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Abstract

WiFi sensing has emerged as a compelling contactless modality for human activity
monitoring by capturing fine-grained variations in Channel State Information
(CSD). Its ability to operate continuously and non-intrusively while preserving user
privacy makes it particularly suitable for health monitoring. However, existing
WiFi sensing systems struggle to generalize in real-world settings, largely due to
datasets collected in controlled environments with homogeneous hardware and
fragmented, session-based recordings that fail to reflect continuous daily activity.
We present CSI-Bench, a large-scale, in-the-wild benchmark dataset collected using
commercial WiFi edge devices across 26 diverse indoor environments with 35 real
users. Spanning over 461 hours of effective data, CSI-Bench captures realistic
signal variability under natural conditions. It includes task-specific datasets for
fall detection, breathing monitoring, localization, and motion source recognition,
as well as a co-labeled multitask dataset with joint annotations for user identity,
activity, and proximity. To support the development of robust and generalizable
models, CSI-Bench provides standardized evaluation splits and baseline results
for both single-task and multi-task learning. CSI-Bench offers a foundation for
scalable, privacy-preserving WiFi sensing systems in health and broader human-
centric applications. Links: |CSI-Bench Dataset;|CSI-Bench Code;|Project Page

1 Introduction

Today’s smart IoT devices, such as smart speakers, smart bulbs, and various smart display devices, are
commonly connected to home routers or mesh network hubs via WiFi. Beyond their primary role in
communication, the WiFi signals between these devices inherently capture rich information about the
surrounding environment through their propagation paths [25} 44, [26]]. This has positioned WiFi sens-
ing as a compelling alternative to vision- or wearable-based systems for human monitoring in smart
environments. By capturing fine-grained temporal and spatial variations in Channel State Information
(CSI), commodity WiFi devices can infer a wide range of human-centric phenomena—from gross
motor events such as falls to subtle physiological signals like breathing. These properties make WiFi
sensing especially attractive for health-related applications in smart homes, where privacy, continuous
operation, and ease of deployment are critical. Moreover, because these signals are already being
transmitted by existing infrastructure, WiFi-based sensing enables non-intrusive, cost-effective, and
passive monitoring without requiring additional sensors or user instrumentation.

Despite increasing research interest, existing WiFi sensing studies suffer from a fundamental limita-
tion: a lack of large-scale, diverse, and real-world datasets. Most current datasets are collected in
controlled laboratory settings, often using limited types of homogeneous hardware configurations
and a narrow range of tasks. As a result, models trained on these datasets struggle to generalize to
new users, devices, or environments, limiting their practical utility.
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Figure 1: CSI-Bench overview. The benchmark features multiple commercial routers and IoT devices
deployed in real homes and offices to collect CSI data. It supports a wide range of human-centric
sensing tasks, enabling robust model development across diverse hardware setups and real-world
scenarios.

To address these gaps, we introduce CSI-Bench, the first large-scale, in-the-wild benchmark dataset
supporting multi-task WiFi sensing as illustrated in Figure [T} Using commercial edge devices,
CSI-Bench captures real-world signal variability across diverse environments, including apartments,
multi-room houses, offices, and public indoor spaces. Data is recorded continuously from a broad
spectrum of WiFi chipsets (Qualcomm, Broadcom, Espressif, MediaTek, and NXP), under both
line-of-sight (LoS) and non-line-of-sight (NLoS) conditions, and during natural human activities with
minimal intervention.

CSI-Bench advances the field in three key ways:

Large-scale, real-world coverage. The dataset spans over 461 hours of CSI data from 35 users, 26
distinct environments, and 16 device configurations. It reflects realistic deployment conditions with
background interference, user mobility, and ambient network traffic.

Multi-task and co-labeled annotations. We provide both single-task specialist datasets (e.g., fall
detection, breathing monitoring, localization, and motion source recognition) and a multi-task dataset
with joint labels for user identification, activity recognition, and proximity estimation. The co-labeled
samples enable efficient multi-task learning and low-latency inference on resource-constrained edge
devices.

Standardized benchmarking protocols. We establish strong baselines under supervised learning and
multi-task learning. Our findings highlight generalization gaps and the promise of parameter-efficient
multi-task learning.

CSI-Bench aims to catalyze robust model development for passive, privacy-preserving WiFi sensing.
By offering a unified platform for realistic, diverse, and reproducible evaluation, it provides a
foundation for scalable Al applications in smart health, home monitoring, and beyond.

2 Related Work

2.1 WiFi Sensing

Compared to vision-, audio-, or wearable-based systems, WiFi sensing offers a scalable, privacy-
preserving, and non-intrusive alternative or complementary solution for continuous monitoring in
smart environments and healthcare applications [23], 12, 33, 50]. WiFi sensing has demonstrated
substantial potential in tasks such as activity recognition [24}[29], gesture detection 471, indoor
tracking and localization 40|, [51, 32}, fall detection [33]], proximity detection [20], and vital
sign monitoring [41l [13]]. However, most existing studies rely on data collected in constrained
settings, which limits generalization to diverse users, hardware platforms, and real-world deployment
scenarios.

2.2 WiFi Sensing Dataset

A number of WiFi sensing datasets have contributed valuable resources to the community.
Widar3.0 [49]] offers large-scale CSI data for gesture recognition using Intel 5300 NICs [13].



Table 1: Comparison of CSI-Bench with published datasets.

Dataset (Year) Platform #Edge Device Type #Samples #Tasks #Envs #Users In-the-Wild
WIAR [14] (2019) Intel 5300 NIC 1 4.8k 1 3 10 X
ARIL[37] (2019) USRP 1 1.4k 2 1 1 X
Widar3.0 [49] (2021) Intel 5300 NIC 1 271.1k 1 3 16 X
XRF55 [38] (2024) Intel 5300 NIC 1 42.9k 1 4 39 X
SignFi [28] (2018) Intel 5300 NIC 1 14.3k 1 2 5 X
WiMANs [22] (2024) Intel 5300 NIC 1 11.3k 3 3 5 X
CSIDA [19] (2021) Intel 5300 NIC 1 3k 1 2 5 X
MM-Fi [46] (2023) Atheros CSI Tool 1 1.1k 1 4 40 X
Broadcom
CSI-Bench Qualcomm, MediaTek 16 231.6k 7 26 35 v

Espressif, NXP

SignFi [28] focuses on sign language recognition, capturing fine-grained hand gestures. MM-
Fi [46]] enables cross-modal analysis by combining WiFi CSI with synchronized video and depth data.
XRFS55 [38] introduces a large corpus of RF-based activity data for action recognition. Additional
datasets such as ARIL [37], CSIDA [19] support tasks like activity recognition and localization.

While these datasets have advanced the field, they share several limitations as illustrated in TableE}
First, most are confined to controlled laboratory settings, offering limited variability in user behavior,
device types, and environmental complexity. Second, they primarily support single-task scenarios,
lacking the multi-task supervision needed for training general-purpose models. Third, nearly all
rely on the Intel 5300 chipset, which does not support continuous CSI recording. As a result, data
is collected in fragmented, pre-scripted sessions using manual triggers, which limits dataset scale
and fails to capture users’ natural daily activities. There remains a growing demand for a unified
benchmark that reflects the complexity of real-world deployments, supports multiple sensing tasks,
and enables evaluation across diverse users, environments, and hardware platforms. To address this
need, we introduce CSI-Bench, a large-scale in-the-wild benchmark for passive WiFi sensing.

3 Dataset Collection

3.1 Overview

To support robust and generalizable WiFi sensing research, we build a diverse collection of datasets
captured in real-world environments using commercial WiFi devices. CSI-Bench spans over 461
hours of CSI recordings across 35 unique users, 26 environments, and 16 device types, covering
both routers and edge devices operating under varied network conditions. Data is collected in homes,
offices, and public indoor areas with minimal control over ambient interference or user behavior. Each
dataset is designed to support one or more sensing tasks, including fall detection (Fall), breathing
monitoring (Breath), localization (Loc.), human activity recognition (HAR), user identification (UID),
and proximity estimation (Prox.). Representative CSI samples illustrating task-specific signal patterns
are visualized in Figure 2| The following section details the hardware, environments, and collection
protocols used to capture the datasets.

3.2 Devices and Hardware Setup

Hardware. To emulate the heterogeneity of real-world WiFi sensing deployments, we employ
a diverse set of commercial WiFi routers and edge IoT devices commonly found in residential
and commercial environments. The selected devices span five major chipset vendors, including
Qualcomm, MediaTek, Broadcom, Espressif, and NXP [[7, 6, [2, 3], and cover a broad spectrum of
hardware configurations, including 1x1 to 2x2 MIMO and 1x4 antenna setups. All devices support
IEEE 802.11 n/ac/ax standards, operating across both 2.4 GHz and 5 GHz bands with channel
bandwidths of 20, 40, and 80 MHz. These heterogeneous devices are intentionally chosen to reflect
the real IoT ecosystem deployed in homes, offices, and small businesses, where heterogeneous
devices with varying wireless capabilities coexist in complex indoor environments. Their detailed
specifications, including chipset model, antenna configuration, bandwidth, frequency band, and
empirically measured average RSSI, are listed in Appendix [A](Table [7).
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Figure 2: Representative CSI samples are shown for various scenarios, including human actions
(jumping, running, walking, hand waving, falling, breathing), non-human motions (pet movement,
iRobot, fan), and empty environments. In each sample, the x-axis represents time, and the y-axis
represents the subcarrier index.

CSI extraction and synchronization. In our system, IoT client devices periodically transmit CSI
packets to routers at two sounding rates: 100 Hz for general sensing tasks and 30 Hz for breathing
detection, accommodating different temporal dynamics. Given the distributed nature of these devices,
propagation delays and clock drifts cause misalignment in CSI data streams. To address this, the
router coordinates data collection by sending batch requests with defined time windows, asking
devices to record and upload CSI within the same interval. Each device uses its own system clock
to timestamp the data, which allows us to later align the streams in software. Routers handle CSI
extraction, buffering, and data upload to cloud servers, running either Linux or FreeRTOS depending
on their chipset.

CSI format. Due to hardware diversity, the CSI data in CSI-Bench varies in subcarrier granularity,
antenna configurations, and supported bandwidths across different chipset architectures. For example,
the NXP 88W8997 provides a 2x2 MIMO configuration with 58 subcarriers at 40 MHz on 5 GHz,
while the ESP32-S3, with a 1x1 setup, captures 64 subcarriers at 20 MHz on 2.4 GHz. Qualcomm
1PQ4019/TPQ4018 devices offer a 1x2 MIMO configuration, supporting 128 subcarriers at 40 MHz
and 256 subcarriers at 80 MHz on 5 GHz. In contrast, the Broadcom BCM4345 employs a 1x4
antenna configuration, providing only 14/28 subcarriers at 20/40 MHz due to proprietary subcarrier
grouping. These variations ensure CSI-Bench captures a wide spectrum of signal characteristics,
enabling comprehensive evaluation of model generalization across heterogeneous hardware platforms.

3.3 Continuous Data Recording

To overcome the limitations of prior works that typically rely on controlled environments or predefined
protocols, we develop an integrated pipeline enabling scalable, in-the-wild CSI data collection across
diverse residential settings. Leveraging commercial routers with developer-accessible CSI extraction,
cloud infrastructure, and user-friendly annotation tools, our system unobtrusively captures large-scale
CSI data from everyday WiFi usage without device-side modifications.

We collaborate with multiple router chipset vendors, who provided firmware and drivers with
CSI extraction capabilities enabled, along with proprietary CSI capture utilities for CSI extraction.
Building on this, we develop our own tools to programmatically capture and manage CSI data.
Specifically, we design separate tools for Linux or FreeRTOS [4]], each design to send commands
from the Linux application layer directly to the WLAN kernel module, enabling continuous collection
and buffering of CSI from all registered devices into unified binary files, which are periodically
uploaded to cloud storage via AWS S3 APIs [1]]. Each file is timestamped using the router’s
local system time embedded in the filename, ensuring straightforward temporal alignment across
deployments. Upload frequency dynamically adjusts based on device count and bandwidth utilization.

We also develop a lightweight user annotation tool integrated into Google Spreadsheet [3]], allowing
users to optionally log daily activities—such as waking up, sleeping, leaving or returning home, room
occupancy, or inactivity—by tapping buttons that record local timestamps. This design minimizes
user effort while ensuring accurate temporal alignment between activity logs and CSI data. An
illustration of the annotation tool is provided in Appendix[A.TI0] Our system queries and retrieves
CSI files matching these events, concatenates the relevant segments, and refines alignment using
embedded packet-level timestamps, resulting in precisely labeled CSI data segments. We collect CSI



Table 2: Summary of tasks, dataset statistics, partitions, and evaluation protocols. ST = single-task
specialist, MT = multi-task joint.

Task #Classes Dataset #Samples #Users #Envs #Devices Split, Setting

Fall Detection 2 ST 6.7k 17 6 2 70/15/15, easy/med/hard
Breath Detection 2 ST 100k 3 3 6 70/15/15, easy/med/hard
Motion Source Recognition 4 ST 60.9k 35 10 1 70/15/15, easy/med/hard
Room-level Localization 6 ST 7.1k 8 6 8 70/15/15, easy/med/hard
Proximity Recognition 4 MT 20.3k 6 6 11 70/15/15, user/env/device
Human Activity Recognition 5 MT 41.5k 6 6 11 70/15/15, user/env/device
User Identification 6 MT 20.3k 6 6 11 70/15/15, device

of motion from non-human sources like pets and cleaning robot when users are not home. When
possible, time-aligned external information is collected through camera recordings and local sensor
logs to annotate non-human motions or highlight environmental changes.

This pipeline enables extensive, accurately labeled CSI data collection reflective of authentic user
behaviors and diverse environments, supporting a wide range of large-scale research applications.

3.4 Environments and Contexts

We collect our data across a broad range of environments, including compact apartments, multi-room
houses, offices, hallways, and open indoor public spaces, as detailed in Appendix [A.2] These settings
introduce diverse physical characteristics, including complex layouts, clutter, variable wall materials,
and occlusions, that significantly affect signal propagation.

Unlike prior datasets collected under controlled conditions, our data captures CSI under authentic,
in-the-wild conditions. Devices were positioned freely by users, and data was recorded continuously
during natural daily activities. Consequently, the CSI reflects realistic variability introduced by NLoS
links, neighboring motion, background activity from appliances, WiFi traffic, and environmental
factors such as wind and even rain drops. This level of interference is critical for benchmarking
the robustness of WiFi sensing models, particularly for healthcare applications where reliable and
through-the-wall monitoring in uncontrolled home environments is essential.

3.5 Data Collection Protocols

Although participants are free to move naturally and perform tasks as they would in daily life, we
implement basic data collection protocols to ensure consistency and repeatability. Each session begin
with a brief calibration phase to verify device connectivity, synchronize timestamps, and confirm
stable CSI logging. The recorded activities spans a range of motion patterns, including sitting still,
walking, waving hands, and running through hallways. All participants signed a consent form prior
to participation, with expenses around $20 /hr. Data from non-human motion sources—such as
pets, cleaning robots, and electrical appliances like fans—are collected when users are not present.
Detailed task-specific data collection procedures are provided in Appendix [A]

3.6 Dataset Statistics

CSI-Bench spans seven classification tasks with varied sensing objectives. Table [2 summarizes
dataset scale and coverage, including the number of samples, recording duration, users, environments,
and device types. This diversity reflects real-world deployment conditions and supports robust
generalization benchmarking.

4 Data Quality and Preprocessing

4.1 CSI Quality Verification

Motivation. CSI quality checking is critical for ensuring data reliability, as raw measurements often
suffer from signal dropouts, high noise levels, or inconsistent timestamps. These issues can arise due
to differences in chipset design, CSI extraction algorithms, hardware configurations (e.g., antenna
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Figure 3: MATLAB-based CSI verification tool. (a) Visualization of CSI quality from three devices,
showing variations in sampling interval, time-subcarrier heatmap, and amplitude response. (b) User
interface for parsing and evaluating CSI data, supporting timestamp checks, amplitude analysis, and
figure export to ensure data reliability in CSI-Bench.

layout, RF circuitry), and deployment conditions. As illustrated in Figure[3a] the CSI quality varies
from device to device. Device 1 exhibits the best CSI quality, with consistent temporal patterns
and a stable sampling rate near the nominal 30 and 100 Hz. Device 2 shows moderate quality with
occasional outliers and a lower sampling rate, while Device 3 suffers from the poorest quality, marked
by irregular sampling intervals and temporal clustering of CSI frames. Given the diverse hardware
platforms and settings in CSI-Bench, these quality variations must be systematically addressed to
enable meaningful benchmarking.

Verification tool. To systematically assess and ensure CSI data quality, we adopt a structured
evaluation framework introduced in an existing work [21]], which models CSI verification as a
multilayered pipeline. Each layer of this pipeline targets a specific aspect of data integrity using
customized metrics, covering timestamp consistency, CSI amplitude stability, and other modality-
specific characteristics. This design allows us to characterize various perspectives of CSI quality
and adapt the evaluation to different sensing tasks. In the context of CSI-Bench, we apply this
framework to filter out samples with timestamp irregularities, unstable or flat CSI amplitude, and
signal dropout, ensuring that only reliable traces are included in the benchmark. The CSI verification
tool is implemented in MATLAB, as shown in Figure [3b] to facilitate systematic quality control
before incorporating data into CSI-Bench.

4.2 CSI Preprocessing Pipeline

Amplitude extraction. In real-world measurements, CSI is often corrupted by phase noise caused
by timing and frequency synchronization offsets, as well as additive thermal noise. In the literature,
two main approaches are used to handle phase distortions: phase cleaning 10} and phase
elimination [39} [43] [48]. Phase cleaning aims to correct the distorted phase but cannot fully eliminate
initial phase offsets, making it less reliable for consistent processing across diverse devices. Therefore,
in our benchmark, we adopt the phase elimination approach. Specifically, if the extracted CSI at
time ¢ and subcarrier frequency f is represented as H ( f,t), we use the amplitude |H (f,t)| as input,
eliminating the unreliable phase component.

Data segmentation. To facilitate supervised model training, the collected CSI data is segmented into
fixed-duration, non-overlapping samples. For tasks including Fall Detection, Localization, Motion
Source Recognition, and the Multi-Task dataset, we segment CSI data into 5-second intervals. For
the Breathing Detection dataset, considering the slower temporal variations inherent to respiration



signals, we segment the CSI data into 10-second intervals. We also provide the unsegmented CSI
recordings of part of our dataset to support

Amplitude normalization. To mitigate the effects of varying signal strengths, we normalize each CSI
sample across all subcarriers and time indices by removing the mean and scaling by the standard devi-
ation. This ensures consistent scaling across samples while preserving the relative temporal—spectral

dynamics within each sample. The normalized CSI is computed as H (fr,t) = W where
wp and oy denote the mean and standard deviation of H (fy,t) over the entire CSI matrix, and € is a

small constant added for numerical stability.

Subcarrier standardization. Due to hardware differences, the number of subcarriers in CSI
samples can vary across different platforms, leading to inconsistent input shapes along the frequency
dimension. To standardize the data, we select a fixed number of subcarriers and apply zero-padding
or clipping in the frequency dimension as needed. This ensures all samples have consistent input
shapes across the dataset.

5 Benchmark Design

5.1 Task Suite and Metrics

CSI-Bench supports a suite of supervised classification tasks for WiFi sensing, covering key applica-
tions in health monitoring and ambient intelligence. Each task operates on a fixed-length CSI tensor
X € REXEXT wwhere C is the channel count, K is the standardized subcarrier dimension over
antenna arrays, and 7' is the temporal length of samples (5 seconds for most tasks, and 10 seconds for
breathing detection).

Single-task specialized dataset. The benchmark includes four single-task datasets: Fall Detection
(binary classification of fall vs. non-fall), Breathing Detection (binary detection during sleep, sampled
at 30 Hz), Motion Source Recognition (four-class classification of human, pet, robot, and fan motion),
and Room-Level Localization (six-way classification of the user location). These are evaluated
independently using dedicated datasets.

Multi-task joint dataset. A multi-task dataset contains co-labeled samples for three tasks: Human
Activity Recognition (five-class classification), User Identification (multi-class over 6 users), and
Proximity Recognition (four-class distance estimation). This enables parameter-efficient multi-task
training with a shared backbone and task-specific heads.

All tasks are evaluated using overall accuracy and weighted F1-score. Accuracy provides a global
measure of classification correctness, while the weighted F1-score accounts for class imbalance by
averaging per-class F1-scores weighted by class frequency. This is especially relevant for tasks with
skewed distributions such as fall detection or proximity recognition.

5.2 Evaluation Protocols

CSI-Bench provides standardized train/validation/test splits for all tasks to ensure fair comparison
and reproducibility. For each dataset, 70% of samples are used for training, 15% for validation, and
the remaining 15% for testing, with class balance and environment distribution preserved. Evaluation
protocols and statistics for each task are summarized in Table[2]

To evaluate real-world robustness, each test sample is annotated with a difficulty level—Easy,
Medium, or Hard—based on signal quality, environment, and subject complexity. For the multi-task
dataset, we define three out-of-distribution (OOD) splits—cross-user, cross-environment, and cross-
device—reflecting domain shifts in deployment. These settings enable systematic robustness and
generalization evaluation. Full details are provided in Appendix [A]

5.3 Baseline Models

To establish reference performance and benchmark learning effectiveness on CSI-Bench, we imple-
ment a suite of baseline models across single-task supervised and multi-task learning settings.



Table 3: Performance comparison of supervised models across four core WiFi sensing tasks. Accuracy
(Acc) and F1-score are reported as mean =+ std (%) over three runs.

Model Fall Detection Breathing Detection Room-Level Localization Motion Source Recognition
Acc F1 Acc F1 Acc F1 Acc F1
MLP [34] 92.16 091 92.17 2092 97.59 +0.08  97.59 008  87.14 *0.80 86.90 +0.83  98.86 +0.07 98.86 +0.07
ResNet-18 [16] 94.88 026 94.89 +026 98.58 +0.17  98.58 +0.17  100.00 £0.00  100.00 +0.00  99.56 *0.07 99.56 +0.07
LSTM [17] 94.93 051 94.92 +050 98.62 +0.17  98.62 £0.17  99.12 *0.27 99.12 026  98.42 +0.19 98.42 +0.19
Transformer [36] 94.28 0.2 94.26 £072  98.64 +0.19  98.64 £0.19  99.27 +0.22 99.27 022 98.61 +0.27 98.61 +0.27
ViT [LL 93.58 071 93.59 +070 98.63 +0.17  98.63 +0.17  99.94 *0.11 99.94 +o.11 98.74 *0.10 98.74 *0.10
PatchTST [30] 94.03 074  94.03 £073  98.84 013  98.84 0.3 99.91 *0.10 99.91 +0.10  98.86 *0.19 98.86 +0.19

TimeSformer-1D [8] 93.86 +1.16  93.87 £1.13  98.68 021 98.68 £0.21  100.00 000  100.00 £0.00  98.38 +0.17 98.39 +0.17

Table 4: Comparison of task-specific and multi-task training for the Transformer model across
shared-data tasks. The improvements (A) are reported as mean =+ std (%) over three runs.

Task Task-Specific Training Multi-Task Joint Training Improvement
Acc F1 Acc F1 AAcc AF1
Human Activity Recognition ~ 75.40£0.93  75.49+£0.73  88.06 £0.76 ~ 86.00 £2.05  +12.66  +10.51
User Identification 99.51+0.32  99.51+0.32  99.55+0.06  99.70 £0.27 +0.04 +0.19
Proximity Recognition 77.52+3.13 77354324  86.41+1.97  87.09 +£1.46 +8.89 +9.74

Supervised learning. We evaluate representative architectures spanning fully connected net-
works (MLP) [34]], recurrent models (LSTM) [17]], convolutional backbones (ResNet-18) [16],
and transformer-based sequence learners, including Vision Transformer (ViT) [[L1]], PatchTST [30],
and TimeSformer-1D [8]. All models are trained independently on each task using the corresponding
specialist dataset. Input CSI tensors are amplitude-only with hyperparameters tuned using validation
performance.

Multi-task learning. To explore parameter efficiency and cross-task knowledge sharing, we also
implement multi-task learning using a shared backbone with lightweight task-specific adapters [9].
We adopt the same backbones as in the supervised setting and attach low-rank (LoRA) adapters [18]
and separate classification heads for each task. During training, task-labeled samples are drawn from
the joint multi-task dataset, and optimization proceeds with shared backbone updates and task-specific
losses.

All models are trained using the AdamW optimizer [27] with a cosine learning rate schedule and
early stopping. Detailed architecture configurations and training hyperparameters are provided in

Appendix [B]

5.4 Baseline Evaluation

We report performance on all tasks using both standard supervised learning baselines. Table [3]
summarizes accuracy and weighted Fl-score for supervised models trained on the specialist
datasets. Among the models, transformer-based architectures—particularly TimeSformer-1D and
PatchTST—consistently achieve strong performance, highlighting their effectiveness in capturing
temporal dynamics in high-dimensional CSI data. Simpler models such as MLP and LSTM perform
adequately on some tasks but show clear limitations in harder cases.

Multi-task learning results are presented in Table|4] Compared to task-specific training, our multi-task
models with a shared Transformer backbone and lightweight adapter-based heads achieve improved
performance across multiple tasks. These findings highlight the effectiveness of joint training in
capturing shared representations while preserving task-specific specialization through adapters. They
also suggest that multi-task learning can improve generalization in real-world settings where sensing
tasks are naturally co-located and co-labeled.

In addition to strong performance, our multi-task framework significantly reduces model complexity
and training cost. By consolidating three single-task Transformers into a single backbone with task-
specific adapters, we reduce the total parameter count by over 60%. This compression is achieved
without degrading task performance. Moreover, because all tasks are trained jointly in a single pass,



Table 5: Cross-domain performance of Transformer model on three tasks. Accuracy (Acc) and
F1-score are reported as mean + std (%) over three runs.

Cross-Device Cross-Env Cross-User
Task

Acc F1 Acc F1 Acc F1

Human Activity Recognition ~ 61.82+0.95  57.80+0.78  54.92+0.98  47.17#1.12  54.72+0.84  46.67 £1.00
Human Identification 59.94 £0.77  59.81 £0.96 / / / /
Proximity Recognition 30.68 +3.11 28.76 £3.51 29.67 £1.63  27.12+1.79  30.26£1.94 2597 +2.26

the wall-clock training time is reduced by nearly 3 x compared to training separate models for each
task. These gains in model size and training efficiency make our approach especially suitable for
deployment on resource-constrained edge devices, where memory and compute budgets are limited.

We also report task-wise performance stratified by difficulty levels (Easy, Medium, Hard) for the
single-task datasets in Appendix [C.T} Performance drops on hard samples for tasks like fall detection
due to signal degradation, cluttered environments, and hardware diversity, reinforcing the need for
deployment-aware evaluation.

5.5 Evaluation on OOD Splits

We evaluate the Transformer-based multi-task model under three OOD conditions: cross-device,
cross-environment, and cross-user (Table EI) Compared with the in-distribution results in Table[z_f], all
OQOD accuracies and F1-scores drop substantially, indicating that models trained on seen domains
fail to generalize effectively to unseen users, environments, or hardware. This degradation reflects
WiFi CST’s strong sensitivity to device, environmental, and user variations, revealing a significant
generalization gap between in-distribution and OOD domains. The results highlight the need for
domain-adaptive, calibration-free learning frameworks to improve real-world robustness in WiFi
sensing. More detailed results and analysis can be found in Appendix[C.2]

5.6 Discussion and Takeaways

CSI-Bench enables scalable research on high-dimensional CSI-based sensing under real-world condi-
tions. Its large scale, diverse hardware coverage, and co-labeled tasks support the development of
unified multi-task models for on-device health monitoring. Multi-task learning yields competitive
performance while significantly reducing model size and inference cost, making it well-suited for
resource-constrained edge deployment. However, performance drops notably under OOD settings,
particularly in cross-device scenarios, exposing persistent generalization challenges. Failure cases
often arise from hardware heterogeneity, cluttered environments, or degraded signal quality. Over-
all, CSI-Bench offers a realistic and comprehensive testbed for developing robust, efficient, and
generalizable WiFi sensing systems in unconstrained environments.

6 Limitations

The dataset uses amplitude-only CSI features due to phase instability across platforms. While
this is practical, it limits exploration of techniques that exploit calibrated phase or angle-of-arrival
information. CSI-Bench is designed around classification tasks. Extensions to regression (e.g.,
continuous sign estimation) and more temporally structured tasks (e.g., long-term activity tracking)
are promising but not yet included. We release all data, tools, and splits to support community-driven
extensions and improvements.

7 Conclusion

We introduce CSI-Bench, a large-scale, in-the-wild benchmark dataset designed to advance research
in WiFi-based sensing for health and human-centric applications. Collected using commercial WiFi
edge devices deployed in real residential settings, CSI-Bench captures natural signal variability
across users, devices, and environments—providing a realistic foundation for developing deployable,
privacy-preserving WiFi sensing systems. The dataset includes single-task datasets for fall detection,



breathing monitoring, localization, and motion source recognition, as well as a co-labeled multi-task
dataset supporting user identification, activity recognition and proximity recognition. This enables
the development of multi-task models that support efficient joint inference while allowing rigorous
evaluation under both in-distribution and out-of-distribution conditions.

To the best of our knowledge, CSI-Bench is the largest available dataset of its kind and can enable
learning pipelines that benefit from high-dimensional CSI signals, diverse commercial edge devices,
and real-world data (“in the wild”). Beyond the dataset, CSI-Bench includes a suite of baseline models
and training protocols under supervised and multi-task settings. Our results show that multi-task
learning can reduce model size and inference cost while maintaining competitive accuracy, making it
suitable for health monitoring on resource-constrained devices. At the same time, performance drops
under domain shifts highlight the need for future research on adaptive and generalizable sensing
models. CSI-Bench provides a comprehensive testbed to support this work and offers a scalable,
practical resource for advancing WiFi sensing systems in healthcare and beyond. We release the full
dataset and benchmark code to facilitate reproducibility and further innovation in this space.

Broader Impact

CSI-Bench establishes a foundational step toward scalable, privacy-preserving, and contactless
healthcare enabled by commodity WiFi infrastructure. By leveraging signals already emitted in
everyday environments, it supports continuous health and behavioral monitoring without requiring
wearables or cameras, thereby reducing barriers to adoption and ensuring dignity, inclusivity, and
accessibility in care.

The benchmark supports multiple healthcare-relevant sensing capabilities: fall detection and breathing
monitoring for safety and wellness tracking; activity recognition and localization for rehabilitation
and behavioral analysis; user identification and proximity estimation for personalized assistance and
social-interaction assessment; and motion source recognition to reduce false alarms in automated
home-care systems. Collectively, these tasks lay the groundwork for comprehensive, unobtrusive
smart health monitoring in homes, hospitals, and assisted living facilities.

Beyond practical healthcare applications, CSI-Bench contributes to the broader machine learning and
sensing communities by providing a large-scale, in-the-wild dataset that captures the true complexity
of human environments. Its diversity in users, hardware, and contexts fosters reproducible research
and robust model development for real-world deployment. The high-dimensional CSI signals pose
unique challenges in time-series modeling, representation learning, and domain generalization,
motivating advances in trustworthy and adaptive Al systems that extend beyond healthcare.

All data are collected with consent, anonymized, and ethically managed. CSI-Bench serves both as
a foundation for practical healthcare solutions and as a benchmark for high-dimensional, human-
centered Al systems.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
4. Experimental Result Reproducibility

Question: Does the paper fully discLoSe all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data is provided or not)?

Answer: [Yes]

Justification: The experiments are reproducible. The code, dataset and detailed instructions
are provided.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please find the links to our code and dataset attached in the abstract. We have
detailed instructions on how to use our data and benchmark code included.

Guidelines:
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training details are discussed in Section
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Results in the paper are reported with error bars representing the standard devi-
ation across three random seeds, please see Table[3|and Table din Section[5.3] The primary
sources of variability include random initialization, data shuffling, and train/validation/test
splits. These are consistently applied to all baseline and proposed models.

8. Experiments Compute Resources
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11.

12.

13.

14.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computing requirements are discussed in Appendix

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: Data were passively collected via commercial WiFi devices in participants’
homes, with informed consent and no direct researcher interaction. An internal ethics
review addressed privacy and risk, and all data were anonymized. Participants received fair
compensation.

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] Please see Section[7]
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of models or data that carry a high risk
for misuse or dual-use concerns. We do not release any generative models or scraped data
from public sources, and the released dataset does not pose foreseeable risks that require
additional safeguards.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original papers and repositories that produced the code
packages and models used in our work. For each asset, we have included the appropriate
references in the paper, along with the license information and relevant URLs where
applicable. All assets used are open-source and have been used in compliance with their
respective licenses

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new large-scale dataset and benchmark code suite for WiFi-
based sensing tasks. Please find the links under abstract.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Our dataset includes data from human subjects in their homes, see @ with
written informed consent and fair compensation provided. Consent procedures and com-
pensation details are summarized in the main paper, with full instructions and sample
screenshots available in the supplementary material for transparency.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were discLoSed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: Our research involved passive data collection in participants’ homes using
commercial WiFi devices, with no direct interaction or intervention, see 3.3}
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A Dataset Description

This appendix details the composition and collection protocols of CSI-Bench.

A.1 Subjects and Scenarios

CSI-Bench includes CSI data from 35 individual users (U01-U35), comprising 26 males and 9
females aged between 23 and 42 years, with heights ranging from 155 to 185 cm and body weights
from 45 to 90 kg. In addition, six two-user sessions (UM01-UMO06) are recorded to support multi-
person interaction analysis. To further diversify subject types, the dataset includes 20 pets (PO1-P20),
with body weights from 6 to 40 kg, and a dedicated two-pet scenario (PMO1). Finally, four distinct
fan-based motion scenes (FO1-F04) capture ambient signal patterns caused by oscillating and ceiling
fans.

A.2 Environments

Data is collected across 26 distinct real-world environments (EO1-E26), including studio apartments,
multi-bedroom apartments, townhouses, and multi-floor single-family houses. These environments
vary in layout complexity, room geometry, wall materials, and furniture density, introducing rich
multipath and occlusion effects. A summary of all environments is provided in Table

A.3 Devices and Hardware Diversity

To ensure broad coverage of real-world IoT infrastructure, we select 16 types of commercial WiFi-
enabled edge devices operating across both 2.4 GHz and 5 GHz bands, with bandwidths of 20, 40,
and 80 MHz. Devices span major chipset vendors such as Qualcomm, Broadcom, Espressif, and NXP,
covering configurations from low-cost smart plugs to high-performance routers and smart speakers.
Prior to data collection, each device is evaluated using our in-house CSI verification tool to assess
signal consistency, sampling stability, and amplitude dynamics. Devices that pass quality thresholds
are used in deployment. Figure ] presents the CSI quality scores across candidate devices; Table[7]
lists their specifications, together with average RSSI values (in dBm) measured over one-hour static
indoor sessions for each device. These RSSI readings characterize real-world signal strength and
serve as a practical proxy for transmit-power variability across hardware families.

A.4 Task-Specific Dataset Statistics

CSI-Bench supports both single-task specialist datasets and a co-labeled multi-task dataset. Task-wise
breakdowns include the number of samples, users, environments, and devices, as detailed in Table @
Each task is annotated with appropriate labels to support supervised learning, multi-task training, and
cross-domain evaluation.

Note on Evaluation Splits. For rigorous benchmarking, CSI-Bench defines task-specific evaluation
splits based on difficulty levels (Easy, Medium, Hard) and out-of-distribution (OOD) axes (cross-user,
cross-environment, cross-device). These splits are introduced in Sections [A.5HA.9|for each task and
are used to generate the experimental results reported in Appendix [C]

A.5 Fall Detection

The Fall Detection dataset is designed to evaluate human fall recognition in real residential settings
using commodity WiFi hardware. Data is collected with synchronized video ground-truth under
varied hardware and environmental conditions.

Subjects and Scenarios. The dataset includes 17 participants across 6 indoor environments. Activi-
ties include casual walking, sitting, lying down, and falling. Scenarios include both LoS and NLoS
layouts, with added noise from ambient sources such as ceiling fans to simulate realistic deployments.

Hardware Setup. WiFi CSI data is primarily collected using NXP88W8997 2x2 802.11ac chipsets
operating at 5.18 GHz with a 40 MHz bandwidth. Each transmitter-receiver pair forms 4 spatial links
and records 58 subcarriers at a sampling rate of 100 Hz. Additionally, a smaller portion of the data is
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Table 6: Summary of tasks and dataset statistics.

Task Users Envs Gender Age (yrs) Height (cm) Weight (kg)
Fall U06 - U22 E21 - E26 14M/3F 23-42 156 - 182 46 - 90
Breath U06, U23, U24 EO05, E09, E10 IM/2F 27-32 160 - 173 60 - 88
Uo01, U05, U06 EO1, E03, E04
Loc. UMO1 - UMOS E06 - 08 4M / 4F 27 -41 155 - 175 48 -90
Prox. Uo1 - U06 EO1 - E0O6 2M / 4F 26 -41 163 - 173 45-90
HAR Uo01 - U06 EO1 - E0O6 2M / 4F 26 -41 163 - 173 45-90
UID Uo01 - U06 EO1 - EO6 2M / 4F 26 -41 163 - 173 45-90
Ell - E13,
PO1 - P20, PMO1 E15 - E20 - - - 6-40
MR sz,
U25 - U27, U29 - U3s, El1 - E20 I5M/3F 23-35 155 - 185 50-90
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Figure 4: Average CSI quality scores of 16 widely used IoT devices evaluated using our CSI
verification tool. Each bar represents the mean score across five measurement trials, with error bars
indicating the standard deviation.

collected using ESP32-S3 devices, which operate at 2.4 GHz with a 1x1 antenna setup and capture
64 subcarriers.

Data Collection Protocol. Each session lasts 1-5 minutes, capturing both routine and fall-related
activities. Fall events are annotated using synchronized video recordings.

Scale and Composition: 6 environments (homes and offices); 17 participants; 2,770 fall events;
3,930 non-fall activities.

Difficulty-Level Evaluation. Test samples are stratified into Easy, Medium, and Hard tiers based
on environmental complexity and device quality. Medium includes fan-induced interference; Hard
includes ESP32-based low-quality CSI.

A.6 Breathing Detection

This dataset captures subtle respiration signals under natural sleep conditions using diverse IoT
hardware in real homes.
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Table 7: Summary of edge devices, WiFi chipsets, and specifications.

Device Chipset Model Antenna Bandwidth Band RSSI
AmazonPlug MediaTek  MT7697N 1x1 20MHz 24G -49.95 dBm
GoveePlug Espressif ESP8266/ESP8285  1x1 20MHz 24G -50.26 dBm
WyzePlug Espressif ESP8266/ESP8285  1x1 20MHz 24G -55.57 dBm
EightreePlug Espressif ESP8266/ESP8285  1x1 20MHz 24G -54.01 dBm
EchoPlus MediaTek  MT8516 1x1 20/40/80MHz  2.4G & 5G  -42.24 dBm
GoogleNest Qualcomm 1PQ4019 Ix1 20/40MHz 24G & 5G  -49.41 dBm
AppleHomePod - - 1x1 20/40MHz 24G & 5G  -52.56 dBm
EchoSpot MediaTek ~ MT6625L 1x1 20/4A0MHz  24G & 5G  -51.20dBm
EchoShow 8 MediaTek  MT8183 1x1 20/40/80MHz 2.4G & 5G  -38.14 dBm
Echodot2 gen = MediaTek = MT6625LN 1x1 20/40MHz  24G & 5G  -76.83 dBm
Echodot3 gen  MediaTek  MT7658CSN 1x1 20/40/80MHz  2.4G & 5G  -57.75 dBm
Hex Home Qualcomm - 1x2 20/40MHz 5G -
HealthPod NXP 88W889 2x2 20/40/80MHz 5G -
ESP32 Espressif S3 1x1 20/40MHz 24G -62.86 dBm
GoogleNestHub Broadcom  BCM4345 1x1 20/40/80MHz  2.4G & 5G  -60.39 dBm
Lyra Qualcomm - 2x2 20/40/80MHz  2.4G & 5G -

Subjects and Scenarios. Breathing data is collected from 3 participants across 3 residential environ-
ments. Deployment setups range from same-room (LoS) to cross-room (NLoS), with and without fan
interference.

Hardware Setup. Devices include Amazon Echo Dots, Echo Plus, Google Nest Hub, and Qualcomm-
based 5 GHz routers. Sampling is fixed at 30 Hz.

Data Collection Protocol. Overnight sessions are passively recorded during natural sleep without
intervention. Participants optionally log activity context.

Scale and Composition: ~55,000 breathing samples; ~45,000 empty-room samples; ~11,400
fan-interfered samples; Diverse device placements and heights (0.47-2.18 m).

Difficulty-Level Evaluation. Difficulty is assigned based on device-user distance, interference level,
and deployment complexity. Hard tiers involve distant NLoS setups and overlapping fan motion.

A.7 Room-Level Localization

This dataset supports room-level user localization in typical households with both single- and multi-
user presence.

Subjects and Scenarios. Data is collected from 8 users in 6 homes. Three rooms per home are
labeled for occupancy. Scenarios include both single and two-user activity.

Hardware Setup. Devices span 8 types (Echo, Google Nest, Apple HomePod, etc.) operating on
2.4/5 GHz at 30 or 100 Hz. Bandwidths vary from 20-80 MHz.

Data Collection Protocol. Users annotate their room presence and co-occupancy manually. Sessions
reflect natural daily activities.

Scale and Composition: 3,805 single-user samples; 3,257 multi-user samples; 6 diverse environ-
ments; 8 device types.

Difficulty-Level Evaluation. Tiers are defined by user count and hardware quality. Easy cases use
high-quality CSI from 5 GHz devices; hard cases include 2.4 GHz plugs and multi-user ambiguity.

A.8 Motion Source Recognition

This dataset captures motion patterns from humans, pets, robots, and fans in diverse indoor settings.
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Table 8: Summary of environments (XBXB indicates X bedrooms and X bathrooms).

EnvID Type Area (sqft) Layout Type # Floors
EO1 Single-family house 2400 Multi-room 3
E02 Apartment 633 Studio 1
E03 Apartment 1077 2B2B 1
E04 Apartment 790 1B1B 1
EO05 Apartment 714 1B1B 1
E06 Apartment 1652 3B2B 1
E07 Apartment 1250 2B2B 1
E08 Single-family house 1790 Multi-room 2
E09 Apartment 1200 2B2B 1
E10 Single-family house 1904 Multi-room 2
Ell Single-family house 1352 Multi-room 2
E12 Apartment 830 1B1B 1
E13 Apartment 2242 4B2B 1
E14 Single-family house 1700 Multi-room 2
E15 Single-family house 2000 Multi-room 2
El6 Apartment 960 1B1B 1
E17 Apartment 860 1B1B 1
E18 Single-family house 1680 Multi-room 2
E19 Town house 2600 Multi-room 4
E20 Office 1224 Partitioned rooms 1
E21 Apartment 700 2B1B 1
E22 Single-family house 1300 Multi-room 2
E23 Office 1500 Partitioned rooms 1
E24 Single-family house 1250 Multi-room 2
E25 Single-family house 1400 Multi-room 2
E26 Single-family house 900 Multi-room 3

Subjects and Scenarios. Data include 13 humans (ages 23-34), 11 pets, Roomba robots, and
oscillating fans. Activities include walking, sneaking, and simulated intrusion. Environments span
homes, townhouses, and offices.

Hardware Setup. CSI is collected via NXP88W8997 2x2 devices at 100 Hz over 58 subcarriers.

Data Collection Protocol. Each session lasts 3-8 minutes. Human data is optionally logged by users;
non-human motion is passively captured.

Scale and Composition: ~150K seconds of human motion; ~2,000 minutes of pet activity; ~1,000
minutes of robot activity; ~200 minutes of fan motion.

Difficulty-Level Evaluation. Difficulty is based on motion type, subject diversity, and signal quality.
Easy cases include clean human walking or small pets; hard cases include multi-subjects, large pets,
or intrusion patterns under NLoS.

A.9 Multi-task Dataset
This dataset enables multi-task learning across activity recognition, user identification, and proximity
estimation.

Subjects and Scenarios. Six users perform 5 activities across 6 homes: walking (at 4 distances),
running, jumping, seated breathing, and waving. Cross-user and cross-environment samples are
included.

20



Hardware Setup. Each environment uses 5-7 IoT devices across 2.4/5 GHz bands. Devices include
Echo, Google Nest, Apple HomePod, ESP32 plugs, and more.

Data Collection Protocol. Each activity lasts 3—6 minutes. Participants use a lightweight UI to
annotate activity boundaries and proximity distances.

Scale and Composition: 41,503 total samples; ~5,000-6,000 samples per activity; 4 proximity
distances: 0.5, 1.5, 2.5, 3.5 m.

Cross-Domain Evaluation. To evaluate generalization, held-out domains include:

¢ Cross-User: U02
¢ Cross-Environment: EO5
* Cross-Device: Amazon Plug, Echo Spot

These exclusions are reserved for OOD test sets used in Appendix [C]

A.10 Annotation Tool

To facilitate user-friendly and accurate labeling during in-the-wild data collection, we developed
a lightweight annotation tool based on Google Spreadsheets for accessibility and cross-platform
compatibility.

As illustrated in Figure[5] the tool provides a simple interface where users can log activities through
“Start/End” button clicks corresponding to predefined motion types (e.g., walking, breathing, jumping,
waving hand, running, localization). Each button click automatically records the timestamp, activity
label, tester ID, and session duration, ensuring precise temporal alignment with the collected CSI
data.

The design emphasizes ease of use and minimal user burden. Participants simply tap the relevant
button when starting and finishing an activity—no manual typing or complex input is required.
The captured logs include information such as activity type, approximate user—device distance,
location context, and timestamps, which are later aligned with the CSI files through automated scripts
described in Section[3.3]

During the collection campaign, participants typically logged around three minutes per activity
type per day, covering multiple motion categories. While logging was optional, this structured yet
flexible protocol ensured sufficient labeled samples for model training while allowing users to behave
naturally in their environments.

B Model Architectures and Training Details

To support rigorous evaluation across in-distribution, cross-domain, and few-shot generalization,
we implement and benchmark a suite of neural network models representative of contemporary
time-series and vision-inspired architectures. All models are implemented in PyTorch and trained
under consistent protocols unless otherwise noted.

B.1 Supervised Learning Architectures

‘We benchmark the following supervised architectures across all tasks:

Multi-Layer Perceptron (MLP) The MLP model consists of three fully-connected layers with
ReL.U activations and dropout for regularization. The input to the model is a flattened CSI feature
vector, capped at a maximum of 10,000 dimensions to control memory usage. Specifically, the
architecture is: [Input — Linear(512) — ReLU — Dropout(0.5) — Linear(128) — ReLU —
Dropout(0.3) — Linear(Output classes)].

Long Short-Term Memory (LSTM) Our LSTM baseline includes a bidirectional LSTM with two
layers, each containing 256 hidden units. A linear classifier follows this, accompanied by dropout
for regularization: [Input — Bi-LSTM(256, 2 layers, dropout=0.3) — Linear(256) — ReLU —
Dropout(0.3) — Linear(Output classes)].
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Easy logging function Start/End v Start/ End

Duration (s) " End Time

walking at 0.5m(0-1m) from the bot 4/14/2025 :43:04 10:46:12 | 14:46:12
walking at 0.5m(0-1m) from the bot 180 4/14/2025 uo1 10:48:21 14:48:21 10:61:27 | 14:51:27
walking 1.5m(1-2m) from the bot 180 4/14/2025 uo1 10:52:45 14:52:45 10:55:52 | 14:55:52
walking 1.5m(1-2m) from the bot 180 4/14/2025 uo1 10:56:50 14:56:50 10:59:56 | 14:59:56
walking 2.5m(2-3m) from the bot 180 4/14/2025 uo1 11:00:53 15:00:53 11:04:00 | 15:04:00
walking 2.5m(2-3m) from the bot 180 4/14/2025 uo1 11:07:18 15:07:18 11:10:25 | 15:10:25
walking 3.5m(3-4m) from the bot 180 4/14/2025 uo1 11:11:15 15:11:15 11:14:23 | 15:14:23
walking 3.5m(3-4m) from the bot 180 4/14/2025 uo1 11:15:25 15:15:25 11:18:31 | 15:18:31
breathing about 1.5m from the bot 180 4/14/2025 uo1 11:24:15 15:24:15 11:27:20 | 15:27:20
breathing about 1.5m from the bot 180 4/14/2025 uo1 11:28:02 15:28:02 11:31:10 | 15:31:10
jumping about 1.5m from the bot 180 4/14/2025 uo1 11:53:38 15:53:38 11:56:46 | 15:56:46
jumping about 1.5m from the bot 180 4/14/2025 uo1 11:58:29 15:58:29 12:01:36 | 16:01:36
wavinghand about 1.5m from the bot 180 4/14/2025 uo1 12:03:37 16:03:37 12:06:43 | 16:06:43
wavinghand about 1.5m from the bot 180 4/14/2025 uo1 12:06:51 16:06:51 12:09:58 | 16:09:58
running about 1.5m from the bot 180 4/14/2025 uo1 12:11:42 16:11:42 12:14:47 | 16:14:47
running about 1.5m from the bot 180 4/14/2025 uo1 12:15:51 16:15:51 12:18:57 | 16:18:57
localization Walk in the room near the bot 180 4/14/2025 uo1 17:45:07 21:45:07 17:47:50 | 21:47:50
localization Walk in the room near the bot 180 4/14/2025 uo1 17:48:51 21:48:51 17:51:58 | 21:51:58
localization Walk in the room near the bot 180 4/14/2025 uo1 17:52:35 21:562:35 17:55:41 | 21:55:41
localization Walk in the room near the bot 180 4/14/2025 uo1 17:56:00 21:56:00 17:69:04 | 21:59:04
localization Walk in the room near the bot 180 4/14/2025 uo1 17:59:25 21:59:25 18:02:30 | 22:02:30
localization Walk in the room near the bot 180 4/14/2025 uo1 18:02:40 22:02:40 18:05:46 | 22:05:46

Figure 5: Screenshot of the Google Spreadsheet—based annotation tool used by participants to record
activities and timestamps during data collection.

ResNet-18 We modify a standard ResNet-18 architecture to accept single-channel input (WiFi CSI
data) by adapting the first convolutional layer accordingly. The final fully connected layer is tailored
to the task-specific number of classes.

Vision Transformer (ViT) The ViT model converts input CSI data into embedded patches using
convolutional patch embeddings, followed by Transformer encoder layers (6 layers, embedding
dimension=128, and 4 heads). A class token is prepended for classification tasks. Dropout and layer
normalization are employed for stability.

Transformer This architecture employs Transformer encoder layers (4 layers, model dimen-
sion=256, 8 attention heads). Inputs are linearly projected into the model dimension, positional
encodings are added, and global average pooling is applied before classification. Dropout is set to 0.1
to prevent overfitting.

PatchTST PatchTST utilizes temporal patch embeddings (patch length=16, stride=8) processed
through Transformer encoder layers (4 layers, embedding dimension=128, 4 heads). The architecture
includes positional encodings, dropout (0.1), and a CLS token or mean pooling strategy for final
prediction.

TimeSformer-1D TimeSformer-1D adopts patch embeddings (patch size=4) followed by separate
temporal and feature attention within Transformer blocks (4 layers, embedding dimension=128, 8
heads). A class token and positional embeddings are included for classification, with dropout layers
added for robustness.

All models use a final linear classifier and are initialized using Xavier uniform initialization unless
otherwise specified.

B.2 Multi-Task Learning with Adapters

To enable efficient multi-task learning across diverse WiFi sensing tasks, we implement task-specific
adapter modules on top of a shared backbone:

* LoRA Adapters: For Transformer backnone model, we apply LoRA to the attention
modules. Each task has separate adapter weights (rank=8, a=32, dropout=0.05).

» Task Adapters: A residual two-layer bottleneck MLP (down-project, GELU, up-project,
followed by LayerNorm) is applied post-backbone for each task.

22



Table 9: Fall Detection performance comparison of supervised models. Accuracy (Acc) and F1-score
are reported as mean * std (%) over three runs.

Model Easy Medium Hard

Acc F1 Acc F1 Acc F1
LSTM [17] 97.62 £0.52 97.62 £0.52 69.12 £5.63 68.20 £5.19 67.12 £2.96 66.05 £4.03
MLP [34] 94.84 £0.85 94.84 +0.85 70.59 £9.61 70.19 £9.91 63.70 £237 63.41 £2.25
PatchTST [30]] 97.13 2072 97.13 072 61.76 +7.59 56.31 1222 62.67 +2.82 61.36 +4.14
ResNet18 [16] 97.27 2032 97.27 032 7794 +563 76.96 +6.46 68.84 +3.04 68.08 +3.58

TimeSformer-1D [8] 96.58 £0.50 96.59 +0.49 67.65 +7.59 64.55 *11.72 65.75 +929 61.19 *17.16
Transformer [36]] 97.08 £0.54 97.08 +0.54 69.12 +563 68.10 591 65.07 +6.94 63.89 +7.40
ViT [[L1] 97.40 £042 97.40 +0.42 77.94 +13.04 77.07 +14.46 65.75 +3.71 64.06 +6.66

» Task-Specific Heads: Each task has a separate classification head, initialized via Xavier
uniform.

During training, we activate one task at a time and update both the shared backbone and the active
task’s adapter and head.

B.3 Training Protocol

All models are trained with the AdamW optimizer, a batch size of 128, and initial learning rate of
le — 3. We apply cosine learning rate decay with 5 warm-up epochs and weight decay of le — 5.
Training lasts up to 100 epochs, with early stopping based on validation loss (patience = 15). We
use categorical cross-entropy as the loss function. The hyperparameter are tuned based on models’
accuracy on validation dataset. Data is loaded from HDFS5 using standardized splits as discussed in
Section[5.2] and label mappings. Our experiments utilize NVIDIA GeForce RTX 4090 GPUs and
AWS Sagemaker involved training with three random seeds across all datasets. For training in AWS
Sagemaker, we use ml.g5.g5.12xlarge, which includes 4 NVIDIA A10G Tensor Core GPUs. The
training time for tasks ranges from 0.5 hour to 13 hours.

C Additional Experiments

The results in Appendix [C] are stratified by the difficulty tiers and OOD evaluation protocols de-
fined in Appendix A.1-A.5. For each task, performance is reported across (i) three difficulty levels
(Easy, Medium, Hard) reflecting environmental and signal complexity for single-task datasets (Ap-
pendix [C.I), and (ii) three out-of-distribution (OOD) axes—cross-user, cross-environment, and
cross-device—for multi-task datasets (Appendix [C.T)). All splits are predefined during data collection
and are described per task in Appendix [A]

C.1 Evaluation with Difficulty Tiers

Table 0] compares Fall Detection performance across three difficulty levels. All models perform
well under the Easy setting, with LSTM, PatchTST, ResNet18, and ViT achieving F1-scores above
97%. MLP underperforms due to limited temporal modeling. In the Medium tier, performance drops
notably—ResNet18 and ViT remain strong (F1 ~77%), while PatchTST degrades significantly (F1
~56%). TimeSformer-1D and Transformer show moderate results. In the Hard tier, ResNet18 leads
with 68.08% F1, while others degrade further. The larger variance in Medium and Hard tiers is due to
smaller dataset sizes, which increase sensitivity to noise and reduce performance stability.
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Table 11: Localization performance comparison of supervised models. Accuracy (Acc) and F1-score
are reported as mean * std (%) over three runs.

Model Easy Medium Hard

Acc F1 Acc F1 Acc F1
LSTM [17] 99.72 £0.32  99.75 2029 100.00 £0.00 100.00 £0.00 98.31 £0.50 98.31 +0.50
MLP [34] 91.36 093 92.03 082 96.11 £1.31 96.18 £129 80.20 £1.06 80.03 £1.19
PatchTST [30] 100.00 £0.00 100.00 £0.00 99.90 +0.19 99.95 +0.10 99.86 +0.17 99.86 +0.18
ResNet18 [16] 100.00 0.00 100.00 +0.00 100.00 +0.00 100.00 +0.00 100.00 0.00 100.00 %0.00

TimeSformer-1D [8] 100.00 +0.00 100.00 +0.00 100.00 +0.00 100.00 +0.00 100.00 +0.00 100.00 +0.00
Transformer [36]] 99.30 £036 99.40 +024 99.90 +0.19 99.90 +0.19 98.95 +0.66 98.95 +0.66
ViT [ILL] 99.79 +042 99.82 +035 99.90 +0.19 99.90 +0.19 99.50 +0.23  99.50 +0.23

Table 12: Motion Source Recognition performance comparison of supervised models. Accuracy
(Acc) and F1-score are reported as mean =+ std (%) over three runs.

Model Easy Medium Hard

Acc F1 Acc F1 Acc F1
LSTM [17] 96.65 £0.96 96.99 +0.78 98.79 +0.11 98.80 +£0.11 96.94 £0.94 96.94 +0.95
MLP [34]] 98.21 £0.28 98.29 +0.18 99.13 +0.11 99.13 +0.11 98.19 +0.36 98.19 +0.36
PatchTST [30] 98.01 £0.69 98.28 +0.54 98.59 +0.36 98.59 +0.36 97.49 +0.71 97.49 +0.72
ResNet18 [16] 99.86 £0.11 99.86 +0.11 99.73 £0.05 99.73 £0.05 99.48 +0.32 99.48 +0.32

TimeSformer-1D [8] 96.56 +0.64 96.92 +0.56 98.68 +0.18 98.69 +0.18 97.32 +0.31 97.31 +0.32
Transformer [36] 98.73 £0.62 98.80 +0.55 98.63 £0.17 98.63 £0.17 98.08 +0.55 98.08 +0.55
ViT [11] 98.38 £0.87 98.41 +0.81 99.27 +032 99.27 +0.32 98.10 2045 98.10 +0.45

Table 10: Breathing Detection performance comparison of supervised models. Accuracy (Acc) and
F1-score are reported as mean =+ std (%) over three runs.

Model Easy Medium Hard

Acc F1 Acc F1 Acc F1
LSTM [17] 99.11 £0.17 99.11 20.17 98.61 £0.13 98.61 +£0.13 98.08 +£0.28 98.08 +0.28
MLP [34]] 98.54 £0.14 98.54 +0.14 97.67 £0.15 97.67 £0.15 96.46 +0.13 96.46 +0.13
PatchTST [30]] 99.20 £0.06 99.20 £0.06 98.77 £0.19 98.77 £0.19 98.49 +0.22 98.49 +0.22
ResNet18 [16] 98.94 £0.17 98.94 +0.17 98.42 +0.16 98.42 +0.16 98.32 +0.25 98.32 +0.25

TimeSformer-1D [8] 99.05 £0.22 99.05 £0.22 98.29 +0.31 98.29 +0.31 98.60 +£0.23 98.60 +0.23
Transformer [36]] 98.23 £0.24 98.23 £0.24 97.31 £047 97.31 2047 97.54 031 97.54 +0.31
ViT [[1L1] 99.56 £0.08 99.56 £0.08 99.41 £0.08 99.41 £0.08 99.17 £0.11 99.17 +0.11

Table[I0] presents breathing detection results, where all models maintain high accuracy and F1-scores
(>96%) across tiers. ViT performs best, achieving over 99% F1 consistently. LSTM and PatchTST
follow closely, especially in the Easy setting. Even in the Hard tier, model performance drops only
slightly. ResNet18 and TimeSformer-1D also generalize well, with minimal performance variance.
The results suggest that breathing patterns are relatively easier to model and robust to environmental
changes.

Table[TT|demonstrates that localization is a highly separable task. Most models—including PatchTST,
ResNet18, and TimeSformer-1D—achieve perfect scores in the Easy and Medium tiers and retain
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Table 13: Human Activity Recognition cross-domain performance. Accuracy (Acc) and F1-score
are reported as mean * std (%) over three runs.

Model Cross-Device Cross-Env Cross-User

Acc F1 Acc F1 Acc F1
LSTM [17] 60.57 £2.12 57.04 £2.32 53.65 £0.89 46.22 +0.72 53.33 £2.11 45.70 £2.01
MLP [34] 56.33 £1.23 50.79 £1.11 52.15 +£0.85 43.45 £1.40 52.06 £0.54 42.05 £0.97
PatchTST [30] 61.61 +1.81 58.05 +1.54 56.85 +0.63 49.55 +0.47 56.44 +147 49.25 +1.33
ResNet18 [16] 66.21 £1.96 63.57 £1.90 57.98 +0.87 50.90 +£0.96 59.24 +1.47 52.07 *+1.53

TimeSformer-1D [8] 60.24 £1.00 55.70 £1.20 54.65 +0.93 46.63 +0.79 54.95 +0.84 45.74 +0.79
Transformer [36]] 61.82 4095 57.80 +0.78 54.92 +098 47.17 +1.12 54.72 +0.84 46.67 *+1.00
ViT [IL1] 66.33 +1.73 63.65 +1.69 58.87 +1.12 51.86 +1.31 59.00 +1.36 51.48 *+1.26

Table 14: Human Identification cross-domain performance. Accuracy (Acc) and Fl-score are
reported as mean = std (%) over three runs.

Cross-Device

Model

Acc F1
LSTM [17] 59.25 £1.69 59.32 £1.72
MLP [34] 57.31 £1.61 57.15 £1.45
PatchTST [30] 60.45 +1.07 60.56 +1.17
ResNet18 [[16]] 68.07 £1.93 68.21 £1.97

TimeSformer-1D [8] 60.84 +0.81 61.00 £0.79
Transformer [36] 59.94 +0.77 59.81 +0.96
ViT [L1] 69.37 £1.53 69.55 +1.61

near-perfect performance in the Hard tier. ViT, Transformer, and LSTM also show strong results (F1
> 98%). MLP consistently underperforms, particularly in the Hard tier (F1: 80.03%), likely due
to limited spatial modeling. Overall, most models handle localization with high reliability. These
results indicate that CSI-based localization is a highly separable task, and that most temporal or
spatially-aware models can solve it with high reliability.

Table[T2]shows consistently high motion source recognition performance across all difficulty levels.
Most models achieve F1-scores above 96%, with ViT and ResNet18 exceeding 99% even in the Hard
setting. MLP, PatchTST, and Transformer also perform well, indicating the task is relatively easy to
separate. Performance variance remains low, suggesting stable generalization.

C.2 Evaluation on OOD Splits

Tables [T3]{T5] present the performance of supervised models under three cross-domain generalization
settings—Cross-Device, Cross-Environment, and Cross-User—for Human Activity Recognition,
Human Identification, and Proximity Recognition, respectively. Across all tasks, ViT consistently
achieves the highest performance, with the best F1-scores in most OOD settings.

For Human Activity Recognition (Table[T3), performance drops significantly under all OOD axes,
particularly in the Cross-Environment and Cross-User settings, where even the top-performing models
(ViT and ResNet18) show F1-scores below 53%. This highlights the challenge of domain shifts in
activity classification.

In Human Identification results (Table , ViT again leads with a 69.55% F1 under Cross-Device,
followed closely by ResNet18, suggesting strong person-specific feature learning.
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Table 15: Proximity Recognition cross-domain performance. Accuracy (Acc) and Fl-score are
reported as mean * std (%) over three runs.

Model Cross-Device Cross-Env Cross-User

Acc F1 Acc F1 Acc F1
LSTM [17] 24.89 +2.97 24.29 +3.02 28.64 £1.08 26.76 £1.02 29.20 £0.55 23.83 +1.34
MLP [34] 28.73 £0.89 27.31 £0.84 25.76 £0.77 20.86 £1.41 26.19 +£0.57 17.32 £0.74
PatchTST [30] 28.13 +2.17 26.60 +1.38 26.42 +1.88 25.35 +1.63 28.86 +0.67 23.15 +0.76
ResNet18 [16] 31.19 581 27.93 +4.95 30.67 +3.06 28.01 £3.78 32.67 *1.50 27.64 +2.53

TimeSformer-1D [8] 27.95 +2.04 25.85 #2.67 29.73 +2.99 27.93 +3.97 31.19 +0.87 26.98 +1.48
Transformer [36]] 30.68 +3.11 28.76 £3.51 29.67 +1.63 27.12 +1.79 30.26 +1.94 25.97 +2.26
ViT [IL1] 32.04 £1.95 30.11 +2.12 30.83 236 28.62 +2.51 31.54 *1.66 26.94 +1.77

Lastly, Proximity Recognition (Table[T3) is the most challenging task, with all models performing
poorly across OOD conditions. Even the best-performing ViT model achieves only around 30% F1,
and large variances are observed, indicating poor robustness and generalization.

Overall, these results reveal that while certain models like ViT and ResNet18 show relative resilience,
significant performance degradation remains under distribution shifts, underscoring the need for more
robust domain generalization strategies in CSI-based sensing tasks.

26



	Introduction
	Related Work
	WiFi Sensing
	WiFi Sensing Dataset

	Dataset Collection
	Overview
	Devices and Hardware Setup
	Continuous Data Recording
	Environments and Contexts
	Data Collection Protocols
	Dataset Statistics

	Data Quality and Preprocessing
	CSI Quality Verification
	CSI Preprocessing Pipeline

	Benchmark Design
	Task Suite and Metrics
	Evaluation Protocols
	Baseline Models
	Baseline Evaluation
	Evaluation on OOD Splits
	Discussion and Takeaways

	Limitations
	Conclusion
	Dataset Description
	Subjects and Scenarios
	Environments
	Devices and Hardware Diversity
	Task-Specific Dataset Statistics
	Fall Detection
	Breathing Detection
	Room-Level Localization
	Motion Source Recognition
	Multi-task Dataset
	Annotation Tool

	Model Architectures and Training Details
	Supervised Learning Architectures
	Multi-Task Learning with Adapters
	Training Protocol

	Additional Experiments
	Evaluation with Difficulty Tiers
	Evaluation on OOD Splits


