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Abstract

End-to-end autonomous driving provides a feasible way to automatically maximize
overall driving system performance by directly mapping the raw pixels from a
front-facing camera to control signals. Recent advanced methods construct a latent
world model to map the high dimensional observations into compact latent space.
However, the latent states embedded by the world model proposed in previous
works may contain a large amount of task-irrelevant information, resulting in low
sampling efficiency and poor robustness to input perturbations. Meanwhile, the
training data distribution is usually unbalanced, and the learned policy is hard
to cope with the corner cases during the driving process. To solve the above
challenges, we present a semantic masked recurrent world model(SEM2), which
introduces a latent filter to extract key task-relevant features and reconstruct a
semantic mask via the filtered features, and is trained with a multi-source sampler,
which aggregates common data and multiple corner case data in a single batch,
to balance the data distribution. Extensive experiments on CARLA show that our
method outperforms the state-of-the-art approaches in terms of sample efficiency
and robustness to input permutations.

1 Introduction

End-to-end autonomous driving learns to map the raw sensory data directly to driving commands
via deep neural networks. Compared to the traditional modularized-learning framework, which
decomposes the driving task into lane marking detection [1, 2], path planning [3], decision making[4]
and control [5, 6], the end-to-end method aims to immediately maximize overall driving system
performance. The advantages of end-to-end autonomous driving are two folds. Firstly, the internal
components self-optimize to maximize the use of sample information toward the best system perfor-
mance instead of optimizing human-selected intermediate criteria, e.g., lane detection. Additionally,
smaller networks are possible since the system learns to solve the problem with a minimal number
of processing components. There are two mainstreams of the end-to-end method, imitation learn-
ing [7, 8, 9, 10] and reinforcement learning [11, 12, 13, 14]. Imitation learning leans the driving
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policy from large amounts of human driving data, and the policy performances are upper limited
by drivers’ capacities and scenario diversity. Contrarily, reinforcement learning method enables the
agent to learn the optimal policy by fully interacting with the environments and hence reduce the
need for expert data, and is increasingly applied to end-to-end autonomous driving with extraordinary
performances.

However, existing end-to-end methods are criticized by two main issues: 1) Learning driving policy
directly from high-dimensional sensor input is challenging, as known as dimensional disasters. 2)
Most of them can only deal with simple driving tasks such as lane-keeping or car-following but
performs poorly in urban scenes. Recent advanced end-to-end autonomous driving methods build
latent world models to abstract high-dimensional observations into compact latent states, enabling
the self-driving vehicle to predict forward and learn from low-dimensional states. Chen. et al.
introduce an end-to-end autonomous driving framework with a stochastic sequential latent world
model to reduce the sample complexity of reinforcement learning [14]. LVM [15] further introduces
Dreamer [16, 17], a novel recurrent world model with a deterministic path and a stochastic path
concurrently, into the autonomous driving framework to improve prediction accuracy and the stability
of the driving policy learning process. However, the latent states encoded by the world model
proposed in previous works still contain a large amount of driving-irrelevant information, such as the
features of the clouds, rain, and the buildings around the road, resulting in low sampling efficiency
and poor robustness to input perturbations. Additionally, the data distribution for the training world
model is usually unbalanced, i.e., straight-line driving data appears more while, turning and near-
collision data is comparatively less, making the agent hard to cope with the corner cases. Can
we train a world model that extracts driving-relevant features from a balanced sample distribution,
and construct an efficient and robust end-to-end autonomous driving framework, anticipating its
outstanding performances in both common scenes and corner cases?

To overcome the aforementioned challenges, this paper proposes a semantic masked recurrent world
model(SEM2) to enhance the sample efficiency and robustness of autonomous driving framework.
SEM2 enables the agent only to focus on the task-relevant information via a latent feature filter learned
by reconstructing the semantic mask. The semantic mask provides driving-relevant information
consisting of the road map, the target path, surrounding objects in the form of a bird’s eye view,
formulating a semantic masked world model to obtain the transition dynamics of the driving-relevant
latent state. Then, the agent learns the optimal policy by taking the filtered driving-relevant feature as
input, so the generated actions are highly correlated with the semantic mask and are more robust to
the permutations of input compared with previous works. To tackle the uneven data distribution issue,
we collect the common data and corner case data separately and construct a multi-source sampler to
aggregate different scenes in a mini-batch for the training of the semantic masked world model. Key
contributions of our work are summarized as follows:

• We proposed a semantic masked recurrent world model(SEM2) that learns the transition
dynamics of task-relevant states through a latent semantic filter and recurrent neural network
to reduce the interference of irrelevant information in sensor inputs, thus improving sampling
efficiency and robustness of learned driving policy.

• A multi-source sampler is proposed to balance data distribution and prevent model collapse
in corner cases, which contributes diverse scene data to training the semantic masked world
model by using both common driving situations and multiple corner cases in urban scenes.

• Extensive experiments conducted on the CARLA benchmark show that our method surpasses
the previous works of end-to-end autonomous driving with deep reinforcement learning in
terms of sample efficiency and robustness to input permutation.

2 Related Works

2.1 End-to-end Autonomous Driving

Previous works of end-to-end autonomous driving [18] can be divided into two main branches,
imitation learning(IL) and reinforcement learning(RL). IL learns a driving policy from expert driving
data [7, 8, 9, 10]. Agents can usually learn good driving strategies by imitating human driving
behavior. However, this is similar to the modularized framework in essence, and does not break
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through the limitations of human experience. RL collects data through the interaction between agent
and the environment and learns from data, which breaks through these limitations. In recent years,
RL has grown rapidly and get a series of achievements [19, 20, 21, 22]. In the previous work, the
model free method was used to complete the end-to-end autonomous driving task(e.g. DQN on
Gazebo [23], DDPG on TORCS [11], SAC on CARLA [12]). For the sake of sample efficiency,
most recent studies use model-based methods(e.g. UA-MBRL [13], LVM [15], GCBF [24]). In
addition, interpretability is also the focus of the work. Some researches are devoted to improving
the interpretability of agents(e.g. visual explanations [25], semantic birdeye mask [14], interpretable
learning system [26]).

2.2 Latent World Model

In dealing with high-dimensional inputs, the latent world model provides a flexible way to represent
the key information of observations. The world model [27] is learned through two stages: repre-
sentation learning and latent dynamics learning. Transforming the high-dimensional inputs into
compact state representations, this model show its superiority in doing numerous predictions in a
single batch, without having to generate images. PlaNet [28] coordinated the two stages and proposed
recurrent stochastic state model(RSSM), which enables fast online planning in latent space with both
deterministic and stochastic components. Dreamer [16] can use RSSM model to imagine the long-
term future. DreamerV2’s [17] latent variable uses vectors of multiple classification variables and
optimizes them using straight through gradients. Stochastic latent actor-critic(SLAC) [29] provides a
novel and principled approach for unifying stochastic sequential models and RL into a single method.
Bridging reality and dream(BIRD) [30] maximizes the mutual information between imaginary and
real trajectories to better generalize the policy improvement from one to the other.

3 Preliminary

3.1 Reinforcement Learning for Autonomous Driving

An reinforcement learning agent aims to learn the optimal policy to maximize the cumulative rewards
by exploring in a Markov Decision Processes(MDP) in the driving environments. Normally, we
denote time step as t and introduce state st ∈ S, action at ∈ A, reward function r(st, at), a policy
πθ(s), and a transition probability p(st+1|st, at) to characterize the process of interacting with the
environment. The reward function is usually composed of driving efficiency, driving compliance,
safety and energy efficiency. The goal of the agent is to find a policy parameter θ that maximizes
the long-horizon summed rewards represented by a value function vφ(st)

.
= E

(∑t+H
i=t γi−tri

)
parameterized with φ. In advanced RL-based autonomous driving framework, the agent builds a
world model pϕ parameterized by ϕ for environmental dynamics p and reward function r, and then
performs planning or policy optimization based on the imagination with the learned world model to
achieve efficient and safe driving performance.

3.2 World Model

We consider sequences {ot, at, rt}Tt=1 with discrete time step t, sensor observations ot, continuous
action vectors at, and scalar rewards rt. A typical recurrent latent state-space model(RSSM) re-
sembles the structure of a partially observable Markov decision process. It splits the latent state
st into a deterministic variable as ht and stochastic variable as zt, and predicts the future states
s = {ht, zt}Tt=1 with both the deterministic path and stochastic path. The parameters of the RSSM
are optimized by maximizing the variational bound using Jensen’s inequality:

ln p (o1:T | a1:T ) = ln

∫ ∏
t

p (st | st−1, at−1) p (ot | st) ds1:T

≥
T∑

t=1

(
Eq(st|o≤t,a<t) ln p (ot | st) →

− E
[
KL [q (st | o≤t, a<t) ∥p (st | st−1, at−1)]

])
(1)
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Figure 1: The overall structure of SEM2. SEM2 takes the observation ot from camera and lidar as
input and then encodes it into latent state which contains deterministic variable ht and stochastic
variable zt. The original latent state is used to reconstruct the observation. The latent semantic filter
extracts the driving-relevant features from latent state, and reconstructs the semantic mask m̂t and
predict the reward r̂t.

With the learned world model, the long-horizon behaviors can be learned in the compact latent
space by efficiently leveraging the neural network latent dynamics. For this, we propagate stochastic
gradients of multi-step returns through the world model predictions of actions, states, rewards,
and values using reparameterization. We denote imagined quantities with τ as the time index.
Imagined trajectories start at initial state st and follow predictions made by the world model sτ ∼
p(sτ |sτ−1, aτ−1), reward model rτ ∼ p(rτ |sτ ), and a policy aτ ∼ p(aτ |sτ ). The objective is to
maximize expected imagined rewards Ep (

∑∞
τ=t γ

τ−trτ ) with respect to the policy.

4 Semantic Masked World Model

4.1 Model Structure

As shown in Fig. 1, SEM2 consists of i) a recurrent model to extract useful information from historical
information, which is implanted as a typical recurrent neural network GRU[31], ii) a representation
model to encode the observation from sensor input into the latent space, iii) a transition predictor to
predict the state transition, iv) a semantic filter to extract driving-relevant features, v) a mask predictor
to reconstruct the semantic birdeye mask, vi) an observation predictor to reconstruct the observation
and vii) a reward predictor to predict the reward given by the environment. The detailed structure of
model components can be represented as:

Recurrent model: ht = fϕ (ht−1, zt−1, at−1)
Representation model: zt ∼ qϕ (zt | ht, ot)
Transition predictor: ẑt ∼ pϕ (ẑt | ht)
Semantic filter: smt ∼ Sϕ(s

m
t |ht, zt)

Mask predictor: m̂t ∼ pϕ(m̂t|smt )
Observation predictor: ôt ∼ pϕ (ôt | ht, zt)
Reward predictor: r̂t ∼ pϕ (r̂t | smt )

(2)

All components are implemented as neural networks, with ϕ describing their combined parameter
vectors. The representation model is implemented as a Convolutional Neural Network(CNN[32])
followed by a Multi-Layer Perceptron(MLP) that receives the image embedding and the deterministic
recurrent state. The observation predictor is a transposed CNN, the transition and reward predictors are
MLPs. The transition predictor only predicts the next latent state based on the historical information,
current state and action, without using the next observation. In this way, we can predict future
behavior without the need to observe or generate observations.
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4.2 Semantic Filter and Mask

SEM2 takes the observations from the front camera and lidar as inputs and encodes the high-
dimensional inputs into the latent space. Since the raw features encoded from the camera and lidar
are susceptible to weather interference, it will reduce the robustness of the agent to weather changes.
In addition, there is a large amount of driving irrelevant information in the camera images, such as
the sky and tall buildings. As shown in the upper right of Fig. 1, we introduce latent semantic filter
Sϕ(·|·) to extract the driving-relevant features. The semantic filter, which is implanted as a two-layer
MLP structure, takes the latent features inferred by the recurrent neural network as input and extracts
the driving-relevant features as output to reconstruct the semantic mask. The semantic mask, as
shown in the lower right of Fig. 1, contains comprehensive driving-relevant information in the form
of a bird-eye view that can be understood by humans, which includes the maps that represent road
features, routing that represents the road a vehicle aims for, state of surrounding vehicles, and the ego
state that represents the state of the ego vehicle.

4.3 Loss Function

The components of SEM2 are optimized jointly to maximize the variational lower bound proposed in
[17], which aims to train the distributions generated by transition predictor, observation predictor,
mask predictor and reward predictor to maximize the log likelihood of their corresponding targets.
The mask predictor reconstructs the semantic bird-view mask via the filtered features smt . Thus the
latent filter S is optimized with the part of mask log loss to minimize the error between reconstructed
mask and ground truth. The loss function of the SEM2 can be derived as:

L(ϕ)
.
= E

qϕ(s1:T |a1:T ,o1:T )

 T∑
t=1

−ln pϕ (ot|ht, zt)︸ ︷︷ ︸
image log loss

−ln pϕ (mt|Sϕ(ht, zt))︸ ︷︷ ︸
mask log loss

−ln pϕ (rt|Sϕ(ht, zt))︸ ︷︷ ︸
reward log loss

+β KL [qϕ (zt|ht, ot)||pϕ (zt|ht)]︸ ︷︷ ︸
KL loss


(3)

The structure of SEM2 can be interpreted as a sequential VAE, where the representation model is
the approximate posterior and the transition predictor is the temporal prior. The KL loss serves two
purposes: it trains the prior toward the representations, and it regularizes the representations toward
the prior. The driving-related feature zmt extracted by latent semantic filters are used as the final
representation, which aggregates historical information and current observations while serving as
input to the policy network and value network.

4.4 Multi-source Sampler

In the process of data collection, the self-driving vehicles spend most of the time on straight roads
with fewer vehicles, while the data collection on curved and crowded traffic is insufficient. This
phenomenon leads to the world model unable to reconstruct the mask well, and policy learned by the
world model tends to act badly under the corner case. To eliminate this gap, we proposed multi-source
training method shown in Fig. 2 with a multi-source sampler.

The multi-source sampler separately collects the abnormal ending episodes in the process of interac-
tion with the environment as the corner data set. We divide the replay buffer into three categories:
common replay buffer, out-lane replay buffer and collision replay buffer. Each time the system is
trained, the corner case data set is used by multi-source sampler to train the world model, so that
the agent can quickly reduce the number of abnormal ending of the current scene and obtain higher
returns. In the training process of SEM2, we use batches of B = 16 sequences of fixed length L = 16
that are sampled randomly within the stored episodes. We sample the start index of each training
sequence via the multi-source sampler in both the training process and behavior learning.

5



5 Behavior Learning

5.1 Latent imagination

We aim to learn smooth and safe driving policy through long-term imaginary trajectories unrolled
by the learned world model SEM2 with high sample efficiency. For this, we propagate stochastic
gradients of multi-step returns through neural network predictions of actions, states, rewards, and
values using reparameterization with the help of SEM2. As shown in Fig. 3, we learn long-term
behavior with SEM2 by the imaginary process, which predicts the future latent states with imagined
horizon length I steps from an initial state. The initial state of the process is obtained from the input
images, and the subsequent hidden variables ĥt, ẑt, actions â and rewards r̂ are obtained from the
world model predictions.

5.2 Actor-Critic framework

The optimal policy is learned under an actor-critic framework with the help of the learned SEM2
model. It consists of an actor which chooses actions for maximizing the expected planning reward
and a critic which predicts the future rewards. We use a stochastic actor that selects actions and a
deterministic critic to learn long-horizon behaviors in the imagined MDP. The actor and critic are
updated cooperatively. The actor learns to generate action according to the filtered latent state sm
to maximize the state value predicted by the critic, which learns to estimate the actor’s cumulative
rewards. The actor πθ and critic vφ are represented respectively:

Actor: ât ∼ πθ(ât|smt )

Critic: vφ(s
m
t )

.
=E(

t+I∑
k=t

γk−tri)
(4)

Since the features fed directly to the actor network will directly determine the quality of the generated
action, in SEM2 we utilize the driving-relevant feature smt = {hmt , zmt } generated by the latent
semantic filter as the input of the actor network, which is highly correlated with the semantic mask
and greatly reduces the interference of useless information. Through this sequential process, the
agent learns to update the parameters of actor and critic networks by stochastic gradient descent
method without changing the parameter of SEM2 model. As the world model is fixed during behavior
learning, actor and value gradients do not affect its representations, allowing us to simulate a large
number of latent trajectories efficiently on a single GPU.

The goal of the critic is to predict the state value, i.e., the discounted sum of future rewards the actor
will receive. To this end, we use the TD-learning method, where the critic is trained to predict a value
target, which is constructed from the intermediate rewards and the output of the critic in the later
latent states. To take full advantage of the world model’s ability to make multi-step predictions and to
regularize the variance of the estimates, we use the TD-λ objective to learn the value function, which

Figure 2: The structure of the multi-source sampler for the training of SEM2. In addition to the
common replay buffer, there are two corner case replay buffers that save the data in out-lane cases
and collision cases independently. In every iteration of the training process, we sample mini-batch
from the three replay buffers in turn to contribute diverse data to support the SEM2 updating.
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Figure 3: The semantic masked world model is used for learning a policy from trajectories imagined
in the compact latent space. The trajectories start from posterior states computed during model
training and predict forward by sampling actions from the actor network with the filtered driving-
relevant features. The critic network learns to predict the expected rewards for each state via temporal
difference learning on the imagined rewards. The actor is trained to maximize the expected rewards
via the straight-through gradients of the learned world model.

is recursively defined as follows:

Lφ
.
= Epφ,pϕ

[
I−1∑
t=1

1

2

(
vφ (ŝt)− sg

(
V λ
t

))2]

V λ
t
.
= r̂t + γ̂t

{
(1− λ)vφ (ŝt+1) + λV λ

t+1 if t < I

vφ (ŝI) if t = I

(5)

The TD-λ target is a weighted average of n-step returns for different horizons. In practice, we set
λ = 0.95.

The actor aims to maximize the TD-λ return predicted by the critic, while regularizing the entropy of
the actor to encourage exploration. The actor and critic are both MLPs with ELU activations[33] and
are trained from the same imagined trajectories but optimize separate loss functions.

L(ψ) .= Epϕ,pψ

I−1∑
t=1

(V λ
t (smt )︸ ︷︷ ︸

dynamics

− ηH [at | ŝt]︸ ︷︷ ︸
entropy regularizer

)

 (6)

6 Experiments

6.1 Simulation Environment Setup and Details

To further validate our method’s outperformance, we use CARLA [34], an open-source simulator
dedicated to autonomous driving research, to conduct extensive experiments. CARLA has rich
weather conditions and maps that can support us testing our agents in different weather and maps to
verify the environmental adaptability. All experiments were conducted on the NVIDIA RTX2080.

The map we use is Town3 which is a complex urban environment. The map is very close to the
real city road environment, with a variety of scenarios such as tunnels, intersections, roundabouts,
curves, turnaround bends, etc. The task is to drive along the complex urban environment to get
rewards as high as possible in 1000 time steps without going out of bounds and colliding with 100
surroundings. The CARLA operate synchronously at 10Hz. The action composes of throttle and
steer. The threshold of throttle is set to [−3.0, 3.0] and steer is set to [−0.5, 0.5].

In terms of sensors, we use a lidar and a front view camera to obtain lidar and camera image as
inputs. 32-lines lidar is positioned at a height of 1.8m. The camera has 110° FOV and is positioned
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at a height of 1.7m. The size of camera, lidar and mask is set to ot,mt ∈ [0, 255]
128×128×3. We

train the world model with batch size B 16 and batch length L 16. For training the policy net, the
imagined horizon I is set to 4. Stochastic state zt ∈ R32×32 and deterministic state ht ∈ R2048.
Model learning rate is 3× 10−5 and policy learning rate is 1× 10−5. The discount factor γ is 0.99.
SEM2 and DreamerV2 use the exact same parameters to ensure fairness.

6.2 Reward Function

Our reward function is similar to Chen et al. [14], which can be represented as:

r = 200 rcollision + vlon + 10 rfast + rout − 5α2 + 0.2 rlat + 0.2rcte − 0.1 (7)

The term rcollision is set to -1 if a collision occurs. Collision, as the most avoidable condition of
automatic driving, is assigned a great penalty. Ego vehicles can even take out-lane behaviors to avoid
collisions when necessary. vlon is the longitudinal speed of the ego vehicle. The term rfast is set to
-1 when speed of ego vehicle exceeds desired speed (8m/s). The term rout is set to -1 when cross
track error (CTE) exceeds threshold (2m). The punishment should not be excessive, else ego vehicle
tend to fall into the local optimal solution waiting for exhaustion of the episode. α is the steering
angle of ego vehicle in rad. The term rlat is related to lateral acceleration computed as−|α|v2lon. The
term rcte is minus CTE to keep ego vehicle stay in the center of lane. The last constant term is added
to make the ego vehicle stay in motion.

Figure 4: Multi-source data collection

6.3 Multi-source Data Collection

The corner case is defined as an abnormal end case during the data collection process. When an
abnormal end occurs, the CTE of the ego vehicle is greater than 2m and thus out of bounds or there
is a collision with a surrounding object. These two cases shown in Fig. 4 correspond to out-lane and
collision. When an abnormal end occurs, the collector puts the last 2× L steps of episode into the
replay buffer according to the kind of end.

7 Experimental Results

The most intuitive evaluation metric for SEM2 as a reinforcement learning algorithm is average
reward. We analyzed the learning curves to investigate the sample efficiency of the algorithm and the
average reward under different weather to explore the adaptation of the algorithm to the environment.

7.1 Learning Curves and Evaluate Curves

All experiments are average of 5 trials and are executed for 300,000 environmental steps. Learning
curves and Evaluate curves in Fig. 5 shows the performances of DreamerV2 [17], SEM2 without
multi-source training and SEM2 with multi-source training in town3 and clear noon. We can see that
our method has high sample efficiency and gets high average return. SEM2 without multi-source gets
higher average return than DreamerV2 and SEM2 gets the highest average return.

7.2 Evaluate in Different Weather

Weather can have a big impact on autonomous driving, especially some bad weather. The images
produced by the front view camera change with the weather, and these parts that change with the
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Figure 5: Learning curves and evaluating curves. The learning curves record the average return per
20,000 steps taken by the agent during training. The evaluating curves record the average return for
taking 10 episodes at every 20,000 step. In the evaluation, vehicles are randomly relocated on the
map for each new episode as same as in the training phase. All these average returns calculated with
5 trials. Shaded area indicates 95% confidence intervals.

weather often contain a lot of useless features that can affect the reliability of autonomous driving.
Latent filter in SEM2 extracts mask features that contains less useless information, so that SEM2 is
anticipated to drive properly in different weather. In order to verify this, we evaluate our agents in
five new weather conditions that agents never deal with. The five new weather conditions shown in
Fig. 6 includes wet sunset, wet cloudy noon, soft rain sunset, mid rain sunset and hard rain noon.
The different weathers will have huge influence on camera images. Average return calculated with
5 trials’ highest return checkpoints in five new weather is shown in Table. 1 with mean and 95%
confidence intervals, SEM2 exceeds DreamerV2 in all the 5 different weathers. The comparison of
SEM2 and the ablation version SEM2 without multi-source training shows that the improvement
of robustness are mainly contributed by the utilizing of semantic mask while multi-source has little
effect on robustness. After training, SEM2 agent is well equipped to handle many cases in complex
town environments shown in Fig. 7.

Figure 6: Screenshot of simulation under different weather

(a) Curve (b) Vehicle Following

(c) Intersections (d) Emergency

Figure 7: Cases in complex town environments
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Table 1: Performance evaluation under different weather.

Weather DreamerV2 SEM2 w/o multi-source training SEM2

Wet sunset 1064.1± 175.5 1620.9± 148.9 1692.3± 163.3
Wet cloudy noon 1078.1± 226.4 1649.7± 149.3 1579.3± 108.8
Soft rain sunset 1313.2± 264.1 1701.1± 232.4 1740.1± 207.3
Mid rain sunset 1181.6± 142.8 1601.5± 93.1 1661.0± 124.8
Hard rain noon 1123.3± 176.4 1630.6± 121.7 1633.5± 208.7

8 Conclusion

This paper enhances the sample efficiency and robustness of urban end-to-end autonomous driving by
proposing a semantic masked recurrent world model (SEM2), which learns the transition dynamics
of driving-relevant states with a latent semantic filter. The driving policy is learned by propagating
analytic gradients of multi-step imagination through learned latent dynamics with SEM2 in the
compact latent space. To contribute diverse scene data and prevent model collapse in corner cases, we
proposed a multi-source sampler to balance the data distribution that aggregates both common driving
situations and multiple corner cases in urban scenes. We trained our framework in the CARLA
simulator and compared its performance with state-of-the-art comparison baselines. Experimental
results demonstrate that our framework exceeds previous works in terms of sample efficiency and
robustness to input permutation.

Limitation and negative societal impacts: We will validate the performance richer and more diverse
scenarios in future work. We believe that our work has no negative societal impacts.
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