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Abstract

We introduce a method for inferring and predicting latent states in the important
and difficult case of state-space models (SSM) where observations can only be
simulated, and transition dynamics are unknown. In this setting, the likelihood of
observations is not available and only synthetic observations can be generated from
a black-box simulator. We propose a way of doing likelihood-free inference (LFI)
of states and state prediction with a limited number of simulations. Our approach
uses a multi-output Gaussian process for state inference, and a Bayesian Neural
Network as a model of the transition dynamics for state prediction. We improve
upon existing LFI methods for the inference task, while also accurately learning
transition dynamics. The proposed method is necessary for modelling inverse
problems in dynamical systems with computationally expensive simulations, as
demonstrated in experiments with non-stationary user models.

1 Introduction

Conventional likelihood-free inference (LFI) methods [1, 2] estimate parameters θ of a static statistical
model, given the dataset x∗ and a black-box simulator gθ. When the likelihood is intractable, these
methods use synthetic datasets x(i) ∼ gθ(x|θ) produced by the simulator to assist the inference.
LFI has been successfully applied to identify parameters of complex real-world systems, such as
financial markets, [3, 4, 5], species populations [6, 7, 8] and cosmology models [9, 10, 11]. Many
real-world systems, however, are time-dependent, and can be described as a state-space model (SSM)
[12, 13], where observed measurements xt ∈ Rn are emitted given a series of latent variables,
the states, θt ∈ Rm. When working with dynamical systems, one should account not only for an
observation model, a simulator gθ , but for Markovian state transition dynamics hθ , as well, defined as
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θt+1 ∼ hθ(θt+1|θt). Therefore, traditional LFI methods, designed for static models, are ill-suited for
dynamical systems, such as system simulation experiments in meteorology [14, 15], simulation-based
forecasting in cosmology [16, 17] or adaptive modelling of human behaviour [18, 19].

Current LFI methods for dynamical systems [20, 21] proceed by assuming some simplified form of
transition dynamics in an SSM. Unless the SSM is both linear and Gaussian, state values are difficult
to estimate. This issue has been addressed in a large and growing set of methods, including extended
Kalman filters (EKF) [22, 23, 24], GP-SSMs [25, 26], Bayes filtering (BF) [27, 28] and sequential
Monte Carlo (SMC) methods [29, 30, 31]. Unfortunately, when the latent states have the additional
requirement of being valid simulator parameters, these methods need a tractable likelihood that is
not available when the observation model is black-box. At the same time, LFI has been applied
to SSMs, but instead of focusing on the problem we address here, the work has focused on more
efficient sampling-based methods [32], generation of a better matching statistics [33], on establishing
theoretical convergence guarantees [34, 21, 35]. Despite these advances, inference with current LFI
methods in SSMs is limited in cases when ht is non-linear and cannot be sampled or simplified, and
when the simulators are computationally expensive.

In this paper, we introduce a method capable of obtaining likelihood-free state approximations and
state predictions in discrete-time SSMs. We assume that the state transition model is unknown, can
be non-linear and the number of samples from the observation model is limited, when simulators are
computationally expensive. To solve the LFI problem in SSMs, we first need to estimate simulator
parameters for observed measurements with as few samples as possible, and then use these estimates
to learn the transition dynamics. We propose a method, which uses non-parametric multi-objective
models for LFI of states, and non-parametric model of transition dynamics for learning state transition
dynamics. The contributions of the paper are:

• Focusing on problems where LFI has to be sample-efficient, we improve upon the current
LFI methods for the state inference task, while using samples from the state posteriors to
accurately learn the state transition dynamics, as shown by comparisons with state-of-the-art
SSMs inference techniques. We demonstrate that the proposed method is especially suitable
for applications with non-stationary user models.

• We propose sampling from transition dynamics model as a sample-efficient strategy to
determine where to run simulations next. We show empirical comparisons with traditional
techniques in settings where simulations are computationally expensive.

2 Likelihood-Free State Inference

For LFI, we follow a Bayesian optimization for LFI (BOLFI) approach [36], in which a Gaussian
process (GP) surrogate is used for a discrepancy measure δ (e.g. Euclidean distance) between
observed x∗ and synthetic datasets x(i). This approach assumes that synthetic observations with
the small discrepancy (smaller than a user-defined threshold ε) were produced by the simulator
parameters that could plausibly replicate the observed datasets. In this way, the likelihood can be

approximated as p(x∗|θ) ∝ F
(

ε−µ(θ)√
ν(θ)+σ2

)
, where F (·) is a Gaussian CDF with the mean 0 and the

variance 1, µ(θ) and ν(θ) are the mean and the standard deviation of a GP, and σ is a likelihood noise
of the GP. Because BOLFI actively chooses where to run simulations, its posterior approximation
requires much fewer synthetic observations than other LFI methods. However, BOLFI was not
designed for SSMs, and hence, does not make use of any temporal information that is typical for
SSMs to improve quality of inference.

As an extension to BOLFI, we employ a multi-objective surrogate model for discrepancies δt, thus
considering multiple discrepancy objectives at the same time and leveraging information between
consecutive states. This approach allows using a discrepancy model of the previous state to infer
the current state value, instead of simply discarding it. There is an additional advantage of having a
multi-objective surrogate in an SSM setting, namely we can have a much more flexible surrogate
for LFI than a traditional GP. This does not need any additional data to fit the surrogates, because
all synthetic observations for discrepancy objectives can be shared across all state values. When
we have a new observation, we simply need to recalculate the discrepancy values for all synthetic
datasets. Once we have a trained surrogate for discrepancy objectives, we infer state posteriors
p(θt|xt), similarly as in BOLFI.
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There is an additional challenge for adapting multi-objective surrogates in SSMs, namely a high
computational cost associated with considering too many objectives. SSMs can potentially have
hundreds of observations, and expanding the number of considered objectives may be detrimental
for the performance of the surrogate. We avoid this problem by limiting the number of objectives
the surrogate can have. Instead of considering all available time-steps as objectives, we propose to
consider only L recent objectives by gradually including new objectives and discarding old ones that
have little impact on current states. The size of this moving window depends on how rapidly the
transition dynamics change. As the size L of the window grows, the model becomes less sensitive to
the noise from the dynamics, at the cost of increased computations and decreased adaptability to the
most recent state transitions. The moving window reduces the number of objectives L considered at
a time, making multi-objective modelling for SSMs feasible. In the experiments, we used a linear
model of coregionalization (LMC) [37] as a surrogate, with a moving window size of 2.

3 Learning State Transition Dynamics

Once we have approximated the posteriors p(θt|x∗
t ) with LFI, we can use their empirical samples to

learn a state transition model. This model should be able to train from noisy samples of LFI posterior
approximations, and be flexible enough to fit arbitrary function families the dynamics may follow.
Thus, the transition model should be Bayesian and non-parametric. Such a model would take the
uncertainty associated with posterior approximations into account and be flexible enough to follow
possibly non-linear transition dynamics.

We propose to train this model in an autoregressive fashion by forming a training set from paired
posterior samples. For each SSM time interval, we group consecutive state posterior samples in
a training set, and expand it when new state posteriors become available. This way, the transition
model does not need to be retrained when new observations present themselves and can be actively
used throughout state inference for determining where to run simulations next. This can be done,
by sampling the predictive posterior p(θT+1|x∗

T ) from the trained model ĥθ through p(θT+1|x∗
T ) =∫

ĥθ(θT+1|θT )p(θT |x∗
T )dθT . Thus, the state transition model ĥθ does not inform state posteriors

directly, but provides simulation candidates for the LFI surrogate. In the experiments, we used a
Bayesian Neural Network (BNN) [38, 39] as a transition model for the state dynamics.

4 Experiments

We assess the quality of our method, LMC-BNN, for the inference and prediction tasks in a series
of SSM experiments, where a simulator serves as the observation model gθ. For the inference task,
we compare the quality of our estimates against other LFI methods: BOLFI [36], SNPE [40], SNLE
[41], SNRE [42]. We use a fixed simulation budget for all these methods, with 20 simulations to
initialize the models, and then with 2 additional simulations for each new time-step. However, for the
neural density estimation (NDE) approaches (SNPE , SNLE, SNRE), we provided all simulations at
once, since they do not need additional simulations when observations change. For the prediction
task, we sampled trajectories from the transition model and evaluated them against trajectories from
the true dynamics. We performed these experiments in SSMs with simulators that have tractable
likelihoods, providing them to the state-of-the-art SSM inference methods, GP-SSM [26, 43] and
PR-SSM [44], while our method was still doing LFI. For all methods, we provided 50 observations,
and then sampled trajectories that had the same length of 50 time-steps.

We also supplied two variations of our method that differ only in the way the next simulations are
sampled: LMC-BLR, where samples were taken from a Bayesian Linear Regression (BLR) model
that was used as a local linearized model of the transition dynamics; and LMC-qEHVI, where a
popular acquisition function for multitask BO, q-Expected Hypervolume Improvement (qEHVI) [45],
was used to provide samples.

4.1 The State-Space Models

In this section, we present two case studies with non-stationary user models and three SSMs with
tractable likelihoods. In user modelling experiments, we simulated behavioural data from humans
that completed two different tasks: uniform manifold approximation and projection (UMAP) [46]
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Table 1: Comparison of LFI methods (rows) in different SSMs (columns) for the state inference task.
The performance was measured with 95% confidence interval (CI) of the RMSE between estimated
vs ground truth state values for 50 time-steps. The best results in each column are highlighted in bold.

Methods LG NN SV UMAP Gaze
LMC-BNN 1.7 ± 0.1 6.75 ± 1.15 16.85 ± 2.75 59.15 ± 3.65 59.4 ± 5.9
LMC-BLR 1.3 ± 0.1 5.55 ± 0.75 13.15 ± 3.25 61.95 ± 3.05 60.6 ± 5.8

LMC-qEHVI 1.5 ± 0.1 7.1 ± 0.6 24.4 ± 2.5 65.35 ± 3.85 56.9 ± 4.5
BOLFI 1.55 ± 0.15 6.05 ± 0.45 27.35 ± 3.45 67.85 ± 3.35 73.45 ± 5.75
SNPE 7.15 ± 0.65 50.85 ± 1.35 77.4 ± 3.1 71.4 ± 3.5 68.1 ± 7.8
SNLE 6 ± 0.5 24.2 ± 1.6 54.25 ± 2.45 69.95 ± 3.35 77.25 ± 4.05
SNRE 10.4 ± 1.7 57.1 ± 1.7 57.15 ± 2.35 73.65 ± 1.25 80.75 ± 1.35

parametrization and eye movement control for gaze-based selection. Our goal in these experiments
was to infer parameters of user models that generated the behavioural data, with three state dimensions
in each user model. In the experimental results, these case studies are referred to as UMAP and Gaze,
respectively.

In addition to non-stationary user models, we also experimented with three models with tractable
likelihoods common in SSM literature: linear Gaussian (LG), non-linear non-Gaussian (NN) and
stochastic volatility (SV) models. In the LG model, the state transition dynamics and observation
model are both linear, with high observational noise. The NN model is a modified version (leaving
only one unique solution for each observation) of a popular non-linear SSM [47]. Lastly, SV models
are widely used for predicting volatility of asset prices [48, 49]. We use the specific model by [50].
The dimensionality of states in these models ranges from one to three, starting from LG and moving
to SV. More detailed descriptions of all SSMs can be found in the Appendix.

4.2 Results and Discussion

The results for the inference and prediction tasks are presented in Tables 1 and 2, respectively.
These tables report Root Mean Squared Error (RMSE), as a performance measure. In the inference
task, LMC-based methods clearly outperformed BOLFI and NDE approaches. This indicates that
considering multiple objectives at the same time was beneficial for the state inference, and that the
model actually leverages information from consecutive states without hindering the performance.
Additionally, it can be seen that LMC-based methods performed differently, which can be only
attributed to how the next simulations were chosen, as the surrogate was exactly the same in all three
methods. As results show, having BNN as a model for state transition was beneficial for experiments
with non-stationary user models, while having BLR was more preferable for the simpler models.
This suggests that BLR is expressive enough to replicate simple transitions, but struggles with more
complex ones, for which BNN was more suitable.

The comparisons with GP-SSMs and PR-SSMs for learning transition dynamics show that our method
learns the dynamics more accurately. The SSMs methods that were supposed to provide ground truth
performance showed worse results than BLR and BNN approaches. This can be only explained by
the lack of observations for learning state transitions by the SSM methods, which also explains the
high variance in the sampled trajectories from these methods. As for comparisons between BLR and
BNN, BLR performs better only in LG and SV models, while BNN performs better in more complex
case studies. Moreover, it should be noted that trajectory sampling from BLR is possible only by
retaining all local linearization, which is a far more limiting approach than having BNN. Therefore,
BNN is more preferable as a model for transition dynamics.

In all experiments, we attribute the success of the proposed LMC-BNN method to a more flexible
multi-output surrogate, and a more efficient way of choosing simulation candidates. The LMC allows
multi-fidelity modelling and leveraging information from multiple consecutive time-steps, unlike
standard GPs. At the same time, samples from the transition model provide better candidates for
simulations than the alternatives. The flexible surrogate along with adaptive acquisition make our
method particularly suitable for online settings, where only a handful of samples are allowed per
time-step.
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Table 2: Comparison of transition dynamics models (rows) in different SSMs (columns). The
performance was measured with 95% confidence interval (CI) of the RMSE between sampled vs
ground truth trajectories of length 50. The best results in each column are highlighted in bold.

Methods LG NN SV UMAP Gaze
LMC-BNN 205 ± 9 165 ± 15 135 ± 22 1383 ± 30 1353 ± 7
LMC-BLR 64 ± 7 258 ± 37 100 ± 37 1409 ± 49 1372 ± 3
GP-SSM 284 ± 71 2204 ± 1111 3206 ± 1175 - -
PR-SSM 253 ± 68 610 ± 510 1378 ± 740 - -
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A The State-Space Models with Tractable Likelihoods

In this section, we present details on the three SSMs with tractable likelihoods that were used to assess
the quality of state transition models in the experiments. For all three SSMs, we define transition
dynamics and an observation model along with priors for LFI. As observations, we used datasets of
10 points, and their mean and standard deviation as summary statistics. The objective in Bayesian
Optimization (BO) was the logarithm of Euclidean distance between the observed and simulated
summary statistics.

Linear Gaussian (LG). In the LG model, state transition dynamics (Figure 1a) and an observation
model are both linear

θt = 0.95× θt−1 + vt, xt = θt + wt, (1)

with added Gaussian noise vt ∼ N (0, 12) and wt ∼ N (0, 102). The initial state value for the
transition dynamics is θ0 = 100. The prior for the state values is θ ∼ Unif(0, 15) ∈ R.

Non-linear non-Gaussian (NN). The NN model is a popular non-linear SSM [47], where the
transition dynamics (Figure 1b) and observation model are

θh,t =
θh,t−1

2
+ 25

θh,t−1

θ2h,t−1 + 1
+ 8 cos(1.2t) + vt, xt =

θ2h,t
20

+ wt, (2)

with added Gaussian noise vt ∼ N (0, 10) and wt ∼ N (0, 10). The initial state value for the noise
standard deviation θh,0 is 0 with the prior θh ∼ Unif(−30, 30) ∈ R.

Stochastic volatility (SV) models are widely used for predicting volatility of asset prices [48, 49].
Here, we use the model by [50] that specifies transition dynamics (Figure 1c) of volatility θv as

θv,t+1 = (zt − zt+1 +

k∑
j=1

ej), zt+1 = exp(−λ)zt +
k∑
j=1

exp{−λ(t+ 1− cj)}ej , (3)

with c1:k ∼ Unif(t, t+1), e1:k ∼ Expon(0.5/0.252) and λ = 0.01. The random increases of volatil-
ity are regulated by the Poisson distributed variable k ∼ Poisson(0.5λ2/0.252). The observation
model for the log-return of an asset xt ∈ R follows

xt = θµ + θβθv,t + (θ0.5v,t + 10−5)εt, (4)

where εt ∼ N (0, 1); θµ = 0 and θβ = 0 remain the same, while the volatility θv follows the transition
dynamics, starting with the initial value for the volatility θv,0 of 1. We set the following priors for
LFI of state values: θµ ∼ Unif(−2, 2) ∈ R, θβ ∼ Unif(−5, 5) ∈ R, θv ∼ Unif(0, 3) ∈ R.

B Technical Details

B.1 Eye Movement Control for Gaze-Based Selection

An observation model in the gaze selection experiment is a simulated environment, where a human-
subject is modelled through a reinforcement learning agent. In this environment, the agent searches
for a target on a 2D display, where the target location, actions, observations, and beliefs of the agent
are represented by two coordinates {c1, c2}, c1, c2 ∈ [−1, 1] on the display. At each episode of the
environment e, the agent receives noisy observations of the target oe = N (q, θs × E(e)) and moves
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(a) Linear Gaussian (LG) (b) Non-Linear Non-Gaussian (NN)

(c) Stochastic Volatility (SV)

Figure 1: Transition trajectories (different colours) of states (y-axis) sampled from three SSM
transition dynamics across 50 time-steps (x-axis) with different random seeds. The complexity of
the dynamics gradually increases in SSMs, starting with the smooth LG (a) dynamics, where the
difference between consecutive states is very small, followed by NN (b) with more erratic behaviour,
and finishing with the SV model (c), whose dynamics has occasional drastic changes of state values.

the gaze to a new location ae = N (PPO(oe, θom ×A(e)). The beliefs be about the target location
q are updated according to

be+1 =
σ2
(o,e+1)oe+1 + σ2

(b,e)be

σ2
(o,e+1) + σ2

(b,e)

, σ(b,e+1) =

√√√√ σ2
(o,e+1)σ

2
(b,e)

σ2
(o,e+1) + σ2

(b,e)

. (5)

where σ(o,e) and σ(b,e) are observation and belief uncertainties respectively, A(e) is the amplitude,
and E(e) is the eccentricity of the saccade at the episode e. The user model was trained on 10
000 episodes using the Proximal Policy Optimization (PPO) algorithm [51], provided by the Stable
Baselines3 library [52]. We used default parameters, a multilayer perceptron policy and a clipping
parameter set to 0.15. The environment was implemented by Chen et al. [53] in Python with the
Open AI gym framework [54].

B.2 UMAP Parameterization

In the UMAP parameterization model, the ground truth for state values is not available, because the
human-subject cannot specify the ideal embeddings. Therefore, we approximate the ground truth
by using ABC with rejection sampling. Usually, this requires running millions of simulations for
each time-step, but we make use of the weighted form of the preference score that allows us to use
the same simulations across all time-steps. We simulate 1, 500, 000 embeddings with state values
sampled from the prior, and then calculate their corresponding U (i) and P(i). For each time-step t,
we calculate the preference scores δ and retain only 0.06% of those states that showed the lowest δ
values. Finally, we use a Gaussian kernel density estimator (KDE) on the retained state values, and
maximize the corresponding PDFs to find the estimations of the ground truth. The bandwidth b of
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the kernel was calculated according to a Scott’s rule [55] b = n−
1

d+4 , where n is the number of data
points and d is the number of dimensions.

The preference score was computed as a weighted sum between the relative validity U (i) and the
classification accuracy P(i) on the validation set. The relative validity U (i) is an approximation of
the Density Based Cluster Validity (DBCV) score [56], which is often used as a quality measure of
clustering. Intuitively, it shows how separable all the clusters are. We use the HDBSCAN* package
[57] and the HDBSCAN Boruvka KDTree [58] algorithm to cluster the points of the embeddings.
We set the smallest size grouping to 60, the density parameter of clusters to 10 and leave the rest
parameters to their default values. The classification accuracy P(i) was calculated for the C-Support
Vector Classifier (SVC) [59, 60] with the Scikit-learn package [61] and default parameters.

The embeddings for the UMAP parameterization model were computed for the handwritten digit
dataset [62]. The dataset was randomly split on the training and validation sets, resulting in 1198 and
599 8x8 pixel images of digits in 10 digit classes. The UMAP algorithm was implemented with the
UMAP-learn package [63].

B.3 Implementation Details of Methods

LFI methods from Sections B.3.1-B.3.3 were integrated in the Engine for Likelihood-Free Inference
(ELFI) [64] for application and further development.

B.3.1 BOLFI

GP surrogate. The implementation for the GP surrogate was provided by the GPy package [65]. It
was initiated with zero mean function, and with the following priors for the RBF kernel lengthscale l,
its variance σ2

k, and the variance of the bias term σ2
b :

l ∼ Gamma
(
θmax − θmin

3
,1

)
, σ2

k ∼ Gamma
(

max(δ(i))2

9
, 1

)
, σ2

b ∼ Gamma
(

max(δ(i))2

36
, 1

)
.

(6)

where θmin,θmax are the lower and upper bounds for θ(i), (θ(i), δ(i)) are initial training points, and
1 is an all-ones vector. The GP was minimized by using the SCG optimizer [66] on the GP negative
log-likelihood with a maximum number of iterations of 50. All inputs θ(i) for the GP were centred
and normalized.

LCBSC acquisition. The BOLFI implementation uses LCBSC [67, 68] as an acquisition function,
which chooses points that minimize the lower confidence bound (LCB)

LCB(x) = µ(x)− β1/2
t σ(x), βt = 2log(t2d+2π2/3δ), (7)

where βt is the confidence parameter, δ = 0.1 is the inverse exploration rate and d is an input
dimension.

Posterior sampling. The BOLFI posterior was obtained by weighting the prior samples and using
corresponding unnormalized likelihoods as weights

p(x∗|θ) ∝ F

(
ε− µ(θ)√
ν(θ) + σ2

)
, (8)

with F (·) being a Gaussian CDF with the mean 0 and the variance 1, and where ε is the minimum
of the GP surrogate mean function µ(·) obtained by using the L-BFGS-B optimizer [69] with a
maximum number of iterations of 1000.

B.3.2 Muti-Objective LFI

LMC surrogate. The LMC model was implemented in BoTorch [70]. Its latent GPs were initialized
with linear mean functions µ(x) = kx+ b, and RBF kernels. The lengthscales of the kernels were
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parameterized in log scale, and initialized with 0 along with the constant b of the mean function. For
the RBF kernel, ARD was also enabled to assign separate lengthscales for each input dimension.
GP latents were also initialized with 50 inducing points uniformly sampled inside the input bounds
for each latent GP. The LMC training used Adam optimizer from the tensor computation package
PyTorch [71] with a learning rate of 0.1 to minimize the variational evidence lower bound (ELBO).
The optimized parameters included LMC coefficients, inducing points locations, and hyperparameters
for the mean functions and kernels. We used the default training step size and 1000 epochs for
training. All inputs for the LMC were centred and normalized.

qEHVI acquisition. The qEHVI acquisition function used a Quasi-MC sampler [72] with scrambled
Sobol sequences [73] and a sample size of 128. The reference point that was used for calculating
the hypervolume for each objective was set to -5. The acquisition points were acquired sequentially
using successive conditioning [74] with a maximum number of restarts of 20, a batch size limit of 10,
and a maximum number of iterations for the optimizer of 200.

Bayesian neural network (BNN) [75] was built from stacked Bayesian layers implemented in torch
zoo (BLiTZ) [39]. We used an architecture with 2 hidden layers, where each layer had 256 nodes.
During the training process, stochastic gradient descent [76] was used with a learning rate of 0.001 for
minimizing the ELBO loss with squared L2 norm. The loss was calculated based on 10 samples from
the model, for each of 100 batches of training data in a single epoch. The training data was randomly
selected from previously stored approximated posterior samples from all states (1000 samples per
each state) with replacement, resulting in a total of 1 000 000 points, where one point was a pair of
consecutive state values. The training data was updated each time the moving window moved.

Bayesian linear regression (BLR) is defined as θt+1 = θTt β + ε, where ε ∼ N(0, σ2I). The
hyperparameters σ ∈ R and β ∈ Rm×m were inferred with maximum likelihood estimation (MLE)
[77] of

p(θt+1|θt) ∝
1

σ
exp− (θt+1 − θtβ)T (θt+1 − θtβ)

2σ2
t

. (9)

The BLR model was implemented with the probabilistic programming package, PyMC3 [78] that
used 100 random samples from three latest inference steps. The pairs (θt−1, θt) and (θt−2, θt−1)
pairs were used as inputs for training, and the normal distribution was chosen as a prior family of
the BLR parameters. The model was fitted by using the No-U-Turn Sampler (NUTS) [79] with two
chains of 2000 samples, 2000 tuning iterations, and a target acceptance rate of 0.85.

Posterior sampling. Similar to BOLFI, the posterior was sampled by using an importance-weighted
resampling. Because the main model was implemented in PyTorch, we used the Adam optimizer to
learn the threshold ε. It used a learning rate of 10−4 and 100 optimizing iterations. The optimization
started at the parameter point that produced a synthetic observation with the smallest discrepancy.

B.3.3 Sequential Neural Estimators

All three SNEs (SNPE, SNLE and SNRE) and their corresponding surrogate models were imple-
mented in the simulation-based inference [80] and PyTorch [71] packages with default parameters.
In all three methods, Adam optimizer with the learning rate of 5× 10−4 and the training batch size
of 50 in 20 epochs were used for training the surrogate. The total gradient norm was clipped in order
to prevent exploding gradients at a value of 5.0, and z-score passing was used for surrogate model
inputs and outputs.

For SNPE [81] and SNLE [41], the masked autoregressive flow (MAF) surrogate was used for
approximating the posterior p(θ|x) and likelihood, p(x|θ) respectively. The MAF consisted of 5
transformations with 50 hidden features in each of 2 blocks. Each autoregressive transformation
had tanh activation along with batch normalization. In contrast, SNRE [42] approximates the ratio
p(θ,x)
p(θ)p(x) , where a residual network [82] is used as a classifier trained to approximate likelihood ratios.
The goal of the classifier is to predict which of the (θ,x) pairs was sampled from p(θ,x) and which
from p(θ)p(x). The residual network had 50 hidden features in 2 residual blocks with 10 (θ,x) pairs
to use for classification.
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B.3.4 Recurrent State-Space Models with GP Transitions

In the experiments, we used two variants of recurrent state-space models with GP transitions: GP-
SSM with a variationally coupled dynamics and trajectories, in which the variational inference
scheme for GP transition dynamics is used [43], and probabilistic recurrent state-space model PR-
SSM [44], which uses doubly stochastic variational inference for efficient incorporation of latent
state temporal correlations. Both methods were implemented in the GPt package [43]. The GPs
were using Matern32 kernels with linear mean functions, along with 50 randomly sampled inducing
points. The number of latent dimensions was set equal to the number of simulator parameters of the
observation model. The ELBO loss was calculated from 10 posterior samples and optimized with
Adam using a learning rate of 0.001 in 3000 iterations.
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