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Abstract

The recent success of machine learning methods in the industrial sector open new
perspectives for the design of innovative products. However, these promising
results are often challenged when it comes to industrial model deployment. Indeed,
it frequently appears that the performance of the model is degraded when used on
application data due to the distribution shift between the training and the targeted
data. This issue is even more critical for model dedicated to the research of
innovative designs as the model is mainly used on unseen regions of the design
space. In this work, we present, on a real application of tire design, how distribution
shifts impact the model performance and what can be expected from several domain
adaptation methods. In an objective of industrial model deployment, we conduct
this benchmark with the use of unsupervised evaluation metrics that considerably
help the model selection.

1 Introduction

The design of complex industrial products such as tires requires a time consuming and expensive
process. Designers need to explore for multiple design choices to find novel products with desired
properties. In this context, the use of machine learning models able to learn the relationship between
the design of a product and its properties can substantively improve the process [25].

Recent works in design space exploration show that machine learning methods can efficiently learn
the mapping between a product components and its properties [3, 11, 12, 16]. However, it has been
observed that the learned models are somehow limited to the domain defined by the training data and
provide degraded performances on unseen regions of the design space [13]. These observations have
been confirmed in our experiments (cf Section 2.1). This is an important drawback as designers aim
to explore for innovative designs to find new products with competitive properties.

To tackle this issue, one solution is to correct the shift between the training distribution and the
distribution on which the model is applied. To this end, the learner can use domain adaptation
methods which either transform the feature space to find more robust representations [8, 19, 17, 26] or
reweight the training instances to correct the sample bias [5, 7, 10, 14, 21]. Both strategies have been
applied for design space exploration with promising results [1, 13, 15]. However, many questions
still need to be addressed before deploying such methods. Because of the huge number of existing
methods, practitioners are in particular wondering how to make a relevant choice between them and
how to select the right hyper-parameters? They are also wondering what benefit a few labels can
bring in the target domain?

In this paper we tackle these questions by studying on a real scenario of technological drift in
tire design, the impact of several domain adaptation methods on the target score. We also explore
the influence of several unsupervised metrics on the choice of method and hyper-parameters. The
organization of the paper is as follows: first we present the issue of distribution shift in tire design and
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the impact of this shift on the model performances. We then present the metrics that are considered to
make the model selection. We finally present the results obtained for real tire design data with the
main domain adaptation methods provided in the ADAPT1 library [6].

Figure 1: Domain adaptation for tire design: to correct the shift that exists between already deployed
tires and potential innovative designs, instance-based or feature-based strategies can be considered.

2 Motivation and Evaluation metrics

2.1 Motivation

We consider the problem of tire performance prediction where the learner has access to a set of
source labeled tires data S = {(x1, y1), ..., (xm, ym)} ∈ Rp × R where each xi is a vector of size p
corresponding to the features of one particular tire’s design (i.e. the height and width of the different
rubber layers, the materials properties etc...) and yi is one recorded performance of interest. S is
referred as the source data set which contains the design of already deployed tires. The learner has
also access to an unlabeled set of tires T = {x′

1, ..., x
′
n} ∈ Rp which corresponds to possible new

tire’s designs. The goal is to find the design x′ in T with the best corresponding performance y′.

The performance y′ corresponding to each x′ ∈ T can be approximated by using a machine learning
model f : Rp → R. The standard approach consists to train f using only the data set S . We perform
this experiment on a set of real tire designs. We first split S in a train and test sets and fit f on the first
set. We then compute the prediction errors on the source train and test sets as well as on the target set
T . The results are reported on Figure 2.B and 2.C, we can observe that the errors provided by f on
the target set are far above the validation error computed on the source test set. We observe, besides,
on Figure 2.A, a clear distribution shift in the input space between S and T . This shift certainly
causes the degraded performances of the model on the target set.

Facing this issue, one solution would be to use a domain adaptation method to correct the shift in the
input space. However, as in practice no or only a few labels are available for the data from T , finding
the right method to use is not straightforward. Furthermore, many domain adaptation methods are
very sensitive to negative transfer [20] and require a careful model selection. For these reasons, we
introduce, in the next section, evaluations metrics that will be considered to help the model selection.

2.2 Evaluation Metrics

When dealing with a domain adaptation problem, two main scenarios can be considered: the
supervised and unsupervised domain adaptation. In the first one, the learner has access to a small

1https://adapt-python.github.io/adapt/
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Figure 2: From the left to the right: t-SNE visualization [24] of the input space, validation plot and
distribution of the errors for a model trained on source data only.

sample of labeled target data and can then estimate a target score. In the second scenario, no label are
available on the target domain. Thus, to help selecting an adequate model, one can only consider
unsupervised metrics. In this work, we consider the metrics below, some of them have already been
used for hyper-parameter selection as the J-score and the Reverse Validation, others are measures of
divergence between distributions:

• J-score (js): is proposed in the method KLIEP [21] for selecting the bandwidth of the kernel,
it is correlated to the KL divergence between source and target distributions.

• Domain Classifier (dc): characterizes the shift between domains by the ability of a classifier
to discriminate between data from different domains [2, 8].

• Frechet Distance (fd): is inspired from the FID score [9] used for GANs to compare the
real distribution to the generaed distribution.

• Linear Discrepancy (ls): is one of the first unsupervised metric used for domain adaptation,
it can be computed for linear classifiers using linear algebra [14].

• Reverse Validation (rev): is computed as a source error by inversing the role of the source
and target domains, this requires pseudo target labels which are computed using the domain
adaptation model [27, 8]

According to [8] a good feature representation is where the source and target distributions are
matching and the source task can be learned. Considering only the source error for model selection is
not enough as we have shown in Section 2.1 but considering only unsupervised metric may also be
inefficient. Indeed, we could produce a representation where all data are regrouped in one localization,
thus, the two distributions will match but it will not be possible to learn the task anymore. Thus, to
take into account this two objectives, we would like to consider, for model evaluation, a combination
of the source error and one unsupervised metric. However, knowing the importance to give to the
source error relatively to the metric is difficult. We then propose the following evaluation process: first
training several models using the domain adaptation method and then evaluate the source validation
error and the unsupervised metric for each run. The source errors and the metrics are then rescaled
with standard scaling. An evaluation score is then given by summing them together. We thus give the
same importance to the learning of the source task and the matching of distributions.

3 Experiments

3.1 Setup

We perform the experiments on a tire design data set composed of around 7500 tire design vectors
of size 470 describing the features of the tire designs. In this data set, we select all data belonging
to a same tire line (around 1500 data) which act as the set of potential new tire’s designs T . The
remaining 6000 data define the set of previous tire’s designs S.
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We consider the following domain adaptation methods available in the ADAPT library [6]: the
two unsupervised instance-based methods KMM [10] and KLIEP [21] and the four unsupervised
feature-based methods CORAL [22], DeepCORAL [23], DANN [8] and mSDA [4]. We also consider
the supervised method TrAdaBoostR2 [18].

We perform model selection using the metrics describe in Section 2.2. For each domain adaptation
method, several models are trained with different set of hyper-parameters and random seed. For each
trained model the evaluation metrics are recorded along with a source validation error. The evaluation
scores described in Section 2.2 are then computed. We finally select the model which returns the
smallest score. The list of hyper-parameters considered for each method as well as the networks
architecture and optimization parameters are presented in Appendix A.

3.2 Results and Discussion

The results for the unsupervised experiments are reported in Table 1. We compare the target MAE
obtained using the selected model according to each of the unsupervised metrics. The average target
MAE (avg tgt) over all trained models is reported along with the MAE of the best model (min tgt).

Table 1: Target MAE across different methods and evaluation metrics. The values below "src+rev"
correspond to the target MAEs of the models selected according to the scores computed with the
combination of the "rev" metric and the source validation error of each method (cf Section 2.2).

method src+rev src+fd src+ld src+js src+dc avg tgt min tgt

Src-Only 0.243 0.243 0.243 0.243 0.243 0.243 0.243
KMM 0.236 0.239 0.224 0.236 0.233 0.235 0.217
KLIEP 0.223 0.244 0.228 0.633 0.228 0.350 0.223
mSDA 0.349 0.451 0.410 0.559 0.684 0.486 0.296
CORAL 0.254 0.314 0.232 0.266 0.229 0.344 0.221
DeepCORAL 0.577 0.629 0.606 0.539 0.608 0.570 0.406
DANN 0.228 0.331 0.331 0.276 0.642 0.391 0.222

Table 1 first shows that, for any metric, the MAE obtained by selecting the model with the smallest
score is most of the time below the average target error (avg tgt). This means that using an unsu-
pervised metric to select the model is in general improving the performances one can expect from
domain adaptation against using a model with arbitrary parameters. We observe in particular that the
two metrics Reverse Validation (rev) and Linear Discrepancy (ld) help to select better model than
other metrics on our tire data set. We finally observe that the two instance-based methods KMM and
KLIEP provide the best scores.

We then visualize the impact of adding labels in the target domain. We now select the score according
to a validation error obtained on 20% of the labeled target, the 80% others are used during training
along with sources. In this category, TrAdaBoostR2 specifically exploits the labeled target data. In
this experiment, this last method improves substantively the model performances (cf Table 2).

Table 2: Target MAEs of the models selected with target validation scores

method 5 tgt 10 tgt 15 tgt 20 tgt 30 tgt 50 tgt

No Adapt 0.226 0.212 0.223 0.215 0.219 0.212
KMM 0.226 0.255 0.230 0.197 0.204 0.191
KLIEP 0.229 0.241 0.246 0.219 0.208 0.183
TrAdaBoostR2 0.216 0.188 0.198 0.176 0.191 0.176

4 Conclusion

In this work, we address the challenge of distribution shift in tire design. We show, in particular, that
instance-based domain adaptation methods are useful to improve the model performances in both
supervised and unsupervised scenarios. We conduct our work in an industrial model deployment
perspective and propose, for this purpose, an unsupervised evaluation process to make accurate
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model selection. We are convinced that our study will give the practitioners more confidence in using
domain adaptation for industrial design.
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Appendices

A Architectures and hyper-parameters

Table 3: Base estimator used in KMM, KLIEP, CORAL, mSDA and TrAdaBoostR2

Layer type Layer size Activation

Fully-connected 100 ReLU
Fully-connected 100 ReLU
Fully-connected 100 ReLU
Fully-connected 10 ReLU
Fully-connected 1 Linear

Table 4: Architecture for the networks used in DANN and DeepCORAL

Network Layer type Layer size Activation

Encoder Fully-connected 100 ReLU
Fully-connected 10 ReLU

Task
Fully-connected 100 ReLU
Fully-connected 10 ReLU
Fully-connected 1 Linear

Discriminator
Fully-connected 100 ReLU
Fully-connected 10 ReLU
Fully-connected 1 Sigmoid

Table 5: Architecture for the networks used in mSDA

Network Layer type Layer size Activation

Encoder
Fully-connected 100 ReLU
Fully-connected 100 ReLU
Fully-connected latent size ReLU

Decoder
Fully-connected 100 ReLU
Fully-connected 100 ReLU
Fully-connected 470 Linear

Table 6: Classifier used for Domain Classifer metric

Layer type Layer size Activation

Fully-connected 10 ReLU
Fully-connected 10 ReLU
Fully-connected 1 Sigmoid

Table 7: Hyper-parameters

Method Hyper-parameters

KMM sigma = {2i}i∈[|−5,5|]
KLIEP max centers = {100, 200, 300, 500} (sigma is selected via the LCV procedure)
mSDA latent size = {10, 20, 50, 100}, noise level = {2i}i∈[|−5,5|]
CORAL lambda = {2i}i∈[|−10,10|]
DeepCORAL lambda = {2i}i∈[|−10,10|]
DANN lambda = {2i}i∈[|−5,5|]
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B Visualization of the true target error in function of the unsupervised scores

Figure 3: Blue dots show the score evaluated for a model with a particular set of hyper-parameters
and random seed. The red dot in each figure is the model selected, i.e. the model with the smallest
score. We can see that this model has, in general, a target error below the average target error.
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