablation analysis of the core mod-
ules in ChemOrch.

4.6 Effectiveness of Core Modules in ChemOrch

The effectiveness of the difficulty reward modelMdiff has been verified in Appendix D. The ablation
studies of other modules including tool distillation, self-repairing, and sufficiency validation are
shown in Figure 7. As we can observe, ablating each module in turn highlights its impact in a single
sweep: disabling self-repairing causes the tool-execution failure rate to jump from 18% to 47%,
adding sufficiency validation catches an extra 13% of incomplete or inadequate outputs, and applying
tool distillation cuts the average number of tools invoked from 1.58 to 1.24 with no loss in overall
success. These results indicate the effectiveness of core modules in ChemOrch.

9

4.7 Scalability of ChemOrch

ChemOrch supports scalable tools for handling more extensive chemistry tasks. For example,
ChemOrch can support alternative molecular encodings, such as graph-based, tree-structured, or
JSON representations by easily integrating a new tool function, which is detailed in Appendix O.

5 Conclusion
We introduce ChemOrch, a transformative framework for generating high-quality, tool-grounded
instruction–response pairs in chemistry. It significantly lowers the barrier for assessing and further
improving LLMs on chemistry tasks, particularly through the integration of chemical tools that
enable accurate and verifiable reasoning. Its principles—task-conditioned generation, tool grounding,
difficulty calibration, and repairability—are domain-agnostic and could help build cross-disciplinary
AI models with expert-level abilities.

Acknowledgement

This work was supported by the National Science Foundation under the NSF Center for Computer
Assisted Synthesis (C-CAS), grant number CHE-2202693.

References
[1] Kai Zhang, Rong Zhou, Eashan Adhikarla, Zhiling Yan, Yixin Liu, Jun Yu, Zhengliang Liu,

Xun Chen, Brian D Davison, Hui Ren, et al. A generalist vision–language foundation model for
diverse biomedical tasks. Nature Medicine, pages 1–13, 2024.

[2] Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, et al. ChatDev: Communicative Agents for Software Devel-
opment. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 15174–15186, 2024.

[3] Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of LLM agents: A survey. arXiv
preprint arXiv:2402.02716, 2024.

[4] Zihan Zhao, Da Ma, Lu Chen, Liangtai Sun, Zihao Li, Yi Xia, Bo Chen, Hongshen Xu, Zichen
Zhu, Su Zhu, et al. ChemDFM: A Large Language Foundation Model for Chemistry. arXiv
preprint arXiv:2401.14818, 2024.

[5] Yu Zhang, Xiusi Chen, Bowen Jin, Sheng Wang, Shuiwang Ji, Wei Wang, and Jiawei Han. A
comprehensive survey of scientific large language models and their applications in scientific
discovery. arXiv preprint arXiv:2406.10833, 2024.

[6] Debjyoti Bhattacharya, Harrison J Cassady, Michael A Hickner, and Wesley F Reinhart. Large
language models as molecular design engines. Journal of Chemical Information and Modeling,
64(18):7086–7096, 2024.

[7] Gang Liu, Michael Sun, Wojciech Matusik, Meng Jiang, and Jie Chen. Multimodal Large
Language Models for Inverse Molecular Design with Retrosynthetic Planning. arXiv preprint
arXiv:2410.04223, 2024.

[8] Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376, 2023.

[9] Mayk Caldas Ramos, Christopher J Collison, and Andrew D White. A review of large language
models and autonomous agents in chemistry. Chemical Science, 2025.

[10] Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang,
Xiangyu Yue, Wanli Ouyang, et al. Chemllm: A chemical large language model. arXiv preprint
arXiv:2402.06852, 2024.

10

[11] Taicheng Guo, Kehan Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh V Chawla,
Olaf Wiest, and Xiangliang Zhang. What can Large Language Models do in chemistry? A
comprehensive benchmark on eight tasks. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

[12] Chiranjib Chakraborty, Manojit Bhattacharya, and Sang-Soo Lee. Artificial intelligence enabled
ChatGPT and large language models in drug target discovery, drug discovery, and development.
Molecular Therapy-Nucleic Acids, 33:866–868, 2023.

[13] Kevin Maik Jablonka, Qianxiang Ai, Alexander Al-Feghali, Shruti Badhwar, Joshua D Bocarsly,
Andres M Bran, Stefan Bringuier, L Catherine Brinson, Kamal Choudhary, Defne Circi, et al.
14 examples of how LLMs can transform materials science and chemistry: a reflection on a
large language model hackathon. Digital discovery, 2(5):1233–1250, 2023.

[14] Taicheng Guo, Kehan Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh V. Chawla, Olaf
Wiest, and Xiangliang Zhang. What indeed can GPT models do in chemistry? A comprehensive
benchmark on eight tasks, 2023.

[15] Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui
Fan, and Huajun Chen. Mol-Instructions: A Large-Scale Biomolecular Instruction Dataset for
Large Language Models. In The Twelfth International Conference on Learning Representations.

[16] Yue Huang, Siyuan Wu, Chujie Gao, Dongping Chen, Qihui Zhang, Yao Wan, Tianyi Zhou,
Chaowei Xiao, Jianfeng Gao, Lichao Sun, and Xiangliang Zhang. DataGen: Unified Synthetic
Dataset Generation via Large Language Models. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=F5R0lG74Tu.

[17] Arina Razmyslovich, Kseniia Murasheva, Sofia Sedlova, Julien Capitaine, and Eugene
Dmitriev. ELTEX: A Framework for Domain-Driven Synthetic Data Generation. arXiv preprint
arXiv:2503.15055, 2025.

[18] Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms
with nothing. arXiv preprint arXiv:2406.08464, 2024.

[19] Gregory Landrum. RDKit: Open-source cheminformatics. https://www.rdkit.org, 2025.

[20] Sunghwan Kim, Jie Chen, Tiffany Cheng, and et al. PubChem 2025 update. Nucleic Acids
Research, 53(D1):D1516–D1525, 2025. doi: 10.1093/nar/gkae1059.

[21] Han Bao, Yue Huang, Yanbo Wang, Jiayi Ye, Xiangqi Wang, Xiuying Chen, Yue Zhao, Tianyi
Zhou, Mohamed Elhoseiny, and Xiangliang Zhang. AutoBench-V: Can Large Vision-Language
Models Benchmark Themselves? arXiv preprint arXiv:2410.21259, 2024.

[22] Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, and Xing Xie. Dynamic Evaluation of
Large Language Models by Meta Probing Agents. In International Conference on Machine
Learning, pages 62599–62617. PMLR, 2024.

[23] OpenAI. GPT-4o Technical Report. https://openai.com/index/hello-gpt-4o/, 2024.

[24] OpenAI. OpenAI o1-mini. https://openai.com/index/
openai-o1-mini-advancing-cost-efficient-reasoning/, 2024.

[25] OpenAI. OpenAI text-embedding-3-small. https://platform.openai.com/docs/
guides/embeddings/, 2024.

[26] Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin. Synthetic Data Generation with Large
Language Models for Text Classification: Potential and Limitations. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, 2023.

[27] Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander Ratner, Ranjay Krishna, Jiaming
Shen, and Chao Zhang. Large Language Model as Attributed Training Data Generator: A Tale
of Diversity and Bias. In Thirty-Seventh Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023.

11

https://openreview.net/forum?id=F5R0lG74Tu
https://www.rdkit.org
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://platform.openai.com/docs/guides/embeddings/
https://platform.openai.com/docs/guides/embeddings/

[28] Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu, Martiño Ríos-García, Benedict Emoek-
abu, Aswanth Krishnan, Tanya Gupta, Mara Schilling-Wilhelmi, Macjonathan Okereke, Anagha
Aneesh, et al. A framework for evaluating the chemical knowledge and reasoning abilities of
large language models against the expertise of chemists. Nature Chemistry, pages 1–8, 2025.

[29] OpenAI. OpenAI o3-mini. https://openai.com/index/openai-o3-mini/, 2025.

[30] Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models. arXiv preprint arXiv:2307.10635,
2023.

[31] Kehan Guo, Bozhao Nan, Yujun Zhou, Taicheng Guo, Zhichun Guo, Mihir Surve, Zhenwen
Liang, Nitesh Chawla, Olaf Wiest, and Xiangliang Zhang. Can llms solve molecule puzzles? a
multimodal benchmark for molecular structure elucidation. Advances in Neural Information
Processing Systems, 37:134721–134746, 2024.

[32] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and
challenging multi-task language understanding benchmark. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024.

[33] Meta. The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783, 2024. URL https:
//arxiv.org/abs/2407.21783.

[34] Qwen Team. Qwen2.5: A Party of Foundation Models, September 2024. URL https:
//qwenlm.github.io/blog/qwen2.5/.

[35] Yuyan Liu, Sirui Ding, Sheng Zhou, Wenqi Fan, and Qiaoyu Tan. Moleculargpt: Open large lan-
guage model (llm) for few-shot molecular property prediction. arXiv preprint arXiv:2406.12950,
2024.

[36] Jerret Ross, Brian Belgodere, Samuel C Hoffman, Vijil Chenthamarakshan, Jiri Navratil,
Youssef Mroueh, and Payel Das. Gp-molformer: A foundation model for molecular generation.
arXiv preprint arXiv:2405.04912, 2024.

[37] Hyosoon Jang, Yunhui Jang, Jaehyung Kim, and Sungsoo Ahn. Can LLMs Generate Diverse
Molecules? Towards Alignment with Structural Diversity. arXiv preprint arXiv:2410.03138,
2024.

[38] Zhe Chen, Zhe Fang, Wenhao Tian, Zhaoguang Long, Changzhi Sun, Yuefeng Chen, Hao Yuan,
Honglin Li, and Man Lan. ReactGPT: Understanding of Chemical Reactions via In-Context
Tuning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages
84–92, 2025.

[39] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous
agents. Frontiers of Computer Science, 18(6):186345, 2024.

[40] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress
and challenges. arXiv preprint arXiv:2402.01680, 2024.

[41] Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Augmenting large language models with chemistry tools. Nature Machine Intelli-
gence, 6(5):525–535, 2024.

[42] Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical
research with large language models. Nature, 624(7992):570–578, 2023.

[43] Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng,
Daiyi Peng, Diyi Yang, Denny Zhou, et al. Best practices and lessons learned on synthetic data.
arXiv preprint arXiv:2404.07503, 2024.

12

https://openai.com/index/openai-o3-mini/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

[44] Timo Schick and Hinrich Schütze. Generating Datasets with Pretrained Language Models.
In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 6943–6951, Online and Punta Cana, Dominican Republic, November 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.555. URL https://
aclanthology.org/2021.emnlp-main.555/.

[45] Arij Riabi, Thomas Scialom, Rachel Keraron, Benoît Sagot, Djamé Seddah, and Jacopo Staiano.
Synthetic Data Augmentation for Zero-Shot Cross-Lingual Question Answering. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7016–7030,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.562. URL https://aclanthology.org/
2021.emnlp-main.562.

[46] Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. (InThe)
WildChat: 570K ChatGPT Interaction Logs In The Wild. In The Twelfth International Confer-
ence on Learning Representations, 2023.

[47] Letian Zhang, Quan Cui, Bingchen Zhao, and Cheng Yang. Oasis: One Image is All You Need
for Multimodal Instruction Data Synthesis. arXiv preprint arXiv:2503.08741, 2025.

[48] Ziije Zhong, Linqing Zhong, Zhaoze Sun, Qingyun Jin, Zengchang Qin, and Xiaofan Zhang.
Synthet2c: Generating synthetic data for fine-tuning large language models on the text2cypher
task. arXiv preprint arXiv:2406.10710, 2024.

[49] Jerry Wei, Da Huang, Yifeng Lu, Denny Zhou, and Quoc V Le. Simple synthetic data reduces
sycophancy in large language models. arXiv preprint arXiv:2308.03958, 2023.

[50] Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke Huang, Yihan Cao, Zihao Wu, Lin Zhao,
Shaochen Xu, Fang Zeng, Wei Liu, et al. Auggpt: Leveraging chatgpt for text data augmentation.
IEEE Transactions on Big Data, 2025.

[51] John Joon Young Chung, Ece Kamar, and Saleema Amershi. Increasing diversity while
maintaining accuracy: Text data generation with large language models and human interventions.
arXiv preprint arXiv:2306.04140, 2023.

[52] Dongping Chen, Ruoxi Chen, Shu Pu, Zhaoyi Liu, Yanru Wu, Caixi Chen, Benlin Liu, Yue
Huang, Yao Wan, Pan Zhou, et al. Interleaved Scene Graph for Interleaved Text-and-Image
Generation Assessment. arXiv preprint arXiv:2411.17188, 2024.

[53] Haris Riaz, Sourav Bhabesh, Vinayak Arannil, Miguel Ballesteros, and Graham Horwood.
MetaSynth: Meta-Prompting-Driven Agentic Scaffolds for Diverse Synthetic Data Generation.
arXiv preprint arXiv:2504.12563, 2025.

[54] Seongyun Lee, Sue Hyun Park, Seungone Kim, and Minjoon Seo. Aligning to thousands of
preferences via system message generalization. Advances in Neural Information Processing
Systems, 37:73783–73829, 2024.

[55] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
report. arXiv preprint arXiv:2412.08905, 2024.

[56] Fanwang Meng, Yang Xi, Jinfeng Huang, and Paul W. Ayers. A curated diverse molecular
database of blood-brain barrier permeability with chemical descriptors. Scientific Data, 8(289),
2021. doi: 10.1038/s41597-021-01069-5. URL https://www.nature.com/articles/
s41597-021-01069-5.

[57] Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W
Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics Data Commons: Machine
Learning Datasets and Tasks for Drug Discovery and Development. Proceedings of Neural
Information Processing Systems, NeurIPS Datasets and Benchmarks, 2021.

13

https://aclanthology.org/2021.emnlp-main.555/
https://aclanthology.org/2021.emnlp-main.555/
https://aclanthology.org/2021.emnlp-main.562
https://aclanthology.org/2021.emnlp-main.562
https://www.nature.com/articles/s41597-021-01069-5
https://www.nature.com/articles/s41597-021-01069-5

[58] Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W
Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Artificial intelligence foundation for
therapeutic science. Nature Chemical Biology, 2022.

[59] Alejandro Velez-Arce, Xiang Lin, Kexin Huang, Michelle M Li, Wenhao Gao, Bradley Pentelute,
Tianfan Fu, Manolis Kellis, and Marinka Zitnik. Signals in the Cells: Multimodal and Contex-
tualized Machine Learning Foundations for Therapeutics. In NeurIPS 2024 Workshop on AI for
New Drug Modalities, 2024. URL https://openreview.net/forum?id=kL8dlYp6IM.

[60] Jakub Adamczyk and Piotr Ludynia. Scikit-fingerprints: Easy and efficient computation of
molecular fingerprints in Python. SoftwareX, 28:101944, 2024. ISSN 2352-7110. doi: https:
//doi.org/10.1016/j.softx.2024.101944. URL https://www.sciencedirect.com/science/
article/pii/S2352711024003145.

[61] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL
https://openreview.net/forum?id=uccHPGDlao.

[62] Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational
Linguistics. URL http://arxiv.org/abs/2403.13372.

[63] Bharath Ramsundar. The Basic Tools of the Deep Life Sciences. DeepChem, 2021.

[64] Zhengkai Tu, Sourabh J Choure, Mun Hong Fong, Jihye Roh, Itai Levin, Kevin Yu, Joonyoung F
Joung, Nathan Morgan, Shih-Cheng Li, Xiaoqi Sun, et al. ASKCOS: an open source software
suite for synthesis planning. arXiv preprint arXiv:2501.01835, 2025.

[65] Jingyuan Qi, Zian Jia, Minqian Liu, Wangzhi Zhan, Junkai Zhang, Xiaofei Wen, Jingru Gan,
Jianpeng Chen, Qin Liu, Mingyu Derek Ma, et al. MetaScientist: A Human-AI Synergistic
Framework for Automated Mechanical Metamaterial Design. arXiv preprint arXiv:2412.16270,
2024.

[66] Huan Zhang, Yu Song, Ziyu Hou, Santiago Miret, and Bang Liu. Honeycomb: A flexible
llm-based agent system for materials science. arXiv preprint arXiv:2409.00135, 2024.

[67] Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu
Zhou, Pan Lu, Zhuosheng Zhang, Yilun Zhao, et al. ChemAgent: Self-updating Library in
Large Language Models Improves Chemical Reasoning. arXiv preprint arXiv:2501.06590,
2025.

[68] Kevin Wu, Eric Wu, and James Y Zou. Clasheval: Quantifying the tug-of-war between an llm’s
internal prior and external evidence. Advances in Neural Information Processing Systems, 37:
33402–33422, 2024.

[69] Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel.
The instruction hierarchy: Training llms to prioritize privileged instructions. arXiv preprint
arXiv:2404.13208, 2024.

14

https://openreview.net/forum?id=kL8dlYp6IM
https://www.sciencedirect.com/science/article/pii/S2352711024003145
https://www.sciencedirect.com/science/article/pii/S2352711024003145
https://openreview.net/forum?id=uccHPGDlao
http://arxiv.org/abs/2403.13372

Appendix Contents

A Related Work 16

B Details of Experiment Setup 16

C Details of Manual Review on Tool Decomposition 17

D Details of the difficulty reward model with feedback 18

E Human Evaluation Details For Response Quality 19

F Baseline Comparison 20

G Reasoning Steps of Generated Responses 20

H Reliability of LLM-as-a-Judge Evaluation 20

I Details of Selected Tools 21

J Broader impacts 22

K Limitations and Failure Modes for the Future Work 23

L Constraint Examples 24

M Algorithm of ChemOrch 24

N Data Examples and Case Study 25

O Scalability Example 31

P Prompt Template 32

15

A Related Work

Chemistry of LLMs. LLMs are demonstrating remarkable capabilities within the chemistry do-
main. Key applications include predicting molecular properties[35, 14], generating novel molecular
structures[36, 31, 37], and tackling complex problems in chemical synthesis and reaction informatics,
such as planning reaction pathways and predicting outcomes[7, 38]. An emerging paradigm involves
deploying LLMs as autonomous agents [39, 40], exemplified by systems like ChemCrow [41] and
Coscientist [42], which integrate the LLM’s reasoning capabilities with specialized external tools to
automate complex scientific workflows. Despite this progress, significant challenges hinder LLMs
from reaching their full potential in chemistry. Progress still stalls for three reasons: curated chemistry
instructions are scarce, generic synthetic pipelines overlook molecular structure and domain rules,
and existing generators struggle to produce diverse yet verifiable prompts and answers. These gaps
motivate ChemOrch, which combines task-controlled instruction generation with tool-grounded,
executable responses to yield large-scale, chemically sound training data.

Synthetic data of LLMs. LLMs have shown remarkable capabilities in generating synthetic data
[43]. Unlike earlier approaches centered on traditional language models [44], latest LLMs offer
greater potential for producing high-quality synthetic datasets across a variety of domains, including
multilingual question answering [45], conversational agents [46], instruction tuning [18, 47, 48, 15],
enhancing truthfulness [49], and promoting data diversity [50–53]. Most recently, DataGen [16]
was introduced as a framework for generating high-quality textual datasets, enabling more targeted
evaluation and improvement of LLM capabilities. Similarly, Lee et al. present Janus, an LLM trained
on synthetically generated, diverse system messages to support personalized and general alignment
[54]. Notably, Phi-4 [55] strategically incorporates synthetic data throughout the training process,
which achieves an excellent performance on various downstream tasks.

B Details of Experiment Setup

Generation Details. We include task descriptions in Table 5 and Table 6. For General Chemistry
Q&A, we use the chemistry-related topics as constraints, as shown in Table 11 and Table 12. For
task-specific challenges, we generate the dataset as follows:

• Property Prediction & Molecule Captioning: We leverage data samples from ChemLLMBench
[11] as few-shot exemplars to guide the generation process of ChemOrch.

• Tool Usage: During generation, ChemOrch performs web searches to retrieve relevant code blocks
or examples based on the instruction. To ensure correctness, the retrieved code is executed locally,
and any code that results in errors is filtered out.

• Chemistry Reasoning: We use selected 115 examples from the chemistry reasoning questions
in MMLU-Pro [32] (distinct from the evaluation set) as constraints (few-shot learning) to guide
the model’s generation. During this process, ChemOrch typically produces executable code for
performing calculations and obtaining answers. To enable the synthesis of reasoning chains, we
introduce an additional constraint that requires the model to generate code with printed intermediate
results, thereby making the reasoning process explicit.

• BBB Penetration Prediction & DDI Prediction & Lipophilicity Prediction: We sample 200
seed data points for each task from three authoritative databases as the metadata for generation.
The BBB penetration prediction comes from B3DB [56], the DDI prediction comes from TDC
[57–59], and the lipophilicity prediction comes from MoleculeNet [60]. We transform the data into
JSON format for each task as its metadata. Then, we send the metadata to both the IG and the RG
models to generate accurate and reliable instruction-response pairs.

Task Evaluation. For evaluation, we adopt an LLM-as-a-Judge framework [61] across all tasks.
Except for the molecule captioning task, where the LLM assigns a score from 1 to 5 by comparing
the generated molecular description with the annotated description, as shown in Figure 34, all other
tasks are evaluated by directly comparing the generated answers with the ground truth to determine
correctness and reporting accuracy, as in Figure 33. For tasks involving tool usage, we similarly
assess the correctness of the generated functional code block by comparing it to the ground truth
implementation, treating it as a binary classification task, as in Figure 32.

Data Used in Experiments. For statistical analysis in subsection 4.2 and human evaluation in
subsection 4.3, we randomly select 400 data points from both the General Chemistry Q&A and

16

Task-Specific Challenges datasets. To evaluate constraint adherence, we generate 100 instructions
across 10 categories. The dataset used for the chemistry evaluation in subsection 4.4 contains 400
examples per task. For the fine-grained evaluation, each task includes 150 examples. For the fine-
tuning experiments described in subsection 4.5, each of the three tasks (property prediction, tool
usage, and molecule captioning) includes 400 samples for training and 400 for testing, with the test
data sampled from the original benchmark [14]. For the general Q&A task, 1000 samples are used for
training and 200 for testing–the larger size reflects the broader scope of chemical knowledge required.
The ablation study of the ChemOrch module is conducted using a separate set of 200 data points. For
all testing sets, we conduct a human evaluation to filter out low-quality data points.

Hyperparameter Setting. In our framework, we set a few hyperparameters to optimize the ability of
our model. We set top_k = 5 and tool_distilling_num_threshold = 5 in the tool selection
module to guarantee the selected tools’ diversity and avoid tool redundancy. In the tool invaca-
tion module, we set script_fixing_num_threshold = 3, error_fixing_num_threshold =
3, and effectiveness_checking_num_threshold = 5. These settings ensure accurate code
generation, which is closely related to the correctness of the results.

Table 5: Fine-Tuning Tasks
Task Name Description

Name Prediction Predict the IUPAC name of the given molecular SMILES.
Property Prediction Predict the property of molecules that the given reactants’ SMILES represent.
Hydration free energy prediction Predicts free energy of hydration of molecules, important for understanding

solvation and interactions.
Molecule Captioning Provide a detailed description of the molecule that the given molecular SMILES

represents.
Reaction Prediction Predict the main product SMILES according to the given reactants’ SMILES.

Table 6: Fine-grained Evaluation Tasks
Task Name Description

DDI Prediction Predict the interaction type between two drugs.
BBB Penetration Prediction Predict compounds’ blood-brain barrier penetration.
Lipophility Prediction Predict octanol/water distribution coefficient (logD) at pH 7.4.

Fine-Tuning Details. We fine-tuned two instruction-tuned large language models: LLaMA-3.1–8B-
Instruct and Qwen-2.5–7B-Instruct. All experiments were conducted using a consistent set of
hyperparameters to ensure fair comparison between the models. Training was performed for 3
epochs with a cosine learning rate scheduler and a warmup ratio of 0.1. The learning rate was
fixed at 1e-5, and the per-device training batch size was set to 4, with no gradient accumulation
(i.e., gradient_accumulation_steps = 1). We used bfloat16 (bf16) precision and trained on 4
NVIDIA A100 GPUs to accelerate computation and reduce memory usage. This setup provides an
efficient and reproducible baseline for instruction tuning of large-scale language models.

Constraint Generation. Specifically, we prompt the LLM to generate concrete constraints under the
broader constraint categories listed in Table 13. All the generated constraints are collected and then
sequentially substituted into the instruction generation process of the IG model. In total, we collected
over 100 different constraints to ensure diversity in the generated instructions.

C Details of Manual Review on Tool Decomposition

All sub-tools undergo a two-stage manual review. First, domain experts validate the input/output
specifications, naming conventions, and descriptions to ensure alignment with chemical standards
and usability. Second, reviewers simulate tool usage under realistic settings, including edge cases
such as malformed molecular inputs or ambiguous return types. Through this process, we iteratively
refine sub-tool definitions, add robust error handling, and rewrite unclear descriptions—ensuring that
each sub-tool is both syntactically valid and semantically reliable.

17

SFT Training

ChemLLMBench

Mol-Instructions

Synthetic Data
w/ Constraints

Human
Annotation

LLM-based
Refinement

Instruction: Convert the drawn chemical structure of glucose into its
corresponding SMILES representation, and calculate the mass in grams of 0.5
moles of glucose using its molecular weight.

Score: 4
Reason for easy: Converting a chemical structure to SMILES requires
knowledge of chemical notation and understanding of molecular structures.
Reason for difficult: Understanding and converting chemical structures to
SMILES is not intuitive and requires familiarity with chemistry software or
notation. Additionally, calculating the mass of moles involves knowledge of
molecular weights and mole calculations, requiring attention to detail.

Llama3.1-
8B-Instruct

Figure 8: Data collection and training process of the difficulty reward model with feedback.

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Mean = 3.38
Fitted Normal
Fitted Skew Normal

1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

D
en

si
ty

Mean = 3.59
Fitted Normal
Fitted Skew Normal

Figure 9: Data distribution comparison of test (left) and train (right) dataset.

The manual review process was conducted by a team of nine experts with diverse academic back-
grounds to ensure both computational and chemical correctness. Specifically, the team comprised
three undergraduate students and six PhD students. Among them, three undergraduates and two PhD
students had a background in computer science, while the remaining four PhD students specialized in
computational chemistry. This interdisciplinary composition ensured that each function was reviewed
effectively.

D Details of the difficulty reward model with feedback

Training data collection. To train the difficulty reward modelMdiff, we construct a dataset com-
prising both synthetic and human-annotated instructions. The synthetic portion is generated using
ChemOrch framework, covering a diverse range of chemistry tasks with variation introduced through
a wide set of constraints, including both manually designed templates and LLM-generated constraint
prompts. To complement this, we incorporate real instructions from existing datasets such as Chem-
LLMBench [11] and Mol-Instructions [15], which are manually annotated by a team of three
experts major in computational chemistry. Each instruction is labeled with a difficulty score on a
1–5 scale, along with textual explanations indicating the reasons for its simplicity and difficulty. To
improve clarity and consistency, annotators use GPT-4o to refine their drafted annotations, helping
to standardize language and eliminate ambiguity without altering the core assessment. Finally, we
collect 3390 annotated data items.

Training details. We then train Mdiff using supervised fine-tuning (SFT) to jointly predict the
difficulty score and generate the corresponding feedback. The Meta-Llama-3.1-8B-Instruct is trained
on 4×A100 for 3 epochs with a per-device batch size of 2, gradient accumulation of 1, and bf16
precision. The training employed the AdamW optimizer with a learning rate of 1×10−5 and a cosine
decay schedule. We used LLaMA-Factory [62] for the training process.

Table 7: Human alignment rate ofMdiff.

Difficulty Score Human Alignment Rate
1 100%
2 88.9%
3 85.7%
4 86.8%
5 100%

Total 87.0%

Effectiveness evaluation. The effectiveness
evaluation is performed on a test instruction
dataset of 900 samples, whose data distribution
is tightly aligned with the training data of 3390
samples, as depicted in Figure 9, ensuring con-
sistency across datasets. In our human evalu-
ation protocol, each predicted difficulty score
is presented to a computational chemistry ex-
pert alongside the corresponding instruction and
the textual explanation. The expert then judges
whether the score and reasoning are appropriate

18

Human Evaluation Guideline

Objective
The objective of this validation task is to assess the quality of model-generated responses based
on their corresponding instructions. Specifically, your role is to determine whether the response
appropriately addresses the instruction and is factually accurate.
Files and Format
You will be provided with a JSON file containing a list of examples. Each example is represented
as a dictionary with multiple fields. For this task, please focus exclusively on the following two:

• instruction: The user-provided prompt or question.
• response: The answer generated by the model.

Your task is to evaluate the quality of each response with respect to the instruction.
Evaluation Criteria
For each example, assign one of the following labels:

• 1 (Pass): The response accurately and sufficiently answers the instruction, with no factual
errors.

• 0 (Fail): The response fails to address the instruction, or contains factual inaccuracies,
hallucinations, or misleading content.

• N/A (Uncertain): You are unable to confidently determine the quality of the response, due to
ambiguity, insufficient domain knowledge, or unclear instruction.

Figure 10: Human evaluation guideline of response quality.

or not. Table 7 summarizes the effectiveness evaluation results, showing the alignment rate between
Mdiff and human expert judgments.

Mdiff demonstrates a robust overall human alignment rate of 87%, indicating that the model success-
fully captures the nuances of chemistry instruction complexity. Difficulty levels 1 and 5 achieved
perfect alignment (100%), while levels 2, 3, and 4 showed high alignment rates of 88.9%, 85.7%, and
86.8%, respectively. These results confirm that the model accurately reflects human judgment across
varying complexity levels.

E Human Evaluation Details For Response Quality

Evaluation Guideline. The human evaluation guideline is shown in Figure 10. To ensure the
reliability and professionalism of the assessment, the evaluation was conducted over a total of 400
samples by four Ph.D. students with backgrounds in computational chemistry. The guideline instructs
annotators to determine whether the model-generated response (i) appropriately addresses the given
instruction and (ii) contains no factual errors. Each response is labeled as 1 (Pass), 0 (Fail), or N/A
(Uncertain), depending on its accuracy and relevance. Annotators are instructed to focus solely on
the instruction and response fields from each data entry. For the final analysis, samples labeled
as N/A were excluded to ensure statistical validity.

19

  SavedPreview    Data

2～4 Steps
22.5%

2～4 Steps
22.5%

5～7 Steps
38.5%

5～7 Steps
38.5%

8～10 Steps
34%

8～10 Steps
34%

> 10 Steps
5%

> 10 Steps
5%

DATA POINT LABELS

Show labels on data points

Last Min & Max CustomAll

Hide overlapping labels

Text color

Match data Contrast Fixed



Auto

Weight

Bold 

Size

Auto Fixed

Size

1.3

Outline

On



Off

Label content

Auto Value Label Both

Plot background →

Number formatting →

Legend →

Popups & panels →

Annotations →

Animations →

Layout →

Header →

Footer →

Accessibility →

Labels

→

 Search for setting

by 黄跃
Create a story Export & publish

Untitled visualization

Help

(a) The distribution of step number in gen-
erated responses.

4 5 6 7 8 9 10
Average Number of Steps

Transition State Search
Yield Prediction

Quantum Chemical Properties Prediction
Quantum Mechanical Calculations
Hydration Free Energy Prediction

Reaction Center Identification
Molecular Dynamics

Atom-Assignment In Reaction Smiles
Drug-Drug Interaction

Molecular Synthesis
Cheminformatics Software Utilization

Potential Molecular Bonding Types
Acid Dissociation Constant Prediction

Catalyst Classification
Side Effects Classification

Molecular Format Conversions
Drug-Likeness Evaluation

(b) The step number in generated responses of different topics.

Figure 11: Statistics of reasoning step numbers in generated responses.

F Baseline Comparison

We collect 120 reliable metadata items from PubChem [20] and TDC [57–59] and send them to
the IG model to generate the name prediction and property prediction task instructions. Then, we
generate the responses using ChemOrch and the baseline model (GPT-4o [23]) for these tasks.

To evaluate the correctness of the generated pairs, we adopt LLM-as-a-Judge [61] to calculate the
accuracy of ChemOrch and the baseline model. Our framework illustrates a high accuracy rate of
75.00%, which is significantly higher than the 22.50% of the baseline model.

G Reasoning Steps of Generated Responses

We automatically parse and get the number of steps in each response by GPT-4o. As illustrated in
Figure 11, ChemOrch-generated responses exhibit a wide range of reasoning depths, with over 70%
requiring more than five intermediate steps. This indicates that our framework promotes non-trivial,
multi-stage reasoning beyond template-based generation. Moreover, the average number of steps
varies substantially across topics, from more than nine steps for quantum-level predictions to fewer
than six for format conversions, reflecting the framework’s adaptive planning capability. These results
validate the core design of ChemOrch: it is able to support diverse, complex, and execution-grounded
reasoning chains at scale.

H Reliability of LLM-as-a-Judge Evaluation

To evaluate the quality and correctness of model-generated outputs across various tasks, we adopt the
LLM-as-a-Judge paradigm, which leverages large language models to assess generated responses.
Given the growing use of this evaluation strategy in recent literature, it is important to establish its
empirical reliability, particularly in the absence of clear rule-based or human-labeled ground truth for
complex tasks.

While rule-based metrics remain appropriate for simple binary classification, they may introduce
inaccuracies in semantic evaluation (e.g., by failing to match semantically equivalent responses that
differ lexically). The LLM-as-a-Judge approach offers broader applicability by capturing contextual
nuances and aligning better with human preferences.

To assess the validity of this approach, we conducted a human–LLM agreement study across three
tasks using two representative instruction-tuned models: Llama-3.1-8B-Instruct and Qwen-2.5-
7B-Instruct. As shown in Table 8, Table 9, and Table 10, the results indicate strong alignment
between automated scoring and human judgment: 1) Binary classification (Property Prediction):
agreement up to 99.75%; 2) Binary classification (Tool Usage): agreement up to 97%; 3) Score-
based evaluation (General QA): average Pearson correlation r = 0.796 (all statistically significant).
These results support the robustness of LLM-based evaluators as proxies for human judges in
large-scale evaluation pipelines.

20

Table 8: Human–LLM agreement on property prediction task.
Model Batch 1 Batch 2 Avg. Alignment
Llama-3.1-8B-Instruct (1) 49/50 (98%) 50/50 (100%) 99%
Llama-3.1-8B-Instruct (2) 50/50 (100%) 50/50 (100%) 100%
Qwen-2.5-7B-Instruct (1) 50/50 (100%) 50/50 (100%) 100%
Qwen-2.5-7B-Instruct (2) 50/50 (100%) 50/50 (100%) 100%

Overall Average — — 99.75%

Table 9: Human–LLM agreement on tool usage task.
Model Batch 1 Batch 2 Avg. Alignment
Llama-3.1-8B-Instruct (1) 47/50 (94%) 46/50 (96%) 95%
Llama-3.1-8B-Instruct (2) 47/50 (94%) 50/50 (100%) 97%
Qwen-2.5-7B-Instruct (1) 48/50 (96%) 50/50 (100%) 98%
Qwen-2.5-7B-Instruct (2) 48/50 (96%) 50/50 (100%) 98%

Overall Average — — 97%

I Details of Selected Tools

ChemOrch leverages two categories of tools: chemistry-related tools such as RDKit [19] and
PubChem [20] and general-purpose tools like web search.

RDKit. We utilize RDKit2[19]–a widely adopted open-source cheminformatics toolkit–for molecular
representation and processing during data synthesis. RDKit provides essential functionalities for
SMILES parsing, molecular graph construction, substructure matching, and descriptor computation,
which are critical for generating chemically valid and structurally diverse input-output instruction
pairs. Its seamless integration with Python and support for 2D/3D molecular operations make it
particularly suitable for large-scale instruction generation in the chemistry domain.

PubChem. We also incorporate data from PubChem3 [20], a public repository maintained by
the National Institutes of Health (NIH), which provides comprehensive information on chemical
compounds, including their molecular structures, properties, bioactivities, and identifiers. PubChem
serves as a reliable source for curating chemically diverse and biologically relevant compounds.

Web Search. We leverage the web search tool provided via the OpenAI API4 to retrieve up-to-date
and domain-relevant information from the internet in real time. This enables our framework to enrich
instruction data with factual context and emerging knowledge beyond the model’s pretraining corpus.

Reasons for Selection of PubChem and RDKit. We select PubChem and RDKit as the foundational
tools in ChemOrch due to their broad functionality, stable APIs, and suitability for function-level
decomposition. While alternative toolkits such as DeepChem [63] and ASKCOS [64] are widely
used in the chemistry community, they present practical limitations in the context of instruction-based
tool invocation. DeepChem [63], for instance, emphasizes model training and evaluation pipelines,
requiring users to manage datasets, train predictors, and interpret model outputs. This training-
heavy workflow is often too heavy-weight for lightweight, step-level function calling and lacks the
immediacy and transparency needed for modular LLM usage. ASKCOS [64] provides powerful
capabilities in retrosynthesis and reaction planning but is optimized for end-to-end synthesis tasks
and requires complex orchestration or server-side APIs, making it difficult to extract self-contained
functions for flexible invocation.

In contrast, RDKit offers atomic-level cheminformatics operations (e.g., SMILES parsing, substruc-
ture matching, fingerprinting) with lightweight and stable interfaces. PubChem provides robust access
to curated compound data and chemical identifiers through scalable and open APIs. They strike a

2https://www.rdkit.org/
3https://pubchem.ncbi.nlm.nih.gov/
4https://platform.openai.com/docs/guides/tools-web-search

21

https://www.rdkit.org/
https://pubchem.ncbi.nlm.nih.gov/
https://platform.openai.com/docs/guides/tools-web-search

Table 10: Human–LLM agreement on score-based evaluation (General QA).
Model Pearson r

Llama-3.1-8B-Instruct (1) 0.741
Llama-3.1-8B-Instruct (2) 0.728
Qwen-2.5-7B-Instruct (1) 0.859
Qwen-2.5-7B-Instruct (2) 0.854

Average 0.796

balance between expressiveness, modularity, and integration ease–making them ideal building blocks
for constructing function-level primitives in ChemOrch.

Table 11: Molecular property prediction topics.
Topic Name Description

Partition coefficient prediction This task involves predicting the partition coefficient (log P) of molecules, which
reflects their hydrophobicity and is crucial for understanding their pharmacoki-
netic properties.

Water solubility prediction This task involves predicting the solubility of compounds in water, using datasets
like ESOL.

Hydration free energy prediction Predicts free energy of hydration of molecules, important for understanding
solvation and interactions.

Lipophilicity prediction Predicts tendency to dissolve in lipids, a measure of lipophilicity.
Quantum chemical properties pre-
diction

Predicts quantum chemical properties, such as energies and geometries, using
QM7, QM8, and QM9 datasets.

Blood–Brain Barrier Penetration
prediction

The task involves predicting molecules’ Blood-Brain Barrier penetration capa-
bility.

Protein–Ligand Binding Affinity
prediction

Predicts binding affinity in terms of Kd (dissociation constant) using PDBbind
data.

BACE Inhibition prediction Predicts compound’s ability to inhibit BACE protein.
HIV Inhibition prediction Predicts compound’s ability to inhibit HIV replication.
Side Effect prediction Predicts the side effects of drugs across multiple categories.
Drug–Drug Interaction prediction Whether two drugs will interact, and their interaction type.
Clearance prediction Forecasts the clearance rate of compounds from biological systems.
Oral Bioavailability prediction Determines whether a molecule is orally available or not (or has prodrugs).
Enzyme Interaction prediction Identifies which enzyme(s) a drug inhibits.
pKa prediction The task involves the estimation of the acid dissociation constant (pKa) of

molecules.

J Broader impacts

ChemOrch represents a transformative advancement at the intersection of LLMs and computational
chemistry. By generating high-quality, tool-grounded instruction–response data at scale, ChemOrch
lowers the barrier for training and evaluating LLMs on chemistry tasks. This capability has particular
value for researchers and institutions with limited access to curated chemical datasets, helping to
democratize access to domain-specific tools powered by generative AI.

ChemOrch can accelerate scientific discovery. It equips LLMs with structured chemical reasoning
abilities, which can support innovation in areas such as drug discovery, materials design, and reaction
informatics [65]. Researchers can use ChemOrch-generated tasks to identify model weaknesses,
construct fine-tuning datasets, and conduct more rigorous benchmarking. These capabilities can lead
to faster hypothesis testing, reduced experimental costs, and more informed scientific decisions.

ChemOrch can support education and workforce development. The system can generate chem-
istry problems and reasoning tasks with adjustable difficulty, making it suitable for instructional use.
Students can interact with AI-generated content to deepen their understanding of complex topics,
while educators can tailor assignments to various learning levels. This flexibility makes ChemOrch
especially useful in educational settings with limited access to expert instructors or resources.

22

Table 12: Reaction-level prediction topics.
Topic Name Description

Retrosynthetic Analysis The task involves determining feasible starting materials and stepwise synthesis
routes for a target molecule.

Reaction Type Classification This task involves classifying the type of chemical reaction.
Reaction Center Identification This task involves pinpointing the specific site(s) in a molecule where reaction

occurs.
Reaction Condition Recommenda-
tion

This task involves recommending optimal reaction conditions (solvent, catalyst,
etc.).

Solvent Classification The task involves categorizing solvents by their chemical properties.
Ligand Classification This task involves categorizing and distinguishing different ligands.
Catalyst Classification This task involves sorting catalysts into different classes.
Reaction Temperature Prediction This task involves predicting the optimal temperature for a given reaction.
Reactant Amount Prediction This task involves predicting the required quantities of reactants.
Reaction Time Prediction This task involves estimating the reaction duration.
Reaction Workup Recommendation This task involves proposing procedures for post-reaction purification.
Yield Prediction The task involves estimating the amount of product formed.
Selectivity Prediction This task involves predicting the selectivity between possible products.
Reaction Outcome Prediction This task involves predicting the outcomes of a reaction given reactants and

conditions.
Reaction Outcome Rationalization This task involves explaining why a particular reaction outcome occurs.
Stereoselectivity Prediction This task involves analyzing the preferential formation of stereoisomers.

ChemOrch can enable chemistry-aware autonomous agents. By integrating task decomposition,
tool execution, error correction, and difficulty calibration, ChemOrch provides the foundation for
building LLM-based agents capable of operating in scientific domains [66, 8, 67]. These agents could
assist in experiment planning, molecular analysis, and literature synthesis—enhancing collaboration
between human researchers and AI models.

K Limitations and Failure Modes for the Future Work

Despite the strong performance of ChemOrch in synthesizing domain-specific instructions for chemi-
cal reasoning, our in-depth analysis reveals several unique and non-trivial failure modes that highlight
opportunities for further improvement:

Conflict Between Tool Outputs and Model Knowledge. We observe that factual inaccuracies in
some responses stem not only from tool malfunctions but more subtly from a mismatch between tool
outputs and the model’s internal knowledge. In certain cases, the model ignores the tool’s returned
result–especially when it contradicts its prior knowledge or learned biases [68]. This suggests that
the model does not always treat the tool as a trusted authority. A promising direction to mitigate
this issue is to incorporate an explicit instructional priority hierarchy [69], in which tool outputs are
assigned a higher trust level than model-generated content, encouraging the model to defer to tools in
cases of conflict.

Error Cascades Due to Incorrect Tool Usage. We identify a failure pattern in which an early-stage
tool invocation error–such as supplying an invalid or malformed SMILES string–propagates through
subsequent steps, resulting in entirely flawed reasoning chains. These snowballing errors highlight
the brittleness of current tool integration. A potential solution involves developing more robust error
detection and rollback mechanisms, allowing the system to identify and correct invalid tool inputs
before proceeding with subsequent reasoning steps.

Model Laziness in Complex Instructions. For particularly complex instructions, we find that the
model often resorts to generating high-level guidance (e.g., "You can use PubChem to search...") rather
than executing the task and providing a concrete answer. This “lazy” behavior may be an artifact of
underlying system prompts used in alignment-tuned models (e.g., OpenAI’s usage constraints), which
prioritize efficiency and safety over exhaustive computation. Future work could explore prompt-level
interventions or model fine-tuning strategies to better incentivize execution over delegation.

Planning and Step Ordering Errors. A notable failure mode arises from logical inconsistencies
in the generated reasoning plans–such as incorrect ordering of steps or violations of necessary

23

chemical dependencies (e.g., attempting a reaction analysis before retrieving the molecular structure).
These issues reflect a fundamental challenge in planning for domain-specific tasks, where procedural
correctness is tightly coupled with chemical constraints. While much of the current progress in
LLM-based reasoning has focused on general domains, our observations underscore the importance
of domain-adapted reasoning capabilities tailored for chemistry. Future directions may include the
integration of hierarchical planning modules and chemistry-aware workflow decomposition [8], which
explicitly model task-specific execution order and causal dependencies.

L Constraint Examples

We show the constriant examples of different aspects in Table 13.

Table 13: Constraint examples of instruction generation.
Constraint category Example

Sentence Length Use extremely concise sentences, limited to 5-10 words, retaining only the most
essential information.

Language Style Employ a humorous and lighthearted tone with anthropomorphic or whimsical
analogies.

Application Domain Explore physical chemistry problems related to thermodynamics/kinetics calcu-
lations.

Knowledge Level Tailor content for elementary students using only common-sense descriptions.
Knowledge Source Reference recent findings from top-tier journal publications within three years.
Concreteness Extent Maintain completely abstract descriptions without concrete examples.
Problem Context Contextualize within industrial production line scenarios.
Problem Attribution Formulate mechanism analysis questions with electron-pushing arrows.
Specific Knowledge Usage Involve titration equivalence calculations or endpoint determination.
Quantitative Level Develop mathematical models or algorithmic optimization requirements.

M Algorithm of ChemOrch

Algorithm 1 Instruction Generation

Require: Task space T , Constraint set C, Metadata set M
Require: Instruction Generation modelMinst, Difficulty reward modelMdiff

1: for each task t ∈ T do ▷ Iterate over all tasks
2: for each constraint c ∈ C do ▷ Iterate over all constraints
3: for each metadata m ∈M do ▷ Iterate over all metadata
4: x←Minst(t, c,m) ▷ Generate initial instruction
5: (d, e)←Mdiff(x) ▷ Evaluate difficulty and feedback
6: while difficulty d does not meet target level do ▷ Repeat if difficulty is misaligned
7: x←Minst(t, c,m, e) ▷ Regenerate using feedback
8: (d, e)←Mdiff(x) ▷ Re-evaluate difficulty
9: end while

10: Save or store final instruction x ▷ Store final instruction
11: end for
12: end for
13: end for

24

Algorithm 2 Response Construction with Tool-Driven Execution

Require: Instruction x, Metadata m, Tool pool F , Response generation modelMresp
1: s← Decompose(x) ▷ Decompose instruction into reasoning steps
2: {d1, . . . , dM} ←Mresp(s,m) ▷ Predict expected tool descriptions
3: for each dm ∈ {d1, . . . , dM} do
4: F raw

m ← Top-k retrieved tools via cosine similarity ▷ Semantic retrieval of candidate tools
5: end for
6: F raw ←

⋃M
m=1 F raw

m ▷ Aggregate raw candidate tool pool
7: F⋆ ← Distill(F raw, x, s,m, τ) ▷ Refine tools via usefulness, expertise, and budget
8: for each f ∈ F⋆ do
9: Sf ←Mresp(f, x, s,m) ▷ Generate code script for tool f

10: Execute Sf ; if success, store output of ▷ Run script and store result
11: if execution fails then
12: for attempt i = 1 to Rmax do
13: Capture error e, regenerate S(i+1)

f ←Mresp(e,S(i)f ,m) ▷ Self-repair using error
trace

14: Retry execution
15: if success then
16: Store output of ; break
17: end if
18: end for
19: if still failed then
20: Retrieve external documentation and regenerate Sf ▷ Fallback to external guidance
21: end if
22: end if
23: Check result sufficiency for of ; refine if needed ▷ Validate quality of tool output
24: Check if {of} satisfies instruction x; stop early if sufficient ▷ Early stopping for efficiency
25: end for
26: if final outputs insufficient then
27: oextra ←WebSearch(x,m) ▷ Trigger web search for missing information
28: end if
29: O ← {of}f∈F⋆ ∪ {oextra} ▷ Aggregate all outputs
30: y ←Mresp(x,O,m) ▷ Construct final response grounded in outputs

N Data Examples and Case Study

To provide a clearer understanding of model behavior in ChemOrch, we present examples of the
model’s output for Instruction Decomposition (Figure 31) and Expected Tool Specification (Figure 14),
using the prompt: “How can Lipinski’s Rule of Five be used to assess the drug-likeness of a
compound?”. Moreover, we provide examples of generated instruction-response pairs for tasks
including molecule caption, property prediction, general chemistry Q&A, chemistry reasoning, and
tool usage in Figure 15, Figure 16, Figure 17, Figure 18, and Figure 19.

Supplementing our primary experiments, we conducted additional fine-tuning using data generated by
ChemOrch on two downstream tasks, solvent classification and catalyst classification. As shown in
Figure Figure 12, both tasks achieved performance gains. These results further highlight the efficacy
of ChemOrch.

To demonstrate the extensibility of ChemOrch, we present a representative use case involving a
customized tool, as illustrated in Figure 20.

25

Solvent Classification Catalyst Classification
6.0

6.5

7.0

7.5

8.0

Sc
or

e

Vanilla Fine-tuned Vanilla Fine-tuned

Figure 12: Fine-tuning results on two tasks: solvent classification and catalyst classification

Instruction Decomposition

Step1: Research and summarize Lipinski’s Rule of Five, focusing on its criteria for drug-
likeness.
Step2: Identify the key parameters of Lipinski’s Rule of Five: molecular weight, logP, hydrogen
bond donors, and hydrogen bond acceptors.
Step3: Acquire the chemical structure of the compound to be assessed for drug-likeness.
Step4: Calculate the molecular weight of the compound using its chemical structure.
Step5: Determine the compound’s partition coefficient (logP) to evaluate its hydrophobicity or
hydrophilicity.
Step6: Count the number of hydrogen bond donors (e.g., NH or OH groups) in the compound’s
structure.
Step7: Count the number of hydrogen bond acceptors (e.g., N or O atoms) in the compound’s
structure.
Step8: Compare the calculated values against Lipinski’s criteria: molecular weight < 500 Da,
logP < 5, hydrogen bond donors < 5, and hydrogen bond acceptors < 10.
Step9: Assess the compound’s drug-likeness based on its conformity to Lipinski’s Rule of
Five.
Step10: Consider using cheminformatics software tools (e.g., ChemDraw, RDKit) for auto-
mated calculations and analysis.

Figure 13: Example of instruction decomposition by GPT-4o.

Expected Tool Specification

Molecular weight calculator: Computes the molecular weight of a compound from its chemical
structure.
LogP calculator: Determines the partition coefficient of a compound to assess its hydrophobic-
ity or hydrophilicity.
Hydrogen bond donor counter: Counts NH and OH groups in a compound’s chemical structure.
Hydrogen bond acceptor counter: Counts nitrogen and oxygen atoms in a compound’s chemical
structure.
Cheminformatics structure viewer: Visualizes the chemical structure of a compound.

Figure 14: Example of expected tool specification by GPT-4o.

26

Molecule Caption Task

Instruction: Can you provide a descriptive analysis of the molecule that corresponds to the
SMILES: C1=CC(=CC=C1NC(=O)C2=CC=C(O2)C3=C(C=CC(=C3)Cl)Cl)I?
Response: The molecule corresponding to the SMILES string
C1=CC(=CC=C1NC(=O)C2=CC=C(O2)C3=C(C=CC(=C3)Cl)Cl)I has the molecular
formula C17H10Cl2INO2 and a molecular weight of 458.082 g/mol. It contains several
functional groups, including an amide group signified by the NC(=O) structure, an ether group
within an aromatic system, and halogens represented by chlorine (Cl) and iodine (I) atoms.
The molecule is highly aromatic, featuring three interconnected aromatic rings. The first
aromatic ring is a phenyl unit C1=CC(=CC=C1), while the second C2=CC=C(O2) contains
an ether linkage, making it an aryl ether. The third aromatic ring C3=C(C=CC(=C3)Cl)Cl
contains two chlorine atoms. Overall, this compound is a halogenated aromatic molecule with
complex characteristics due to its amide, ether functionalities, and halogen substituents, which
provide potential sites for chemical reactivity or interaction. Its structure indicates potential
diverse chemical behavior due to the multiple aromatic systems and functional groups.

Figure 15: Example of molecule caption task from ChemOrch.

Property prediction Task

Instruction: Assess if the compound with SMILES: C1=CC=CC=C1C2=CC=CC=C2 can
penetrate the blood-brain barrier.
Response: Yes. Biphenyl, represented by the SMILES notation
C1=CC=CC=C1C2=CC=CC=C2, demonstrates physicochemical properties that sug-
gest it can penetrate the blood-brain barrier (BBB). Its molecular weight of 154.21 g/mol,
logP of approximately 4.0, polar surface area (PSA) of 0Å

2
, and lack of hydrogen bond

donors or acceptors all fall within the favorable ranges for BBB penetration. Biphenyl’s
non-polar nature and absence of functional groups also suggest minimal interaction with active
transport mechanisms, further indicating its potential for BBB penetration.

Figure 16: Example of property prediction task from ChemOrch.

General Chemistry Question Task

Instruction: What is the role of catalysis in the Haber process for ammonia production?
Response: The role of catalysis in the Haber process for ammonia production is to significantly
enhance the efficiency of the reaction by increasing the reaction rate, facilitating the reaction
mechanism, optimizing operational conditions, and improving industrial significance. Catalysts
lower the activation energy required for nitrogen and hydrogen to react, with iron being a
typical catalyst. This enables the reaction to proceed rapidly at feasible temperatures and
pressures. The catalyst also verifies adsorption of reactants, weakening the nitrogen triple
bond to facilitate the formation of ammonia, while maintaining energy efficiency and cost-
effectiveness, crucial for large-scale production.

Figure 17: Example of general chemistry question task from ChemOrch.

27

Chemistry Reasoning Task

Instruction: At 15°C, a solution exhibits a pH value of 2.73. Calculate the corresponding
pOH and the hydroxide-ion concentration,

[
OH−].

Response: To solve this problem, we want to determine both the pOH of the solution and the
concentration of hydroxide ions, [OH−], at a temperature of 15°C, given that the solution has
a pH of 2.73. Here’s how you can approach the solution step by step:

1. Understand the Relationship Between pH, pOH, and pKw:
The pH of a solution is a measure of its acidity, while pOH is a measure of its basicity.
The two are related through the ion product of water, Kw, especially since we know
the temperature-dependent value of Kw at 15°C.

2. Using pH and pKw to Find pOH:
At any given temperature, there’s a relationship between pH, pOH, and pKw described
by the equation:

pH + pOH = pKw

At 15°C, we know that pKw = 13.94. You’re also provided with a specific pH of
2.73 for the solution. So, to find pOH, we rearrange the equation to:

pOH = pKw − pH = 13.94− 2.73

By performing this calculation, we determine:

pOH = 11.21

3. Understanding the Relationship Between pOH and [OH−]:
The pOH value gives us insight into the concentration of hydroxide ions in the solution.
The relationship between pOH and the concentration of OH− ions is described by:

pOH = − log10
(
[OH−]

)
In order to find [OH−], we need to rearrange this equation to solve for the concentra-
tion:

[OH−] = 10−pOH

4. Calculating the [OH−] Concentration:
Now, with the pOH we calculated as 11.21, we can determine the concentration of
hydroxide ions:

[OH−] = 10−11.21 ≈ 6.12× 10−12 M

This final value tells us the concentration of hydroxide ions present in the solution at 15 ◦C,
rounding off our solution process using the given inputs. By following these logical steps, we
not only confirm the veracity of the result but also deepen our understanding of the relationships
between pH, pOH, and the ion product of water at specific temperatures.

Figure 18: Example of chemistry reasoning task from ChemOrch.

28

Tool Usage Task

Instruction: Utilize the get_compounds function from the PubChemPy library to find the
chemical details for a compound with the SMILES string CC[N+](C)(CC)CCC(C)(C#C)O
and set smiles as the identifier namespace.
Response:
try:

from pubchempy import get_compounds

define the parameters
identifier_value = "cc[n+](c)(cc)ccc(c)(c#c)o"
namespace_value = "smiles"

call the get_compounds function with the provided
parameters

result = get_compounds(identifier=identifier_value , namespace
=namespace_value)

print the result with an explanatory message
print("the chemical details for the compound with the smiles

string '{}' are: {}".format(identifier_value , result))
except Exception as e:

print("error: {}".format(e))

Figure 19: Example of tool usage task from ChemOrch.

29

Customized tool example

User customized tool information: smiles_from_compound

additional_tool = [{
"tool": "smiles_from_compound",
"module": "ord_schema.message_helpers",
"description": "Fetches or generates a SMILES identifier for

a compound. If a SMILES identifier already exists , it is
simply returned.",

"parameters": {"compound": "reaction_pb2.Compound message."},
"documentation": "https :// docs.open -reaction -database.org/en/

latest/ord_schema/ord_schema.html#module -ord_schema.
message_helpers"

}]

Tool calling script:
import ord_schema.message_helpers
from ord_schema import reaction_pb2
try:

Create a Compound object and add a SMILES identifier for
ethanol

compound = reaction_pb2.Compound ()
identifier = compound.identifiers.add()
identifier.type = reaction_pb2.CompoundIdentifier.SMILES
identifier.value = "CCO"

Call the function from the module with the properly formed
compound object

result = ord_schema.message_helpers.smiles_from_compound(
compound)

print("The SMILES string for ethanol is:", result)
except Exception as e:

print("Error:", e)

Figure 20: Example of customized extended tool.

30

O Scalability Example

Importantly, ChemOrch can be readily extended to handle alternative molecular formats by simply
introducing appropriate conversion functions in the preprocessing stage. For example, to support
graph-based representations, one only needs to add a transformation module before the main task.
Below, we provide a code snippet illustrating how ChemOrch can seamlessly convert a graph
representation:

1 def graph_to_iupac_name(graph):
2 mol = Chem.RWMol()
3 atom_idx_map = {}
4

5 # Add atoms
6 for i, atom_info in enumerate(graph["atoms"]):
7 atom = Chem.Atom(atom_info["element"])
8 atom.SetFormalCharge(atom_info.get("charge", 0))
9 atom.SetIsAromatic(atom_info.get("is_aromatic", False))

10 idx = mol.AddAtom(atom)
11 atom_idx_map[i] = idx
12

13 # Add bonds
14 bond_order_map = {
15 "single": Chem.rdchem.BondType.SINGLE,
16 "double": Chem.rdchem.BondType.DOUBLE,
17 "triple": Chem.rdchem.BondType.TRIPLE,
18 "aromatic": Chem.rdchem.BondType.AROMATIC
19 }
20

21 added = set()
22 for a1, neighbors in graph["bonds"].items():
23 for a2, bond_type in neighbors:
24 if (a2, a1) in added:
25 continue
26 bt = bond_order_map.get(bond_type.lower())
27 if bt is None:
28 raise ValueError(f"Unknown bond type: {bond_type}")
29 mol.AddBond(atom_idx_map[a1], atom_idx_map[a2], bt)
30 added.add((a1, a2))
31

32 mol.UpdatePropertyCache(strict=False)
33 Chem.SanitizeMol(mol)
34 return pcp.get_compounds(Chem.MolToSmiles(mol, canonical=True),

'smiles')[0].iupac_name↪→

31

P Prompt Template

Instruction Synthesis Prompt

You are an advanced AI assistant tasked with generating high-quality instructions for synthetic
dataset creation.
Your goal is to produce a diverse set of instructions (or questions) based on a given user task.
The corresponding answers will be generated later to form a dataset.
Instructions:
1. **Task Understanding:** Carefully analyze the provided task and determine its core
objective.
2. **Instruction Generation:** Create exactly ‘n‘ unique instructions related to the task. The
instructions should be diverse in phrasing and complexity.
3. **Clarity & Context:** Ensure each instruction is clear and provides enough context for an
AI model to generate a meaningful response.
4. **Format:** Return the instructions strictly as a Python-style list of strings.
5. **Custom Constraint:** {custom_constraint}
6. **Metadata:** If metadata is provided, your instructions should adhere to it.
Example:
User Task: Toxicity Prediction
Generated Instructions (Example Output):
[
"Does benzo[a]pyrene exhibit toxicity to humans?",
"What is the acute toxicity of trichloroethylene?",
"Does bisphenol A have endocrine-disrupting effects?",
"Do pyridine compounds have neurotoxic effects?",
"Does tetraethyl lead pose long-term toxicity risks to the environment and humans?"
]

Figure 21: Instruction synthesis prompt for ChemOrch.

32

Instruction Decomposition Prompt

You are an advanced AI assistant tasked with planning how to solve a given instruction.
Your goal is to **break down the problem into structured steps** that can be executed using
external tools or reasoning. You should **not** provide an answer—only a plan.
Instructions:
1. **Understand the Instruction:** Carefully analyze the given instruction to determine its
requirements.
2. **Identify Key Elements:** Identify key components such as subject, method, and expected
output.
3. **Break Down into Steps:** Generate a structured plan consisting of logical steps that
guide the problem-solving process.
4. **Ensure Tool Compatibility:** If an external tool is likely required (e.g., a chemical
database, scientific literature, mathematical solver), indicate it explicitly.
5. **Format:** Return the planning steps strictly as a Python-style list of strings.
6. **Metadata:** If metadata is provided, your planning should centre on it.
Now, generate a structured plan for the following instruction:
Instruction: {instruction}
Ensure the output is formatted strictly as a Python list of strings.

Figure 22: Instruction decomposition prompt for ChemOrch.

Tool Planning Prompt

You are an advanced AI assistant tasked with defining the ideal tools for executing a plan.
Your goal is to describe the functionalities of these tools concisely, ensuring that each tool
serves **one specific purpose**.
Instructions:
1. **Analyze the Planning Steps:** Carefully review the provided planning steps to determine
what kind of external tools would be needed to complete them.
2. **Define the Ideal Toolset:** Describe **only the necessary** tools, ensuring that each
tool performs only **one function**.
3. **Keep Descriptions Concise:** Each tool description should be brief and focused on its
function.
4. **Limit the Number of Tools:** Minimize the number of tools by **combining related
functionalities** into single tools where applicable.
5. **Format:** Return the tool descriptions strictly as a Python-style list of strings.
6. **Metadata:** If metadata is provided, your tool planning should refer to it.
Now, generate a structured list of ideal tool descriptions for the following planning steps:
Planning Steps: {planning_steps}
Ensure the output is formatted strictly as a Python list of strings, with each tool description
containing only one function.

Figure 23: Tool planning prompt for ChemOrch.

33

Tool Retrieval Prompt

I will give you the task, a tool name, and its description.
Your goal is to confirm whether the tool can be used to solve the task.
Instructions:
1. You need to extract the final targets of the task and determine whether it requires a specific
tool or multiple tools.
2. First, you need to focus on solving the final targets of the task.
3. Second, if the task requires multiple tools and this tool excels in one aspect of the task, it is
also useful.
4. If metadata is provided, your choice of tool should be based on the requirements of the
metadata.
Output format:
1. If the tool can be used for solving the task, return the tool index only. It should be an integer.
2. If the tool can’t be used for solving the task, return the string "no" only. It should be a string.

Figure 24: Tool retrieval prompt for ChemOrch.

Tool Distillation Prompt

I will give you a list of tools that have been screened, and they are all related to the task. I will
also give you the raw task.
Problems:
1. Although these tools are all related to the task, some may be indirectly related to the task, or
the tool may not be an expert in the task.
2. Some tools may not be able to solve the final targets of the task.
Your goal is to check the tools and confirm whether they need to remove some indirectly
related tools.
Strategies for tool selection:
1. Pay attention to the tools’ names. The tool name contains its function, and if the task needs
the tool, the name often appears in the tool description.
2. Throw light on the task content. The content may clarify what tools or what kinds of tools
are needed for the task.
Instructions:
1. Read the tools list and the task carefully, compare the tools’ functions with the task, and
check if the task marks specific tools to use.
2. Analyse the task and extract the final targets of the task. Regarding the tools can’t solve the
final targets of the task as useless tools, you should focus on the final targets of the task.
3. If the number of tools overnumbers the threshold:{threshold_for_tool_distilling}, you
should think more about finding and removing indirectly related tools. In another situation, if
the task only needs a few steps to solve, you should think more about using fewer tools.
4. If metadata is provided, your choice of tool should be based on the requirements of the
metadata.
Output format:
1. If the indirectly related tools are found, please return only the most indirectly related tool
index.
2. If no indirectly related tools are found, please return the string "no" only.
3. You should return the content described above without any prefixes or suffixes.

Figure 25: Tool distillation prompt for ChemOrch.

34

Code Script Generation Prompt

I will give you some key-value pairs that describe the task, module name, function name, and
parameters with specific values.
Your goal is to write a script for calling the function with the given parameters.
Instructions:
1. Import the module in this format:
"import ChemGen.tools.module_name" or "import module_name".
The module name will be given in the user prompt under the "module_name" key.
2. Some parameters may need other packages. Please check the parameters and import the
required packages.
3. Create variables for the parameters and fill them with the given values.
4. Call the function with the parameters and print the result. When printing the result, you
need to describe what it means and not just print it.
Important:
The function name will be in the user prompt under the "function name" key.
Output format:
Return the script content only without any useless prefixes or suffixes.

Figure 26: Code script generation prompt for ChemOrch.

Self-Repairing: Error Catching Prompt

I will give you a Python script and its error message.
Your goal is to fix the error in the script according to the error message.
Output format:
Return the fixed script content only, without any useless prefixes or suffixes like double
quotation or back quote marks to mark this as a Python file.

Figure 27: Error catching prompt for ChemOrch.

Self-Repairing: Effectiveness Checking Prompt

I will give you the task, the planning steps for solving the task, the script for the task, and its
output.
Your goal is to determine whether the output is useful for solving the task.
The criteria for judging the uselessness of the output:
1. The output is an object without valid characters or numeric information. This one is
important and often appears. Please pay attention.
2. The output is discordant or irrelevant to the task.
3. The script does not follow the planning steps, focusing on checking the input variables and
output format.
4. The output is not the accurate data the task requires.
If you find the output is useless, you can modify the script according to the website given
below:
{website}
Output format:
1. Return the "useful" string only if the script output is useful.
2. Return the modified script content only if the output script is useless.
3. The modified script content should be without any useless prefixes or suffixes like double
quotation or back quote marks.

Figure 28: Effectiveness checking prompt for ChemOrch.

35

Sufficiency Validation Prompt

I will give you a task and the results of some tools used to solve the task.
Your goal is to judge whether the present results are sufficient for solving the task.
Output format:
1. Return the string "yes" only if the results are sufficient.
2. Return the string "no" only if the results are insufficient.

Figure 29: Sufficiency validation prompt for ChemOrch.

Web Search Prompt

I will give you a task and the planning steps for solving the task.
Your goal is to search for the related information to solve the task online.

Figure 30: Web search prompt for ChemOrch.

Answer Assembly Prompt

I will give you a task and some information generated from some tools for the task.
Your goal is to analyze and solve the task. You can choose useful information generated from
the tools to make your answer accurate and correct.
Instructions:
1. Read the task carefully and analyze its requirements.
2. Read the information given by the tools carefully and determine whether it can be used
directly.
3. If the information cannot be used directly, you should transform it according to the task’s
requirements.
4. If you receive multiple answers but they are different, you can process them in two ways:
(1) Choose the most accurate answer based on your judgment.
(2) If the answers have descriptions about how they are generated, you can output all answers
with their descriptions and let the user choose the most accurate one.
5. Ensure the answer has good readability. You can change the illustration format if needed.

Figure 31: Answer assembly prompt for ChemOrch.

LLM-as-a-Judge Evaluation Prompt

You are an evaluator for grading the quality of answers to chemistry questions. I will provide
you with a question, a predicted answer, and a reference answer.
Your task is to compare the predicted answer to the reference answer and assess how well they
match in meaning.
Consider factors such as accuracy, completeness, and clarity, even if the wording is different.
Please first analyze the differences and similarities between the predicted and reference
answers.
Then give a final score from 1 to 10, where 10 means a perfect match in meaning and 1 means
completely incorrect.
Here is the question: [[Question]]
Here is the predicted answer: [[Answer]]
Here is the reference answer: [[Label]]
Respond only with the following format on the final line:
Final score: X

Figure 32: LLM-as-a-Judge evaluation prompt for molecule captioning

36

LLM-as-a-Judge Evaluation Prompt

You are an evaluator tasked with assessing whether a model’s code-based solution to a problem
is correct.
You will be given a problem statement, the model’s generated code (predicted answer), and a
reference solution (correct answer).
Your job is to determine whether the model’s code is functionally or logically equivalent to
the reference solution. Please carefully compare the predicted code with the reference code,
analyze their logic and behavior, and finally respond with either ’correct’ or ’incorrect’.
Problem: [[Question]]
Predicted Code: [[Answer]]
Reference Code: [[Label]]

Figure 33: LLM-as-a-Judge evaluation prompt for tool usage

LLM-as-a-Judge Evaluation Prompt

You are an evaluator for evaluating whether a response to a chemistry question is correct or
not.
I will provide you with a question, the predicted answer, and the correct answer.
Your task is to determine if the predicted answer matches the correct answer in meaning, even
if the wording is slightly different. Please first compare the predicted answer with correct
answer and analyze them, and finally respond with ’correct’ or ’incorrect’.
Here is the question: [[Question]]
Here is the predicted answer: [[Answer]]
Here is the correct answer: [[Label]]

Figure 34: LLM-as-a-Judge evaluation prompt for other tasks

37

	Introduction
	Preliminary: Harnessing Chemical Tools within ChemOrch
	ChemOrch
	Instruction Synthesis
	Response Construction: Overall Procedure
	Response Construction: Tool Calling

	Experiments
	Experiment Setup
	Statistical Analysis of Generated Instruction–Response Pairs
	Quality Analysis of Generated Instruction–Response Pairs
	Application 1: Facilitating LLMs' Evaluation in Chemistry
	Application 2: Improving LLMs' Chemistry Intelligence
	Effectiveness of Core Modules in ChemOrch
	Scalability of ChemOrch

	Conclusion
	Related Work
	Details of Experiment Setup
	Details of Manual Review on Tool Decomposition
	Details of the difficulty reward model with feedback
	Human Evaluation Details For Response Quality
	Baseline Comparison
	Reasoning Steps of Generated Responses
	Reliability of LLM-as-a-Judge Evaluation
	Details of Selected Tools
	Broader impacts
	Limitations and Failure Modes for the Future Work
	Constraint Examples
	Algorithm of ChemOrch
	Data Examples and Case Study
	Scalability Example
	Prompt Template

