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Abstract

Prior to the onset of vision, neurons in the developing mammalian retina spontaneously fire
in correlated activity patterns known as retinal waves. Experimental evidence suggests reti-
nal waves strongly influence sensory representations before the visual experience. We aim
to elucidate the computational role of retinal waves by using them as pre-training signals
for neural networks. We consider simulated activity patterns generated by a model retina
as well as real activity patterns observed experimentally in a developing mouse retina. We
show that pre-training a classifier with a biologically plausible Hebbian learning rule on
both simulated and real wave patterns improves the separability of the network’s internal
representations. In particular, the pre-trained networks achieve higher classification accu-
racy and exhibit internal representations with higher manifold capacity when compared to
networks with randomly shuffled synaptic weights, particularly for noisy data.

Keywords: retinal waves, development, vision, representation, geometry, manifold, clas-
sification, biologically plausible, pre-training

1. Introduction

How the brain learns to solve visual object recognition is still unknown. Evidence sug-
gests that sensory representations of distinct objects in the early visual system are tangled
together and gradually untangle as they are transformed and re-mapped in a feedforward
manner along the ventral stream (DiCarlo et al., 2012). However, we do not know the precise
mechanism by which the brain learns the appropriate sequence of mappings to sufficiently
separate objects for recognition in higher visual areas.

Interestingly, many key aspects of visual function are well-established before the vi-
sual experience, such as topographic maps, orientation selectivity, and ocular dominance
(Espinosa and Stryker, 2012), suggesting external stimuli are not necessary for the initial
development of the visual system, and axon targeting can largely be learned by internally
generated signals such as spontaneous neural activity and molecular guidance cues. Both
have been implicated in establishing retinal axonal projections, though their relative im-
portance is unknown (Feller and Kerschensteiner, 2020). Here, we focus on spontaneous
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activity in the form of retinal waves, correlated patterns of propagating, wave-like activity
that occur in the absence of light responses among groups of retinal ganglion cells (RGCs)
early in mammalian development (Arroyo and Feller, 2016). Experimental and compu-
tational evidence suggests that retinal waves instruct the formation of retinotopic maps,
enabling RGC axons to reach their targets in the superior colliculus and lateral geniculate
nucleus before the eyes even open (Cang et al., 2005; Chandrasekaran et al., 2005; Huber-
man et al., 2006; Markowitz et al., 2012; Hunt et al., 2012). Given that object recognition
in the visual system presumably depends on the representations induced by these axonal
projections and that these projections are well formed prior to the visual experience, here
we explore whether retinal waves are sufficient for learning the mappings that enable core
object recognition.

Our computational work predicts that the spatiotemporal properties of retinal waves can
instruct synaptic projections to higher visual areas such that object representations become
more linearly separable. Using a simple feedforward network trained to classify MNIST dig-
its (Raghavan and Thomson, 2019), we demonstrate that training the input layer weights
on retinal wave patterns with a biologically plausible Hebbian learning rule prior to train-
ing the classifier layer on MNIST improves the linear separability of the network’s internal
representations as well as the classifier accuracy. To do this, we turn to the framework of
manifold geometry, in which the collective response of neurons in the network to different
presentations of a particular object comprises an “object manifold” (Chung and Abbott,
2021). In particular, we examine three metrics that describe the object manifold geometry
— capacity, dimension, and radius (Chung et al., 2018) — and show that the object mani-
folds in the networks pre-trained with both simulated and experimentally obtained retinal
wave patterns are more easily separable than those in control networks whose weights are
random permutations of the pre-trained network weights or random projections. We also
show that pre-trained networks are more robust and more effectively maintain geometrically
favorable internal representations when trained and tested on noisy versions of the data.
This suggests that the spatial structure learned from retinal waves (in the absence of the
task data) is relevant for visual object recognition and implies an instructive role for retinal
waves prior to the visual experience.

2. Results

We consider feedforward networks consisting of an input layer, a layer with pre-trained
weights (the receptive fields) and ReLU activations, and a support vector machine (SVM)
as the classifier/output layer (Appendix B). Only the SVM layer is trained on the MNIST
data, such that it learns to classify the network’s internal representations of the digits. We
present results for five networks: “Pre-trained (sim.)”, a network with receptive fields pre-
trained on simulated retinal waves according to the dynamics in (Raghavan and Thomson,
2019), “Pre-trained (real)”; a network with receptive fields pre-trained on real retinal wave
data (Appendix A); “Scrambled (sim.)” and “Scrambled (real)”, networks in which each
receptive field is the result of randomly permuting the pixels of its corresponding receptive
field in “Pre-trained (sim.)” and “Pre-trained (real)”, respectively; and a network whose
hidden layer is a Gaussian random projection “Control (rand. proj.)”, which reduces di-
mensionality while preserving geometrical properties of the input (Bingham and Mannila,
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(a) (b)

Figure 1: (a) Accuracy of networks on MNIST with increasing noise level (proportion of
flipped pixels). (b) Capacity of network hidden layer representations averaged
across MNIST digit class manifolds.

(a) Radius (sim. waves) (b) Radius (real waves)

(c) Dimension (sim. waves) (d) Dimension (real waves)

Figure 2: Manifold geometry of hidden layer representations averaged across digit classes.
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2001). All networks considered have the same width and depth (Appendix B). We find
that classification accuracy is higher for pre-trained networks relative to their scrambled
counterparts. Pre-trained networks also maintain higher classification performance given
noisy input data (Fig. 1(a)).

We next analyze three manifold properties of the networks’ internal representations:
capacity, defined as the maximum number of manifolds that can be linearly separated using
random binary labels divided by the dimension of the representation; manifold dimension,
the spread of anchor points (which define the optimal separating hyperplane between two
perceptual manifolds) along the manifold axes; and manifold radius, the variance of an-
chor points normalized by the average distance between manifold centers. The lower the
dimension and radius of the object manifolds, the more linearly separable they are, yielding
higher manifold capacity (Fig. 1(b)) and therefore higher accuracy (Fig. 1(a)) (Chung
et al., 2018). We show that the internal representations of pre-trained networks generally
exhibit higher capacity, lower dimension, and lower radius relative to those of their scram-
bled counterparts, particularly in the presence of moderate noise. (Fig. 2). Notably, the
pre-trained networks exhibit consistently lower dimension than the control (random pro-
jection) network (Fig. 2(c), 2(d)), but lower radius only in the presence of considerable
noise (Fig. 2(a), 2(b)). Moreover, the dimension of the networks pre-trained on simulated
waves tends to be lower than that of networks pre-trained on real waves, while the real wave
networks tend to exhibit lower radius.

3. Discussion

Our results show that pre-training with both simulated and real retinal waves yields re-
ceptive fields with spatial structure favorable for separation and classification of object
manifolds. Because we are comparing to scrambled networks, whose receptive fields share
the same pixel distribution as the pre-trained networks but lack their spatial structure,
these results suggest that learning the spatial structure in retinal wave patterns, as opposed
to just the overall distribution, is relevant for object recognition. We also find that net-
works trained on simulated waves exhibit higher accuracy and manifold capacity compared
to networks trained on real retinal waves (Fig. 1). We suspect this is because the real data
contains considerably more noise and is less local in its spatial structure (Fig. C), which
may lower performance on the relatively simple binarized MNIST dataset.

Interestingly, it appears simulated wave and real wave networks have different effects
on the manifold geometry. Simulated wave networks have a greater effect on reducing the
manifold dimension, while real wave networks have a greater effect on reducing the manifold
radius (Fig. 2). The disparity in dimension reduction may be due to the local structure of
the simulated wave receptive fields, which could act as feature detectors for low dimensional
structures induced by correlated nearby pixels. The reasons for disparity in radius reduction
do not appear as straightforward, considering that the random projection network tend to
exhibit lower radii. One factor could be that the high magnitude of the synaptic strengths
induced by the slower, localized simulated waves increases the effective sizes of the data
manifolds and thus their radii. The real retinal waves propagate less frequently and diffusely,
so the synaptic strengthening during the Hebbian learning phase occurs at a lower rate. This
explanation is consistent with the fact that the random projections have unit magnitude
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and generally lower radii, though it is not clear why their radii are higher in noisier regimes.
Normalizing the receptive fields in the pre-trained networks to control for the effect of
synaptic strength on radius may elucidate these questions

Finally, we highlight that the task (as well as the dynamics of the simulated retinal
waves) were chosen as a simple benchmark to compare with previous similar work (Raghavan
and Thomson, 2019) and as a proof of concept, limiting the scope of our findings. A more
ethologically relevant task, like classifying natural images (without binarization of the pre-
training and training data, as is done here), would be a more direct examination of the
role of retinal waves in biological development and for this reason may be more amenable
for networks pre-trained on real data. Another direction for future work is to examine the
effect of network architecture in this regime, in particular by introducing layers that more
accurately mimic the structure and dynamics of higher visual areas like LGN and V1.

4. Methods

The model architecture considered is a three layer feed-forward network consisting of a
3200-unit input layer of retinal ganglion cells randomly placed on a square grid, a 400-unit
hidden layer with ReLU activations, and a 1 unit classifier/output layer (Appendix B).
Retinal waves are propagated across the input layer to train the weights (receptive fields)
to the first hidden layer units by a winner-take-all Hebbian learning rule as in (Raghavan
and Thomson, 2019). The MNIST data is pre-processed by binarizing the pixel values
and projecting them onto the input layer units. Noisy MNIST datasets are generated by
bit-flipping a randomly selected proportion of the pixels.

After pre-training, the network is trained by freezing the input and hidden layer weights
as is, doing a forward pass of the projected MNIST data through the second hidden layer,
and training the classifier layer, a support vector machine, on the 400-dimensional hidden
layer output representations of the data. Once trained, models are then evaluated on test
data at the same given noise level as the training set. For each noise level, the training set
consists of 60,000 samples and the test set consists of 10,000 samples.

Manifold analysis is done for the second hidden layer output representations of each
digit class and averaged across the classes according to the procedure described in Chung
et al. (2018). The code for pre-processing, pre-training, MNIST training, and manifold
analysis is publicly available in Jupyter notebooks at https://github.com/ligeralde/

wave_manifold.

Acknowledgments

We thank Michael R. DeWeese and the members of the Redwood Center for Theoretical
Neuroscience for many useful discussions.

References

David A. Arroyo and Marla B. Feller. Spatiotemporal Features of Retinal Waves Instruct
the Wiring of the Visual Circuitry. Frontiers in Neural Circuits, 10:54, July 2016. ISSN
1662-5110. doi: 10.3389/fncir.2016.00054. URL https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC4960261/.

5

https://github.com/ligeralde/wave_manifold
https://github.com/ligeralde/wave_manifold
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960261/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960261/


Extended Abstract Track
Ligeralde Pitcher Feller Chung

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: appli-
cations to image and text data. In KDD ’01, 2001.
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Appendix A. In vitro retinal wave data preparation

Mice aged postnatal day 8-11 (P8-P11) were deeply anesthetized with isoflurane inhalation
and euthanized by decapitation. Eyes were immediately enucleated and retinas were dis-
sected at room temperature under infrared illumination in oxygenated (95% O2/5% CO2)
artificial cerebrospinal fluid (ACSF) (in mM, 119 NaCl, 2.5 KCl, 1.3 MgCl2, 1 K2HPO4,
26.2 NaHCO3, 11 D-glucose, and 2.5 CaCl2). Cuts along the chloride fissure were made
prior to isolating the retina from the retinal pigmented epithelium. These cuts were made
to precisely orient retinas. Isolated retinas were mounted whole on filter paper with the
photoreceptor layer side down, and transferred in a recording chamber of a microscope for
subsequent imaging. The whole-mount retinas were continuously perfused (3 mL/min) with
oxygenated ACSF media at 32-34◦C for the duration of the experiment. The retina from
the other eye was kept in the dark at room temperature in ACSF media bubbled with 95%
O2, 5% CO2 until use (maximum 8 h).

Retinas of C57B6 mice used for two-photon calcium imaging were mounted over white
filter paper (Watman) and bolus loaded with either the green calcium dye Calbrtye 520
AM or the red calcium dye Calbryte 590 AM. Two-photon fluorescence measurements
were obtained with a modified movable objective microscope (MOM) (Sutter instruments,
Novator, CA) and made using a Nikon 16×, 0.80 NA, N16×LWD-PF objective (Nikon,
Tokyo, Japan). Two-photon excitation of calcium dyes was evoked with an ultrafast pulsed
laser (Chameleon Ultra II; Coherent, Santa Clara, CA) tuned to 920 nm for green dyes
and GFP or 1040 nm for red dyes. The microscope system was controlled by ScanImage
software (www.scanimage.org). Retinal waves were imaged with the field of view set to
850um×850um and the scan parameters were [pixels/line×lines/frame (frame rate in Hz)]:
[128×128 (5.92 Hz)], at 1 ms/line. The same field of view was imaged until at least 50
retinal waves had propagated through it for a total of 18,000 images.

To ensure a sufficient number of pre-training steps, the original set of 18,000 images was
augmented by appending 3 rotations of the images to the data (90◦, 180◦, and 270◦), for
a total of 72,000 images. The images were then mean-pooled with a block size of 4, and
the pixel intensities were projected onto the retina as binary values as described above in
Section 4.
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Appendix B. Model architecture

Figure 3: 3-layer feed-forward network with ReLU activations after the hidden layer.

The model architecture in Fig. 3 is the same for all networks considered, with the only
difference being the network parameters, in particular the feedforward weights between the
input layer and FC 1 (the fully connected hidden layer) and the hyperplane learned by the
SVM.

Appendix C. Receptive fields of pre-trained and shuffled networks

(a) Pre-trained
(sim. waves)

(b) Scrambled
(sim. waves)

(c) Pre-trained
(real waves)

(d) Scrambled
(real waves)

Figure 4: Receptive fields have spatial structure that resembles that of the retinal waves
used in pre-training. Each scrambled receptive field is a random permutation of
the pixels in the corresponding pre-trained receptive field.
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