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Abstract

In this work, we propose a training-free method to inject visual prompts into
Multimodal Large Language Models (MLLMs) through learnable latent variable
optimization. We observe that attention, as the core module of MLLMs, connects
text prompt tokens and visual tokens, ultimately determining the final results. Our
approach involves adjusting visual tokens from the MLP output during inference,
controlling the attention response to ensure text prompt tokens attend to visual
tokens in referring regions. We optimize a learnable latent variable based on
an energy function, enhancing the strength of referring regions in the attention
map. This enables detailed region description and reasoning without the need
for substantial training costs or model retraining. Our method offers a promising
direction for integrating referring abilities into MLLMs, and supports referring with
box, mask, scribble and point. The results demonstrate that our method exhibits
out-of-domain generalization and interpretability. Code: https://github.
com/mrwu-mac/ControlMLLM.

1 Introduction

In recent times, there has been a surge in the development and adoption of large language mod-
els (LLMs), such as GPT-4 [1] and Llama [53], showcasing remarkable capabilities in addressing a
wide range of human-generated questions. The success of these models has sparked interest among
researchers in exploring the integration of LLMs with visual inputs. Consequently, a new class of
models known as Multimodal Large Language Models (MLLMs) has emerged [36, 33, 17, 67, 81, 38].
However, despite their widespread adoption, traditional MLLMs often face limitations due to their
reliance on coarse image-level alignments. This restricts users to guiding MLLMs solely through
text prompts for detailed region description and reasoning. However, text often fails to capture the
intricate visual nuances present in an image.

Addressing this challenge, recent efforts [68, 5, 75, 12, 37] have pioneered the integration of referring
abilities within MLLMs, which enables users to provide input by pointing to specific coordinates
of the objects or regions, as shown in Figure 1 (left). However, these endeavors typically entail
substantial training costs to equip MLLMs with referring capabilities. Additionally, the model must
undergo retraining to adapt to new data domains or new base MLLMs.

In this work, we propose a training-free method to inject the visual prompts into the Multimodal
Large Language Models via learnable latent variable optimization. The method originates from our
observation of the attention maps from the MLLM decoder, which model the relationship between
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Figure 1: Comparison between the training method and our training-free method. The training
method typically requires a large amount of in-domain data for training and cannot generalize to
out-of-domain prompts. In contrast, our method can easily adapt to prompts from a new domain in a
training-free manner.

the pixels and text prompt tokens and encompass rich semantic relations that significantly influence
the generated text. However, MLLMs typically involve fine-tuning an MLP layer to bridge the gap
between visual and linguistic representations, which means that the output of the MLP layer can
indirectly impact the relationship between text prompt tokens and pixels in the attention layers of the
MLLM decoder, thereby altering the model’s output.

Thus, our key idea is that we can alter the outputs of MLLMs by adjusting the visual tokens from the
MLP output during the inference process, controlling which text prompt tokens attend to which visual
tokens in the attention layers. Specifically, we augment visual tokens with an additional learnable
latent variable. Subsequently, we optimize the learnable latent variable based on an energy function
designed to enhance the strength of the referring regions in the attention map between the text tokens
and the visual tokens.

Our method enables referring MLLMs with various visual prompts, including box, mask, scribble
and point, and does not require model training, fine-tuning, or extra data. We also demonstrate that
our method exhibits out-of-domain generalization and interpretability.

2 Related Work

MLLMs Motivated by the accomplishments of Large Language Models (LLMs) [1, 53], there is
a burgeoning trend among researchers to develop a diverse range of Multimodal Large Language
Models (MLLMs) [33, 36, 17, 67, 32, 38, 39, 18, 22, 78, 15, 58, 35, 20, 21, 19]. These MLLMs
typically comprise a visual encoder, a language decoder, and an image-text alignment module.
The visual encoder and the language decoder are often sourced from pre-trained models, such as
CLIP [44], DINOv2 [41], Llama [53], and Vicuna [16]. Meanwhile, the image-text alignment module
is trained on image-text pairs and fine-tuned through visual instruction tuning to enhance its visual
conversation capabilities. These Multimodal Large Language Models (MLLMs) often confront
limitations stemming from their reliance on coarse image-level alignments.

Referring MLLMs In recent research, there has been a noticeable trend towards integrating
foundation models with tasks involving referring dialogue. These models [69, 74, 75, 12, 37, 43, 68,
64, 71, 5, 73, 40, 26, 34, 70, 79, 11, 51, 46, 80, 63, 8, 24, 45, 52, 72] introduce spatial visual prompts
as extra input and are trained using region-text pairs. By leveraging this approach, they effectively
bridge the gap between textual prompts and visual context, enabling comprehensive understanding of
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image content at the regional level. However, these methods inevitably require a substantial training
burden.

Training-free Control in Text-to-Image There are numerous works on controllable text-to-image
generation, among which training-free methods [27, 14, 62, 30] are most relevant to our research.
Among them, Prompt-To-Prompt [27] explore the role of attention in text-visual interactions in Stable
Diffusion [47] model, while Layout-Guidance [14] indirectly bias attention in Stable Diffusion model
by optimizing an energy function. These contributions significantly inform our investigation into
enhancing controllability and interpretability in MLLMs.

Visual Prompt The visual prompt can be categorized into two main techniques: hard prompt and
soft prompt. The hard visual prompt works [48, 57, 66, 65] that direct the model’s attention to the
region or enable visual grounding abilities in the Multimodal Models in a training-free and convenient
manner by directly manipulating images, such as color guidance [60, 23]. However, these methods
inevitably compromise the structural information of the images, or a strong understanding of the
corresponding patterns by the model is required. In contrast, the soft visual prompt works [28, 4, 77]
integrate learnable visual prompts into models to adapt them for different downstream tasks. However,
these methods do not support region guidance and require fine-tuning the model with downstream
data. In contrast, we optimize a learnable latent variable to support referring MLLM in the test time,
without any downstream training data required, and TPT [49] is most related to our work.

3 Background

Multimodal Large Language Models (MLLMs): The MLLMs typically consist of a visual
encoder, an LLM decoder, and an image-text alignment module. Given an image I , the frozen vision
encoder and a subsequent learnable MLP are used to encode I into a set of visual tokens ev. These
visual tokens ev are then concatenated with text tokens et encoded from text prompt pt, forming
the input for the frozen LLM. The LLM decodes the output tokens y sequentially, which can be
formulated as:

yi = f(I, pt, y0, y1, · · · , yi−1). (1)

Considering LLaVA-liked [36] MLLMs, the LLM in MLLMs typically employs a transformer
model [54] with the attention layer as its core. In such model, the attention maps represent the
relationships between the visual tokens and the text prompt tokens. The attention map in attention
layer τ , computed on the transformed visual-text concatenated embeddings [ev, et](τ), is obtained as
follows:

A(τ) = softmax(
[ev, et]

(τ) · ([ev, et](τ))T√
dk

), (2)

where dk is a scaling factor. A(τ) consists of A(τ)
ij with i, j ∈ {1, · · · , n}, representing the relation-

ship between the i-th token and the j-th token, and their impact on the output.

Training Referring MLLMs: The objective of training referring MLLMs is to inject the visual
prompt r into the MLLMs to achieve referring ability via model parameter learning. The visual
prompt r can take various forms, such as a box, mask, scribble, or point, to indicate specific locations
or regions within the image.

Current referring MLLMs typically need to be fine-tuned on a training set with positional annotations
before they can be effectively used. The fine-tuning process involves maximizing the log likelihood of
generating the text conditioned on I , pt, and r over the entire training dataset. This can be formulated
as:

θ∗ = argmax
θ

U∑
i=1

logP (yi | Ii, pt, r, y0, y1, · · · , yi−1; θ), (3)

where θ represents the parameters of the model f , and U is the number of samples in the training
set. This method significantly enhances the model’s fine-grained understanding and interactivity.
However, it incurs high training costs. Additionally, such fine-tuning strategies result in domain-
specific behaviors, which have been shown to compromise the out-of-distribution generalization and
robustness of MLLMs [49]. Therefore, when domain shifts occur, the model needs to be retrained,
leading to a lack of flexibility.
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Prompt: “What color is the hat the person is wearing?”

Output: “The hat the person is wearing is green.”

Input Image Attention L_0 Attention L_7 Attention L_15 Attention L_23 Attention L_31

w/ 
context token

Figure 2: The attention maps in various layers of the MLLMs, with the numbers indicating the
respective layer indices. The top line visualizes the attention between the prompt token “hat” and the
visual tokens, while the bottom line visualizes the attention between the context token (mentioned in
Sec. 4.2) and the visual tokens.

4 Method

We aim to propose a training-free method to overcome the inconveniences of traditional training.
Training-free referring MLLM maintains the model parameters θ frozen, eliminating the need for any
training or fine-tuning with samples from the training set. During inference, the only information
available is the single test sample without label information, as shown in Figure 1 (right).

In this section, we explore and design a solution to address the challenges of Training-free Referring
MLLMs. The key task is to flexibly embed visual prompts during the inference phase while maintain-
ing the model’s reasoning capabilities. To begin with, we delve into the mechanism of MLLMs (see
Sec. 4.1), our key observation is the attention mechanism in LLM capturing the relationship between
the model’s output and the input pixels. Further, the visual tokens inputted into the LLM influence
the values of the attention maps to indirectly control the model output. Building on this analysis,
we propose the Latent Variable learning (a test-time prompt tuning strategy [49], see Sec. 4.2) to
edit the visual tokens, as shown in Figure 4. This method effectively integrates visual prompts into
pre-trained MLLMs, enabling fine-grained visual reasoning.

4.1 Analysis of the Attention in LVLMs

We begin by analyzing which factors in the model truly capture the relationship between input and
output? In other words, we seek to understand how to interpret the association between the model’s
output and the input pixels.

As demonstrated by Equation 1, Multimodal Large Language Models (MLLMs) fundamentally model
the maximum likelihood output based on visual input and text prompts. By conditioning on the text
prompt, the model can determine which parts of the image have the greatest impact on the output.
Building on the discussions in the Sec. 3 and illustrations in the Figure 2 (top line), we can observe
that the attention map models the influence of visual tokens on the output conditioned by the text
prompt. Therefore, the attention map in MLLMs not only provides interpretability regarding the
relationship between model output and input pixels but also facilitates guiding the model’s output.

A natural idea is that we can directly alter the model’s output by editing the attention maps. Inspired
by IBD [82], we achieve this by adding an adjustment coefficient η to the attention related to the
visual tokens corresponding to the referring region, which can be formulated as,

A(τ) = softmax(
[ev, et]

(τ) · ([ev, et](τ))T√
dk

+M),

Mi = η if i in r else 0,

(4)
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Figure 3: Manipulating attention with various methods: (a), (b), and (c) demonstrate the manipulation
of the attention map by adding an adjustment coefficient η on the attention map in the first step during
the model inference. (d) illustrates the step-by-step editing approach. (e) showcases that optimizing
a learnable context tokens (mentioned in Sec. 4.2) instead of visual tokens, while (f) presents the
results of our method optimizing the learnable latent variable.

where M is a mask with the same shape as the attention map, r denotes the referring region. However,
we have to carefully select a suitable coefficient η for each example. When the η is too small, it leads
to ineffective control (as shown in Figure 3 a), and when it is too large, it can impact the language
capabilities of the LLM (as shown in Figure 3 c). Additionally, we found that it is sufficient to
manipulate the attention map at the 0-th step during model inference (as shown in Figure 3 a,b,c),
as it is most directly associated with the text prompt, and manipulating attentions step by step also
affects the expression of the LLM (as shown in Figure 3 d). Overall, directly manipulating attention
maps is not a viable approach because it overlooks the relationships between attention layers and not
all layers’ visual tokens decide the output [13].

We note that in the most MLLMs, typically the MLP layer is trained for image-text alignment. This
implies that MLLMs indirectly affect the values of the attention map by learning the parameters of
the MLP layer to alter the visual tokens. In other words, the visual tokens inputted into the LLM
directly influence the values of the attention maps.

It is also worth noting that the input text prompt also directly influences the model’s output, particularly
regarding non-visual-related [76] output content. However, we aim to explain the correlation between
the output and the input image. Therefore, we do not consider the direct impact of the text prompt on
the output in our analysis.

4.2 Manipulating Attention via Latent Variable Learning

Based on the analysis above, our core idea is to indirectly influence the attention maps by editing
visual tokens, thereby focusing on the referred regions. We achieve this by optimizing a learnable
latent variable based on an energy function [14, 59], which calculates the relationship between
the input referring and the attention maps. To do this, we first need to determine which attention
maps to use. One approach is to use attention maps between each text prompt token and all visual
tokens. However, because visual tokens typically have a significant impact on the result based on
only a few most relevant text prompts (referred to as highlight text tokens), using all attention maps
would be computationally redundant. Yet, for users, identifying the highlight text tokens can be
challenging. Therefore, we simply average pool the attention maps generated for each text prompt
token to represent the global context of the text prompt (referred to as the context token) and its
association with visual tokens. We found that this simple method of using context tokens produces
attention maps similar to those generated by highlight text tokens, as shown in Figure 2 (bottom line).
We leave the optimization based on highlight text tokens for future work.

Specifically, our method supports four types of referring shapes, including box, mask, scribble, and
point. We employ two types of energy functions to respectively support these referring shapes: a hard
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Figure 4: The overview of our method. With the provided visual prompt, we convert it into a mask,
and compute the mask-based energy function between the mask and the pooled attention map. During
the inference process, we conduct backpropagation to optimize a learnable latent variable. This
process is executed at the 0-th step of model inference and iterated T times.

mask-based energy function for box and mask referring, and a soft mask-based energy function for
scribble and point referring.

Hard Mask-based Energy Function We first zero initialize a learnable latent variable pv with
the same shape as ev, and add it to the ev. Then we can get N attention maps from N attention
layers which model the relation between the context token and the novel visual tokens. Given the
referring box or mask, we first convert it into a binary mask. Then, we compute the mask-based
energy function based on the mask and the attention map A(ct), which is obtained by averaging
pooling from N attention maps. The energy function can be formulated as:

E
(
A(ct), r

)
=

(
1−

∑
i∈r A

(ct)
i∑

i A
(ct)
i

)2

, (5)

where r denotes the referring region. Then the gradient of the loss 5 is computed via backpropagation
to update the learnable latent variable:

pv ← pv − α∇pv
E
(
A(ct), r

)
, (6)

where α > 0 is a hyperparameter controlling the strength of the guidance. By optimizing pv through
the Equation 6, we indirectly guide the attention maps to produce higher responses in the referring
region r, thereby increasing the influence of the visual content of region r on the output.

Soft Mask-based Energy Function Since scribble and point lack the concept of the region, it
is optional to use an extra SAM [31] model to obtain a mask for applying the Hard Mask-based
Energy Function. However, this incurs additional inference cost, so we also provide an optional
soft mask-based energy function based on a distance matrix D, which is computed via applying the
OpenCV [7] distanceTransform function on the given scribble or point. Then the soft mask-based
energy function can be formulated as:

E
(
A(ct), r

)
=

1−
∑

i∈r
e−D2

i /2σ2

√
2πσ

A
(ct)
i∑

i A
(ct)
i

2

, (7)

where σ is the standard deviation of the Gaussian function, which is set to 0.1. By optimizing pv
through the Equation 7, the closer the region of attention map is to the given scribble or point, the
higher the response.
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type of personal flot.

Prompt: What is the object?
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LLaVA: The unusual aspect of the object in the image 

is that it is a turtle with a shell on its back, and it is 

wearing a hat. This is not a typical sight, as turtles do 

not usually wear hats or have shells on their backs. 

Prompt: What is unusual of the object?

LLaVA + Ours: The unusual aspect of the object is that 

it is a snail shell, which is not a typical object to be used as a hat or a decoration. The snail shell is placed on the 

head of a frog, which is an unconventional combination of animals. This creates an interesting and unexpected scene, 

as it is not common to see a snail shell being used in such a manner.

Input Image & 

Visual Prompt

LLaVA + Ours

Attention Map
Input Prompt & Output Text

LLaVA

Attention Map

a)

d)

c)

b)

Figure 5: The examples of referring MLLM with four types of visual prompt, including box (a),
mask (b), scribble (c) and point (d). The correct referring expressions are marked in green, incorrect
referring expressions are marked in red, and hallucinated expressions are marked in orange. Compared
to the baseline model, our method enhances interpretability and controllability with visual prompts,
while also helping the model mitigate hallucination issues.

Finally, we iteratively optimize the learnable latent variable T times at the 0-th step of model
inference. In addition, to prevent overfitting, we employ Early Stop (ES) and Exponential Moving
Average (EMA) strategies to enhance model stability. More details are shown in Appendix B.1.

5 Experiments

5.1 Experiment Details

Unless explicitly stated otherwise, the MLLM we use is LLaVA-v1.5-7B [35], T=5, α=400 and
β = 0.5. All experiments are conducted on two RTX 3090 GPUs with 24 GB of memory each.

5.2 Applications

Referring with Different Visual Prompts. We first demonstrate referring QA with different
visual prompts, including box, mask, scribble and point in the Figure 5. Our method consistently
demonstrates significant controllability with four types of visual prompts. And our method improves
the interpretability compared to basic model (column 3 vs column 2), demonstrates a stronger
correlation between the attention response areas and the generated descriptions.

Out-of-Domain Task. We present examples of the performance on out-of-domain tasks OCR and
Screenshots. As shown in Figure 6, compared to Ferret, our method correctly identified the text in
the referring region. Additionally, as shown in Figure 9, our method correctly recognized the app in
the mobile screenshot, unlike Ferret.
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The text is "Sale".

LLaVA

The text is "SPECIAL OFFER! 

SUPER SALE! 80% OFF!".
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Input Image

Output

LLaVA
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LLaVA + OursModels

Input Image

Output

Ferret

The text states \"Supreme sale\" in 

black letters on a pink background. 

The text appears to be a sale 

advertisement, possibly for a car.

Ferret

Figure 6: Examples of comparing with training method Ferret on OCR.

Impact on Hallucinations. Our method guides the model to focus on specific regions, potentially
helps the model mitigate hallucination issues, as shown in Figure 5 (c,d output in orange color).

5.3 Comparisons

Comparison on Referring Object Classification Task. Following Ferret [68, 74], we use the
Referring Object Classification (ROC) task to evaluate whether our method can accurately pinpoint
and understand the semantic of the referring region. The task requires the model to correctly identify
the target within the referring region. We follow the setting of Ferret to form 1,748 questions (in which
1,548 for test and 200 for validation) based on LVIS [25] validation dataset, with corresponding
box, mask, scribble and point. We consider the edit attention with η = 10 (as Equation 4 and
Figure 3 (b)) as the baseline model. And we compare several training methods [43, 75, 12, 68]. We
also evaluate the lower and upper limits of LLaVA’s recognition capability by assessing LLaVA
without referring region, as well as background blur outside the referring region, which are presented
in gray. Additionally, we evaluate a method that highlights regions with color as a comparable
training-free method. More details and the input examples are shown in Appendix B.2.

The results are shown in Table 1. Our method shows a better performance than the training method
GPT4-ROI with box referring (60.59 vs 58.59) and the Shikra-7B with point referring (58.85 vs
56.27). However, due to the limitations of LLaVA’s capabilities (as shown in the results of the
LLaVA+Blur), we present a performance gap compared to the latest training method Ferret [68].
Our method also demonstrates superiority compared to training-free color prompt-based method and
baseline method.

Comparison on Referring Text Classification Task. We consider the Referring Text Classifica-
tion (RTC) task as the out-of-domain task, to verify the model’s out-of-domain transfer capability.
Similar to the ROC task, we formulate the problem as a binary classification task and construct 1,372
questions based on the COCO-Text [56] dataset. Since point and scribble referring methods are not
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Table 1: The results on Referring Object Classification
Task (test set). The prompt of the task is featured as “Is
the object 〈location〉 a 〈class A〉 or a 〈class B〉?”. “-”
denotes the method does not support this type of referring.
Results in gray font are provided for reference only.

Models Box Mask Scribble Point

Training Methods:
Kosmos-2 [43] 55.17 - - -
GPT4-ROI [75] 58.59 - - -
Shikra-7B [12] 64.60 - - 56.27
Ferret-7B [68] 71.71 72.39 71.58 68.54

Training-Free Methods:
LLaVA [36] 54.72 54.72 54.72 54.72
LLaVA + Blur 73.39 71.32 - -
LLaVA + Color 55.10 56.72 - -
LLaVA + Edit Att 36.24 37.08 - -
LLaVA + Ours 60.59 60.79 58.33 58.85

Table 2: The results on Referring Text
Classification Task. The prompt of task
is featured as “Is the text 〈location〉 of
the image ‘〈text A〉’ or ‘〈text B〉’?please
select only one.”.

Models Box Mask

Training Methods:
Kosmos-2 [43] 16.55 -
GPT4-ROI [75] 54.23 -
Shikra-7B [12] 50.07 -
Ferret-7B [68] 55.47 56.34

Training-Free Methods:
LLaVA [36] 53.57 55.47
LLaVA + Blur 83.60 74.49
LLaVA + Color 56.34 54.23
LLaVA + Edit Att 26.09 29.16
LLaVA + Ours 61.22 60.28

suitable for text due to the non-connectivity of the text, we only evaluate the RTC task with box and
mask referring.

The results are shown in Table 2. All the training methods we evaluated exhibited poor out-of-domain
generalization performance. Specifically, Ferret achieves only 55.47% accuracy on the RTC task,
despite its excellent in-domain performance as shown in Table 1. In contrast, our training-free method
still demonstrates the best out-of-domain generalization performance. We also present comparative
examples of out-of-domain tasks, as shown in Figure 6 and Figure 9.

More Tasks and MLLMs. We also validate our method through the Referring Description Task on
LLaVA-1.5-7B and InstructBLIP-7B [17]. The results are shown in Table 3. Our method consistently
improves the model’s referring description performance. And we validate our method on the more
MLLMs through the ROC and RTC Tasks, MLLMs including InstructBLIP-7B and LLaVA-HR-
7B [39], more details are shown in Appendix B.3. The results are shown in Table 4, our method
consistently improves performance across different MLLMs. Due to InstructBLIP’s relatively poor
text recognition capabilities, our method results in only a modest improvement in the RTC task.
However, thanks to the beneficial effect of image resolution on the RTC task, our method achieves a
relative improvement of approximately 11.59% on LLaVA-HR.

5.4 Ablation Study

The ablation studies primarily focus on the box referred object classification. Furthermore, inspired
by DIFNet [61], we calculate a relevancy between the model’s output and pixels within the referring
region to assess the extent to which the model’s output is influenced by visual content within the
region. More details and additional experiments are shown in Appendix B.2 and B.3.

Impact of T and α. As shown in Table 5, as T increases, the relevancy between the model’s output
and the referring regions also increases. However, the larger T results in a decrease in the model’s
accuracy on the ROC task, also with excessively large relevancy scores, showing that excessively
large relevancy scores also indicate overfitting of the learnable latent variable. Therefore, the value of
the relevancy score provides us with guidance to alleviate model overfitting, particularly when the
relevancy score is around 0.18, typically resulting in better performance. And the value of α affects
the convergence speed of optimization, with larger α also leading to overfitting of the model.

Impact of EMA and ES. As shown in Table 5, when equipped with a smaller β value, it effectively
mitigates the overfitting issue associated with the learnable latent variable. For instance, with α = 400
and β = 0.3, the model’s performance improves from 53.5 to 62.5. However, a smaller value of β
also results in slower convergence of the learnable latent variable. Therefore, we combine the Early
Stop strategy, allowing us to use a slightly larger β to accelerate the convergence of the learnable
latent variable. After incorporating the early stop strategy, we can opt for slightly larger T to ensure

9



Table 3: The results on box Referring Description
Task on RefCOCOg [29]. The prompt of task is
featured as “Can you provide a description of the
region 〈location〉 in a sentence?”.

Models B@4 M C S

LLaVA [36] 5.02 13.15 55.61 17.61
LLaVA + Color 5.37 11.57 55.27 17.01
LLaVA + Ours 5.53 14.00 59.75 19.08
InstructBLIP [17] 1.24 8.70 9.89 7.95
InstructBLIP + Color 1.27 8.26 14.16 6.92
InstructBLIP + Ours 1.39 8.77 10.28 8.24

Table 4: The results of combining
with different MLLMs on ROC and
RTC tasks (box, test set).

Models ROC RTC

LLaVA [36] 54.72 53.57
LLaVA + Ours 60.59 61.22
InstructBLIP [17] 49.81 26.46
InstructBLIP + Ours 54.91 28.94
LLaVA-HR [39] 53.81 47.01
LLaVA-HR + Ours 58.92 58.60

that the model is adequately optimized on challenging samples. The early stop strategy allows
us to attain superior model performance while reducing the impact of overfitting. The additional
experiment about ES is shown in Table 6.

Impact of Different Text Prompts and the Size of Visual Prompts. We explore the impact of
different text prompts and the size of visual prompts in Figure 10 and Figure 11 respectively. The
results demonstrate that combining a clear and specific text prompt with an appropriate visual prompt
size typically leads to improved controllability.

6 Limitations

While we have demonstrated visual prompt control by optimizing only visual tokens, our technique
is subject to a few limitations. First, there is some additional inference overhead, while various
engineering approaches (such as Ollama 2) can significantly speed up the process. Therefore, this
limitation can be reasonably overlooked. Second, our method is applicable only to white-box models
and relies on the basic capabilities of the models themselves. However, our approach is orthogonal
to these ongoing advancements in foundational models. Third, currently, our method supports only
a single region visual prompt, extending this to multi-region control is a direction for future work.
Fourth, our current optimization strategy is relatively simple, and the selection of text prompts can
also affect the optimization results. We plan to focus on improving this aspect in future research.

7 Conclusion

In this work, we present a training-free method to integrate visual prompts into Multimodal Large Lan-
guage Models (MLLMs) through learnable latent variable optimization. By adjusting visual tokens
during inference, our approach enhances the attention to referring regions, enabling detailed descrip-
tions and reasoning without additional training costs. Our method supports various referring formats
such as box, mask, scribble, and point. The results show that our approach demonstrates strong
out-of-domain generalization and interpretability, making it a promising direction for embedding
referring abilities into MLLMs.
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A Broader Impact

The integration of Multimodal Large Language Models (MLLMs) has far-reaching implications
across various sectors. These models enhance accessibility, improve education, advance healthcare,
and revolutionize media and entertainment. They offer intuitive interfaces for diverse communication
needs, assist in medical diagnosis and treatment, and enable immersive multimedia experiences.
However, ethical considerations must be addressed to ensure equitable and responsible deployment.
Collaboration among researchers, policymakers, and industry is essential to maximize the societal
impact of MLLMs.

B Appendix / supplemental material

B.1 Details of EMA and ES

EMA. Model weight Exponential Moving Average (EMA) is a technique used to stabilize the
training of deep neural networks by maintaining a smoothed version of the model parameters. It
calculates the moving average of the model weights by giving more weight to recent updates while
gradually decreasing the influence of past updates. Mathematically, EMA is defined as:

θ
(t)
EMA = β · θ(t) + (1− β) · θ(t−1)

EMA ,

where θ
(t)
EMA is the EMA of the model weights at time t, θ(t) is the model weights at time t, θ(t−1)

EMA is
the EMA of the model weights at the previous time step, β is the smoothing factor, ranging from 0
to 1. EMA helps to stabilize the training process by reducing the variance of the parameter updates,
which can prevent the model from diverging or oscillating during training. We employ the EMA on
the learnable latent variable in our experiments during visual token optimization.

ES. Early Stop (ES) is a regularization technique commonly used during the training of machine
learning models to prevent overfitting. The main idea behind ES is to monitor the performance of the
model on a validation set during training and stop the training process if the performance begins to
deteriorate. Specifically, in our experiments, ES tracks the loss on the test sample and halts the visual
token optimization process if the metric does not improve for a certain number of consecutive epochs.
Mathematically, ES can be described as follows:

Let L(i) denote the loss at optimization process t, and let ∆ represent a predefined threshold for
acceptable loss degradation, then we

Stop optimizing if abs(L(t) − L(0))/L(0) ≥ ∆ for T consecutive process.

We set ∆ = 0.25 in our experiments. ES helps prevent overfitting by stopping the optimization
process before the model starts to lose generalization ability. It provides a simple yet effective way to
regularize the optimization process and improve the generalization performance of the model.

B.2 Additional Experiment Details

Details of Relevancy Score. To elucidate the influence of input visual pixels on outputs, we employ
a technique known as the Relevancy Map. This map highlights the regions or features of the input
data that contribute most significantly to the model’s decision-making process. Specifically, the
Relevancy Map assigns importance scores to different parts of the input, indicating their relative
impact on the model’s output. This interpretability tool not only enhances our understanding of the
model’s behavior but also facilitates error analysis and model debugging. More details can be found
in the paper [61, 3, 9, 10, 50].

In our experiments, we provide the relevancy scores alongside model predictions to provide insights
into the model’s decision-making process. In MLLMs, the typical use of Key-Value cache technique
in LLMs, for convenience, we propagate the relevance from the model’s first output token to the input
of LLM ( ev and et ). Then the relevancy scores corresponding to visual tokens are reshaped into a
grid that matches the layout of the original image. Since relevancy maps are akin to attention maps
and often exhibit significantly higher values in localized regions, taking the average may dilute their
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Table 5: The ablation of T , α, EMA. We report Accuracy and Relevancy on ROC task (validation
set). The best performance is highlighted in bold, while the paired Relevancy scores are indicated
with underlines.

T → Accuracy Relevancy
0 1 2 3 4 0 1 2 3 4

α = 200 57.00 57.50 59.00 60.50 58.00 0.1667 0.1679 0.1698 0.1743 0.2058
α = 300 57.00 57.50 60.00 59.00 58.50 0.1667 0.1684 0.1722 0.1986 0.2792
α = 400 57.00 58.50 60.50 61.00 53.50 0.1667 0.1689 0.1749 0.2238 2.5542
α = 500 57.00 59.50 60.50 56.00 43.00 0.1667 0.1694 0.1799 0.2650 0.4542

w/ EMA (α = 400)
β = 0.3 57.00 57.00 58.00 60.50 62.00 0.1667 0.1674 0.1689 0.1712 0.1753
β = 0.5 57.00 57.50 60.00 61.00 60.00 0.1667 0.1679 0.1704 0.1767 0.2071
β = 0.7 57.00 57.50 61.00 62.00 54.00 0.1667 0.1683 0.1728 0.1957 0.2992

Table 6: The ablation of ES (α =
400, β = 0.5, validation set).

T → 0 4 5

Acc. 57.00 60.50 62.50
Rel. 0.1667 0.1841 0.1937

Table 7: Impact of LLM Size in Dif-
ferent MLLMs on ROC task (box,
test set).

Models Vanilla Ours

LLaVA-1.5-7B 54.72 60.59
LLaVA-1.5-13B 55.69 58.40
InstructBLIP-7B 49.81 54.91
InstructBLIP-13B 54.33 59.24

significance. So we extract the max value in the referring region of relevancy map as final relevancy
score.

It is also worth noting that we found relevancy map plays a similar role to attention map, directly
modeling the relationship between input and output of the model. This suggests that we may be able
to directly control the model’s output based on relevancy map. However, calculating the relevancy
map requires computing the gradient for each relevant tensor in the model. For convenience, the
approach presented in this paper only utilizes attention for implementation, while the relevancy map
only be used to assess the extent of visual impact on the output.

Details of Implement. We apply low-bit quantization to the basic model we implemented to further
optimize memory usage. Nevertheless, we still achieve performance competitive with training-based
methods (without quantization).

Details and Input Examples of ROC Task. The box and mask are from the LVIS GT boxes and
mask, the scribble and the point are randomly sampled inside the boxes. It is worth noting that we
follow Ferret to choose negative object whose central point is close to the GT object. Although
this is somewhat disadvantageous for us, we still achieve competitive performance compared to
other methods. And we show the input examples of different methods on ROC task in Figure 7.

B.3 Additional Experiments

Application on scene text recognition (OCR). Results are shown in Figure 8. Our method can
also perform referring region text recognition.

Examples on Out-of-Domain Task. We present examples of the performance on out-of-domain
tasks OCR and Screenshots. As shown in Figure 6, compared to Ferret, our method correctly
identified the text in the referring region. Additionally, as shown in Figure 9, our method correctly
recognized the app in the mobile screenshot, unlike Ferret.

Effect on More MLLMs. We validate our method on various MLLMs, including LLaVA-1.5-7B,
InstructBLIP-7B, and LLaVA-HR-7B. InstructBLIP employs a cross-attention image-text alignment
module called Q-Former. Specifically, in InstructBLIP, the interaction between visual tokens and text
tokens occurs within Q-Former, so we utilize the cross-attention map from Q-Former to optimize
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Table 8: The inference cost with different actual output token numbers on a single GTX3090 GPU.
LLaVA + Ours with T = 5 without using Early Stop here.

Models speed(s) Max GPU Mem.

LLaVA (6 tokens) 1.22 7G
LLaVA + Ours (7 tokens) 3.56 14G
LLaVA (436 tokens) 5.78 7G
LLaVA + Ours (439 tokens) 7.45 14G

visual tokens. LLaVA-HR supports input images with larger resolutions. The results are shown in
Table 4.

Comparison on Referring Description Task. We also validate our method through the Referring
Description Task. Specifically, we construct the test set based on region-text pairs from the Ref-
COCOg test split and evaluate the method using traditional captioning metrics BLEU@4 (B@4) [42],
METEOR (M) [6], CIDEr-D (C) [55], and SPICE (S) [2]. However, it is important to note that these
metrics are significantly influenced by the style and distribution of the model’s output text. Typically,
outputs that are more similar in distribution to RefCOCOg yield better results, while those with some
unique styles lead to poorer results. Therefore, this experiment is only used for internal validation of
the model and not for comparison between different models. The results are shown in Table 3. Our
method consistently improves the model’s referring description performance.

Impact of LLM Size on Different MLLMs. We validate the impact of LLM size on LLaVA-1.5
and InstructBLIP, focusing on the 7B and 13B models. The results are shown in Table 7. Our method
exhibited poorer performance in LLaVA-1.5-13B, which may be due to the increased number of
attention maps, making the optimization of visual tokens more challenging. Therefore, it may be
essential to adopt different hyperparameters for different models. In contrast, in InstructBLIP-7B
and InstructBLIP-13B, our method consistently yielded performance improvements. This is likely
because the interaction between visual tokens and text tokens occurs in Q-Former for InstructBLIP,
thereby mitigating the optimization challenges associated with larger LLMs.

Inference Cost. We compare the inference cost of our method and the basic LLaVA model. LLaVA
+ Ours model with T = 5 and does not use Early Stop here. Results are shown in Table 8, when
outputting only 7 tokens, our method noticeably adds approximately 2 seconds of inference time.
However, when generating about 400 tokens, the proportion of the extra inference time produced by
our method significantly decreases. When combined with an early stop strategy, the proportion of
additional inference time will be further reduced.

Impact of Different Text Prompt. Results are shown in Figure 10. Different text prompts can
significantly affect the performance of our method. For instance, our method fails when using an
ambiguous text prompt like "describe the region in the image." However, it succeeds with a more
specific referring text prompt such as "what is unusual about the region of the building?" Therefore,
it is recommended to use clear and specific text prompts to achieve better control and performance.

Impact of the Size of Visual Prompt. Results are shown in Figure 11. For box and mask prompts,
when they do not fully cover the referring object, failure control may occur. This is because the
highest attention response for the desired outcome may fall on any unexpected area of the object.
Therefore, it is recommended to cover the object with a larger-sized visual prompt.

Comparing Highlight Token and Context Token based Optimization. We compare Highlight
Token and Context Token based Optimization as shown in Figure 12. Directly optimizing based on
the highlight token is faster but also prone to overfitting. This may be due to the direct connection
between the highlight token and visual token, while other text tokens contain redundant visual
associations. However, this also ignores the potential influence of other text tokens.

More Examples of Referring MLLMs with Scribble and Point. In Figure 14, we also show
more examples of referring MLLMs with scribble (right) and point (left).
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Prompt: Is the object in red bounding 

box of the image a necktie or a person?

Prompt: Is the object of the image 

a necktie or a person?

Prompt: Is the object of the image 

a necktie or a person?

LLaVA + Color LLaVA + BlurLLaVA

Prompt: Is the object of the image a necktie or a person?

LLaVA + Ours Training Method 

Prompt: Is the object [0.49, 0.38, 0.60, 

0.84] of the image a necktie or a person?

Figure 7: The input examples of ROC Task.

LLaVA

The text in the region reads "BI-MAN."

Prompt: what is the text in the region?

The text in the region is "Sky Chefs."

LLaVA + OursModels

Input Image

Output

Figure 8: Application on natural scene text recognition (OCR).
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The app in the picture is used for tracking and managing time, 

specifically for keeping track of time spent on various tasks. It is 

designed to help users stay organized and productive by 

providing a visual representation of their time usage. This app 

can be particularly useful for individuals who want to manage 

their time effectively, such as students, professionals, or anyone 

who wants to optimize their daily activities.

LLaVA

The app in the picture is a mobile phone app, which is designed 

to provide various functionalities to the user. It features a 

collection of icons representing different apps and services, such 

as Google, Calendar, Camera, and others. These icons are 

organized in a grid-like pattern, making it easy for users to access 

and navigate through the different functionalities offered by the 

app. The app is likely used for communication, organization, and 

various other tasks that can be performed on a smartphone.

Prompt: What is this app in the picture used for?

LLaVA + Ours

Models Input Image Output

The app seems to be a communication app, as suggested 

by the icon displaying a person on it. It's probably used 

for messaging or staying connected with others.

Ferret

The app in the picture is a game launcher, which is used to 

quickly access and launch various games on a smartphone. It 

provides a convenient way to manage and organize the games 

installed on the device, making it easier for users to find and play 

their favorite games.

LLaVA

The app in the picture is a mobile phone app, which is designed 

to provide various functionalities to the user. It features a 

collection of icons representing different apps and services, such 

as Google, Calendar, Camera, and others. These icons are 

organized in a grid-like pattern, making it easy for users to access 

and navigate through the different functionalities offered by the 

app. The app is likely used for communication, organization, and 

various other tasks that can be performed on a smartphone.

Prompt: What is this app in the picture used for?

LLaVA + Ours

Models Input Image Output

The app is a map application, typically used for 

navigation purposes. It's an icon on the home screen, 

offering easy access to directions and location services

Ferret

Figure 9: Examples of comparing with training method Ferret on Screenshot.

20



LLaVA

LLaVA

+ Ours

The unusual aspect of the building's region is the presence of a 

large window in the middle of the structure. This is not a 

common feature in most buildings, as windows are typically 

placed on the sides or corners of a building. The large window 

in the middle of the building adds an interesting architectural 

element to the structure.

The unusual aspect of the building's region is the presence of a 

potted plant on the side of the building. It is not common to 

see a potted plant on the side of a building, especially in a 

setting where people are dressed in formal attire, such as a 

wedding. The potted plant adds a unique touch to the scene and 

stands out among the other elements.

Prompt: what is unusual of the region of the building?

LLaVA

LLaVA

+ Ours

Prompt: describe the region in the image.

The image features a group of people gathered outside a 

building, possibly a church. There are four people in the scene, 

with two of them wearing ties, indicating a formal or semi-

formal occasion. The group consists of a bride, a groom, and 

two other people. They are all standing together, possibly posing 

for a picture. The building has a black and white color scheme, 

adding a touch of elegance to the scene.

The image features a group of people gathered outside a 
building, possibly a church or a wedding venue. There are four 
people in the scene, with two of them wearing ties, suggesting 
a formal occasion. The group is standing on a brick walkway, 
and there are potted plants nearby, adding to the ambiance of 
the location. The people are engaged in conversation, creating 
a lively atmosphere.

Figure 10: Impact of different text prompt. The clear and specific text prompt attains a better
performance.
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LLaVA

LLaVA

+ Ours

The unusual aspect of the building's region is the presence of a 

large window in the middle of the structure. This is not a 

common feature in most buildings, as windows are typically 

placed on the sides or corners of a building. The large window 

in the middle of the building adds an interesting architectural 

element to the structure.

The unusual aspect of the building's region is the presence of a 

potted plant on the side of the building. It is not common to 

see a potted plant on the side of a building, especially in a 

setting where people are dressed in formal attire, such as a 

wedding. The potted plant adds a unique touch to the scene and 

stands out among the other elements.

Prompt: what is unusual of the region of the building?

The unusual feature of the region of the building is the 

presence of a stained glass window. Stained glass windows 

are not commonly found in modern buildings, especially in 

urban settings. This adds a unique and artistic touch to the 

building, making it stand out from other structures in the area.

The unusual aspect of the region of the building is the presence 

of a potted plant on the ground. Typically, potted plants are 

placed on elevated surfaces, such as tables or shelves, to provide 

better air circulation and prevent overwatering. However, in this 

image, the potted plant is located on the ground, which is not a 

common practice. This might be due to the specific needs of the 

plant or the design choice of the building's interior.

Figure 11: Impact of the size of visual prompt. The larger prompt size attains a better performance.

Prompt: “What's object in the image?”

T=0 T=1 T=2 T=3 T=4 T=5

w/

highlight 

token

w/

context 

token

w/

highlight 

token

w/

context 

token

“The object 

in the image 

is a turtle.”

“…
is a snail

shell.”

“…
is a snail

shell.”

“The object 

in the image 

is a turtle.”

“…
is a turtle.”

“…
is a snail

shell.”

“…
is a snail shell 

or a shell-sh.”

“…
is a turtle.”

“…
is a turtle.”

“…
is a turtle.”

“…
is a small, 

decorated, and 

possibly fake.”

“…
is a small, 

decorated, and 

possibly fake.”

“The object 

in the image 

is a turtle.”

“The object 

in the image 

is a turtle.”

“…
is a turtle.”

“…
is a turtle.”

“…
is a turtle.”

“…
is a green frog.”

“…
is a green frog.”

“…
is a turtle.”

“…
is a green frog 

sitting on top 

of a.”

“…
is a frog sitting 

on a turtle.”

“…
is a frog.”

“…
is a frog.”

Figure 12: Comparing highlight text token and context text token based optimization.
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Prompt: “What's color of hat the person wearing?”

T=0 T=1 T=3 T=4 T=5

w/o

EMA

w/

EMA

“
The color of the hat the 

person is wearing is red.”

“The person 

wearing the 

hat is wearing 

a green hat.”

“… 

a red hat.”

“
The color of the hat is red.

The hues of the two pieces 

of the image are the same, 

and the hues of the two.”

“
The image of the image is a

The image of the image is a

The image of the image is a.”

“The person 

wearing the 

hat is wearing 

a green hat.”

“… 

a red hat.”

“… 

a red hat.”

“… 

a red hat.”

“… 

a red hat.”

Figure 13: Impact of EMA. The EMA stabilizes the optimization process.

Prompt: What is the object?

LLaVA + Ours: The object is a ring 

with a large stone in it.

LLaVA: The object is a leather bag 

or a satchel.

Prompt: what is color of this bench?

LLaVA + Ours: The color of this bench is green.

LLaVA: The color of this bench is yellow.

Input Image 

& 

Visual Prompt

Input Prompt 

& 

Output Text

Figure 14: More examples of referring MLLMs with scribble (right) and point (left).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction include the claims made in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discuss the limitations of the work in Sec 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes experiments, and with related information needed to
reproduce the main experimental results in Sec 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: The code will be released in the Github.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the experimental setting details in Sec 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The error bars are not reported because it would be too computationally
expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provide sufficient information on the computer resources needed to
reproduce the experiments in Sec 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss both potential societal impacts of the work in Sec. A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The documentation is provided alongside the new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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