
Multimodal Task Vectors Enable Many-Shot
Multimodal In-Context Learning

Brandon Huang1* Chancharik Mitra1* Assaf Arbelle2 Leonid Karlinsky3

Trevor Darrell1 Roei Herzig1, 2

1 University of California, Berkeley 2 IBM Research 3 MIT-IBM Watson AI Lab

Abstract

The recent success of interleaved Large Multimodal Models (LMMs) in few-
shot learning suggests that in-context learning (ICL) with many examples can
be promising for learning new tasks. However, this many-shot multimodal ICL
setting has one crucial problem: it is fundamentally limited by the model’s context
length set at pretraining. The problem is especially prominent in the multimodal
domain, which processes both text and images, requiring additional tokens. This
motivates the need for a multimodal method to compress many shots into fewer
tokens without finetuning. In this work, we enable LMMs to perform multimodal,
many-shot in-context learning by leveraging Multimodal Task Vectors (MTV)—
compact implicit representations of in-context examples compressed in the model’s
attention heads. Specifically, we first demonstrate the existence of such MTV in
LMMs and then leverage these extracted MTV to enable many-shot in-context
learning for various vision-and-language tasks. Our experiments suggest that MTV
can scale in performance with the number of compressed shots and generalize to
similar out-of-domain tasks without additional context length for inference. Code:
https://github.com/Brandon3964/MultiModal-Task-Vector

1 Introduction

Large Multimodal Models (LMMs) such as GPT-4V [60], LLaVA [49, 50], and the BLIP [13, 43]
family of models demonstrate state-of-the-art performance on a variety of vision and language (VL)
tasks due to their strong reasoning capabilities over both text and images. Recent works show that
LMMs pre-trained on interleaved text-image data can do multimodal in-context learning [6, 39]. In
particular, few-shot, in-context learning (ICL) in text-only LLMs has been scaled with an increasing
number of examples in long-context language models—a setting called many-shot learning [1]. A
natural question arises on how to perform many-shot learning in the multimodal domain.

The first issue with directly applying a many-shot learning regimen to LMMs is the intrinsic limitation
of context length. This is especially true in the multimodal domain, as LMMs must encode both text
and images, whose embeddings are token-expensive. Moreover, long-context language models, which
LMMs leverage for reasoning, struggle to use their entire context length effectively for ICL [45, 51].
Secondly, perhaps due to the misalignment of pretraining tasks with ICL, many instruction-tuned
LMMs underperform on tasks in the ICL setting [16], suggesting the importance of interleaved LMMs.
Finally, there is also the challenge of the increasing memory and run-time required for processing long
contexts for every inference call. These challenges motivate a method for compressing multimodal
in-context examples into compact, implicit representations. Therefore, in this paper, we propose

*Denotes Equal Contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Brandon3964/MultiModal-Task-Vector

Figure 1: Multimodal Task Vectors (MTV) Overview. We overcome an LMM’s context length
limitation by encoding many shots of multimodal examples as activations in the LMM’s latent space.
We then directly replace this encoding into the LMM’s activation space during downstream inference.

Multimodal Task Vectors (MTV)—compact representations of multimodal in-context tasks—within
the attention heads of LMMs to enable many-shot ICL. In particular, we show the existence of MTV
in interleaved LMMs, and we use them to compress large numbers of multimodal ICL examples.

Recent research in explainability has demonstrated the existence of task vectors in both the lan-
guage [25, 81] and vision [27] domains. These task vectors are implicit representations of in-context
tasks represented by sets of activations in the model. These activations compactly summarize the
information in ICL examples. In our work, we go beyond proving the existence of these task vectors
in the multimodal domain by demonstrating their ability to compress examples for many-shot ICL in
LMMs without the need for finetuning.

Our method can be described in three steps. First, given a set of many-shot multimodal ICL examples,
we calculate the mean activations corresponding to the last token across multiple inference iterations.
Second, to avoid the context length constraint, we select a set of attention heads in the model to store
the mean activations of the ICL examples. However, since the downstream task may be zero-shot or
use a different number of ICL examples, we select a set of examples aligned with its form. We then
use these examples to find an optimal set of LMM head locations where the many-shot examples will
be encoded. We refer to these mean activations and locations as MTV, which implicitly encodes the
many-shot multimodal examples for use in the downstream task. Finally, for downstream inference,
we replace the mean activations from Step 1 with the attention head locations found in Step 2. Since
we input examples to the LMM across different iterations in Step 1, Multimodal Task Vectors can
implicitly encode more examples than are allowable by the context limit. We find that utilizing many
examples for extracting MTV surpasses performance on zero-shot and most standard few-shot ICL
settings, suggesting the effectiveness of our method. Another key benefit of our method is that it frees
up tokens for the model during downstream inference compared to standard few-shot ICL methods.
An overview of our method is shown in Figure 1.

We summarize our main contributions as follows: (i) We show the existence of Multimodal Task
Vectors, compact implicit representations of in-context functions in LMMs. (ii) MTV can encode
more examples than allowed by an LMM’s context length, enabling both runtime and memory-
efficient multimodal many-shot in-context learning. (iii) MTV surpasses zero-shot and few-shot ICL
settings on various VL benchmarks without finetuning. (iv) MTV can scale to larger numbers of
examples and can generalize to similar out-of-domain tasks.

2 Related Works

Many-Shot In-Context Learning. Few-shot in-context learning (ICL) is a significant area of study
in text-only LLMs [9, 89]. A natural question arises about the possibility of using a larger number of
shots (e.g., hundreds) to further improve performance or learn more complex tasks. Indeed, some
early work in text-only many-shot, in-context learning suggests performance on different tasks can
scale with a larger number of examples [1, 7, 44, 45].

2

However, scaling ICL in text-only LLMs is a challenge due to the intrinsic context length. One
method to increase context length in these models is to apply positional interpolation methods [10, 63].
However, research on these longer-context models finds that they struggle to use the entire context for
ICL [45, 51]. Moreover, as inference on long contexts of inputs is also time and memory-expensive,
it is unclear whether simply scaling the context of models is practical for enabling multimodal
many-shot ICL in open-source models. There is some early evidence of multimodal many-shot
ICL being effective in closed-source models [35], so the question arises as to how to achieve
something similar for open-source models. This has led to work that looks to compress explicit input
tokens [11, 20, 34, 58, 73, 77]. But crucially, many of these methods require finetuning and only try
to preserve performance. Our work is different in that it is the first to enable multimodal models with
many-shot ICL capabilities, while also improving on complex VL tasks without finetuning.

Task Vectors. Our work builds off of research in text-only and vision-only domains showing that
internal representations of these models called task vectors [25, 27, 81] (or function vectors) can
encapsulate tasks outlined by ICL examples. Our is the first demonstration of Multimodal Task
Vectors (MTV) in LMMs. Going beyond previous work, however, we show that MTV enable LMMs
not only to use many-shot, multimodal ICL examples but also scale with more samples, be used
alongside explicit ICL shots, and even generalize to unseen classes or similar tasks.

Model Domain Adaptation Methods. As LLM and LMM model architectures have advanced, so
have methods to allow these models to generalize beyond their pretraining distributions. Methods like
instruction tuning [5, 50, 68, 88] have shown strong zero-shot generalization to some out-of-domain
tasks, but forgetting remains an issue. One popular solution to this issue involves Parameter Efficient
Fine-tuning (PEFT) [28]: finetuning either a set of soft prompt input tokens [41, 46], low-rank model
weights [14, 29, 99], or a separate adapter from the main model [18, 30, 100].

Prompting methods are a well-explored area for adapting models without finetuning. LLM prompt-
ing includes zero-shot methods [36, 83, 85], few-shot and ICL methods [9, 15, 53, 56], expert
prompting [93], and Chain-of-Thought (CoT) [90, 101], with extensions like self-consistency [86],
Tree-of-Thought (ToT) [94], and Graph-of-Thought (GoT) [8, 40, 95] for more complex structures.
Similar multimodal prompting methods exist for LMMs as well [57, 84, 87, 102, 104].

Large Multimodal Models (LMMs). The state-of-the-art performance of LMMs [2, 6, 13, 17, 21,
43, 49, 50, 96, 97, 105] on multimodal tasks stems from combining LLMs’ reasoning capabilities
[3, 12, 26, 66, 71, 78] with the perception abilities of vision models. LMMs’ generative reasoning also
makes them more applicable to complex tasks than previous contrastive methods [42, 43, 65]. Such
tasks include visual question-answering [4, 23, 24, 31, 32, 54, 67] as well as object identification and
localization [37, 48, 59, 82]. Visual Programmatic Models (VPMs) are another class of multimodal
methods that makes use of in-context APIs code generation [19, 22, 52, 64, 69, 72, 74, 76, 92].
However, context length limits both LMMs’ and VPMs’ ability to use multimodal prompting methods
such as ICL [9]. Another key challenge is that many LMMs are pre-trained on single text-image pair
data. Recently, many LMM models now pretrain on interleaved text-image data [2, 6, 16, 33, 39, 75,
103], making effective multimodal ICL possible. In our work, MTV goes beyond simple few-shot
multimodal ICL and scales to many-shot multimodal ICL.

3 Multimodal Task Vectors
To address the challenge of performing many-shot multimodal in-context learning, we demonstrate
the existence of MTV in LMMs and then leverage them for many-shot multimodal ICL. We begin by
describing some background on multimodal ICL and task vectors (Section 3.1). We then introduce
our three-step approach: (i) We calculate the mean activations of the attention heads from the many-
shot multimodal ICL examples (Section 3.2); (ii) We then extract the set of LMM attention heads
locations that best align to the downstream task using an adapted version of the REINFORCE [91]
algorithm (Section 3.3); and (iii) We replace the calculated mean activation values into the LMM for
a downstream task (Section 3.4). The detailed method visual is shown in Figure 1.

3.1 Preliminaries

In the multimodal in-context learning setting, an LMM learns a new task outlined by a set of
multimodal examples. The input to the LMM would be outlined as follows:

Ifew = [(x1 : y1), (x2 : y2), . . . , (xn : yn), Q] (1)

3

Figure 2: Multimodal Task Vectors (MTV). In the standard multimodal in-context learning (ICL)
paradigm, the number of shots is limited by an LMM’s context length. We solve this issue by first
finding the mean activations corresponding to the last token of the examples’ input (Step 1), and
then calculating a set of attention head locations (Step 2) that best align with the downstream task.
These mean activations are then replaced directly in these attention head locations (Step 3), enabling
many-shot multimodal ICL.

where the model is prompted to answer a query Q given a set of input-output examples (each xi

being a multimodal input and each yi a text output).

We note that in-context examples are commonly passed sequentially to the LMM, necessarily
restricting multimodal ICL to being small numbers of shots due to limited context length. Furthermore,
the images require more tokens to embed, which means enabling many-shot ICL is even more
challenging in the multimodal domain. To solve this, we utilize our method MTV—which are
implicit representations in the model’s attention heads that encode a many-shot multimodal ICL task.

We start with a background on task vectors for some task j. Given a model F , we denote the set of
attention-head locations as λ = {l | ∀l ∈ F} where each location l is indexed as l = (h,m) for the
hth layer and mth attention head. Now, task vectors utilize the intermediate outputs of an LMM,
called activations. For a given input sequence of written in terms of its tokens x = {x1, x2, . . . , xT },
each attention head (h,m) produces an activation zl ∈ R d

H for each token xi, where d is the model’s
embedding dimension and H is the number of heads. These activations are simply the output
vectors of each attention head before any linear projection. While each head’s activation is typically
concatenated with others and projected to form the layer’s output, task vectors specifically utilize the

4

pre-projection activations of the final token xT from each attention head. We thus define the task
vectors as follows: (1) the task vector values µj are a subset of mean activations produced by the
attention heads of F given examples of a task, and (2) the task vector locations λj , which denotes
a subset of the attention head indices per task. Thus, the task vector is (µj , λj). For inference, µj

replaces the activation values of the heads in the locations given by λj .

In prior work [25, 27, 81], the calculation of the mean activations µj and the extraction of the
attention-head locations λj are used together to extract the task vector. Interestingly, we find that
these two steps should be decoupled in order to better align with the downstream task. In our work,
we calculate the mean activations µj corresponding to the last token specifically to encode a dataset
of many-shot multimodal ICL examples by averaging them across multiple inference calls. However,
the downstream task may not always be in the same ICL format as the many-shot examples (e.g., the
downstream task uses a different number of shots or is zero-shot). To solve this, we use a separate set
of examples that are of the exact format of the downstream task to align the extracted attention-head
locations λj with the inference task. This separation of responsibilities, wherein µj captures the
essential information from the many-shot examples and λj identifies the specific attention head
locations for the downstream task, optimizes the utilization of the encoded information at relevant
locations within the model.

Our approach to finding Multimodal Task Vectors (MTV) (µMTV
j , λMTV

j) allows LMMs to actually
leverage many-shot multimodal ICL examples for complex vision-language tasks without being
limited by context length. We proceed by first describing how to calculate the mean activations.

3.2 Step 1: Calculate MTV Mean Activations

The ultimate objective of many-shot multimodal ICL is to use a large number of input-output examples
when solving a task j. However, it is not trivial to get the LMM to see more examples during inference
time than its context length allows.

To address this issue, we pass a few-shot input It for each inference call t for a total of T > 1
inference calls. Each It consists of N shots (where N > 1) of multimodal in-context examples in the
form of randomly-selected input-output response pairs (xt : yt), and Qt, which is the query to be
answered by the LMM in that iteration.

It = [(x1 : y1), (x2 : y2), . . . , (xN : yN), Qt] (2)

Thus, over T LMM inference calls, we have a many-shot multimodal dataset (of N × T examples):

Imany = [I1, I2, . . . , IT] (3)

However, this dataset is still just a disconnected set of few-shot examples. Next, we would like to
connect the separate examples into one unified many-shot multimodal ICL representation.

For each inference call, the LMM is given N -shot ICL examples. We calculate the mean of the
activations corresponding to the last token of the input zl,j for each attention head index ∀l ∈ λ
(Section 3.1) across T inference calls, yielding:

∀l ∈ λ : µl,j =
1

T

T∑
t=1

E[zl,j | It] =
1

T

T∑
t=1

E [zl,j | (x1 : y1), (x2 : y2), . . . , (xN : yN), Qt] (4)

In this step, we have found the mean activations µl,j , which encode an internal LMM representation
of many shots of multimodal ICL examples. In the next subsection, we describe our methodology for
selecting the set of attention heads where these mean activations will be used.

3.3 Step 2: Extract MTV Attention Head Locations

After Step 1, we now have mean activations for the attention heads of the last token in a given
many-shot multimodal task. Yet, we still need to find which set of attention heads λMTV

j should be
chosen to encode our task.

To choose the set of attention heads, we first prepare a separate set of S examples specifically aligned
to the format of the downstream task. For instance, if the downstream setting is a 2-way, one-shot

5

classification task, then the S examples should conform to this paradigm. For our explanation, let’s
consider a downstream task that is zero-shot such that there is a single query Qs and corresponding
response Rs for all s ∈ [1, 2, . . . , S].

From these examples, we utilize an adapted version of the REINFORCE [91] algorithm—an iterative
policy optimization method that can be used to find task vector locations [27]. Given an LMM F , we
first select a proposed set of attention head locations by sampling a Bernoulli distribution over the
locations multiple times. Next, we directly replace the values of the selected attention heads with the
corresponding mean activations µl,j . Then, after prompting the model with the query Qs, we use
the negative cross-entropy loss between the LMM’s output logits and the logits of the ground-truth
response Rs to optimize the Bernoulli distribution. By optimizing the Bernoulli distribution across S
iterations, we are finding the best attention head locations λMTV

j for patching in our mean activations.
Finally, we can extract λMTV

j , the optimized indices of attention heads, by sampling our optimized
Bernoulli distribution.

λMTV
j = MTV_EXTRACT(F, [Q1, Q2, . . . , QS)], [R1, R2, . . . , RS]) (5)

It is important to note that MTV_EXTRACT does not require finetuning of the LMM parame-
ters, but rather only inference calls. We describe further the underlying details of our adapted
MTV_EXTRACT algorithm in Section A.2 of the Supplementary. Having found λMTV

j and µl,j , we
describe in what follows, the final procedure to use MTV for inference.

3.4 Step 3: Multimodal Task Vector Application

After we have identified a set of attention heads λMTV
j , it is straightforward to apply MTV for

inference. We denote the set of mean activations µMTV
j as follows µMTV

j = {µl,j |∀l ∈ λMTV
j }.

To run downstream inference on a new query Qnew with our model F , we directly replace the values
of attention heads λMTV

j with µMTV
j and produce the following response Rnew:

Rnew = F (Qnew|λMTV
j , µMTV

j) (6)

Rnew is thus a response generated using many shots of multimodal examples as implicit context via
MTV. The key insight of our method is the importance of N (the number of multimodal examples)
and many T (the number of iterations) during the calculation of MTV. This enables an LMM to go
beyond its context length to learn more nuanced properties of the task from seeing many examples.
Additionally, insertion of MTV directly into the LMM also obviates the need for any context length
during downstream inference, actually freeing additional context for other use (e.g., an additional
prompt, more ICL examples, etc.). Finally, because we align the attention-head locations with the
downstream task, MTV can be effectively applied to zero-shot and different ICL settings.

4 Evaluation

In order for LMMs to perform multimodal ICL, it is important for interleaved data to be included in
pretraining. We apply our MTV approach to Qwen-VL [6], Idefics2-8B [38], and ViLA-1.5-8B [47]
three popular interleaved LMMs. For each model, we compare our method to using few-shot ICL
across different vision-and-language tasks like VQA and object identification.

4.1 Implementation Details

We implemented MTV using PyTorch [61]. We used each model’s respective official implementation.
While the compute and memory requirements differ slightly between models, all our experiments can
be run on a single NVIDIA A6000 GPU. For additional information, refer to Supplementary Section B.
Our model and weights will be released upon acceptance, and our code is in Supplementary.

4.2 Models

In this work, we apply MTV to the following interleaved LMMs as they are better-suited for
multimodal ICL as shown by [16]: (1) QwenVL [6] is a LLaMA-based model that has the ability to

6

process high-resolution images, and its two-stage pre-training methodology, which includes multi-
task finetuning and interleaved text-image data. (2) Idefics2-8B [39] is a Mistral-based model that
benefits from its pre-training on the expansive OBELICS dataset, which comprises a web-scale
collection of interleaved image-text documents. We utilize the base version of the model. This
demonstrates multimodal in-context learning abilities. (3) LLaMA3-ViLA-1.5-8B (abbreviated as
VILA-1.5-8B). ViLA-1.5-8B [47] is an architecture that leverages LLaMA-3 as the LLM backbone.
As in others, a significant portion of the model’s pretraining data is interleaved text-image data.
(4) MANTIS-LLaMA3-8B. MANTIS-LLaMA3-8B [33] is a combination of a SigLIP [98] visual
encoder and LLaMA3 [55] language model finetuned using the MANTIS dataset, a specially curated
multi-image dataset that emphasizes co-reference, reasoning, comparing, temporal understanding.

We show the number of tokens per image embedding for each model in Table 1 to illustrate the
especial importance of MTVs in the image-text domain:

Table 1: Per Image Embedding Token Length and Total Context Length for Models
Model Name Per Image Token Length Total Context Length
VILA-1.5-8B 144 8192
Idefics2-8B 64 8192
QwenVL 256 8192
MANTIS-LLaMA3-8B 64 8192

4.3 Datasets

We briefly describe the tasks and datasets we evaluate our method on. More details about the datasets
and their setup can be found in Section B.

VQA Datasets. We use the following commonly-evaluated datasets which emphasize different aspects
of multimodal reasoning, including visual features (VizWiz) and outside knowledge (OK-VQA):
(1) VizWiz [23] consists of images taken by visually impaired individuals paired with questions
they pose about these images, making it crucial for developing AI systems that assist in real-world,
accessibility-focused visual understanding tasks. (2) OK-VQA dataset [54] is designed to push the
boundaries of Visual Question Answering (VQA) by focusing on knowledge-based questions, where
answers require external knowledge beyond the image content. (3)

Object Classification. We use the following datasets, which are commonly used for object clas-
sification in multimodal ICL: (1) The Flowers dataset [59], commonly known as the Oxford 102
Flowers dataset, is a collection specifically designed for image-based flower species recognition for
fine-grained classification of 102 different categories of flowers. (2) Caltech’s CUB Dataset on
Birds [82] is a well-known resource for evaluating algorithms on the task of object identification,
specifically focused on bird species. It features 200 bird species with roughly 30 images each, anno-
tated with key attributes and bounding boxes. Both Flowers and Birds are formatted as 2-way,1-shot
classification episodes, with model inputs being a positive and negative image for the class to be
identified in the query image. The response format is a short text response.

5 Results

Our main results are shown in Table 2. For VQA, we show the results of MTV with 4 shots per 100
iterations to calculate the mean activations and 100 examples for task vector locations (500 examples
total). The task vector is extracted using examples from the train set of the dataset and evaluated on
the validation set. For object classification, we extract MTV based on a 2-way, one-shot regimen
per 100 iterations for both mean activations and task vector locations (200 examples total). The task
vector is extracted using a train set of 30% of the object classes and evaluated on the remaining 70%
of unseen classes. We demonstrate how Multimodal Task Vectors outperforms zero-shot and few-shot
ICL settings on three different models on VL tasks, highlighting the effectiveness of our method.
Next, we describe the unique capabilities of our method, such as scaling to more samples and showing
some generalizations to other tasks. More results can be found in Section A.1 of Supplementary.

7

Table 2: Results. (Left) MTV evaluated on VQA datasets. (Right) MTV evaluated on object
classification datasets. The baselines are shown in gray.

(a) MTV on VQA Benchmarks

Model VizWiz OK-VQA
Flamingo 9B 28.8 44.7

+4-shot ICL 34.9 49.3
+8-shot ICL 39.4 50.0

Blip3 21.2 26.5
+4-shot ICL 38.4 49.2
+8-shot ICL 44.3 49.1

Qwen-VL-7B 35.2 58.6
+4-shot ICL 42.0 62.0
+8-shot ICL 44.3 61.5
+MTV 45.6 62.0

Idefics2 31.3 52.4
+4-shot ICL 40.8 51.5
+8-shot ICL 43.8 52.3
+MTV 52.5 53.0

VILA-1.5-8B 28.0 32.8
+4-shot ICL 39.3 35.6
+8-shot ICL 44.2 36.5
+MTV 55.2 40.6

MANTIS-LLaMA3-8B 36.3 51.7
+4-shot ICL 26.4 52.5
+8-shot ICL 27.5 52.0
+MTV 51.0 52.8

(b) MTV on Object Classification

Model Flowers CUB
LLaVA-1.5-13B

+ 1-shot ICL 58.60 58.24
LLaVA-1.6-13B

+ 1-shot ICL 65.58 67.90
Flamingo 9B

+ 1-shot ICL 9B 48.78 51.2
IDEFICS-9B

+ 1-shot ICL 55.29 62.0
Emu 37B

+ 1-shot ICL 52.76 53.56
Qwen-VL-7B

+ 1-shot ICL 55.0 56.5
+ MTV+1-shot ICL 78.1 80.0

Idefics2
+ 1-shot ICL 82.8 88.7
+ MTV+1-shot ICL 83.8 89.8

VILA-1.5-8B
+ 1-shot ICL 87.4 88.4
+ MTV+1-shot ICL 89.3 89.7

MANTIS-LLaMA3-8B
+ 1-shot ICL 87.4 84.0
+ MTV+1-shot ICL 89.8 89.7

5.1 MTV scales with more examples

We are interested in evaluating (i) the effect of different numbers of shots used per iteration to extract
MTV and (ii) the effect of different numbers of iterations used. We test the impact on accuracy when
increasing both of these parameters for QwenVL on the VizWiz validation set. In Figure 3, we show
on the left that the optimal number of multimodal ICL shots is 16 shots per iteration. Further, we
show on the right side of the figure that 1000 examples yield the best performance. These results
illustrate that MTV can effectively scale by utilizing larger numbers of ICL examples per iteration
and also in aggregate.

5.2 MTV works with explicit few-shot examples

One of the benefits of MTV over a few-shot ICL is the context length that is saved during inference.
This is because the many-shot examples are encoded directly in the activation space rather than in the
input token space. Thus, we ask whether the LMM can use the freed context for additional few-shot
examples. For object classification, we formulate both Flowers and CUB as a 1-shot comparison
between a positive and negative sample to identify the correct class (i.e., 2-way, 1-shot ICL by
construction). We report results on 1-shot ICL and MTV with 1-shot classification during inference.
MTV+1-shot ICL surpasses 1-shot ICL accuracy on these tasks, showing that MTV can be utilized
alongside few-shot examples. Furthermore, it is vital to note that the evaluation classes are completely
unseen by MTV. Thus, with just a 1-shot ICL example, MTV is able to generalize to unseen classes.

5.3 MTV heads generalize to other tasks

In this experiment, we further ask whether the MTV heads λMTV
j extracted on one task j can

generalize to a separate, but similar task k. To test this, we use the attention heads extracted from

8

Figure 3: Scaling of Qwen-MTV on VizWiz: (Left) We show the effect of varying the number of
shots per iteration for a fixed 100 iterations. (Right) We also show the effect of varying numbers of
iterations fixing 4 shots per iteration.

ViLA-1.5-8B on VizWiz for use on OK-VQA. Our results on the left of Table 3 demonstrate that the
extracted heads from one task can improve accuracy on another similar task. This generalizability of
the heads is significant because it suggests that the heads from MTV may only have to be extracted
once to be applied to many other similar tasks. The only calculation necessary then would be the
mean activations of the many-shot examples used for the target dataset, making the application of
many-shot multimodal ICL even more efficient for similar tasks.

Table 3: Generalization & Method Comparison (Left) MTV-VizWiz evaluated on OK-VQA.
(Right) MTV compared to VizWiz finetuning, function vectors [81], and task vectors [27].

(a) Attention Head Generalization

Model VizWiz OK-VQA

ViLA-1.5-8B 28.0 32.8
+ 4-shot-ICL 39.3 35.6
+ 8-shot-ICL 44.2 36.5
+ MTV-Vizwiz 55.2 38.3

(b) Comparison to Other Methods

Model VizWiz OK-VQA

Qwen-VL-7B 35.2 58.6
+ VizWiz F.T. 62.0 25.1
+ FV 36.4 59.0
+ VTV 37.0 58.9
+ MTV 45.6 62.0

5.4 Finetuning as an upper bound

In Table 3b, we compare our method to finetuning. To do this, we use finetune on the same number
of examples as MTV uses from the train set and evaluate not only on the validation set but also on the
validation set of another similar dataset. In particular, for a ViLA-1.5-8B model finetuned on VizWiz,
we report accuracy on both VizWiz and OK-VQA validation sets. It can be seen that finetuning is
indeed an upper bound on the dataset the model was finetuned on. However, we show that finetuning
leads to overfitting on the finetuned dataset and even forgetting the zero-shot capabilities. In contrast,
we also show that MTV not only improves zero-shot capabilities but can generalize to similar tasks
with only a few inference examples Table 2b and Table 3a.

5.5 Comparison to other methods

We compare our method to two different methods that can find task vectors: Visual Task Vectors
(VTV) [27] and Function Vectors (FV) [81]. Originally, these works could not be applied as-is to
support multimodal ICL, but here, we have implemented a version that follows the original exactly
with only minor modifications to allow performing our evaluated multimodal tasks. More details
about the methods can be found in Section A.2 in the Supplementary. In our experiments Table 3b,
we find that MTV surpasses both methods on VizWiz and OK-VQA. VTV are image-only task
vectors that use only one-shot image examples for fixed small T iterations, and they calculate the

9

mean activations and the locations together without aligning to the downstream task. FV are text-only
task vectors that use Causal Mediation Analysis [62] to extract task vector locations from only the
output activations of the last token. The results suggest the importance of finding the task vectors
by decoupling the calculation of the mean activations and locations in two separate steps to perform
many-shot multimodal ICL more effectively for complex multimodal tasks.

5.6 Compute and runtime efficiency

Metric 0-shot 4-shot 8-shot 16-shot MTV (400-shot)

Max GPU Memory (GB) 17.4 18.3 19.0 20.6 19.8
Runtime per 100 iterations (min) 1.1 2.7 3.1 3.3 1.9

Table 4: Efficiency: We show that even though MTV encodes 400 multimodal ICL examples in the
mean activations, it still requires less runtime and memory than 8-shot and 16-shot multimodal ICL.

An important feature of our work is that multimodal ICL examples do not require explicit tokens
during inference. Because of this, we are interested in the efficiency gains of our method. Intuitively,
the longer MTV extraction time is amortized during downstream inference, where the runtime would
be equivalent to the zero-shot case. Similarly, the memory requirements are maximal during the MTV
extraction process but require the same memory as the zero-shot case afterward. In contrast, the ICL
tasks have a slower runtime and larger memory requirement throughout due to running inference on
N examples for every iteration. To demonstrate this, we calculate the maximum memory requirement
in gigabytes (GB) for ViLA-1.5-8B on VizWiz using different ICL-shot counts and MTV with 400
examples. As shown in Table 4, MTV requires less runtime than 16-shot, 8-shot, and 4-shot ICL
methods and also requires less memory than 16-shot ICL. These results demonstrate that MTV can
encode many multimodal ICL examples with greater efficiency than few-shot methods.

6 Conclusion

In this work, we present Multimodal Task Vectors a compact, implicit representation that can
efficiently encode many-shot multimodal ICL examples for use in complex vision-language tasks.
We demonstrate this implicit model representation not only encodes a multimodal ICL task but can
also enable many-shot multimodal ICL to surpass zero-shot and few-shot performance on a variety of
VL tasks. Our method stands out from previous work in its ability to scale, use additional explicit
multimodal ICL examples, and generalize to other similar VL tasks. Our work is a viable way to
surpass the limit of context length of an LMM for multimodal ICL and demonstrates clearly that these
additional examples aid in multimodal reasoning. Finally, we do not anticipate a specific negative
impact, but, as with any Machine Learning method, we recommend exercising caution.

7 Limitations

While Multimodal Task Vectors offers substantial benefits for handling complex vision-language
tasks compared to finetuning or few-shot ICL, it is important to recognize certain limitations that
accompany our approach. MTV requires access to the internal architecture of an LMM, so while it is
an effective solution for all open-source models, its application is restricted from proprietary models,
such as GPT-4 [60] and Gemini [79, 80]. Furthermore, while many-shot ICL is incredibly attractive
for many applications, it may not be practical for low-data scenarios where synthetic data [1] or the
transfer of MTV extracted from another dataset may be required. We feel these challenges represent
great opportunities for future work in the many-shot multimodal in-context learning domain.

8 Acknowledgements

We would like to thank Deva Ramanan, Grace Luo, and Suzanne Petryk for their insightful feedback
and discussions. This project has received funding from Prof. Darrell’s group in part by DoD,
including PTG and/or LwLL programs, as well as BAIR’s industrial alliance programs.

10

References
[1] Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer

Abbas, Azade Nova, John D. Co-Reyes, Eric Chu, Feryal M. P. Behbahani, Aleksandra Faust, and Hugo
Larochelle. Many-shot in-context learning. 2024.

[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andy
Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language model for few-shot learning.
ArXiv, abs/2204.14198, 2022.

[3] Amit Alfassy, Assaf Arbelle, Oshri Halimi, Sivan Harary, Roei Herzig, Eli Schwartz, Rameswar Panda,
Michele Dolfi, Christoph Auer, Peter W. J. Staar, Kate Saenko, Rogerio Feris, and Leonid Karlinsky.
FETA: Towards specializing foundational models for expert task applications. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

[4] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international conference
on computer vision, pages 2425–2433, 2015.

[5] Elad Ben Avraham, Roei Herzig, Karttikeya Mangalam, Amir Bar, Anna Rohrbach, Leonid Karlinsky,
Trevor Darrell, and Amir Globerson. Bringing image scene structure to video via frame-clip consistency
of object tokens. In Thirty-Sixth Conference on Neural Information Processing Systems, 2022.

[6] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. ArXiv,
abs/2308.12966, 2023.

[7] Amanda Bertsch, Maor Ivgi, Uri Alon, Jonathan Berant, Matthew R. Gormley, and Graham Neubig.
In-context learning with long-context models: An in-depth exploration. 2024.

[8] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph of
thoughts: Solving elaborate problems with large language models. ArXiv, abs/2308.09687, 2023.

[9] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. ArXiv, abs/2005.14165, 2020.

[10] Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of
large language models via positional interpolation. ArXiv, abs/2306.15595, 2023.

[11] Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. ArXiv, abs/2305.14788, 2023.

[12] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam M. Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Benton C. Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa
Dev, Henryk Michalewski, Xavier García, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou,
Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David
Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie
Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Díaz, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S.
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling
with pathways. J. Mach. Learn. Res., 24:240:1–240:113, 2022.

[13] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang
Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models with
instruction tuning, 2023.

[14] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. ArXiv, abs/2305.14314, 2023.

11

[15] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. 2022.

[16] Sivan Doveh, Shaked Perek, Muhammad Jehanzeb Mirza, Amit Alfassy, Assaf Arbelle, Shimon Ullman,
and Leonid Karlinsky. Towards multimodal in-context learning for vision & language models. ArXiv,
abs/2403.12736, 2024.

[17] Danny Driess, F. Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Ho Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre
Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus
Greff, Andy Zeng, Igor Mordatch, and Peter R. Florence. Palm-e: An embodied multimodal language
model. In International Conference on Machine Learning, 2023.

[18] Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, W. Zhang, Pan Lu, Conghui
He, Xiangyu Yue, Hongsheng Li, and Yu Jiao Qiao. Llama-adapter v2: Parameter-efficient visual
instruction model. ArXiv, abs/2304.15010, 2023.

[19] Jiaxin Ge, Sanjay Subramanian, Baifeng Shi, Roei Herzig, and Trevor Darrell. Recursive visual program-
ming. In European Conference on Computer Vision, pages 1–18. Springer, 2025.

[20] Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for context compression
in a large language model. ArXiv, abs/2307.06945, 2023.

[21] Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, Miao Zheng, Qianmengke Zhao, Kuikun Liu,
Wenwei Zhang, Ping Luo, and Kai Chen. Multimodal-gpt: A vision and language model for dialogue
with humans. ArXiv, abs/2305.04790, 2023.

[22] Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning without
training. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
14953–14962, 2022.

[23] Danna Gurari, Qing Li, Abigale Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P.
Bigham. Vizwiz grand challenge: Answering visual questions from blind people. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3608–3617, 2018.

[24] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
unsupervised visual representation learning. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9726–9735, 2019.

[25] Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. ArXiv,
abs/2310.15916, 2023.

[26] Roei Herzig, Alon Mendelson, Leonid Karlinsky, Assaf Arbelle, Rogerio Feris, Trevor Darrell, and Amir
Globerson. Incorporating structured representations into pretrained vision \& language models using
scene graphs. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.

[27] Alberto Hojel, Yutong Bai, Trevor Darrell, Amir Globerson, and Amir Bar. Finding visual task vectors.
In European Conference on Computer Vision, pages 257–273. Springer, 2025.

[28] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference on Machine Learning, pages 2790–2799, 2019.

[29] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685, 2021.

[30] Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and
Soujanya Poria. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large language
models. ArXiv, abs/2304.01933, 2023.

[31] Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6693–6702, 2019.

[32] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In International Conference on Machine Learning, 2021.

12

[33] Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max W.F. Ku, Qian Liu, and Wenhu Chen. Mantis:
Interleaved multi-image instruction tuning. arXiv2405.01483, 2024.

[34] Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. In Conference on Empirical Methods in
Natural Language Processing, 2023.

[35] Yixing Jiang, Jeremy Andrew Irvin, Ji Hun Wang, Muhammad Ahmed Chaudhry, Jonathan H Chen, and
Andrew Y Ng. Many-shot in-context learning in multimodal foundation models. In ICML 2024 Workshop
on In-Context Learning.

[36] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. ArXiv, abs/2205.11916, 2022.

[37] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. International Journal of Computer Vision, 123(1):32–73,
2017.

[38] Hugo Laurenccon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov,
Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, and Victor Sanh.
Obelisc: An open web-scale filtered dataset of interleaved image-text documents. ArXiv, abs/2306.16527,
2023.

[39] Hugo Laurenccon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building vision-
language models? 2024.

[40] Bin Lei, Pei-Hung Lin, Chunhua Liao, and Caiwen Ding. Boosting logical reasoning in large language
models through a new framework: The graph of thought. ArXiv, abs/2308.08614, 2023.

[41] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Conference on Empirical Methods in Natural Language Processing, 2021.

[42] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. arXiv preprint arXiv:2201.12086, 2022.

[43] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: bootstrapping language-image pre-
training with frozen image encoders and large language models. In ICML, 2023.

[44] Mukai Li, Shansan Gong, Jiangtao Feng, Yiheng Xu, Jinchao Zhang, Zhiyong Wu, and Lingpeng Kong.
In-context learning with many demonstration examples. ArXiv, abs/2302.04931, 2023.

[45] Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with long
in-context learning. 2024.

[46] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), abs/2101.00190, 2021.

[47] Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo Molchanov, Andrew Tao, Huizi Mao, Jan Kautz, Mohammad
Shoeybi, and Song Han. Vila: On pre-training for visual language models, 2023.

[48] Tsung-Yi Lin, M. Maire, Serge J. Belongie, James Hays, P. Perona, D. Ramanan, Piotr Dollár, and C. L.
Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

[49] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023.

[50] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS, 2023.

[51] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. Lost in the middle: How language models use long contexts. Transactions of the Association for
Computational Linguistics, 12:157–173, 2023.

[52] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models. ArXiv,
abs/2304.09842, 2023.

13

[53] Huan Ma, Changqing Zhang, Yatao Bian, Lemao Liu, Zhirui Zhang, Peilin Zhao, Shu Zhang, H. Fu,
Qinghua Hu, and Bing Wu. Fairness-guided few-shot prompting for large language models. ArXiv,
abs/2303.13217, 2023.

[54] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question
answering benchmark requiring external knowledge. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3190–3199, 2019.

[55] AI Meta, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2, 2024.

[56] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? ArXiv,
abs/2202.12837, 2022.

[57] Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain of thought
prompting for large multimodal models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2024.

[58] Jesse Mu, Xiang Lisa Li, and Noah D. Goodman. Learning to compress prompts with gist tokens. ArXiv,
abs/2304.08467, 2023.

[59] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pages
722–729, 2008.

[60] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

[62] Judea Pearl. Direct and indirect effects. Probabilistic and Causal Inference, 2001.

[63] Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. ArXiv, abs/2309.00071, 2023.

[64] Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan, Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan
Liu, and Maosong Sun. Toolllm: Facilitating large language models to master 16000+ real-world apis.
ArXiv, abs/2307.16789, 2023.

[65] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning, pages 8748–8763.
PMLR, 2021.

[66] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2019.

[67] Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. Scienceqa: a
novel resource for question answering on scholarly articles. International Journal on Digital Libraries,
23:289 – 301, 2022.

[68] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaf-
fin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma
Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan
Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey,
Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault
Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and
Alexander M Rush. Multitask prompted training enables zero-shot task generalization. In International
Conference on Learning Representations, 2022.

[69] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools.
ArXiv, abs/2302.04761, 2023.

14

[70] Jacob Schreiber, Jeffrey Bilmes, and William Stafford Noble. apricot: Submodular selection for data
summarization in python. Journal of Machine Learning Research, 21(161):1–6, 2020.

[71] Chuyi Shang, Amos You, Sanjay Subramanian, Trevor Darrell, and Roei Herzig. Traveler: A multi-lmm
agent framework for video question-answering. ArXiv, abs/2404.01476, 2024.

[72] Yongliang Shen, Kaitao Song, Xu Tan, Dong Sheng Li, Weiming Lu, and Yue Ting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. ArXiv, abs/2303.17580, 2023.

[73] Charles Burton Snell, Dan Klein, and Ruiqi Zhong. Learning by distilling context. ArXiv, abs/2209.15189,
2022.

[74] Sanjay Subramanian, Medhini G. Narasimhan, Kushal Khangaonkar, Kevin Yang, Arsha Nagrani,
Cordelia Schmid, Andy Zeng, Trevor Darrell, and Dan Klein. Modular visual question answering
via code generation. ArXiv, abs/2306.05392, 2023.

[75] Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Zhengxiong Luo, Yueze Wang, Yongming
Rao, Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context
learners. ArXiv, abs/2312.13286, 2023.

[76] D’idac Sur’is, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. ArXiv, abs/2303.08128, 2023.

[77] Sijun Tan, Xiuyu Li, Shishir G. Patil, Ziyang Wu, Tianjun Zhang, Kurt Keutzer, Joseph E. Gonzalez, and
Raluca A. Popa. Lloco: Learning long contexts offline. 2024.

[78] Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier García, Jason Wei, Xuezhi Wang, Hyung Won Chung,
Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Denny Zhou, Neil Houlsby, and Donald Metzler. Ul2:
Unifying language learning paradigms. In International Conference on Learning Representations, 2022.

[79] Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
ArXiv, abs/2403.05530, 2024.

[80] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[81] Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau. Function
vectors in large language models. ArXiv, abs/2310.15213, 2023.

[82] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge J. Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

[83] Xingchen Wan, Ruoxi Sun, Hanjun Dai, Sercan Ö. Arik, and Tomas Pfister. Better zero-shot reasoning
with self-adaptive prompting. In Annual Meeting of the Association for Computational Linguistics, 2023.

[84] Lei Wang, Yilang Hu, Jiabang He, Xingdong Xu, Ning Liu, Hui juan Liu, and Hengtao Shen. T-sciq:
Teaching multimodal chain-of-thought reasoning via large language model signals for science question
answering. ArXiv, abs/2305.03453, 2023.

[85] Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language models. In
Annual Meeting of the Association for Computational Linguistics, 2023.

[86] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. ArXiv, abs/2203.11171, 2022.

[87] Zhenhailong Wang, Manling Li, Ruochen Xu, Luowei Zhou, Jie Lei, Xudong Lin, Shuohang Wang, Ziyi
Yang, Chenguang Zhu, Derek Hoiem, Shih-Fu Chang, Mohit Bansal, and Heng Ji. Language models with
image descriptors are strong few-shot video-language learners. ArXiv, abs/2205.10747, 2022.

[88] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. ArXiv, abs/2109.01652, 2021.

[89] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed Huai hsin Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. Trans. Mach.
Learn. Res., 2022, 2022.

15

[90] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. ArXiv,
abs/2201.11903, 2022.

[91] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 2004.

[92] Chenfei Wu, Sheng-Kai Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Visual chatgpt:
Talking, drawing and editing with visual foundation models. ArXiv, abs/2303.04671, 2023.

[93] Benfeng Xu, An Yang, Junyang Lin, Quang Wang, Chang Zhou, Yongdong Zhang, and Zhendong Mao.
Expertprompting: Instructing large language models to be distinguished experts. ArXiv, abs/2305.14688,
2023.

[94] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. ArXiv,
abs/2305.10601, 2023.

[95] Yao Yao, Z. Li, and Hai Zhao. Beyond chain-of-thought, effective graph-of-thought reasoning in large
language models. ArXiv, abs/2305.16582, 2023.

[96] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yi Zhou, Junyan Wang, Anwen Hu, Pengcheng
Shi, Yaya Shi, Chenliang Li, Yuanhong Xu, Hehong Chen, Junfeng Tian, Qiang Qi, Ji Zhang, and Feiyan
Huang. mplug-owl: Modularization empowers large language models with multimodality. ArXiv,
abs/2304.14178, 2023.

[97] Qinghao Ye, Haiyang Xu, Jiabo Ye, Mingshi Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, Fei
Huang, and Jingren Zhou. mplug-owl2: Revolutionizing multi-modal large language model with modality
collaboration. ArXiv, abs/2311.04257, 2023.

[98] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image
pre-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
11975–11986, 2023.

[99] Qingru Zhang, Minshuo Chen, Alexander W. Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. ArXiv, abs/2303.10512, 2023.

[100] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao,
and Yu Jiao Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init attention. ArXiv,
abs/2303.16199, 2023.

[101] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alexander J. Smola. Automatic chain of thought prompting
in large language models. ArXiv, abs/2210.03493, 2022.

[102] Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alexander J. Smola. Multimodal
chain-of-thought reasoning in language models. ArXiv, abs/2302.00923, 2023.

[103] Haozhe Zhao, Zefan Cai, Shuzheng Si, Xiaojian Ma, Kaikai An, Liang Chen, Zixuan Liu, Sheng Wang,
Wenjuan Han, and Baobao Chang. Mmicl: Empowering vision-language model with multi-modal
in-context learning. ArXiv, abs/2309.07915, 2023.

[104] Ge Zheng, Bin Yang, Jiajin Tang, Hong-Yu Zhou, and Sibei Yang. Ddcot: Duty-distinct chain-of-thought
prompting for multimodal reasoning in language models. ArXiv, abs/2310.16436, 2023.

[105] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. arXiv preprint arXiv:2304.10592,
2023.

16

Multimodal Task Vectors Enable Many-Shot Multimodal
In-Context Learning
Supplementary Material

Here, we provide additional information about our experimental results, qualitative examples, imple-
mentation details, and datasets. Specifically, Section A provides more experiment results, Section A.2
provides additional method details, Section B provides additional implementation details, and Sec-
tion C provides qualitative visualizations to illustrate our approach.

A Additional Experiment Results

We present several additional experiments that further demonstrate the benefits of our MTV approach.

A.1 Additional Experiments

Here we provide additional experiments and ablations that further illustrate different characteristics
of MTV.

Motivation for encoding shots in the activation space.. We highlight our paper’s motivation in
addressing the context length token limitation of LMMs by encoding ICL shots in the activation
space. An additional limiting factor in the token space is the physical constraints of memory and
runtime, which we ablated in Section 5.6 of the paper. For example, 25-shot ICL is actually the
maximum number of vanilla ICL shots that can be run on a single 48GB A6000 GPU for Qwen-
VL. We demonstrate the degradation of increasing numbers of multimodal token-space ICL shots
(VizWiz-QwenVL) in Table 5a.

Effect of shot quality on MTV:. We assess the connection between textual and activation-space
shot quality by comparing MTV using random selection with MTV using high-quality shots selected
with the Facility Location algorithm [70]. We apply MTV to QwenVL and use the Qwen GTE
embedding model to obtain embeddings for the Facility Location algorithm and present the results
in Table 5b. Excitingly, we find that high-quality shots do indeed lead to significant improvements in
MTV performance.

MTV with noisy exemplars.. We compare the robustness of MTV compared to that of vanilla ICL.
For QwenVL on VizWiz and OKVQA, we replace 1 of the 4 examples in each iteration of 4-shot ICL
and 4-shot-100-iteration MTV with an example from the opposite dataset. We report both accuracy
and degradation in Table 5c

Table 5: ICL Degradation, Shot-Quality Impact, and Stability (Left) Degradation of ICL with
increasing number of shots. (Right) Impact of shot quality on MTV and stability of ICL vs MTV
with noisy examples.

(a) ICL Degradation with Increasing Shots

ICL Shots Acc. % Acc. Increase

0 35.2 -

4 42.0 6.8

8 44.3 2.3

16 46.9 2.6

20 49.0 2.1

25 49.8 0.8

(b) MTV with High-Quality Shots

Model VizWiz

QwenVL-7B 35.2
+ MTV 45.6
+ MTV + F.L. Shots 58.1

(c) Stability of ICL vs MTV using QwenVL

VizWiz OK-VQA

4-shot ICL 41.0 (-1.0) 61.5 (-0.5)
MTV 43.4 (-2.2) 61.9 (-0.1)

1

Attention head generalization on object classification tasks Table 6a. We also test generalization
for object classification tasks identical to the formulation described in Section 5.3. For clarity, MTV
shows another kind of generalization when it is leveraged alongside additional explicit ICL samples.
This capability is described in Section 5.2. To summarize our experiment, we calculate MTV using
the Flowers dataset using 1-shot ICL example for 100 iterations for both the mean activations µMTV

j

and the attention head locations λMTV
j . Then, we apply MTV to the CUB task using the same set of

attention head locations from Flowers. We just calculate the mean activations for the CUB dataset
using a 1-shot for 100 iterations (halving our data requirement for this specific scenario). Once again,
we find that the heads of MTV can indeed generalize between similar classes.

Table 6: Generalization & Direct ICL Comparison (Left) MTV-Flowers evaluated on OK-VQA.
(Right) Direct comparison of MTV extracted from 4-shots, 1-iteration (MTV_4shot_1it) compared to
4-shot ICL

(a) Attention Head Generalization

Model Flowers CUB

ViLA-1.5-8B
+ 1-shot-ICL 87.4 88.4
+ MTV-Flowers+1-shot-ICL 89.3 89.9

(b) Comparison to Other Methods

Model VizWiz OK-VQA

ViLA-1.5-8B 28.0 32.8
+ 4-shot-ICL 39.3 35.6
+ MTV_4shot_1it 57.4 40.0

MTV one-to-one comparison with ICL - Table 6b. Although not directly comparable, we consider
an extreme case of MTV where we encode only 4-shots of ICL examples for 1 iteration. This
matches the exact setting used in standard 4-shot ICL. Interestingly, MTV applied to both VizWiz
and OK-VQA exceeds performance on the 4-shot-ICL case and even MTV formulated on 4-shots per
100 iterations for calculating the mean activations. This result suggests that there may be scope for
MTV to be effective in both high and low-data regimens. More research needs to be done to explore
this idea.

Figure 4: Efficiency. We show that for Flowers, MTV does scale to but only up to 100 examples in
our experiments.

Scaling on Flowers Dataset. We provide additional results on the scaling property of MTV on the
Flowers dataset. We again note that the examples are 2-way, one-shot examples with 2 examples
(one positive and one negative) for each sample. As in the main paper, we fix 1 shot per iteration to
calculate the mean activations, scaling up to 500 total examples used. Our results show that there is
a saturation of MTV at 100 examples (i.e., 1 example per 100 iterations). While this still indicates
some scaling as the result is an improvement over 20 examples, the results show that the task vector
can reach its best accuracy with fewer shots depending on the complexity of the task. Future work to
probe more deeply into the scaling nature of MTV across different tasks would be valuable.

2

MTV at extreme shot counts. We delve further into the scaling capabilities by evaluating the
performance of MTV at the maximum number of VizWiz shots per iteration allowable by the memory
constraints of a single NVIDIA RTX A6000. The experiment shown in Table 7a indicates that while
MTV does continue to scale, there is also certainly a saturation point for VizWiz. The exact saturation
point likely depends on the specific task.

Effect of permutation. We consider applying five random seeds to different configurations of MTV
comparing its variability under permutation of example order to standard few-shot ICL. We present
the mean and standard deviation for these experiments in Table 7b. Although not significant, in both
4-shot and 8-shot settings, MTV shows less variability to example permutation. This intuitively makes
sense as more examples are averaged over multiple iterations, leading to more stable performance
across different seeds.

Table 7: QwenVL-7B: Generalization & Variability to Permutation (Left) Evaluation of MTV on
extreme shot-iteration counts. (Right) Variability to permutation across 5 seeds.

(a) QwenVL-7B: Extreme shot-count performance

Model Accuracy (%)

QwenVL-7B
+ MTV_20shot_100it 54.9
+ MTV_20shot_200it 55.1
+ MTV_25shot_100it 56.4
+ MTV_25shot_200it 51.4

(b) Permutation Variability

Model Accuracy (%)

QwenVL-7B
+ MTV_4-shot_100it 45.2 (0.7)
+ MTV_4-shot_200it 48.3 (0.4)
+ MTV_8-shot_100it 50.4 (0.9)
+ MTV_8-shot_200it 51.8 (0.6)
+ 4-shot ICL 41.3 (0.8)
+ 8-shot ICL 42.9 (1.5)

MTV for language-only tasks. While we show the importance of MTV especially for vision-
language tasks, the methodology can be a powerful way to learn tasks in the language-only domain
as well. We demonstrate in Table 8a the effectiveness of MTV on two common LLM tasks using
LLaMA-3-8B [55]:

Table 8: Performance on Language and Document Tasks (Left) Evaluation on English-Spanish
and Antonym Generation tasks. (Right) MTV performance across different shot settings on
document tasks.

(a) Performance on Language-Only Tasks

English-Spanish Antonym Generation
10 shot 65.2 56.0
400 shot 68.5 57.6
MTV 4-100 76.7 61.7

(b) MTV Document Task Performance

0-shot 4-shot 8-shot MTV
ChartQA 19.1 25.0 26.4 34.9
TextVQA 42.4 45.4 47.1 51.0

MTV on additional document datasets. Multimodal documents are a form of data with complex
compositions of visual and textual modalities, with interleaved language, photograph, and chart
information. As such, we provide some preliminary results on the effectiveness of MTV on these
types of datasets in Table 8b. These encouraging results prompt future research into the domain of
leveraging task vectors for learning challenging document tasks.

Here we provide some additional method details about MTV, Visual Task Vectors (VTV) [27], and
Function Vectors [81] (FV).

A.2 MTV-EXTRACT

We describe the particulars of our MTV-EXTRACT algorithm for finding the set of attention head
locations that best align with the downstream task as follows (Qs and Rs are formatted identically to
the downstream task):

3

Algorithm 1 MTV-EXTRACT for finding task vector locations

Require: F (LMM), S (examples), µj (mean activations), Qs, Rs (queries and responses)
Ensure: λMTV

j (optimized attention head locations)
1: Initialize θ randomly
2: for s← 1 to S do
3: for i← 1 to 32 do ▷ Sampling heads 32 times
4: Sample λi ∼ Bernoulli(σ(θ))
5: Replace activations for λi in F with µl,j

6: Compute output logits Os ← F (Qs) ▷ Pass Qs to LMM F
7: Li ← Negative Cross-Entropy(Os, Rs)
8: end for
9: θ ← Adam(θ,∇θ

1
32

∑32
i=1 Li) ▷ Update rule

10: end for
11: Sample final λMTV

j ∼ Bernoulli(σ(θ)) ▷ Final set of head locations
12: return λMTV

j

We point out a few important factors. It is important to note that none of the parameters of F
are being finetuned through any gradient update. We take the negative cross-entropy (negative
as MTV_EXTRACT draws inspiration from REINFORCE [91], which is a policy optimization
algorithm) between the output logits Os and the first token of the target response Rs for a simple
update scheme. This along with the choice of 32 samples of the Bernoulli distribution are ones we
encourage more experimentation with in future work.

A.3 Visual TaskVectors (VTV) Adaptation for Multimodal ICL

Visual Task Vectors (VTV) [27] were originally designed to be applied to large vision-transformer-
based models. We make as few changes as possible to apply this method for multimodal tasks. We
preserve VTVs distinct factors like a the usage of 1-shot examples for both calculation of the mean
activations and attention head locations regardless of the format of the downstream task. Furthermore,
we fix the number of iterations for both mean activation and attention head calculation at 10. Finally,
we replace the proposed MSE loss with a cross-entropy loss that is more suited for an LMM task.

A.4 Function Vectors (FV)

Because Function Vectors describe text-only task vectors, we follow the implementation of Function
Vectors [81] almost exactly as LLMs and LMMs are similar. The only major change made is the use
of many-shot multimodal ICL examples for mean activation calculation. We preserve the lack of an
optimization method for the layer used to replace the mean activations. Rather than performing a
standard grid search over the set of layers, we set the layer number to 20 as recommended for LLaMA
and LLaMA-based models by the paper. The only other difference is the encoding of multimodal
ICL examples. Again due the the similarity between LMMs and text-only LLMs, these tests can be
used as needed as long as the multimodal inputs are properly processed by the LMM.

B Additional Implementation Details

To run all of our experiments, we use 1 NVIDIA RTX 6000 GPU. Importantly, this includes the
runtime and efficiency ablations, which were evaluated on the same GPU for consistency. Please
refer to the respective model’s paper for their specific implementation details of the architecture.
Besides the output token generation length, which varies depending on the standard setting for each
task, we use the default generation parameters (e.g. temperature and no. of beams in beam search)
recommended for each model. In the following sections, we describe some of the finer nuances of
our MTV-EXTRACT process as well as our implementations of the Visual Task Vectors (VTV) and
Function Vectors (FV) implementations.

4

B.1 VizWiz

Dataset. The VizWiz dataset is designed to challenge and evaluate the capabilities of Large Mul-
timodal Models (LMMs) in understanding and responding to real-world visual questions. This
dataset is comprised of images accompanied by spoken questions, which have been transcribed
and paired with answers. Each image in this dataset is sourced from visually impaired individuals
seeking assistance, thereby incorporating a wide array of everyday challenges they face. This setup
is inherently diverse and often requires high-level visual understanding combined with contextual
reasoning, making them a robust benchmark for assessing the practical utility of LMMs in assistive
technologies. The format of the dataset samples is an image paired with a text question. The LMM
is required to provide a short response limited to 10 tokens or respond with “unanswerable" if the
question is not answerable give the image.

For this research paper, we specifically utilize the VizWiz dataset to benchmark the performance of
our proposed task vectors in multimodal in-context learning (MM-ICL) on a dataset that challenges
visual scene understanding of LMMs. We extract MTV on the training set and evaluate on the
evaluation set containing 4,319 validation image/question pairs.

Inference details. We use the standard VQA question-answer response format that is outlined
in the QwenVL repository https://github.com/QwenLM/Qwen-VL. Put simply, the LMM is
presented with an image and a corresponding text question. The response is then expected in a
short text format of no more than 10 tokens (set as the “max_tokens” parameter in the LMM).
One nuance is the special answer “unanswerable". We handle this by providing MTV and all
baselines with the following prompt for every question: “First carefully understand the given
examples. Then use the given image and answer the question in the same way as the examples. If
the question can not be answered, respond unanswerable. " The official dataset can be downloaded
at https://vizwiz.org/tasks-and-datasets/vqa/.

B.2 OK-VQA

Dataset. The OK-VQA dataset, differs from traditional VQA datasets in its focus on necessitating
knowledge beyond what is presented in the given images. This dataset encompasses over 14,000
questions that are not merely reliant on visual cues but require associative reasoning with external data
sources, making it a unique tool for evaluating AI’s capability in handling complex, knowledge-driven
queries. Thus, we evaluate on this dataset to test whether MTV can be beneficial for this type of
reasoning.

We once again extract MTV on the train set and evaluate on the validation set. OK-VQA is formatted
as an image with a corresponding text question. However, it is important to note that the text question
heavily relies on external knowledge to answer. Examples of questions can be found in Section C.

Inference details. We use the standard VQA question-answer response format that is outlined in the
QwenVL repository https://github.com/QwenLM/Qwen-VL. Put simply, the LMM is presented
with an image and a corresponding text question. The response is then expected in a short text format
of no more than 10 tokens (set as the “max_tokens” parameter in the LMM). We do not add any
additional prompts or special tokens apart from prompt format or image tokens required by the model
being evaluated. The official dataset can be downloaded at https://okvqa.allenai.org/.

B.3 Flowers

Dataset. Flowers [59] is an object classification dataset that requires fine-grained classification of
102 different flower species. The Flowers dataset is formulated as a 2-way, 1-shot task where one
example is the positive sample and the other is the negative sample. In this way, the data poses a
unique challenge for MTV having to store examples with two associated images. Thus, given the
2-way examples and the query image, the LMM is tasked with selecting the correct class from the
given two options. Examples can be found in Section C

Implementation Details. We use the official data released by the authors which is available at
https://www.robots.ox.ac.uk/~vgg/data/flowers/. We provide a Python code snippet
below showing the Flowers data format:

def format_flower(cur_data):

5

https://github.com/QwenLM/Qwen-VL
https://vizwiz.org/tasks-and-datasets/vqa/
https://github.com/QwenLM/Qwen-VL
https://okvqa.allenai.org/
https://www.robots.ox.ac.uk/~vgg/data/flowers/

pos = cur_data["pos"]
neg = cur_data["neg"]
pos_label = cur_data["pos_label"]
neg_label = cur_data["neg_label"]
query = cur_data["query"]
rand_num = random.randint(0,1)
if rand_num == 0:

pos_example = f"{pos}What is the type of flower in the image? A.{
pos_label} B.{neg_label}\nAnswer with the option’s letter from the given
choice directly. Answer: A\n"

neg_example = f"{neg}What is the type of flower in the image? A.{
pos_label} B.{neg_label}\nAnswer with the option’s letter from the given
choice directly. Answer: B\n"

cur_query = f"{query}What is the type of flower in the image? A.{
pos_label} B.{neg_label}\nAnswer with the option’s letter from the given
choice directly. Answer:"

query_label = "A"
return pos_example + neg_example + cur_query, query_label, -1

else:
pos_example = f"{pos}What is the type of flower in the image? A.{

neg_label} B.{pos_label}\nAnswer with the option’s letter from the given
choice directly. Answer: B\n"

neg_example = f"{neg}What is the type of flower in the image? A.{
neg_label} B.{pos_label}\nAnswer with the option’s letter from the given
choice directly. Answer: A\n"

cur_query = f"{query}What is the type of flower in the image? A.{
neg_label} B.{pos_label}\nAnswer with the option’s letter from the given
choice directly. Answer:"

query_label = "B"
return neg_example + pos_example + cur_query, query_label, -1

B.4 CUB

Dataset. CUB [82] or CUB-200-2011 is an object classification dataset that tests the fine-grained
classification of 200 classes of birds. Similar to the Flowers dataset, CUB is formulated as a 2-way,
1-shot task where one example is the positive sample and the other is the negative sample. In this way,
the data poses a unique challenge for MTV having to store examples with two associated images.
Thus, given the 2-way examples and the query image, the LMM is tasked with selecting the correct
class from the given two options.

Implementation Details. We use the official data released by the authors which is available at
https://www.vision.caltech.edu/datasets/cub_200_2011/. We provide a Python code
snippet below showing the Flowers data format:

def format_cub(cur_data):
pos = cur_data["pos"]
neg = cur_data["neg"]
pos_label = cur_data["pos_label"]
neg_label = cur_data["neg_label"]
query = cur_data["query"]
rand_num = random.randint(0,1)
if rand_num == 0:

pos_example = f"{pos}What is the type of bird in the image? A.{
pos_label} B.{neg_label}\nAnswer with the option’s letter from the given
choice directly. Answer: A\n"

neg_example = f"{neg}What is the type of bird in the image? A.{
pos_label} B.{neg_label}\nAnswer with the option’s letter from the given
choice directly. Answer: B\n"

6

https://www.vision.caltech.edu/datasets/cub_200_2011/

cur_query = f"{query}What is the type of bird in the image? A.{
pos_label} B.{neg_label}\nAnswer with the option’s letter from the given
choice directly. Answer:"

query_label = "A"
return pos_example + neg_example + cur_query, query_label, -1

else:
pos_example = f"{pos}What is the type of bird in the image? A.{

neg_label} B.{pos_label}\nAnswer with the option’s letter from the given
choice directly. Answer: B\n"

neg_example = f"{neg}What is the type of bird in the image? A.{
neg_label} B.{pos_label}\nAnswer with the option’s letter from the given
choice directly. Answer: A\n"

cur_query = f"{query}What is the type of bird in the image? A.{
neg_label} B.{pos_label}\nAnswer with the option’s letter from the given
choice directly. Answer:"

query_label = "B"
return neg_example + pos_example + cur_query, query_label, -1

C Qualitative Visualizations

We present further qualitative success and failure cases of QwenVL-MTV in Figure 5 on OK-VQA
and Flowers.

D Licenses and Privacy

The license, PII, and consent details of each dataset are in the respective papers. In addition, we wish
to emphasize that the datasets we use do not contain any harmful or offensive content, as many other
papers in the field also use them. Thus, we do not anticipate a specific negative impact, but, as with
any machine learning method, we recommend exercising caution.

7

Figure 5: Efficiency. We show that for Flowers, MTV does scale to but only up to 100 examples in
our experiments.

8

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims are supported both by the main results and additional
ablations and experiments in Sections 5
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed about limitations in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

9

Justification: This point is not relevant; it is not a theory paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Everything is reproducible. We include any necessary details in Section 4 as
well as the Supplemental sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

10

Answer: [Yes]
Justification: Yes, code is provided in the abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, all is included in Section 4 as well as the provided code in the abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our paper does not require error bars or statistical significance, only accuracy.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

11

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we describe required compute for our method in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts are disccused in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

12

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We don’t have any safeguards to discuss here.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: All data and code are credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

13

paperswithcode.com/datasets

Answer: [NA] .
Justification: We present a method and no additional assets are introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: No human subjects or experimental data involving humans was used in this
research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: This research does not have any experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

14

	Introduction
	Related Works
	Multimodal Task Vectors
	Preliminaries
	Step 1: Calculate MTV Mean Activations
	Step 2: Extract MTV Attention Head Locations
	Step 3: Multimodal Task Vector Application

	Evaluation
	Implementation Details
	Models
	Datasets

	Results
	MTV scales with more examples
	MTV works with explicit few-shot examples
	MTV heads generalize to other tasks
	Finetuning as an upper bound
	Comparison to other methods
	Compute and runtime efficiency

	Conclusion
	Limitations
	Acknowledgements
	Additional Experiment Results
	Additional Experiments
	MTV-EXTRACT
	Visual TaskVectors (VTV) Adaptation for Multimodal ICL
	Function Vectors (FV)

	Additional Implementation Details
	VizWiz
	OK-VQA
	Flowers
	CUB

	Qualitative Visualizations
	Licenses and Privacy

