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Abstract

The Object Goal Navigation (ObjectNav) task challenges agents to locate a spec-
ified object in an unseen environment by imagining unobserved regions of the
scene. Prior approaches rely on deterministic and discriminative models to com-
plete semantic maps, overlooking the inherent uncertainty in indoor layouts and
limiting their ability to generalize to unseen environments. In this work, we propose
GOAL, a generative flow-based framework that models the semantic distribution
of indoor environments by bridging observed regions with LLM-enriched full-
scene semantic maps. During training, spatial priors inferred from large language
models (LLMs) are encoded as two-dimensional Gaussian fields and injected into
target maps, distilling rich contextual knowledge into the flow model and enabling
more generalizable completions. Extensive experiments demonstrate that GOAL
achieves state-of-the-art performance on MP3D and Gibson, and shows strong
generalization in transfer settings to HM3D. Codes and pretrained models are
available at https://github.com/Badi-Li/GOAL.

1 Introduction

Embodied navigation [2}, 22,130, 43\ 156, [70], which enables agents to move purposefully through
complex, realistic environments, is a fundamental challenge in embodied intelligence. Within this
domain, Object Goal Navigation (ObjectNav) tasks an agent with locating an instance of a user-
specified object category (e.g., “find a chair”) in an unseen environment, relying solely on visual
observations.

To succeed at ObjectNav, the agent must not only recognize the goal object when it becomes visible
but also infer its likely location before it is seen. This imagination step is particularly challenging,
as it requires reasoning about contextual and co-occurrence relationships between objects (e.g.,
chairs often appear near tables). Recent approaches [17| [25| [75] address this by incrementally
constructing top-down semantic maps and predicting full-scene semantic maps through discriminative
and deterministic models. However, their deterministic nature, which directly maps inputs to fixed
outputs with a strict one-to-one mapping, inherently limits generalization to unseen data.

In contrast, we argue that semantic map completion is inherently uncertain: Multiple plausible full
scenes can correspond to the same partial map, and multimodal outputs could benefit generalization
capabilities [10]. We therefore formulate this task as a probabilistic generation problem, leverag-
ing recent advances in flow-based generative modeling [21} 26, 28], |53) |54]] to learn the semantic
distribution of indoor scenes (illustrated in Fig. [T)). However, while generative models offer better
generalizability, we find that applying generative models to ObjectNav poses three core challenges,
which we address in this work.
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Figure 1: We incorporate a flow model to generate the semantic distribution of unobserved regions
(in dark), based on dataset-internal patterns and external knowledge from language models.

First, generative models typically require large and diverse datasets to effectively learn the latent
distribution. However, existing indoor scene datasets remain limited in both scale and variety. To
overcome this, we incorporate external knowledge from large language models (LLMs) by firstly
modeling it as a natural Gaussian distribution in the latent space of the flow model, which enriches
contextual signals during training. In particular, we prompt LLMs to infer spatial contextual priors,
including common distances between object pairs and associated confidence scores. These distance-
confidence pairs are transformed into two-dimensional Gaussian priors and injected into semantic
maps during training. This process distills the rich contextual information from LLM to our generative
flow model, enhancing its understanding of object co-occurrence and spatial context. Crucially, this
external supervision is applied only during training, avoiding inference-time costs such as API latency
and memory overhead, and enabling the flow model to operate as a plug-and-play semantic reasoner.

Second, we identify the problem of inefficient conditioning. Traditional diffusion models assume the
source distribution to be standard Gaussian and develop their theory based on this assumption. As a
result, conditional generation in the diffusion literature typically relies on additional mechanisms,
such as cross-attention, concatenation, or FILM [38]], to incorporate conditioning information. While
these mechanisms are acceptable for image generation and restoration, they introduce additional
computation, which may be prohibitive in visual navigation tasks that require multiple inferences
per episode and real-time interaction. In contrast, the Flow Matching algorithm does not strictly
assume a Gaussian source distribution, allowing us to design a more efficient conditioning mechanism:
directly modeling the dependent couplings between noise injected partial semantci maps and full
LLM-enriched semantic maps.

Third, semantic maps constructed during navigation are prone to accumulating errors from upstream
segmentation models, which can degrade the performance of generative models. To mitigate this,
we aggregate past RGB-D observations into unified point clouds representations and perform joint
segmentation using 3D perception models, inspired by how humans implicitly integrate multi-frame
observations. This method captures both spatial geometry and temporal consistency more effectively
than traditional 2D semantic segmentation methods used in ObjectNav [20, 23]. As a result, we
achieve more accurate and consistent scene understanding.

In conclusion, we propose GOAL (Guiding Agent’s imaginatiOn with generAive flow), a generative
framework that incorporates external knowledge as training supervision, models direct couplings to
better leverage semantic map priors, and integrates multi-view observations for enhanced scene-level
understanding. These components together lead to strong and generalizable performance on the
ObjectNav task.

Evaluations on large-scale datasets Gibson[63] and MP3D [8]] show that our approach significantly
outperforms baselines. Additionally, transfer experiments, training on MP3D and testing on HM3D
[41]], demonstrate the strong generalization capabilities of our approach to unseen environments.

2 Related Work

ObjectGoal navigation. ObjectNav approaches fall into two main categories: end-to-end and
modular. End-to-end methods map visual inputs to actions using reinforcement or imitation learning,



focusing on improving visual representations [7, 164} 65} 66] or tackling policy learning challenges
like sparse rewards and overfitting [42} 50,59, |67, 68]. Modular methods decompose the task into
components such as mapping, planning, and policy learning. Given a semantic map, these methods ex-
plore waypoint or frontier selection [9} 32} !40], distance estimation [[79]], target probability prediction
[73]], and semantic map completion [[17} 25 [75]. T-Diff [[72] firstly introduced generative modeling
to ObjectNav via a DDPM conditioned on semantic maps for trajectory generation. Alternatively ,
we propose a generative flow-based model that imagines full-scene semantics, using LLM-derived
priors to improve generalization to unseen environments.

Diffusion and flow-based generative models. Generative models such as diffusion [21]], and
flow-based methods [26] 28] generate data via iterative denoising or learned velocity fields. They
have shown strong performance in image generation and restoration tasks [31} 45} 47,48, [78]]. We
draw an analogy between agent’s imagination via completing a partial semantic map and image
restoration, where the goal is to reconstruct missing content from degraded input. Most approaches
begin from Gaussian noise and condition on the input via concatenation, FILM [38]], or cross-attention.
Recent alternatives have explored directly bridging degraded images and targets via Schrédinger
Bridges [27] and stochastic interpolants [[1] , but often trade off quality for interpretability. In contrast,
we show that for sparse semantic maps, direct coupling via flow matching can be more efficient
without sacrificing the performance. We adopt flow matching framework for its faster sampling and
mathematically simple yet expressive formulation.

3 Flow Matching Preliminaries

The generative task is typically defined as a mapping v;, ¢ € [0, 1], which transports samples X
from a source data distribution p to samples X in a target distribution ¢. In general, the source and
target samples may come from a joint distribution (Xo, X1) ~ 7o 1(Xo, X1).

To address this transformation from X to X, Flow Matching [26] interpolates a probability path p,
between the source and target samples:

X = oy Xo + B X1 ~ py, (1

with boundary conditions cvg = 1 = 1 and a1 = By = 0. To learn this path, we solve the following
Ordinary Differential Equation (ODE):

d
%Xt = Ut(Xt)7 )

where u, is a time-dependent velocity field, also referred to as the drift, typically parameterized by a
neural network u{ which trained by minimizing:

Lrrr(0) = Erx, o, [D (Xt, ul (Xt))} , 3)

where X, = %Xt denotes time-derivative of X; and D denotes general Bregman Divergences
measuring the dissimilarity. Once trained, this velocity field can be used to generate samples by
integrating the ODE (Eq. [2)) numerically. In our work, we solve the ODE by simplest method Euler
integration:

Xipn = Xi + huf(Xy), )
where h = % and n is a hyperparameter representing the number of forward steps.

4 Method

4.1 ObjectNav Definition

We consider the ObjectGoal Navigation (ObjectNav) task, where an embodied agent is initialized at a
random location in an unseen indoor environment and is instructed to navigate to an instance of a user-
specified object category (e.g., a chair). At each timestep ¢, the agent receives egocentric observations
I; (i.e., RGB-D images) and its pose w;, which includes its location and orientation. Based on this
sensory and positional input, the agent selects an action a; € A, where A includes move_forward,
turn_left, turn_right, and stop. The navigation episode terminates either when the agent issues
the stop action or after a maximum of 7" steps. An episode is deemed successful if the agent issues
stop with the target object visible and within a threshold distance.



4.2 Navigation Overview

In line with previous works [9} 40, [72| [73| [74}75]], we incrementally build a local semantic map, but
via scene segmentation instead of single-frame understanding. Our trained generative flow model
then completes the partial map by generating the full semantic distribution, especially for unobserved
areas. This distribution guides the agent to likely goal object locations, followed by deterministic
local navigation. An overview of the navigation pipeline is illustrated in Fig. 2] (a).
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Figure 2: Overview of GOAL framework, with navigation (inference) in and training in

(a) shows the navigation pipeline where the agent imagines future maps using a flow-guided model.
(b) illustrates how we prompt a LLM with hierarchical instructions to generate contextual priors
(for full prompt and response see Appendix [E). (c) visualizes how we use LLM priors to construct
data-dependent couplings. (d) demonstrates how the flow model is trained using these couplings
through interpolated velocity supervision.

4.3 Generative Flow Models For Agent’s Imagination

For training GOAL, we first prompt an LLM to obtain contextual priors between objects (Fig[2(b)),
use these priors to construct dependent couplings as training samples (Fig[2{(c)), and then train the
model using standard interpolation scheme (Fig.[2[d)). We detail each step below.

Prompting LLM for contextual prior. Due to the scarcity of large-scale, densely annotated
indoor scene datasets, models often struggle to generalize beyond seen environments. This is largely
attributable to the limited diversity of contextual object arrangements in existing data. Here, we
describe how we solve the problem by enriching training signals with commonsense knowledge about
object co-occurrence, extracted from LLMs.

Specifically, we prompt LLM using various modern prompting techniques such as Chain-of-Thought
(CoT) (58], Role Conditioning [44]], Few-shot prompting [3], to generate the common distances
between different objects D = {dw}l ¢, and its confidences on each response C = {c”}
(Fig. 2]b)). Then, given the partially observed semantic maps, we cluster the connected grids Wlth
the same semantic labels into objects O = {0;}}¥,, where N is the number of observed obJects
For each observed object o;, we refer to the LLM responses for its likely co-occurring objects using
preset distance threshold 74 and confidence threshold 7.. Other objects o; that either has a distance
to the observed object d;; within 74 or a confidence score c;; larger than 7. will be considered as
co-occurring candidates. Formally, co-occurring candidates set for object o; is defined as:

N(OZ) = {O] | (dw <)V (Cu > TC)} ©)

During training, every clustered observed object will randomly choose co-occurring object among
their candidates set A/(0;) to enrich semantic context and avoid model collapse (In practice, rather




than strictly random selection, we actually prioritize the objects in the intersection of candidates
set of multiple observed objects, to take account for a functional cluster with more than 2 objects.).
Intuitively, if an object is expected to co-occur near an observed object, but has not yet been observed,
it is likely located in the unobserved region of the scene. Thus we connect the clustered objects’
centers with their nearest frontiers (the spatial boundaries between known free space and unexplored
regions, by definition), and the centroid of the co-occurring objects will be on this connected line,
offset by a distance d;;. Specifically:

pj = pi + dijv, ©6)

where p; and p; are the centroid of observed object o; and predicted centroid of co-occurring object
0, and v is a unit vector pointing from o; to its nearest frontier grid. Then the confidence score ¢;; is
converted to a standard deviation via linear transformation:

0ij = OminCij + Omax(1 — ¢ij), @)

where oy,i, and oy, are hyperparameters representing the lower and upper bounds of standard
deviation, respectively. With the computed deviation and centroid, we model the co-occurring objects
as two-dimensional Gaussian distributions, which are added across all observed objects:
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where we take o\ = o2 = 045, resulting in an isotropic Gaussian over the semantic map. Notation

ij = Pij
U(X) refers to uniform distribution, which is used for random sampling. pﬁJL)M is then the LLM prior
distribution reflecting the commonsense spatial expectations of object o; derived from LLMs. The

final LLM prior is stacked across all channels:

1 2 N
PLLM = |:p](_,L)MapI(~L)Ma s 7p](_,LM):| ) (9)

which has the same shape as the input semantic maps and is used to guide the flow model toward
plausible object arrangements in unobserved regions of the scene during training.

Building data-dependent couplings with LLM-derived supervision. Following standard practice
in diffusion and score-based models [21} 53], the source distribution is typically set to a standard
Gaussian N (0, I), resulting in an independent coupling 7 1 (Xo, X1) = p(Xo)q(X1). However, we
find this strategy will complicate the model architecture with additional conditioning mechanism.
Instead, we directly couple the partial semantic map with the LLM-enhanced target, eliminating the
need for conditioning mechanisms like cross-attention and yielding more consistent and effective
generation for navigation. Below, we describe how this dependent coupling is constructed.

During training, we have access to the full-scene semantic map X'. Following [40], we employ the
Fast Marching Method (FMM) [49]] to simulate a realistic navigation trajectory by planning a path
between two randomly sampled points on the map. The visible region along this path serves as a
binary mask ~, representing the observed area. To incorporate stochasticity and avoid model collapse,
we still inject Gaussian noise with relatively small deviation Ac into the unobserved regions of the
scene. Specifically, the source semantic map is defined as:

Xo=70X +570N(0,Ac?), (10)

where ® denotes the Hadamard product, and 7 = 1 — y denotes the complement of the visibility
mask. The target semantic map X is constructed by adding LL.M-derived priors to the unobserved
regions of the full ground-truth map:

X; =270 pum + X/, (11

where pr v is derived from Eq.[8]and Eq.[9] and A is a hyperparameter to control the prior strength.
Notably, this formulation results in a data-dependent coupling between X and X, since both maps
are conditioned on the same ground-truth map X’ and share the same visibility mask . As a result,
the joint distribution g 1 (X0, X1 ) described in Sec. [3|is no longer factorizable into independent
marginals p(X)g(X7), but instead captures a strong, structured relationship between source and
target data.



Training. Given the constructed data-dependent couplings, we adopt the Optimal Transport (OT)
displacement interpolant as our interpolation scheme (see Eq.[I), defined as:

X;=(1-0)Xo+tX;. (12)
For the Bregman Divergence term in Eq.[3] we use the Euclidean distance, resulting in the training
objective being a Mean Squared Error (MSE) loss:

Lrns = Ee o, |[1% = uo(Xe, )113] (13)

where the ground-truth velocity field is given by X, = X; — X, derived from the linear interpolation
in Eq.[I2] For details of the training pipeline, refer to the Appendix [B]for pseudocode.

4.4 ObjectNav with GOAL

In this subsection, we detail the process of building and preprocessing the semantic map to serve
as input to GOAL. followed by how the agent uses the output of it to guide exploration and take
effective actions.

Semantic map construction via 3D scene understanding. We construct a semantic map by
transforming RGB-D observations into 3D point clouds, segmenting them, and projecting the results to
a top-down view, as detailed below. As described in Sec.[4.T} the agent receives RGB-D observations
I, and its pose wy at each timestep ¢, along with the camera intrinsic matrix P inherently available. The
observations I; are first back-projected to point clouds by aligning the RGB values and depth values of
each pixel. Then egocentric-to-geocentric transformation is conducted using wy and P. The registered
point clouds will be segmented at once to take account of historical context, geometric structure,
and achieve scene-level perception. Though modern architectures such as the Point Transformer
series [61} 162} [76] have demonstrated strong performance in 3D scene understanding, we adopt a
Sparse Convolutional network [18]], the 3D counterpart of standard 2D CNN-based segmentation
models, to reduce potential confounding effects from using highly expressive architectures. After
segmentation, points are then projected to bird-eye view to form a local map M, € R(Net+2)xhxw
where N, represents the number of semantic categories, and the additional 2 dimensions correspond
to obstacles and free space, respectively (we denotes M, € RYNeX"Xw to ‘semantic map’).

Agent’s imagination With GOAL. To guide navigation toward the goal, the agent uses a generative
model to imagine unobserved regions of the scene and select the grid with the highest probability
to be the target as long-term way-point. Given the semantic map M/ at time ¢, we first compute the
minimum bounding box of the observed area and crop a surrounding region scaled by a factor . This
factor controls the imagination’s spatial extent: too small may limit foresight, while too large may
reduce reliability. The cropped region is resized to a fixed shape m} € R"*L*L (with L = 256),
where unobserved areas are injected with Gaussian noise similar to Eq[I0] This map serves as the
source sample X in Eq[I2]and is passed to the generative flow model, which applies iterative Euler
steps (Eq. ) to generate a complete semantic map. The output is then resized and merged back into
the original map, resulting in the imagined full map M,. Finally, the grid cell with the highest value
in the target object channel ¢, is selected as the long-term waypoint g;:

o (eq)
gt = ar(g m)ax Mt(hiw)- (14)
h,w

Navigation policy. After determining the waypoint g; = (x4, y:), we follow prior works [9} |40} [75]]
by implementing a local planner based on the Fast Marching Method (FMM) [49], which computes
the shortest path from the agent’s current position to the waypoint using the occupancy channels of
the semantic map. Unlike previous approaches that select waypoints at fixed intervals, we adaptively
sample a new waypoint only when the agent is either too close to or too far from the previous one.
This strategy reduces computational overhead while maintaining effective path planning.

5 Experiments

5.1 Experimental Setup

Datasets. We evaluate our method, GOAL, on the validation sets of two standard ObjectNav
benchmarks: Gibson [63], Matterport3D (MP3D) [8]]. Additionally, we perform transfer experiments
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Figure 3: Visualization of navigation with GOAL on MP3D (val). The top row shows RGB obser-
vations and agent trajectories; the bottom row displays the observed semantic maps and generated
full-scene maps.

Table 1: Transfer experiments results on HM3D. We compare the SR, SPL, and DTS of state-of-the-
art methods in different settings and training set. * denotes our implementation using model weights
and codes from official repositories, with improvement using scene segmentation.

Method Train set LLM usage HM3D
Training Inference SR{ SPL{ DTS |

ZSON [34] HM3D X X 25,5 12.6 -
PixNav [6] HM3D X v 379 20.5 -
ESC [77] - - v 39.2 22.3 -
VoroNav [60] - - v 420 26.0 -
PONT* [40Q] MP3D X X 41.8 20.1  4.63
GOAL w/o LLM MP3D X X 476 225 414
GOAL MP3D v X 48.8 231 4.11

by training on MP3D and evaluating on HM3D. For Gibson, we follow the tiny-split protocol from
[9,[40], using 25 training and 5 validation scenes, with 1,000 validation episodes covering 6 target
object categories. For MP3D, we use the standard Habitat simulator setting [35} [39] [53]], which
includes 56 training and 11 validation scenes, 2,195 validation episodes, and 21 target categories. For
HM3D, we use only the 20 validation scenes, with 6 goal categories and 2,000 validation episodes
for transfer evaluation. For details of target object categories, please refer to Appendix [C.2}

Evaluation metrics. We adopt three standard metrics for evaluating the navigation performance.
SR (Success Rate) indicates the proportion of success episodes. SPL (Success weighted by Path
Length) represents the success rate of episodes weighted by path length, measuring the efficiency
of navigation. DTS (Distance To Goal) is the distance to the goal at the end of the episode. For
mathematical expression of these metrics, please refer to Appendix [C.1]

Implementation details. For training of GOAL, we sample 400K sub-maps for training on each
dataset. We implement GOAL based on DiT models. We use AdamW [24]] optimizer with a base
learning rate of 1.5e-4, warmed up for 2 epochs, and applied cosine decay after that. The model is
trained for 25 epochs, and exponential moving average (EMA) is used with a decay of 0.999 during
training. We trained the GOAL model on 4 NVIDIA RTX 4090 GPUs with a batch size of 64 per
GPU. For details of training scene segmentation module, please refer to Appendix[C.3]

5.2 Evaluation Results

Visualization of navigation with GOAL. Figure3]illustrates an example episode where the agent
is tasked with finding a chair. Initially, the agent is misled by a false positive prediction due to limited
observations. As the agent explores and uncovers more of the environment, the model refines its
prediction, effectively guiding exploration and ultimately leading agent to correctly identify and
navigate to the target (rightmost column). Additional visualizations demonstrating generation quality
and diversity are provided in Appendix [F]



Table 2: Comparison between using dependent and independent couplings (Gaussian source). Navi-
gation performance is reported in MP3D and Inference time is tested using an NVIDIA RTX 4090
GPU. The external knowledge is distilled from ChatGLM.

Base PDF Number of Memory GFLOPs Inference Navigation (MP3D)
Parameters Usage time SR 1 SPLT DTS |

xo ~ N(0,1) 149.92M  693.86 MB  29.34 17.13 ms 39.0 14.0 5.16
xo~ p(X’',y) 138.76M 562.57MB 2412 1238ms  41.5 15.5 4.85

Table 4: Effectiveness of model variants. Navi-

Table 3: Ablation study of individual compo- gation performance is tested in MP3D.

nents on MP3D. ‘LP’ refers to distillation of = Model LLM Navigation (MP3D)
LLM priors; ‘SS’ indicates scene segmentation. v, riants SR+ SPL1 DTS

ID | Modules | Navigation (MP3D)

DiT-B ChatGLM 415 155 4.85

|SS LP | SRt SPLT DTS|  DiTL ChaGLM 404 149 501
I 324 117 525 DIiT-B  Deepseck 409 150  4.89
2 | v 388 146 508 DiTL Deepseck 403 147 497
31/ /147 155 4% DiTB  ChaGPT 417 155 4.84

DiT-L ChatGPT 405 15.0 5.09

Generalizability of GOAL. We assess GOAL’s generalization ability by training it on MP3D
and directly evaluating on the HM3D dataset. We compare its performance against state-of-the-art
methods across various training settings. As shown in Tab.[T} GOAL significantly outperforms prior
methods, including those that heavily rely on LLMs or are trained directly on HM3D, demonstrating
strong generalization capabilities. Notably, even the generative flow model without LLM supervision
achieves competitive transfer performance, highlighting the benefits of generative modeling and
diverse generation.

Effectiveness of data-dependent couplings. We compare bridging data-dependent couplings de-
scribed in this paper and the traditional cross-attention method in DiT[37]]. As shown in Tab. 2]
building dependent couplings yields better navigation performance while simplifying model architec-
ture and reducing inference time. Note that to condition the flow model on the partially observed
semantic map, we introduce extra convolutional encoder to downsample the partial maps and then
feed the patches to cross-attention layers of each DiT blocks, as an expressive mechanism to process
and fuse the complex semantic map.

Ablation study on LLM prior and scene segmentation components. As shown in Tab. |3} scene
segmentation alone significantly improves performance by enabling more consistent and complete
scene understanding, already establishing a strong baseline (row 2). Notably, further integrating
the LLM prior on top of this strong foundation yields a substantial additional gain (row 3), despite
the typical difficulty of improving over high-performing baselines. This highlights the effectiveness
of the LLM prior, and suggests that our bridging scheme between partial maps and full semantic
distributions requires a reliable understanding of the observed scene.

Effectiveness of Flow Matching. Since Table 5: Comparison between Flow Matching
GOAL shares the objective of inferring unob- (FM) and Masked Autoencoder (MAE) for seman-
served scene semantics with prior approaches tics imagination. Models are trained on MP3D and
[17.125L[73], it is essential to compare the Flow evaluated on different datasets.

Matching algorithm we adopt with these base-

line prediction methods. As SGM [75] is the Alg.  Eval. Dataset SRT SPLT DTS|

most recent approach in this line of work, we \AER MP3D 319 1171 531
compare Flow Matching [26] with the masked gy MP3D 324 1167 5.25
autoencoder (MAE) [19] used in SGM, replac- {1AE HM3D 321 147 4.85
ing our proposed scene segmentation module gy HM3D 359 14.69 4.65

with the widely adopted RedNet [23] for a fair




Table 6: Object-goal navigation results on Gibson and MP3D. We compare the SR, SPL and DTS
of state-of-the-art methods in different settings. For SemExp [9]], L2M [17] and Stubborn [32], we
report results from [74]. For SSCNav [25], we report results from [75]]. ‘-’ under Training indicates
zero-shot methods that do not require any training. ‘_’ means the second best results.

Method Venues LLM usage Gibson MP3D
Training Inference SR 1 SPL +DTS | SR1 SPL 1 DTS |

Semexp [9] NeurIPS 20 X X 71.1 396 139 283 109 6.06
SSC-Nav [25] ICRA 21 X X - - - 271 112 571
PONI [40] CVPR 22 X X 73.6 41.0 125 31.8 121 5.10
L2M [17] ICLR 22 X X - - - 321 110 5.12
Stubborn [32]  IROS 22 X X - - - 312 135 5.01
CoW [16] CVPR 23 - X - - - 74 3.7 -
3DAware [74] CVPR 23 X X 745 421 1.16 340 146 4.78
T-Diff [72] NeurlIPS 24 X X 79.6 449 1.00 39.6 152 5.16
L3MVN [71] IROS 23 - v 76.1 3777 1.10 349 145 -
SG-Nav [69]  NeurIPS 24 - v - - - 402 160 -
UniGoal [70] CVPR 25 - v - - - 410 164

SGM [75] CVPR 24 v v 780 440 1.11 37.7 147 493
GOAL Proposed v X 835 442 0.83 41.7 155 4.84

comparison. As shown in Table[5] while MAE and Flow Matching achieve comparable performance
on MP3D, Flow Matching demonstrates stronger generalization in the transfer setting, where models
are trained on MP3D and evaluated on HM3D.

Effectiveness of model variants and LLMs. As shown in Tab[4] increasing model complexity
(e.g., using DiT-L) yields little to no performance gain, and may even degrade performance compared
to the base model (DiT-B). We hypothesize this is due to overfitting, as complex models tend to
overfit when trained on limited and less diverse data, even in a generative setting. To assess the impact
of LLMs in GOAL, we compare three models: ChatGLM-4-plus [14], DeepSeek-R1 [12]], and GPT-4
[36]. As shown in Tab. ] the overall navigation performance remains similar across LLMs (though
we observe significant per-scene variance). Since a number of prior works [69, [75| [77] also report
minimal differences between LLM variants, we hypothesize that current evaluation datasets are too
small and biased to reliably reflect the effects of LLM choice.

Comparison with related works. We evaluate the performance of our method, GOAL, on the
ObjectNav task by comparing it with relevant baselines, categorized by their use of LLMs during
training and inference. SemExp [9] first introduced semantic reasoning into object-goal navigation.
PONI [40] improves it using supervised learning to predict two potential functions, avoiding the ineffi-
ciencies of reinforcement learning. L2M [[17] and SSC-Nav [25] improve navigation by predicting the
full top-down semantic map. SGM [75]] further advances these approaches using the MAE algorithm
[19] to train a ViT [13] model in a self-supervised manner for full-scene semantic imagination. To
enhance generation capabilities, SGM also prompts an LLM for contextual object information, but
requires it during both training and inference, introducing additional complexity via a cross-attention
mechanism. In contrast, methods like LAMVN [71], SG-Nav [69], and UniGoal [70] rely solely on
LLMs to achieve zero-shot performance. While these approaches reduce training requirements, they
often suffer from drawbacks such as API latency and excessive memory consumption.

As shown in Tab.[6] GOAL consistently outperforms the current state-of-the-art approach [75]], across
all metrics and datasets. Although the improvement in SPL is relatively small, this can be attributed
to the modified local policy we employ, described in Sec.[4.4] Specifically, the agent only updates its
long-term goal when it becomes significantly closer to or farther from the previous one. As a result,
the agent’s ability to correct false positive predictions is limited, even when new observations provide
better guidance, leading to relatively long path length. And we stress that this limitation can be solved
by applying modern techniques [15} |29} 133,151} 152] to reach faster inference for generative flow and
adopt the general policy of changing long-term goal at fixed interval. We leave this for future work as
these techniques will introduce complex formulation.



6 Discussions and Limitations

There are several technical limitations and potential
further improvements to consider.

First, we aim to introduce the generative flow match-
ing algorithm into ObjectNav task, so our implemen-
tations adhers to the core theory in initial paper. How- o
ever, recent advances in FM for natural image genera-
tion suggests some powerful training techniques to be
used, such as time discretizations and time shift, as
well as techniques that reduce the Number of Evalua-
tions (NFEs) of flow matching(15 29133, 1511152]. In-
corporating these techniques could enhance training
stability and sampling efficiency, potentially yielding
more robust navigation policies.

Figure 4: Comparison between the simulated
visible area and actual visible area given the
agent position (red dot). The left shows the
simulated mask adopted by [40] and our work,
while the right shows the actual mask, reveal-
Second, our method operates on a fixed-dimensional ing a substantial gap.

semantic map, with channels corresponding to a pre-

defined set of object categories. This design inher-

ently restricts generalization to open-vocabulary or zero-shot settings, where novel object classes
may appear at test time.

Finally, we follow the setting of [40] by computing a path between two randomly selected points
on the ground-truth semantic map, where a rectangular region centered at points along the path is
treated as the visible area to generate the partially observed maps for training GOAL. However, we
found a significant gap between these simulated partial observations and those encountered during
real navigation. In practice, the agent’s visible area is fan-shaped rather than rectangular (See Fig. [).
Designing training samples that better simulate actual agent observations could substantially improve
model performance.

7 Conclusion

In this work, we propose GOAL, a generative flow model that distills rich contextual priors from LLM
into its training supervision. We show that data-dependent couplings between partially observed maps
and full semantic distributions significantly improve generation quality, outperforming traditional
independent couplings commonly used in natural image domains. Additionally, we introduce a scene
segmentation module to enhance holistic, geometry-aware, and temporally consistent scene under-
standing. Experimental results on large-scale datasets Gibson and MP3D validate the effectiveness of
GOAL, while cross-dataset transfer experiments on HM3D further highlight its strong generalization
capabilities.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We clearly demonstrate our claims in both abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations in Sec|[6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper do not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We illustrated all experimental setup and details for reproduction in Sec. [5.1]
and Appendix

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will release the code upon the decision of the paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detailed all essential information for experimental setting in Sec. [5.1]and
Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report results across five random seeds in Appendix [D.2]to capture vari-
ability.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We reported the compute resources in Sec.[5.I]and Appendix[C]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our proposed method is only used for academic research currently.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the datasets used in this paper are publicly available, and we cite them all.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We incorporate LLMs into supervision of our model, which is one of the main
claim of this paper. We describe the specific use in Sec. 4.3

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

We provide additional information about our method and experiments in the appendix. Below is a
summary of the sections:

* Appendix [A]presents the strict mathematical formulation of Conditional Flow Matching (CFM),
with additional notation omitted in the main text for simplicity.

* Appendix [B|describes the training algorithm with pseudocodes.

* Appendix [C|outlines the experimental setup and further implementation details.

* Appendix D] provides more experimental results and analysis.

* Appendix [E]includes the prompts used for querying the LLM and its responses.

* Appendix [F] provides additional visualizations of our results.

Appendix A Strict Formulation of CFM

The Flow Matching loss defined in Equation[3]is, in practice, not directly solvable (since the target
velocity X, is not tractable). Throughout the paper, we refer to the Conditional Flow Matching (CFM)
algorithm without explicitly including the conditioning variables in the notation, for simplicity. In this
section, we present the strict and complete formulation of the Conditional Flow Matching algorithm.

Conditioning design in CFM vary, examples include conditioning on source sample X, the target
sample X1, or joint coupling (X, X7), and they are essentially equivalent. We exhibit the general
formulation (conditioned on any random variable 2).

Following [57]], suppose that marginal probability path p;(x) is a mixture of probability paths p;(z|z)
that vary with some conditioning variable z:

pr() = / pi(e | 2)q(2)dz. (15)

The marginal velocity field, which generates this marginal probability path, is given by averaging the
conditional velocity field u;(z | z) across the condition z:

ug(x) = /ut(x | 2)pz1e(2 | w)dz = Eu(X4|Z) | X = 2] (16)
Conditional Flow Matching Loss is then defined to be:

Lorm(0) =B z.x,p,5012) [P (w(Xe | Z),uf(Xy))] - a7

In practice, we actually apply data-coupling conditioning (namely Z = (X, X1)) as shown in Eq.
X ~ py is given by a linear combination of Xy and X, and velocity field is hence given by X; — Xj.
Then the loss in Eq[T3|can indeed solve the Flow matching problem introduced in Sec.[3]

Appendix B Algorithm

Algorithm [I] outlines the procedure for constructing data-dependent couplings and training the GOAL
model. The corresponding sampling process is detailed in Algorithm[2] We stress that the sampling
requires no additional pre-processing, making it a plug-and-play module.

Appendix C Experimental setup and implementation details

C.1 Metrics

As mentioned in the main text, we select SR, SPL, DTS as the evaluation metrics for ObjectNav
performance. Following we give their mathematical formulation and explaination.
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Algorithm 1 Training algorithm for GOAL

1: Input: dataset X, initial model parameter 6, learning rate 7, distance matrix D and confidence
matrix C from LLM responses.

2: repeat

3 sample X' ~ X

4: Randomly sample two points g;, g2 on the grid

5 Compute visible mask ~ by planning a path from g; to g

6.

7

8

9

Xo 040 X'

Cluster X into observed objects {0; }
Initialize pyyy as a zero vector with the same shape as X’
for each o; in {0;}¥ ;| do

N
=1

10: péjL)M — p](jL)M + ComputeLLMPrior(o;, D,() > See Eq.
I: X X174+ 37 0 pli

12: end for

13: Xo + Xo+5 O N(0,Ac?)
14: t ~U[0,1]

15: Xt — (1 - t)X() + tXl

16: Uy u‘g(Xf,,t)

17: L + MSE(4, X1 — Xo)

18: 0+ 0—nVoLl

19: until convergence

Algorithm 2 Sampling algorithm for GOAL

1: Input: trained GOAL model ug, partially observed semantic map M, number of steps n, standard
deviation Ao.
7 < mask of empty area of M
M+ M +75oN(0,Ac?)
for k < 1ton do
tr %
AM «+ Ug (M, tk)
M+« M+ 1AM
end for
return M

Wedaaunhww

Success Rate (SR) represents the agent’s accuracy in reaching the user-specified object goal, where
higher values indicates better performance:

SR = NZSi, (18)

where N is the number of validation episodes and S; indicates whether the i-th episode is successful.
Success weighted by Path Length (SPL) evaluates success relative to the shortest path, normalized
by the actual path length agent takes:

1 I
PL = — PO S 1
S N;SLmaX(li,l*)’ (19

K2

where [ denotes the shortest path length and /; is the actual path length agent takes.

Distance To Goal (DTS) measure the distance of agent towards the target object when the episode
ends:

N
1
DTS = ¥ ; max(L; , — €,0), (20)

where L; 4 is the distance between agent and goal, and ¢ is the success threshold (0.1 meter in MP3D).
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Table 7: Chosen object categories in Gibson [63], MP3D [8]] and HM3D [41]]

Dataset | Training Evaluating

Gibson | chair, couch, potted plant, bed, toilet, | chair, couch, tv, bed, toilet, potted plant
dining-table, tv, oven, sink, refrigerator,
book, clock, vase, cup, bottle

MP3D | chair, table, picture, cabinet, cushion, | chair, table, picture, cabinet, cushion,
sofa, bed, chest of drawers, plant, sink, | sofa, bed, chest of drawers, plant, sink,
toilet, stool, towel, tv monitor, shower, | toilet, stool, towel, tv monitor, shower,
bathtub, counter, fireplace, gym equip- | bathtub, counter, fireplace, gym equip-
ment, seating, clothes ment, seating, clothes

HM3D - chair, couch, potted plant, bed, toilet, tv

C.2 Object categories

Following the setup of previous works [40, [72, [75]], we adopt 15 categories for training and 6
categories for validation in the Gibson dataset, and 21 categories for both training and validation in
the MP3D dataset. Additionally, validation episodes in the HM3D dataset contain 6 categories. The
adopted categories are detailed in Table[7]

Hyper-Parameters Values
C.3 Trivial hyper-parameters 7a (Eq.]5) 2.5
i perp 7 (Eq.[3) 0.85
There are a number of trivial hyper-parameters Omin (EQ. ’ 20
which are not tuned, we detail the choices we Omax (Eq. "' 50
adopt intuitively in Tab. [§|for better reproduction. A (Eq. 1500
Ao (Eq. 0.01

Table 8: Values for trivial hyper-parameters
C.4 Memory and Time Cost Analysis
Our method involves maintaining point cloud
representations and performing scene segmenta-
tion, along with generative modeling for exploration. These components naturally raise concerns
about memory and computation overhead.

Unlike semantic maps, whose memory usage is fixed by tensor grid dimensions, point cloud memory
consumption varies significantly across scenes and episodes, depending on how much of the environ-
ment has been explored. As a result, a scene-independent comparison is difficult. In practice, we
observed that running 6 parallel threads on a 24GB NVIDIA RTX 3090 consumes approximately
22GB of memory. For comparison, PONI [40] reports around 20GB under similar settings, indicating
our approach adds roughly 350MB per thread.

Time cost also varies across scenes and depends on the agent’s waypoint update frequency. Since
GOAL is only invoked when the agent is either close to or far from the previous target, inference is
sparse and input-dependent. Empirically, running 6 threads in parallel yields an average FPS between
1.2 and 1.8, while PONI ranges from 1.5 to 3.5. Despite this, we consider the trade-off worthwhile,
as our method achieves over 30% improvement in success rate (SR), the primary metric of interest.

C.5 Training of scene segmentation model

We train a Sparse UNet [[L8, |46] with the assistance of Pointcept [L1] codebase, using a sum of
weighted Cross-Entropy loss L¢ g and Lovéasz-Softmax loss [3] £z as training objectives:

L=Lcg+Lrz. 2n

For optimizer, we simply select Stochastic gradient descent (SGD) [4] with a base learning rate of
0.05, momentum of 0.9 and a weight decay of 0.0001. Additionally, the first 5% of the training
steps are used for warm-up, and the learning rate smoothly decays using cosine annealing over the
remaining 95% of the training steps. We train the scene segmentation model on 2 NVIDIA RTX
4090 GPUs with a total batch size of 64.
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Appendix D More experimental results
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D.1 Hyper-parameters tuning
41.25
We tune two key hyperparameters: the expansion ra- 4,4
tio of the observed map ¢, and the number of Euler
steps 1 used during generation. The effect of varying ~ _
the number of Euler steps n is shown in Fig.[5] Nay- ~ Ss
igation performance generally improves with more 025
steps, saturating around n = 96. As discussed in
Sec[5.2] while the overall performance across dif-
ferent LLMs is comparable, each exhibits a distinct 39.75
preference for the expansion ratio €. Therefore, we 1950
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tune e individually for each LLM, as shown in Fig@ ) & % 8
We observe that the flow model distilled with exter-
nal knowledge from ChatGPT produces more reliable
semantic distributions with a larger expansion ratio.

Figure 5: Effect of the number of Euler steps
n on navigation performance.
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Figure 6: Tuning curve for hyper-parameter € across different LLMs.

D.2 Evaluation Variability and Error Analysis

While probabilistic generative schemes offer improved generalization, they naturally introduce
concerns about evaluation stability due to inherent stochasticity. To assess the robustness of our
model, we conduct additional evaluations on the MP3D dataset using different random seeds (42, 75,
100, 123, 3407). The resulting success rates are 41.0%, 41.6%, and 41.7%, 41.6%, 42.2% respectively,
yielding an average success rate of 41.6% + 0.4%. These results indicate that our flow model can
reliably capture the semantic distribution, despite the stochasticity introduced by the generative
process. We report the result with seed 100 in the main text, as all experiments and hyperparameter
tuning were conducted under this setting.

Appendix E Prompts and LLM responses

E.1 Prompts

We provide an example of prompts that query LLMs for objects contextual information. Specifically,
we first condition the LLM with its role in the system prompt. Next, we provide contextual infor-
mation, followed by a chain-of-thought [S8]] style of hierarchical prompting, which involves scenes,
rooms, and objects. Moreover, for each step, we also provide some positive and negative examples to
serve as few-shot learning samples. In addition to the distance-confidence pair, we further require the
LLMs to output a brief reasoning for their responses. An example prompt is as follows:
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System Prompt: You are an expert in indoor scene layouts, with strong reasoning skills
regarding object co-occurrence. Your task is to infer the typical distances between different
object types in indoor environments, considering both object placement patterns and functional
relationships. Output your answers in a clear, structured format with a confidence level that
reflects the uncertainty of each estimate.

User Prompt: In indoor scenes, object layouts typically follow certain patterns; for example,
chairs are usually placed around a table but are unlikely to be near a toilet. Suppose you are
analyzing a large-scale indoor scene (e.g., a house with multiple rooms such as living rooms,
bedrooms, bathrooms, etc.). Given the following list of objects: [chair, table, ...] and a specific
central object in it, your tasks are as follows, step-by-step:

1. Inferring Object Placement: Determine where each object is typically placed in the scene
based on common indoor layouts. For example:

e Toilet — bathroom

2. Room Proximity: Identify the typical rooms surrounding the room where the central object
is placed. For instance:
* Chairs (living room) — nearby: kitchen, hallway
* Bed (bedroom) — nearby: bathroom, closet

3. Functional Relationships: Consider the functional relationships between the central object
and other objects:
 Chair & table: strong (dining/study areas)
e Chair & toilet: weak (different functional zones)

4. Distance Inference: Based on the inferred scene layout and functional relationships,
estimate the typical distance between the central object and other objects. For example, if
the central object is ’chair’, then:

* table to chair: close (functional pair)

* Chair to closet: relatively farther away (possibly the same room but with weak func-
tional relationship)

* Chair to toilet: large distance (different functional zones)

5. Provide Distance and Confidence: Given central object = ..., for each object provide:
* Distance: continuous float value in meters
* Confidence:

* Reasoning: A brief explanation of how the distance and confidence were determined,
considering the room layout and common object placements

\ J

E.2 Responses

Few examples for LLMs response are as follows:

@ Response
central object: table
* quried object: chair
— distance: 0.5
— confidence:
— reasoning:

Chairs are commonly placed directly around a table, especially in dining areas or meeting
rooms, making the distance very short and the placement highly predictable.

27



Confidence

* quried object: picuture

— distance: 1.5
— confidence: 0.8

— reasoning:
Pictures are often hung on walls near tables, especially in living or dining rooms, but not as
close as chairs, leading to a moderate distance with good confidence.

* quried object: counter
— distance: 4.5
— confidence: 0.65

— reasoning:
Counters are often found in kitchens, which may be adjacent to dining areas but not directly
next to tables, leading to a moderate distance with moderate confidence.

* quried object: bathtub

— distance: 8.0
— confidence: 0.5

— reasoning:
Bathtubs are also found in bathrooms, separate from areas where tables are commonly placed,
resulting in a large distance with low confidence.
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Figure 7: Structured distance matrix D and confidence matrix C obtained from GPT-4 for MP3D. We
visualize the upper triangle of the distance matrix and the lower triangle of the confidence matrix
within the same figure for compactness and clarity
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Since the distance between objects should be bidirectional, we take the average of the symmetric
distances and confidences, resulting in two symmetric matrices. Structured matrix representation of
LLM response from GPT-4 is shown in Fig.

{
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Figure 8: Example for semantic map generated by generative flow model. It successfully generates
objects in GT semantic map like cabinet (highlighted in red circle) and cushion (highlighted in blue
circle). Moreover, it also generate objects not in the ground-truth map but indeed reasonable, such as
seating and chair (highlighted in purple circle) behind the table, which can improve the capability of

generalization.
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Figure 9: More visualizations for outputs of generative flow model.
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Appendix F  More visualizations and analysis

F.1 visualizations for generative flow

In this subsection, we present visualizations and analyses of the outputs produced by our generative
flow model. Generating a complete semantic distribution of a scene is an inherently challenging task
and unlikely to be perfectly accurate. While the visualizations may not appear flawless, they signifi-
cantly contribute to navigation performance. We begin with an illustrative example accompanied by
detailed analysis (see Fig[g), followed by additional qualitative results (Fig[9). In this paper, we stress
that indoor scene semantics can vary greatly, and multiple plausible distributions may exist given the
same partial semantic map. To capture this diversity, GOAL adopts a probabilistic generation scheme,
which enhances the model’s ability to generalize to unseen environments. We showcase a sample of
this generative diversity in Fig.[T0] While we highlight examples where objects are generated near
observed ones to provide intuitive evaluation, the diversity applies to the full semantic distribution
and is not limited to individual object placements.

F.2 visualizations for scene segmentation

In Fig. [T} we additionally present few visualizations for comparison between scene segmentation
proposed in this paper and image segmentation traditionally adopted in ObjectNav.
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Figure 10: Visualization of generation diversity. Given a single partial map (left most), GOAL can
generate multiple plausible full semantic distribution (right three).
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chest of drawers
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Figure 11: Comparison between built semantic maps using image segmentation models and scene
segmentation models.
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