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Abstract
This paper presents an optimization approach to
causal estimation. In classical machine learn-
ing, the goal of optimization is to maximize
predictive accuracy. However, some covariates
might exhibit non-causal association to the out-
come. Such spurious associations provide pre-
dictive power for classical ML, but prevent us
from interpreting the result causally. This pa-
per proposes CoCo, an optimization algorithm
that bridges the gap between pure prediction and
causal inference. CoCo leverages the recently-
proposed idea of environments. Given datasets
from multiple environments—and ones that ex-
hibit enough heterogeneity—CoCo maximizes an
objective for which the only solution is the causal
solution. We describe the theoretical foundations
of this approach and demonstrate its effective-
ness on simulated and real datasets. Compared to
classical ML and the recently-proposed IRMv1,
CoCo provides more accurate estimates of the
causal model.

1. Introduction
Consider a classical machine learning (ML) problem. We
observe a dataset of xi, yi pairs; x contains p covariates and
y is an outcome. In classical ML, our goal is to be able to
predict y from x. We want to learn a model y = f(α>x),
inferring the unknown coefficients α from the training data.

Suppose our goal is not purely predictive, but is one of
causal estimation. Consider that the outcome y is drawn
from a true data generating process (DGP) that involves
direct causes, a subset of the p covariates. For simplicity
we assume linearity, that the outcome is truly drawn from
yi = g(β>x) + ε, where βk 6= 0 for the direct causes,
βk = 0 for the other covariates, and ε is independent noise.
The causal goal is to estimate the true causal coefficients β,
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including both its structure and its value.

Classical empirical risk minimization (ERM) cannot
reliably solve this problem. In its search for finding the
best predictor, it will capitalize on spurious (non-causal)
associations between the components of x and the outcome
y, such as due to confounding or conditioning on a collider.
Consequently, α̂, the resulting estimate of the coefficients,
will be a biased estimate of the causal coefficients β.

We develop CoCo, an optimization-based approach to esti-
mate causal coefficients. We derive CoCo in two steps. In
the first step, we posit a risk-based objective for which the
causal coefficients are one of several optima. In the second
step, we use the idea of invariant environments—multiple
training datasets that leave the targeted causal coefficients
intact—to whittle down the number of optima and leave only
the causal coefficients. The result is a practical algorithm
that analyzes data from multiple environments to produce
an estimate of the causal coefficients. On synthetic and real-
world data, relative to ERM and invariant risk minimization
(IRM) [1], CoCo better estimates the causal coefficients and
predicts more robustly on new data.

2. Causal estimation as optimization
Assumptions. Consider an observed dataset of n data-
points D = (X,Y), where Y ∈ Rn is the outcome vari-
able, X = [X1, · · · , Xp] ∈ Rn×p are the covariates. Each
column Xj ∈ Rn, j ∈ {1, 2, · · · , p} is the observations of
the j-th covariate on the n units.

Assume the underlying DGP of the outcome variable follows
a linear SEM [11] as

y ← µ+ β>x+ ε, x ∼ P (x1, · · · , xp), (1)

where β ∈ Rp is the causal coefficients [12]. (We absorb
the intercept term into x and β.) Eq. (1) assumes linearity;
we extend to nonlinear causal models in Appendix A.

The causal coefficient might contain some zeros, indicating
covariates that are not causally connected to the outcome.
The indices of non-zero coefficients are the support set of
β, denoted S ⊂ {1, 2, · · · , p}, where βj 6= 0 for j ∈ S
and βj = 0 for j /∈ S. The support set represents the set of
direct causes of the outcome.
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Figure 1. Example of spurious associations. X1 is a cause of the
outcome Y and X2 is a spurious variable. Spurious association
might be due to the observed descendants (left) and the unobserved
common causes (right).

Assume the noise is zero-mean E[ε] = 0, the covariates and
noise have finite variance Var[xj ],Var[ε] <∞ for all j. We
do not specify the SEM for the covariates x and allow their
joint distribution to be arbitrary. Assume the causal covari-
ates xS are independent of the noise, i.e. xS ⊥⊥ ε. This
independence assumption implies that there is no unmea-
sured confounding between the true causes and the outcome.
Note that we allow unmeasured confounding between non-
causes x\S (or spurious variables) and the outcome. Fig. 1
shows the examples of endogenous covariates.

Pure prediction is biased. With data from Eq. (1) our goal
is to estimate β. We minimize the L2 risk as a function ofα

R(α; y, ŷ) = E[(1/2)(ŷ(x,α)− y)2] (2)

with linear predictions

ŷ(x,α) = α>x, α ∈ Rp. (3)

When the form of ŷ is clear in context, we abbreviate
the risk function notation as R(α). Under the potential
existence of spurious variables, directly optimizing Eq. (2)
will produce biased estimates of the causal coefficients.

Idealized causal optimization. Suppose we do not know
the coefficients β, but we do know which covariates are
direct causes, the set S. A key observation, though a simple
one, is that among the models that share the true causal
structure, the causal model has the best predictive accuracy.
Lemma 1 (Causal Optimality). The causal model with
α = β is the optimal solution of the following constrained
optimization problem

min
α

R(α; y, ŷ = α>x)

s.t. αj = 0, j /∈ S.
(4)

The proof is in Appendix C.

Lemma 1 is conceptually straightforward, but it provides
a direct connection between optimization and causal es-
timation. Of course, in practice, we do not know which

covariates are causal and which are not. We will build on
this idealized optimization problem to construct a tractable
objective for causal estimation.

3. Relaxed optimization for causal estimation
In this section, we use directional derivative to create a new
optimization objective for causal estimation.

Directional derivatives and feasible directions. We first
review the ideas of directional derivatives and its application
in constrained optimization [16]. Consider a unit-length
vector v, where ‖v‖2 = 1. The directional derivative in
the direction v is denoted as operator Dv and is defined to
be the rate of change of a function in that direction. The
directional derivative, as a scalar, can be computed as the
inner product of the gradient and the direction vector

DvR(α) := lim
t→0

R(α+ tv)−R(α)

t
= 〈∇R(α),v〉,

where we denote an inner product as 〈·, ·〉.

In Eq. (4), denote the constraints as gj(α) = αj = 0 for
j /∈ S. (Recall S is the support set of β, the indices of the
non-zero causal coefficients.) Given a parameter α and the
optimization problem Eq. (4), the directions that violate the
constraints at the maximum rate are the gradient direction
of the constraint function,

dgj(α)/dα = ej , j /∈ S. (5)

The feasible directions are defined as the directions orthogo-
nal to the gradient of the constraints [10]. The feasible direc-
tions for Eq. (4) form a linear space U = span{ej : j ∈ S}.

The first-order condition for a point α to be an optima
is that the directional derivative in the feasible directions
vanish [10; 16]. For problem Eq. (4), this condition means
Dv = 0 for each v ∈ U . The first order condition can be
guaranteed by

Dej
R(α) = 〈∇R(α), ej〉 = 0, for j ∈ S, (6)

because v ∈ U is a linear combination of the basis {ej}j∈S .
More compactly, these conditions can be written as

‖∇R(α) ◦ β‖2 = 0 (7)

with ◦ as Hadamard product because βj 6= 0 for j ∈ S.

Relaxing the causal optimization. Lemma 1 states that
α = β is an optimal solution of the problem in Eq. (4),
which means that it satisfies the first-order condition of
Eq. (7). Plugging α = β into this condition reveals that
‖∇R(β) ◦ β‖2 = 0. This fact, in turn, means that the
causal coefficients β is an optimum of the following opti-
mization problem,

min
α
‖∇R(α) ◦α‖2 . (8)
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Notice that Eq. (8) is an optimization problem that is entirely
a function of the observed data; it does not require knowing
the set S of non-zero causal coefficients. Yet the true causal
coefficient β is an optimum of this problem.

We call the set of points that minimizes Eq. (8) the plausible
set F . However, the plausible set does not only contain the
causal coefficients. By Eq. (8), the plausible set also con-
tains the all-zero vector 0, the OLS solution, and the points
“in-between” these two solutions, those that zero a subset of
the covariates and zero the gradient of the remainder. Our
next step is to whittle down the plausible set until the causal
coefficients become the unique solution.

4. Optimization with multiple environments
In this section, we describe the invariance property of causal
coefficients under interventions and how it helps restore the
identifiability of the causal model via optimization.

Environments and invariance. As discussed in § 3, the
causal model in general is non-identifiable by optimization
with i.i.d. data. To obtain identifiability, we turn to the set-
tings where data from multiple environments are available.

Denote E as a set of environments. An environment e ∈
E specifies a DGP. For linear model, data from multiple
environments is generated by an SEM similar to Eq. (1):

ye ← β>xe + εe, xe ∼ P e(xe1, · · · , xep). (9)

The independence assumptions and moments conditions in
§ 2 apply to all environments. Across environments, the
set of observed variables, the set of direct causes of the
outcome, and the causal coefficients remain the same.

The environments are a set of DGPs. The environments are
heterogeneous if the DGPs are different. Heterogeneous
environments can be constructed by (hard) interventions
that fix a variable at a specific value. They can also be DGPs
where the joint distributions of variables are different in
nature, also known as soft interventions [6]. For example,
when studying the effect of health measurements on the
probability of cancer, the environments can be different
hospitals where the data are collected from [17].

The key property that environments enjoy is the invariance
[1; 12]. Invariance assumes conditional on the same value
of direct causes, the expectation of the outcome is the same
across environments, i.e.

E[ye|Pa(ye) = c] = E[ye
′
|Pa(ye

′
) = c], (10)

for all e, e′ ∈ E . Note that we ask that the distribution of
covariates xe and noise εe changes across e ∈ E , which
makes spurious associations vary with environments.

Narrowing down the optima set by environments.

The invariance property motivates us to aggregate the opti-
mization problems and get the CoCo objective:

min
α
fE(α) :=

1

|E|
∑
e∈E

(
‖∇Re(α) ◦α‖2

)
. (11)

Denote the solutions of each environment as Fe :=
arg minα ‖∇Re(α) ◦α‖2. The solutions of the CoCo ob-
jective Eq. (11) is the intersection of all Fes,

FE := arg min
α

fE(α) =
⋂
e∈E
Fe, (12)

as long as the intersection is not empty; this fact is guar-
anteed by the invariance assumption with β ∈ Fe for all
e. Because of the intersection, the size of FE shrinks with
the increasing number of environments, i.e. |FE1 | ≤ |FE2 |
if E2 ⊂ E1. The multiple environments and heterogeneity
therein induce differences among the set of solutions and,
as a result, narrow down the solution set of CoCo objective
Eq. (11). The plausible sets are visualized with examples in
Fig. 4 in Appendix F. Yet, as a last step, we need to remove
the all-zero vector from the solutions.

Removing non-informative solution from the optima
set. We propose two modifications to remove the zero
vector from the objective solutions.

Suppose there is prior knowledge of the underlying causal
graph. Specifically, suppose a set C of covariates that are
known to be independent of the unobserved noise ε of the
outcome (e.g. some non-descendants of the outcome). We
modify the CoCo objective Eq. (11) to be

min
α

∑
e∈E
‖∇Re(α) ◦ α̃]‖2 , (13)

where α̃ = α◦ (1−1C) +1C . For the risk function Eq. (2),
∇R(β)j = E[xjε] = 0 for j ∈ C. So the causal coefficient
β remains as a solution to the modified objective Eq. (13).
The solution set of Eq. (13) is a subset of that of Eq. (11)
with the all-zero vector being removed. The algorithm is
summarized in Alg. 1. The theoretical results on causal
identification is presented in Appendix D. CoCo objective
is related to the invariant risk minimization (IRM) [1]; we
illustrate the mathematical connections in Appendix B.

If there is no prior knowledge of the graph, we can add the
risk function as a regularization term to Eq. (11) as

min
α

1

|E|
∑
e∈E

{
‖∇Re(α) ◦α‖2 + λrR

e(α)
}
, (14)

where λr ≥ 0 controls the regularization strength. The
regularization encourages the causal solution β against the
zero vector because the zero vector has lower predictive
accuracy than the causal model by the DGP. Solving Eq. (14)
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Algorithm 1 CoCo for Causal Inference
input : Data De = {Ye,Xe}, Xe ∈ Rne×p; the risk function

Re for each environment e ∈ E ; the set of known non-
descendant variables C; the predictor f(·).

output : Coefficient estimation α with causal interpretation.
Initialize α randomly
while not converged do

for e in E do
Compute the gradient of the empirical risk: ge(α) =
(1/ne)

∂
∂α

∑ne
i=1R

e(α; yei , ŷ
e
i ), ŷ

e
i = f(xe

i ;α)
α̃ = α ◦ (1− 1C) + 1C
Compute the loss: Le(α) = ‖ge(α) ◦ α̃‖2

end
Update α← α− η ∂

∂α

∑
e∈E L

e(α) with step size η
end

Algorithm 2 CoCo for Robust Prediction
input : Data De = {Ye,Xe}, Xe ∈ Rne×p, the risk func-

tion Re for each environment e ∈ E ; predictor fα(·);
regularizer coefficients λr , λw.

output : Predictor fα(·) that is robust to interventions
Initialize α randomly
while not converged do

for e in E do
Compute the gradient of the empirical risk: ge(α) =
(1/ne)

∂
∂α

∑ne
i=1R

e(α|yei , ŷei ), ŷei = f(xe
i ;α)

Compute: Le(α) = ‖ge(α) ◦α‖2
(Optional step:) add weak condition Le(α) +=
λw(〈ge(α),α〉)2

Add risk function as regularization: Le(α) +=
λr(1/ne)(

∑ne
i=1R

e(α|yei , ŷei ))
end
Update α← α− η ∂

∂α

∑
e∈E L

e(α) with step size η
end

produces a model that enjoys distributional robustness under
interventions [13]. The algorithm is summarized in Alg. 2.

Generalizing to nonlinear model. We extend CoCo to pre-
dictors that is a nonlinear mapping of linear combinations
of covariates, i.e. ŷ = f(Ax), in Appendix A. It includes
fully connected neural network as a special case. The key
is to build a constrained optimization problem similar to
Eq. (4) and show that it admits the causal coefficient as an
optimum. The analysis presented in §§ 3 and 4 can then be
applied to such nonlinear models.

5. Empirical Studies
We study CoCo on simulated and real data. Across datasets,
we find that CoCo produces an unbiased estimate of the
causal structure and coefficients. CoCo can generalize its
predictive ability from observed environments to new envi-
ronments. The details about the data generation and algo-
rithms implementation in this section are in Appendix E.

5.1. Linear Synthetic Data

We study causal inference with optimization-based methods.
The data are generated from 5 different graphs in Fig. 3 in
Appendix E, each including a spurious variable.

Figure 2. The mean absolute error of the estimations for causal
parameters β. CoCo estimation has small bias across data.

The five graphs test different scenarios: (1) independent
causes; (2) observed mediator; (3) observed confounder
and mediator; (4) observed confounder and unobserved
mediator; (5) collider. We evaluate with mean absolute error
(MAE) between the estimation α and true coefficients β.

The results are summarized in Fig. 2. It shows when the co-
variates have spurious associations with the outcome, the es-
timate of ERM is biased. IRM with proper hyper-parameter
performs well in cases 2,3 while it has a large error in other
cases. CoCo has small estimation error in all cases. As
an ablation study, we replace the strong penalty in CoCo
objective Eq. (13) with the weak penalty of Eq. (20) and
minimize

∑
e∈E(〈∇Re(α), α̃〉)2. This method is labeled

Naive-CoCo. The comparison between Naive-CoCo with
CoCo in cases 1-4 shows that it is crucial to design the ob-
jective based on strong condition Eq. (8) instead of weak
condition Eq. (20).

5.2. Colored MNIST (CMNIST)

In this section, we study whether CoCo produce a nonlinear
model that uses causal variables to make predictions. The
covariates are the colored digit image and the binary label
ye corresponds to the digit being odd or even. By the data
construction, the relationship between the digit shape and
ye is genuinely causative while the relationship between
the color and ye is spurious. A desired predictor is one
that make prediction based on the digit shape rather than
the color. A predictor using color information can neither
accurately predict the label ye at testing.

Empirical results. The results are shown in Fig. 8 in
Appendix, and Table 1. In Table 1, ERM has the lowest
accuracy in both training and testing. The reason might be
it largely depends on the color information to predict rather
than on the digit shape, whereas the label is generated from
the digit shape. The testing accuracy for IRM increases in
the early stage of training but drops in the later stage. We
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Table 1. Predictive accuracy in training and testing environments
for CMNIST, and Wildlife data. For CMNIST the prediction
accuracy is reported for both clean and noised labels. The Oracle
is the same predictor but trained on grey-scale images with ERM.

CMNIST Wildlife
Training (ỹ) Testing (ỹ) Testing (ye) Training Testing

ERM 75.8 44.4 31.8 99.6 58.4
IRM 81.4 70.3 46.5 83.4 84.9
CoCo 93.0 92.9 74.7 86.1 85.2

Random guess 50 50 50 50 50
Oracle 99.3 97.9 74.8 - -

hypothesize that the model at first improves the prediction by
utilizing all information including the digit shape, but later it
relies more on the color information to boost the predictive
accuracy, which reduces the accuracy at the test time.

5.3. Natural Image Classification

In this example, following Cloudera [4], we adapt the iWild-
Cam 2019 dataset [2] that contains wildlife images taken
in the wild. The goal is to classify coyote and raccoon in
images. The image background, such as plants and rocks,
might be predictive to the species but in a spurious way.
This spurious association changes across locations hence
we consider the images taken at different locations as com-
ing from different environments. Based on the setting of
Cloudera [4], we use images from two locations as the train-
ing data, images from one location as the validation data,
and images from another location as the test data,

The results are summarized in Table 1 and Fig. 8 in Ap-
pendix G. ERM has high accuracy in training but low accu-
racy at testing. CoCo performs on par with or slightly better
than IRM. Comparing to ERM, both methods have a slight
drop in training accuracy but significantly higher testing ac-
curacy. CoCo has a small performance gap between training
and testing, indicating that it is not predicting animal labels
via information from image backgrounds, i.e., information
that varies across environments.

6. Conclusion
This paper formulated causal estimation as an optimization
problem. Using directional derivatives, we proposed the
CoCo objective, a computationally tractable optimization
method for estimating causal coefficients with datasets from
multiple environments. We discussed the mathematical
connection between CoCo and IRM. In empirical studies,
we found that CoCo produces accurate causal estimation and
distributionally robust predictions. CoCo is applicable to
high dimensional data, and to linear and nonlinear models.
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Supplementary Material for
“Optimization-based Causal Estimation from

Heterogenous Environments”

A. Extension to Non-linear Models
In the main paper §§ 2 to 4, we focus on linear SEMs and
linear predictors. Here we generalize these results to nonlin-
ear models where the outcome is generated by a nonlinear
function of a linear transformation of direct causes and the
noise is additive. The key is to build a constrained optimiza-
tion problem similar to Eq. (4) and show that it admits the
causal coefficient as an optimum. The analysis presented in
§ 3 can then be applied to nonlinear models.

Suppose we have a collection of environments E , and for
each e ∈ E , we observed i.i.d. data for variables (xe, ye),
xe ∈ Rp, ye ∈ R. Suppose the underlying DGP is

ye ← f(Axe
S ;γ∗) + εe (15)

where S ⊂ {1, 2, · · · , p}, εe ⊥⊥ xe
S and E[εe] = 0. f :

RK → R is an arbitrary function mapping with parameters
β = (A,γ∗) where A ∈ RK×|S| and γ∗ ∈ RM . When
K = 1 and f(·) is an identity mapping, Eq. (15) reduces
to the linear SEM. Eq. (15) can represent a process when
the outcome is generated through a deep neural network
(DNN), where K and A are the width and weights of the
first hidden layer respectively.

Assume the nonlinear predictor is

ŷe = f(Bxe;γ), (16)

where B ∈ RK×p, γ ∈ RM and α = (B,γ) are the
parameters to optimize. We can re-write Axe

S = AΛxe

where Λ ∈ R|S|×p has the i-th row as e>i if i ∈ S and as
0>p if i /∈ S. Let B∗ = AΛ where the j-th column of B∗

is 0K if j /∈ S. Then for square error Re(α) we have the
following proposition.

Proposition 1 (Causal Optimality, nonlinear). The causal
model B = B∗, γ = γ∗ is an optima of the following
problem

min Re(B,γ; ye, ŷe)

s.t. Bkj = 0 if B∗kj = 0, 1 ≤ k ≤ K, 1 ≤ j ≤ p
γm = 0 if γ∗m = 0, 1 ≤ m ≤M.

(17)

Proposition 1 greenlights the analysis in § 3. It implies
that the CoCo objective Eq. (11) and extension Eq. (14)
can be used for nonlinear models. When B = B∗, the
multiplication Bxe zeros out non-causal covariates xe

\S ,
which become independent of prediction ŷe.

In the nonlinear regime, due to high flexibility, identification
can be difficult. Different parameterizations can represent

similar mappings on the training data. Hence we expect the
identification is up to an equivalent class [3; 8].

Another challenge is that a sufficiently flexible model may
memorize all outcome labels and become the ERM optimum
for each environment, but this model is not causative. To
avoid such a solution, one approach is to collect overlapped
environments, for example, those sharing the same domain
of inputs [18].

B. Connection to invariant risk minimization
In this section, we discuss the connections and distinctions
between CoCo and IRM. Arjovsky et al. [1] introduces
IRM that can learn robust representation in the presence of
spurious associations between covariates and the outcome.
In particular, IRM considers a predictor f(x;α) : Rp 7→ R
with parameter α. In a setting similar to CoCo , it considers
a set of heterogeneous environments E and for each e ∈ E ,
a risk function Re(α; y, ŷ). Based on the intuition that
invariant predictor induces invariant features, IRM proposes
the following objective to find an invariant model

min
α,w

∑
e∈E

Re(α; ye, w(f(xe
i ))) (18)

s.t. w ∈ arg min
w̄

Re(α; ye, w̄(f(xe
i ))), for all e ∈ E ,

where w(·) is a mapping from the range of f(·) to ŷ.

For tractable computation, Arjovsky et al. [1] further intro-
duces the IRMv1 objective:

min
α

∑
e∈E

[
Re(α; yei , f(xe

i ))︸ ︷︷ ︸
Empirical risk

+

λ ||∇w|w=1.0R
e(α; yei , wf(xe

i ))||22︸ ︷︷ ︸
Invariant risk

]
,

(19)

where λ > 0 and w is simplified as a dummy scalar variable.
The IRMv1 objective consists of an empirical risk term and
an invariant risk term.

We make the connection between IRM and the constrained
optimization in Lemma 1. In § 3, we obtain the first-order
optimality condition Eq. (7) from the directional derivative
in the feasible directions {ej}j∈S . In fact, any vector in
the space U = span{ej : j ∈ S} is a feasible direction.
Specially, the causal parameter β ∈ U is a feasible direc-
tion which implies the optima should have zero directional
derivative in this direction, i.e. 〈∇R(α),β〉 = 0.

By Lemma 1, plugging α to β we get 〈∇R(β),β〉 = 0,
yielding another objective

min
α

(〈∇R(α),α〉)2 (20)
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that β satisfies. Similarly, any partition P of the set
{1, 2, · · · , p} gives a necessary condition that admits causal
model as an extreme point

min
α

∑
A∈P

(〈∇R(α)A,αA〉)2. (21)

When the outcome model is Linear-Gaussian or Linear-
Bernoulli, minimizing the invariant risk term in Eq. (19) is
equivalent to Eq. (20). Suppose the DGP and the predictor
are linear as in Eq. (9), and L2 risk function Re, then∥∥∇w|w=1.0R

e(α; ye, wα>xe)
∥∥2

2
= (E[(ye − ŷe)α>xe])2

= (〈∇Re(α; y, ŷ),α〉)2, (22)

where the left side is the invariant risk term and the right
side is objective in Eq. (20).

Similarly, suppose the outcome is generated by ye ←
Bernoulli(σ(β>xe)), the predictor is ŷe = σ(α>xe)
where σ(x) = 1/(1 + exp(−x)) is the sigmoid func-
tion, and the risk function is the cross entropy loss Re(α;
ye, ŷe) = −E[ye log(ŷe) + (1− ye) log(1− ŷe)], then∥∥∇w|w=1.0R

e(α; ye, σ(wα>xe))
∥∥2

2
= (E[(ŷe − ye)α>xe])2

= (〈∇Re(α; y, ŷ),α〉)2. (23)

The connections between Eqs. (20), (22) and (23) ex-
plain the mechanism behind IRMv1 for linear Gaussian
or Bernoulli models, as the causal coefficient belongs to the
optima set of the invariant risk term.

The connection also indicates the sub-optimality of the
IRMv1 objective. The invariance risk term, rewritten as the
inner product between the gradient and parameter vectors,
only considers a single feasible direction for the constrained
optimization problem Eq. (4), among all feasible directions
that form a (p− |S|)-dimensional linear space.

The spectrum between CoCo and invariant risk term, as
shown in Eq. (21), tells that the finer the partition is, the
smaller the optima set of Eq. (21) becomes. This means,
among all conditions in the form of Eq. (21), the one given
by CoCo as Eq. (8) is the strongest and the one given by
IRMv1 as Eq. (20) is the weakest. Since the ultimate goal
is to identify the causal coefficient, we prefer the strong
condition that gives a small set of solutions in a single
environment. See Appendix F for a case study comparing
ERM, IRMv1 and CoCo analytically.

Because of an excessive number of solutions of the invariant
risk term, IRMv1 puts high requirement on the number of
environments and sufficiency of heterogeneity. In practice,
there can be multiple parameters that minimize the IRMv1
objective, including that of non-causal models. By simula-
tions in § 5, we will show that optimizing the IRMv1 objec-
tive can fail to produce robust predictions, especially when

the outcome is generated neither from Linear-Gaussian nor
Linear-Bernoulli models. Similar failure modes of IRM
are studied in cases of a two-bit model [9] and a nonlinear
classification model [14].

Lastly, we notice that adding any general condition in
Eq. (21) to the strong condition Eq. (8) does not change
the optima set while in practice it may improve the smooth-
ness of the optimization landscape.

C. Proofs
In this section, we present proofs for the results in the main
paper. The following proof is for Lemma 1.

Proof. Let the random vector x = (x1, · · · , xp)> denote
the covariates. The expected mean square error is

E[(y − ŷ)2]

=E[(α>x− β>x− ε)2]

=(α− β)>E[xx>](α− β)− 2E[(α− β)>xε] + E[ε2].

Since supp(α) = supp(β), the (α−β)>x is a linear com-
bination of the true causes as

∑
j∈supp(β)(αj−βj)xj which

is independent of ε by the SEM, thus E[(α− β)>xε] = 0.
Since E[xx>] is assumed to be positive definite, the unique
optima of the square error is α = β.

The following proof is for Proposition 1.

Proof. By the construction of Λ, B∗ = AΛ is a matrix
where the j-th column B∗j = 0 if j /∈ S. Similar to the
proof of Lemma 1, we can compute the L2 risk as

E[(y − ŷ)2]

=E[(fγ(Bx)− fγ∗(B∗x)− ε)2]

=E[(fγ(Bx)− fγ∗(B∗x))2]

− 2E[((fγ(Bx)− fγ∗(B∗x))ε] + E[ε2].

Due to the constraints, Bj = B∗j = 0, Bx⊥⊥ ε, B∗x⊥⊥ ε,
therefore the second term is zero. Then the L2 risk reaches
its minimum as E[ε2] when B = B∗, γ = γ∗.

D. Identification with Heterogeneous
Environments

We establish causal identification for CoCo. Causal iden-
tification involves writing the causal quantity of interest
as a functional of the observed data distribution; this func-
tional is also known as the causal identification strategy. In
the context of CoCo, we consider the functional that maps
the joint distributions p(xe, ye) over a set of environments
to the risk function, then to the optima of CoCo objective
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Eq. (13). Causal identification for CoCo thus amounts to
proving any optima of the CoCo objective must coincide
with the causal coefficient of interest.

Since all solutions of Eq. (8) can be characterized analyt-
ically (see § 3), we are able to define what the general
effective and ineffective interventions are. To keep notation
consistent, denote C as the set of known non-descendants
of the outcome and S as the unknown set of direct causes.
For any set H with C ⊂ H ⊂ {1, 2, · · · , p}, we fit a re-
gression model on Xe

H in each environment, and collect the
regression coefficients as {α̂e

H}e∈E . We call the set H an
invariant set, if the estimations

α̂e
H = α̂e′

H := α̂H , ∀e, e′ ∈ E . (24)

If H is an invariant set, we define a length p vector as
an invariant vector by equating it to α̂H when restricting
to the set H and padding it with zeros at other elements.
When there is more than one invariant vector, we call the
interventions that construct the environments as ineffective
interventions.

Back to the linear SEM and linear predictor. Denote E as
a set of environments, Re(α) = E[(1/2)(ŷe − ye)]2 as the
risk, and We := E[xe(xe)T ] ∈ Rp×p as the Gram matrix
which is assumed to be positive definite [15]. With all this
in place, the causal relationship and causal effects can be
identified by CoCo, as long as the interventions are valid
and effective.
Theorem 1. For the linear SEM in Eq. (9) and predictor in
Lemma 1, assume We � 0 for all e ∈ E , and assume the
following conditions hold:

(A1) Validity: ∃ S ⊂ {1, 2, · · · , p}, xe
S = Pa(ye), and

E[ye|xe
S = c] = E[ye

′ |xe′

S = c] for all c ∈ R|S|, e, e′ ∈ E .
(A2) Effectiveness: exploring all the sets H with C ⊂

H ⊂ {1, 2, · · · , p}, there are no distinct invariant vectors
(defined in Eq. (24)).
Then the causal coefficients β are identifiable, and are given
by

β = arg min
α

1

|E|
∑
e∈E
‖∇Re(α) ◦ α̃]‖2 , (25)

which is the solution of Eq. (13).

Proof. Let sej = E[Xe
j ε] = cov(Xe

j , ε), se =

(se1, · · · , sep)T . By the data generating process, sej = 0
for j ∈ {1, · · · ,K}. Let

ge(α) = ‖∇Re(α) ◦ α̃]‖2 , f(α) =
1

|E|
∑
e∈E

ge(α).

(26)

where f(α) is CoCo objective. Direct computation shows

∇Re(α) = W e(α− β)− se (27)

Notice f(α) ≥ 0 and by the structual equation model, due
to independence of the exogenous noise ε and causes Pa(Y ),
we have se ◦ β = 0. Hence for α∗ = β, f(α∗) = 0. This
guarantees the existence of a solution as causal coefficient
β. To prove the identification, it is sufficient to prove that
for all α 6= α∗, f(α) > 0. We use proof by contradiction.

Let H = supp(α̃) and Hc as its compoment set in
{1, 2, · · · , p}. We assume f(α) = 0 and α 6= β and de-
duce a contradiction. Since f(α) = 0, for all e, ‖ge(α)‖ =
0. Since ge(α) = ∇Re(α) ◦ α̃, it means ∇Re(α)H = 0,
for all e. However, by the characterization of the plausible
set in Section 3, Assumption A2) implies that there does not
exist α ∈ Rp, α 6= β, such that ∇Re(α)H = 0, ∀ e ∈ E .
Otherwise, the set H is an invariant set and both α and β
are invariant estimations, which violates Assumption A2).
Hence for α 6= β, there exists an environment e′ ∈ E with
∇Re′(α)H 6= 0. This yields a contradiction.

E. Data generation and implementation
details for § 5

Synthetic data. we generate data for the case 1 according
to Fig. 3.

Figure 3. The graph for the simulation study in § 5.1. The case ID
of each graph is in the rectangle box. The shaded nodes are the
variables that are observed. z denotes a descendant but we do not
know this during estimation.

The DGPs for case 1 is

xe2 ←N (1, (
1

2
)2)

xe1 ←U(−1, 1)

ye ←2xe1 + xe2 +N (0, 1)

ze ←γeye +N (0, 1).

(28)

Case 2-3 with confounder and mediator are generated by
the following SEM with c1 = 1, c2 = 0 for case 2, c1 =
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1, c2 = 1.5 for case 3

xe2 ←N (1, (
1

2
)2)

xe1 ←c1xe2 + U(−1, 1)

xe3 ← sin(xe1) +N (0, (
1

2
)2)

ye ←2xe1 + xe2 + c2x
e
3 +N (0, 1)

ze ←γeye +N (0, 1).

(29)

Case 4 with an unobserved direct cause xe3 is generated with

xe2 ←N (1, (
1

2
)2)

xe1 ←xe2 + U(−1, 1)

xe3 ←xe1 + xe2 +N (0, (
1

2
)2)

ye ←xe2 + 2xe3 +N (0, 1)

ze ←γeye +N (0, 1).

(30)

Case 5 with a collider is generated with

xe1 ←N (1, γe)

ye ←xe1 +N (0, 1)

ze ←2ye + xe1 +N (0, γe).

(31)

To generate data from different environments, we set the
parameter γe in DGP (Eqs. (28), (30) and (31)) by γe ∈
{0.5, 2.0}; as required, this leaves the causal effect invariant.
For IRM, we minimize IRMv1 objective Eq. (19) and report
the hyper-parameter λ ∈ {2, 20, 200} that gives the lowest
MAE. The function mapping from the causes to the outcome
is linear with additive noise. We specify x1 as a known pre-
outcome variable (for use of the method in Eq. (13)) and run
CoCo , IRM, and ERM to estimate the causal coefficients.

CMNIST data. CMNIST is a semi-synthetic data set for
binary classification, first introduced in Arjovsky et al. [1].
Based on the MNIST data set, the image of hand-written
digits 0-4 and 5-9 are labels as ỹ = 0 and ỹ = 1 respectively.
For each environment, the outcome ye is generated with
0.75 probability as ỹ and with 0.25 probability as 1− ỹ. We
call ỹ the clean labels and ye the noised labels. The digit
is colored green with probability pe if ye = 1 and 1 − pe
if ye = 0, otherwise it is colored red. The DGP across
environments differs in pe. Environments are constructed
for training with pe ∈ {0.1, 0.2}, for validation pe = 0.5
and for testing pe = 0.9.

The predictor is a fully connected neural network with two
hidden layers. For CoCo, we use objective Eq. (14) to
optimize the predictor. The risk penalty weight λr is chosen
on the validation environment and is reduced by a factor
of 10 when the parameters are sufficiently away from 0.

For IRM, we use a learning rate as 10−4 to ensure stability
over long iterations and use other hyper-parameters and
annealing strategy provided by the author’s code. 1

Natural image data. The predictor is a fully connected
neural network with one hidden layer of size 10. The inputs
are 512-dimensional features extracted from ResNet18 [7],
a pre-trained model on the ImageNet dataset [5].

In this example, we find for CoCo objective (14), adding the
weak penalty (20) with weight λw improves convergence.
It is possibly due to the smoothed landscape as discussed in
Appendix B. We set the weight λw = 104. For both CoCo
and IRM, we reduce the weight of risk regularization by a
factor of 105 after 100 epochs. The parameters are selected
on the validation environment. Here we find annealing the
risk necessary for both methods otherwise minimizing the
risk term often forces the predictor to use spurious associa-
tions after long iterations. The need of risk term being small
may be due to a limited number of training environments.

F. Illustrative Example
In this section, we study the connection and distinction be-
tween ERM, IRM and CoCo by studying a specific example,
which is adapted from the “minimal coding implementation”
in [1] Appendix Section D. The DGP is:

[xe1, x
e
2]← [N (0, e2),N (0, e2)]

[εe1, ε
e
2]← [N (0, e2),N (0, e2)]

ye ← xe1 + xe2 + εe1 + εe2

[ze1, z
e
2]← [xe1 + εe1 +N (0, 1), xe2 + εe2 +N (0, 1)]

(32)

The predictive model is ŷe = α>xe, where input xe =
(xe1, x

e
2, z

e
1, z

e
2)>, parameter α ∈ R4. The risk func-

tion for the environment e is the mean square error, i.e.
Re(α; ye, ŷe) = E[(1/2)(ŷe− ye)2]. Variable z = (z1, z2)
are associated with the outcome spuriously. Assume the
number of training environments is |E| = K. Direct com-
putation gives

Re(α) =
1

2
[(α1 + α3 − 1)2e2 + (α2 + α4 − 1)2e2

+ (α3 − 1)2e2 + (α4 − 1)2e2 + α2
3 + α2

4] (33)

∇Re(α) =
(

(α1 + α3 − 1)e2, (α2 + α4 − 1)e2,

(α1 + α3 − 1)e2 + (α3 − 1)e2 + α3,

(α2 + α4 − 1)e2 + (α4 − 1)e2 + α4

)>
(34)

From Eq. (33), the optimum for ERM in environment e is

α̂ERM-e = (
1

1 + e2
,

1

1 + e2
,

e2

1 + e2
,

e2

1 + e2
), (35)

1https://github.com/facebookresearch/
InvariantRiskMinimization

https://github.com/facebookresearch/InvariantRiskMinimization
https://github.com/facebookresearch/InvariantRiskMinimization
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and the optimum for the ERM over K environments is

α̂ERM =(
K

K +
∑

e∈E e
2
,

K

K +
∑

e∈E e
2
, (36)∑

e∈E e
2

K +
∑

e∈E e
2
,

∑
e∈E e

2

K +
∑

e∈E e
2

) (37)
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Figure 4. The solutions of ERM, IRM and CoCo for SEM Eq. (32).
The ellipses represent the optimums for IRM in each environment,
the triangular and star points on each ellipse are the optimum
of CoCo and ERM for each environment respectively. Due to
symmetry, the figure remains the same when replacing (α1, α3)
with (α2, α4). The solutions of CoCo contains the causal model
and the minimal number of non-causal models.

The outcome is generated from a Linear-Gaussian model, so
the invariant risk term in IRMv1 objective Eq. (19) equals to
Eq. (20) as shown in Appendix B. Therefore, we can solve
(〈∇Re(α; ye, ŷe),α〉)2 = 0 and ||∇Re(α) ◦ α||2 = 0
and get the optima set of the invariant risk term and CoCo
respectively.

As shown in Fig. 4, the solutions for the invariant risk term
in environment e form an ellipse in the space of (α1, α3)
and (α2, α4), which are infinite points. The optimum of
CoCo is a strict subset of solutions of the invariant risk term,
which has size of 24. For a single environment, CoCo solu-
tions contain the ERM solution and the causal coefficients.
With data from three environments, the causal coefficient
β = (1, 1, 0, 0)> belongs to the solutions of the aggregated
invariant risk term and CoCo, but does not belong to the
solution of the aggregated ERM.

G. Additional Simulation Study
This section contains experimental results in addition to the
simulations in § 5 in the main paper.

G.1. Model misspecification

We further study the implication of model misspecification
using data from § 5.1 case 5. We compare two predictors,
one is a linear model and the other is a nonlinear neural net-
work. The data is generated linearly, so the linear predictor
correctly specifies the model and the neural network mis-
specifies it. Both models are trained with ERM and CoCo.
In case 5, the variable x is the cause and z is a predictive but
non-causal covariate. We study how the two models, trained
by the two methods, can generalize its predictive accuracy
to new observation (x, z) respectively.

The results are shown in Appendix Fig. 5. When the model
is correctly specified, ERM estimation cannot generalize to
new values of z, while CoCo estimation can predict on any
(x, z) accurately. When the model is misspecified, the model
trained by ERM can only interpolate between the training
points, while the model trained by CoCo can generalize to
new z though not to new x.

This study demonstrates that if the model is not misspecified,
CoCo can learn the causal model; if model is misspecified,
CoCo learns a model that can generalize to new environ-
ments where the spurious association differs from that in the
observed environments. In both scenarios, model learned
by CoCo has better generalization performance than that
learned by ERM.
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Figure 5. Prediction accuracy for CoCo and ERM, for linear (top
row) and nonlinear (bottom row) predictors. The heatmap is the
square error (ŷ−E[y|x])2, the x-axis, y-axis are the values of input
x and z respectively. The red points are (E[xe],E[ze]) for three
environments. CoCo exhibits better out of sample generalization
with wider low error region.
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G.2. Gaussian mixture example

In this section, we study a multi-class classification problem
when the inputs contain non-causal covariates. We modify
GMM to simulate the data set. The observed covariates are
(xe, ze) and the outcome is ye, where e is the environment
index. For each environment e, the data are generated with
SEM

xe ←
∑K

k=1
1
KN (xe;µk, I)

ye ← Categorical(p1, · · · , pK)

ze ← (1− pe)δue
ye

+ peδue
k1
,

(38)

where pk = N (xe;µk, I)/
∑K

k′=1N (xe;µk′ , I), k1 ∼
Multinomial(1/K, · · · , 1/K).

Among the covariates, the mapping from xe to the label ye

is invariant across all e while ze is predictive to ye due to
spurious associations. We aim to learn a model that makes
predictions based on the causal covariates xe.

In Eq. (38), xe are generated from GMM with the com-
ponent centers µk =

√
1.5Kek ∈ RK . To generate the

non-causal covariates ze, we first generate K random vec-
tors {ue

k}Kk=1 with ue
k ∼

∏[k/2]
i=1 U(0, 1) for environment e.

Then for a data point in the component ye, ze equals ue
ye

with probability 1 − pe and equals a random vector from
{ue

k}Kk=1 otherwise. By doing so, ze is associated with ye

but the association varies across environments when ue
1:K

change with e.

The DGPs that generate the environments is characterized by
the values of ue

1:K and pe. We set the training environments
with K = 5 and pe ∈ {0.01, 0.02, · · · , 0.05} by Eq. (38).
For a validation/test environment f we generate a new set of
{uf

k}Kk=1 and set pf = 0. We evaluate the test performance
by averaging the accuracy over 10 testing environments.
If the predictor learns to predict based on the causes xe

instead of ze, it can accurately predict ye in both training
and testing environments.

The predictor is a fully connected neural network with two
hidden layers. For CoCo, we use objective Eq. (14) to
optimize the predictor. The penalty weight λr is chosen
on the validation environment and is reduced to 0 when
the parameters are sufficiently away from 0. For IRM,
we choose λ in Eq. (19) and step size on the validation
environment.

The results are shown in Figs. 6 to 8, and Table 2. Fig. 8
(a) is the trace plot for the predictive accuracy in the testing
environments. The testing accuracy increases for all meth-
ods in the early stage of training but drops in the later stage
for ERM and IRM. We hypothesize that ERM and IRM
at first improves the prediction by utilizing all covariates
including the causal ones. But in the later stage of training,
it relies more heavily on the spurious associations to boost

Table 2. Predictive accuracy in training and testing environments
for GMM. The Oracle results are obtained by predicting with
covariates xe instead of (xe,ze).

GMM
Training Testing

ERM 99.4 51.0
IRM 95.9 75.9
CoCo 91.9 91.6

Random guess 20 20
Oracle 92.3 91.8

the predictive accuracy, which reduces the accuracy at the
test time.

We provide evidence to this hypothesis in Fig. 6, by plotting
the weight matrix that connects the input and the first hid-
den layer. The model trained by CoCo manages to set the
weights associated with the non-causes z (the right block)
close to zero, aligned with the analysis in Proposition 1. In
comparison, these weights obtained by IRM and ERM are
mostly non-zero, passing information from non-causal z to
the subsequent hidden layers and outputs.

In Fig. 7, we study how CoCo performs if the invariance
is violated and how sensitive it is with different hyper-
parameters. In panel (a), we construct the training environ-
ments by changing the cluster centers {µk}Kk=1 in Eq. (38)
to {µk +εek}Kk=1, εek ∼ N (0, σ2IK). The noise εek changes
the mapping from the covariates xe to the label ye across the
environments, and the noise scale σ2 reflects the magnitude
of change. The panel (a) shows the testing predictive accu-
racy increases as the invariance tends to hold. In panel (b),
we compute the test accuracy when using different number
of environments M in training. we construct training envi-
ronment e by Eq. (38) with vectors ue

k ∼
∏[k/2]

i=1 U(0, 1) for
all k and pe ∈ {0.01, 0.02, · · · , 0.01M}. We find a grow-
ing number of environments reduces the testing error mono-
tonically which might due to the increased heterogeneity in
data. In panel (c), we study how the testing error changes
with the penalty weights λr in CoCo objective Eq. (14).
When λr is large, the objective is close to the empirical risk
and the test error is high; when λr is small, the parameters
often collapse to 0. Between the two extremes, CoCo with
a wide range of λr can learn a model that makes robust
prediction in new environments.
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(b) IRM
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Figure 6. The heatmap for the first layer weight matrix of the neural networks trained by CoCo, IRM and ERM. The matrix dimension is
10× 8 where the input dimension is 8 and the first hidden layer dimension is 10. In the input, the first five elements are x and the last
three elements are z. CoCo sets the weights related to non-causal z (the right block) close to 0.
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Figure 7. The change of testing prediction error with different levels of invariance, number of environments and the hyperparameter of
CoCo. The dashed line is the ERM error rate. The error bar is the standard deviation over 5 independent trials.
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Figure 8. Trace plot of training and testing accuracy for CoCo, IRM and ERM on GMM, Color-MNIST and Wildlife data. In panel (b), the
accuracy is measured on predicting the noised label y. CoCo trades-off training accuracy slightly for significantly higher testing accuracy.


