
Neurosymbolic AI Transfer Learning Improves
Network Intrusion Detection

Huynh T. T. Tran∗, Jacob Sander∗, Achraf Cohen∗, Brian Jalaian∗, Nathaniel D. Bastian†
∗University of West Florida, Pensacola, FL, USA

†United States Military Academy, West Point, NY, USA

Abstract—Transfer learning is commonly utilized in various
fields such as computer vision, natural language processing, and
medical imaging due to its impressive capability to address sub-
tasks and work with different datasets. However, its application in
cybersecurity has not been thoroughly explored. In this paper, we
present an innovative neurosymbolic AI framework designed for
network intrusion detection systems, which play a crucial role in
combating malicious activities in cybersecurity. Our framework
leverages transfer learning and uncertainty quantification. The
findings indicate that transfer learning models, trained on large
and well-structured datasets, outperform neural-based models
that rely on smaller datasets, paving the way for a new era in
cybersecurity solutions.

Index Terms—Network Intrusion Detection Systems, Neu-
rosymbolic AI, Uncertainty Quantification, Transfer Learning

I. INTRODUCTION

Network Intrusion Detection Systems (NIDS) play a critical
role in modern cybersecurity by monitoring network traffic to
detect and classify malicious activities [1]. Traditional machine
learning models, while effective in many scenarios, struggle
to address the increasingly complex and diverse nature of
cyber threats. To overcome these challenges, Neurosymbolic
AI (NSAI) has emerged as a promising approach. NSAI
combines the powerful data-processing capabilities of neural
networks with the logical reasoning strengths of symbolic AI
[2], [3]. The symbolic component, often implemented through
models such as XGBoost, leverages rule-based decision-
making, thereby enhancing the overall robustness of intrusion
detection systems.

However, the limitation of current NSAI systems is their
reliance on the availability of labeled data tailored to specific
datasets or attack types. As new attacks and datasets emerge,
building a new model for each scenario can be resource-
intensive and inefficient. This challenge is particularly evident
in NIDS, where different datasets and tasks may require
tailored models, hindering scalability and adaptability.

Transfer learning can be considered a viable solution.
Transfer learning leverages pre-trained models, adapting them
to new tasks or domains with limited labeled data. While
widely used in fields such as computer vision [4], natural
language processing [5], [6], and medical imaging [7], transfer
learning remains underexplored in the cybersecurity domain.

This work extends our Open Set Recognition with Deep
Embedded Clustering for XGBoost and Uncertainty Quantifi-
cation (ODXU) framework [2], by integrating transfer learning

to enhance scalability and adaptability. Using the Canadian
Institute for Cybersecurity Intrusion Detection Systems 2017
(CIC-IDS-2017) dataset [8], which is large and resembles
real-world scenarios. This dataset contains approximately 7
million samples of both benign traffic and up-to-date common
cyberattacks. Our contributions are:

• Developing a transfer learning framework to adapt pre-
trained NSAI models to new cybersecurity datasets from
the Army Cyber Institute, enabling improved adaptability
and generalization in dynamic threat environments.

• Integrating and evaluating more uncertainty quantification
techniques, such as SHAP value and information gain,
to enhance the interpretability and reliability of model
predictions in uncertain conditions.

The paper is organized as follows: Section II reviews related
work, Section III outlines the ODXU model and transfer
learning framework, Section IV details the experimental setup,
Section V presents results and discussion, and Section VI
concludes with future work.

II. BACKGROUND AND RELATED WORK

A. Network Intrusion Detection Systems

Network Intrusion Detection Systems (NIDS) are central to
modern cybersecurity frameworks, monitoring network traffic
to detect and mitigate malicious activities. Traditional NIDS
primarily rely on signature-based methods, which compare
observed traffic against predefined patterns of known attacks
[1], [2]. While effective for known threats, these systems often
fail against novel or unknown attacks due to their static nature
and reliance on comprehensive signature databases.

To address these limitations, data-driven anomaly detection
has emerged as a more adaptive alternative. These methods
utilize machine learning models, including neural networks,
decision trees, and ensemble techniques such as XGBoost, to
learn normal traffic patterns and identify deviations that may
indicate intrusions [1]. Such models improve generalization
and are better suited for detecting emerging threats in dynamic
network environments.

B. Transfer Learning with Neurosymbolic AI

Transfer learning is widely adopted across domains to
improve model performance when labeled data for the target
domain is limited or distribution shifts occur. In computer
vision tasks, surgical fine-tuning—selective adjustment of

Raw Payload Payload-
Byte

1500-byte
Payload DEC

Latent
representations

UQ
Metamodel

high certainty score Trust the XGBoost
classification results

low certainty score
Suspicious packet

(misclassified or unknown)

XGBoost

Benign

One of the known attacks

Fig. 1: The architecture of UQ NSAI (ODXU) model [2].

Input data Encoder x Decoder
Reconstructed

input

Phase 1: AutoEncoder pretraining

Input data Encoder x Clustering Latent
representations

Phase 2: Clustering training
(a) DEC model structure

Samples
(x)

Metamodel
(m)

Certainty score
(z)

Base Model
(b)

Class probabilities
(p)

(b) Metamodel inference

Fig. 2: General structure of (a) DEC and (b) metamodel.

specific neural network layers—has shown significant im-
provement in adapting models to input-level, feature-level,
and output-level shifts [4], [9]. Techniques such as TransTailor
have optimized model architectures through targeted pruning
to better align the model structure with task-specific data
distributions [6], [10]. Adaptive fine-tuning approaches, like
SpotTune, dynamically decide which layers to fine-tune per
input instance, enhancing flexibility and performance [6], [11].

Although effective in various fields, transfer learning
techniques are still underutilized in cybersecurity applications.
Meanwhile, NSAI has emerged as a promising approach that
combines the predictive capabilities of neural networks with
the interpretability of symbolic reasoning [2].

In this paper, we propose integrating transfer learning within
the NSAI framework. By allowing the reuse and adaptation of
pre-trained NSAI models for new datasets or related tasks, this
approach improves the scalability and robustness of intrusion
detection systems in dynamic threat environments.

C. Uncertainty Quantification

Uncertainty Quantification (UQ) is crucial in security-
critical systems, where reliable decision-making relies on
confidence in model predictions. UQ techniques estimate
prediction uncertainty, helping identify unknowns or out-
of-distribution inputs. Standard methods for assessing the
reliability of predictions from classifiers include confidence
scores, Shannon Entropy [12], and BlackBox metamodeling
[13]. The latter involves training a secondary model to evaluate
the trustworthiness of the outputs from the primary classifier
[2]. These techniques improve the robustness of NIDS by
identifying uncertain predictions that may indicate new types
of threats.

Recent advancements, such as SHAP [14] (Shapley Additive
Explanations) and Information Gain [15] (IG) metrics, further
support interpretable and trustworthy decision-making by
highlighting the contributions of different features and the
confidence in decisions. In this study, we integrate these

techniques into our NSAI framework to assess and enhance
predictive reliability in uncertain conditions.

III. METHODOLOGY

The architecture of the ODXU model is shown in Figure 1.
The raw network payload is first processed using the Payload-
Byte tool, which extracts the 1500 bytes of each packet to
form fixed-length feature vectors. These 1500-byte feature
vectors are then passed into a DEC model, which encodes
them into 12-dimensional latent representations.

The latent representations produced by the DEC serve as
input to two downstream models: (1) an XGBoost classifier
for attack recognition and (2) a metamodel for UQ, which
evaluates the uncertainty of the XGBoost predictions.

The DEC model is trained in two phases, as shown in
Figure 2a: I) AutoEncoder (AE) pretraining: In this phase,
an AE is trained to map the input data in lower-dimensional
features by using an encoder and reconstruct the input data by
using a decoder [16]. II) Clustering training: In this phase, the
decoder is replaced by a clustering model, and the parameters
of the clustering model are optimized while the encoder
remains fixed. This phase adjusts the cluster centroids and the
soft assignments of data points to clusters, refining the latent
space to improve the separability of the clusters [16].

A. Transfer Learning Framework for ODXU
To assess the transferability of the ODXU model across

different datasets or tasks, we asked two research questions:
1) Which components of the ODXU architecture (e.g., AE,

clustering, XGBoost) should be fine-tuned or trained
for effective transfer learning?

2) How many labeled samples are required to outperform
baseline machine learning models such as Fully Con-
nected Neural Networks (FcNN) or 1D Convolutional
Neural Networks (1D-CNN)?

To answer these questions, we designed an experiment using
the six transfer learning scenarios as shown in Table I. The
AE has two options: “As is,” where the pre-trained AE from

CIC-IDS-2017 is loaded and used without any further training,
and “FT” (fine-tune), where the pre-trained AE is loaded
and then further trained on a target dataset. The clustering
component also considers two options. In the “FT” option,
it loads a pre-trained clustering model from CIC-IDS-2017
and fine-tunes it on the target dataset. In the “Train” option,
it loads the parameters of the pre-trained AE instead of the
pre-trained clustering model and trains these parameters on
the target dataset1. The classifier has two options: “FT,” where
a pre-trained classifier is loaded and fine-tuned on the target
dataset, and “Train,” where the classifier is trained entirely
from scratch.

TABLE I: Transfer Learning Scenarios; FT: fine-tune

ODXU Components Case
1 2 3 4 5 6

AE FT As is As is FT As is As is
Clustering Train FT Train Train FT Train
Classifier
(XGBoost)

Train Train Train FT FT FT

We adopt six metrics, including multiclass classification
accuracy, binary classification accuracy, misclassified positive
rate, false omission rate, F1 score, and competence. These
metrics are consistent with some prior work [2], which com-
prehensively evaluates the effectiveness of transfer learning
in each case.

B. Uncertainty Quantification Methods
We assess five uncertainty quantification (UQ) methods

for our models. This includes two score-based methods:
Confidence Scoring and Shannon Entropy [12], as well as the
metamodel-based methods.

The UQ, through metamodeling, utilizes a base model b(.)
and a metamodel binary classifier m(.), trained to estimate
the correctness of b(.)’s predictions. The metamodel input,
XMetaUQ, includes the original features Xb and augmented
features derived from the base model. The training target ym,
which denotes whether the base model predicts the sample’s
labels correctly (0) or not (1), is defined as:

ym =

{
0 if b(xb) = yb

1 if b(xb) ̸= yb,
(1)

where yb is the true label of xb and b(xb) is the predicted
output from the base model.

The metamodel, m(.), will be trained using the target
variable in Eq. (1) to minimize the loss between the training
target ym and the output m(xm) = z. As a result, the output
of the metamodel, z, provides an estimate of the probability
that the base model’s prediction b(xb) = yb is correct, giving
us a measure of the model’s confidence in its predictions. A
general interface of the metamodel is shown in Figure 2b.

1Note: As depicted in Figure 2a, the clustering module is initialized either
from its pre-trained parameters of CIC-IDS-2017 or from the encoder of the
AE. Therefore, if the AE is fine-tuned, the clustering cannot be initialized
from its pre-trained checkpoint, as the encoder has changed. As a result,
combinations such as FT-FT-Train or FT-FT-FT are invalid and excluded
from our experiments.

1) Confidence scoring: is a straightforward and efficient
method for estimating a model’s certainty. The certainty scores
can be computed using the order statistic of the prediction
probabilities following the formulation:

zconf(x) = p(k) − p(k−1), (2)

where zconf(x) is the certainty score of a sample x, p(k) is
the largest probability from the list of probabilities p of k
possible outcomes. A higher score indicates greater certainty,
while a smaller value suggests more uncertainty.

2) Shannon entropy: is a well-known concept from infor-
mation theory and is commonly used to measure uncertainty.
This approach calculates the entropy for each sample based
on the predicted probabilities for all classes generated by the
base model. The entropy for a given sample x is computed
using the following formula:

zentropy(x) = −
∑

pi × log(pi), (3)

where pi represents the probability of class i, and the sum is
taken over all possible classes. Unlike the confidence score,
a higher entropy value indicates more uncertainty in the
model’s prediction, while a lower entropy value suggests
higher confidence.

3) MetaUQ: is a metamodel approach to UQ. Three
metamodels were considered, each utilizing a distinct type of
uncertainty scores to augment the base model data.

a) MetaUQprob: The metamodel is augmented with the
sorted predicted probabilities, p′, and the confidence score
(Eq. (2)). Including p′ provides a more comprehensive view of
the model’s predictive distribution [17]. While the confidence
score captures only the two top class probabilities, the full
sorted vector reflects the distribution of belief across all classes.
This enables the metamodel to identify uncertainty patterns,
such as class ambiguity or flat distributions, that are not
captured by the input Xb or confidence score alone. The
augmented input of the metamodel (MetaUQprob) can be
written as:

XMetaUQprob
= [Xb,p

′, zconf]. (4)

b) MetaUQSHAP : Originally, Shapley Additive Expla-
nations (SHAP) [14] values were a game-theoretic measure
to attribute value to members of a coalition. Still, recently
they have been widely adopted in machine learning for
explainability purposes [18]. In this context, we consider
the individual features in x as members of a coalition and
aim to attribute to each feature a value that represents its
contribution to the final prediction made by the model.

For tree-based models, such as XGBoost, SHAP values can
be computed efficiently using a polynomial-time algorithm that
leverages the structure of decision trees [19]. This allows us
to get local explanations (i.e., the contribution of each feature
to an individual prediction) without relying on approximations
or sampling. In our implementation, for each input instance
x, we compute SHAP values as follows [14]:

ϕi(b, x) =
∑

S⊆I\{i}

|S|!(|I| − |S| − 1)!

|I|!
[b(S ∪ {i})− b(S)] ,

(5)
where ϕi(b, x) is the SHAP value for feature i with respect
to the base model b(.) and input instance x. ! is the factorial
operator, | · | denotes the number samples of set or subsets. I
is the set of input features. S ⊆ I \ {i} is a subset of features
from I excluding feature i. b(S ∪ {i})− b(S) represents the
change in the model’s output when feature i is added to subset
S, compared to the output when only S is used. We then
extract SHAP values for the predicted class only, following
the practices in class-specific interpretability [18].

The final augmented input to the SHAP metamodel is:

XMetaUQSHAP
= [Xb,ϕ(b, x)]. (6)

c) MetaUQIG: Information Gain (IG) is a key concept
in decision trees and gradient boosting, and it measures
how much a split on a feature reduces uncertainty in the
prediction. For classical classification tasks, the IG of a feature
is calculated as follows: [15]:

IG(I, f) = H(I)−H(I|f), (7)

where H(I) represents the entropy of the entire dataset I ,
and H(I|f) represents the conditional entropy, measuring the
remaining uncertainty in the dataset I after splitting I based
on the values of feature f .

In XGBoost, the concept of IG is extended to general loss
functions. In this context, IG scores are defined as the expected
reduction in loss due to a split; more details are here [20].

These scores represent the average usefulness of each
feature across all decision splits. We then replicate the gain
scores across all data samples to form an IG matrix, denoted
as IGmatrix. We also add the sorted class probabilities from the
base model’s output. As a result, the final augmented input
to the metamodel becomes:

XMetaUQIG
= [Xb,p

′, IGmatrix] (8)

4) UQ Evaluation Metrics: To evaluate the effectiveness
of our UQ methods on the transfer learning model, we
focus on two tasks: misclassification detection and Open Set
Recognition (OSR) detection. We compute the Area Under
the Receiver Operating Characteristic Curve (AUROC) for
each task to detect the misclassified and OSR samples. These
two AUROC scores are the core features of evaluating the
UQ methods.

IV. EXPERIMENTAL SETUP

All experiments in this study were conducted using the
Army Cyber Institute (ACI) Internet of Things (IoT) Network
Traffic Dataset 2023 (ACI-IoT-2023) [21], which provides
recent and comprehensive intrusion scenarios in Internet of
Things (IoT) environments. The descriptive statistics of the
dataset are shown in Table II.

The experiments were performed on a system with dual
Intel® Xeon® Gold 5218R CPUs (2.10 GHz), providing a
total of 80 logical threads and 754 GiB of system memory.
For GPU acceleration, each experiment was conducted on
a single NVIDIA A40 GPU, one of eight available, which
is based on the Ampere architecture and features 48 GB of
dedicated memory. Additionally, all experiments were timed
and monitored to evaluate their computational efficiency.
TABLE II: Descriptive statistics of class distribution in the
ACI-IoT-2023 dataset.

Class Samples Percent (%)
Benign 601,868 95.31
DNS Flood 18,577 2.94
Dictionary Attack 4,645 0.74
Slowloris 2,974 0.47
SYN Flood 2,113 0.33
Port Scan 582 0.09
Vulnerability Scan 445 0.07
OS Scan 156 0.02
UDP Flood 68 0.01
ICMP Flood 58 0.01
Total 631,486 100.00

A. Attack Recognition
To address the class imbalance in the ACI-IoT 2023 dataset,

the benign class was downsampled by 95%, while the ICMP
Flood and UDP Flood attack classes were upsampled by 200%
[2]. The adjusted dataset was split into two subsets: DEC-
Train and DEC-Test, with a 50/50 split. The DEC-Train set
was further subsampled into portions of 10%, 25%, 50%, and
75%, which were then used to train and evaluate the models.
Each portion of DEC-Train was divided into training and
validation sets (75/25 split). Meanwhile, DEC-Test was used
for XGBoost training, which is output from DEC and consists
of 12 features. The DEC-Test set was further split 50/50 into
XGBoost-Train and XGBoost-Test.

For the evaluation of transfer learning models, we trained
two neural-based models: a FcNN and a 1D-CNN. The FcNN
model consisted of three hidden layers with sizes [1024, 512,
100], totaling 2,115,180 trainable parameters. The 1D-CNN
model consisted of three convolutional layers with channels
[32, 64, 128] and a kernel size of [3], followed by a hidden
layer with 50 neurons. The 1D-CNN model had a total of
181,904 trainable parameters.

B. Misclassification and Open Set Recognition Detection
For the misclassification and OSR detection tasks, the

Slowloris attack was held out as the “unknown” attack. The
remaining samples were subsampled to balance the benign
and attack classes, with the dataset split following the same
procedure as in the attack recognition task. In the case of our
UQ metamodel, a more refined training set was required. Using
a simple split of XGBoost-Test resulted in poor performance.
We found that a metamodel trained on a highly accurate base
model would tend to classify all samples as high certainty,
which minimized the model’s training objective. Through
experimentation, we determined that holding five times as

Many correctly classified samples as misclassified samples
resulted in improved MetaUQ performance. Consequently, we
created new labels for the XGBoost-Test set: 0 for correct
predictions and 1 for incorrect predictions. Class 0 was then
subsampled to five times the size of class 1. This adjusted
dataset was split 80/20 into Metamodel-Train and Metamodel-
Test. For testing, we generated a new test set for the OSR
detection task by combining equal numbers of unknown
samples and Metamodel-Test samples. This combined set was
used for the final evaluation of our models.

V. RESULTS AND DISCUSSION

A. Attacks Recognition

Table III presents the multiclass accuracy of transfer
learning models across different training set portions, based
on the configurations in Table I. When considering the
composition of the DEC components, performance increases
from models using a pre-trained AE (As is) with fine-tuned
clustering (e.g., Case 2), to those fine-tuning the AE and
training the clustering module (e.g., Case 1), and is highest
when using the pre-trained AE and training the clustering
(e.g., Case 3). For example, with 50% of the training set,
Case 2 achieves .9799 accuracy, Case 1 improves to .9805,
and Case 3 reaches the highest at .9827.

TABLE III: The multiclass accuracy of transfer learning across
varying portions of the training dataset.

% Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
10 .9666 .9616 .9764 .9680 .9659 .9784
25 .9690 .9679 .9789 .9736 .9706 .9802
50 .9805 .9799 .9827 .9813 .9808 .9841
75 .9824 .9809 .9836 .9833 .9816 .9845

Furthermore, when comparing models with the same AE
and clustering settings, fine-tuning the classifier (Cases 4
to 6) consistently yields higher performance than training
it from scratch (Cases 1 to 3). For instance, at 75% of the
data, Case 3 achieves .9836, while Case 6 achieves a higher
accuracy of .9845. These results suggest that starting from
a well-initialized classifier leads to better generalization and
performance, emphasizing the advantage of transfer learning.
When compared with neural-based models (.9808 for FcNN
and .9679 for 1D-CNN), the transfer learning models can
outperform them when trained with at least 50% (≈16,000
samples) of the dataset in Cases 3–6, and at least 75% (≈
23,000 samples) in Cases 1 and 22. As Case 6 (AE: As
is, clustering: Train, and classifier: FT) provides the highest
accuracy, we will use Case 6 for further experimentation in
subsequent experiments.

a) Early Stopping Improvement: During the experiments,
all models were trained in the same setting (i.e., number
of epochs). The models improve quickly at first, then slow
down. To prevent slow progress, we introduced “early stopping
rounds” (η) and two thresholds in loss (δ) as hyperparameters.
We assume that if the change in the loss of AE pre-training

2These results are based on an ablation study and examining several cases.

or clustering training within the δ for a specified number of
epochs, the model stops. We tested the Case 6 model using
early stopping rounds of [10, 15, 20], and δ values for AE pre-
training of [0.0005, 0.001] and clustering training of [0.005,
0.01], with 50% and 75% dataset portions.
TABLE IV: The multiclass accuracy across hyperparameters.

Exp η
δ Accuracy Training time

AE Cluster 50% 75% 50% 75%
1 10 0.001 0.01 .9807 .9791 0:23:07 0:20:09
2 10 0.0005 0.005 .9817 .9820 0:25:00 0:28:48
3 15 0.001 0.01 .9815 .9806 0:27:32 0:21:38
4 15 0.0005 0.005 .9819 .9831 0:29:10 0:37:01
5 20 0.001 0.01 .9820 .9829 0:39:02 0:42:46
6 20 0.0005 0.005 .9824 .9834 0:49:39 1:02:50

Table IV presents the multiclass accuracy across various
combinations of hyperparameters. The “Exp” column de-
notes the experiment index. For the 50% training data, all
configurations except Experiment 1 outperform the FcNN
baseline (.9808). The best accuracy for 50% data is obtained
in Experiment 6 with an accuracy of .9824. For the 75%
data portion, Experiments 2, 4, 5, and 6 outperform the
FcNN baseline, with Experiment 6 again achieving the highest
accuracy of .9834. These results confirm that Experiment 6
offers the most robust configuration overall.

In addition to performance, training time is an important
consideration. As η increases and δ decreases, training time,
showing in hh:mm:ss format, tends to rise. For example,
Experiment 6, which combines a higher η (20) and lower
δ values (0.0005, 0.005), requires the longest training time
for both data portions (up to 1:02:50 for 75%). The choice
of specific hyperparameters and portions of the dataset
will depend on specific tasks or the dataset. In our study,
the next experiment will proceed with Case 6 using the
hyperparameters from Experiment 6. The extended evaluation
of this configuration on the attack recognition task is reported
in Table V.

TABLE V: Results of six metrics across models.

Measurement FcNN 1D-CNN Case 6
Multiclass Accuracy .981 .968 .983

Binary Accuracy .985 .974 .987
Misclassified Positive Rate .022 .035 .019

False Omission Rate .016 .029 .014
F1 Score .985 .974 .988

Competence .948 .935 .969

B. Misclassification and Open Set Detection

The results for misclassification and OSR detection are
shown in Table VI. In misclassification detection, Confidence
and Shannon Entropy perform similarly, both achieving an
accuracy of .911, while the metamodels obtain higher accuracy.
The MetaUQprob and MetaUQSHAP have accuracy values
close to .924, and the MetaUQIG achieved the highest perfor-
mance at .926. A similar trend is observed with TP@(TN=.95).
These results suggest that the MetaUQIG is effective for
detecting misclassification.

TABLE VI: Performance comparison across UQ methods.

Metrics Score-based MetaUQ
Conf Entropy Prob SHAP IG

Misclassification
.911 .911 .924 .924 .926

AUROC
Misclassification

.529 .529 .559 .559 .588
TP@(TN=.95)

Unknown attack
.916 .919 .921 .938 .921

AUROC
Unknown attack

.435 .462 .489 .590 .469
TP@(TN=.95)

For OSR detection, there is little difference between
Confidence, Shannon Entropy, MetaUQprob, and MetaUQIG.
However, the MetaUQSHAP shows a big gap in AUROC
for unknown attack detection. When fixing the true negative
rate at 95%, the MetaUQSHAP exceeds the second-highest
method (MetaUQprob) by more than 10%. This indicates that
the MetaUQSHAP metamodel provides the best performance
for OSR detection.

VI. CONCLUSION

This paper presents a transfer learning framework for the
ODXU Neurosymbolic AI model applied in network intrusion
detection systems. The results indicate that utilizing a pre-
trained AE, followed by retraining the clustering algorithm
and fine-tuning the classifier model (XGBoost), yields the
highest accuracy. Transfer learning models began to surpass
neural-based models when trained on at least 50% of the data,
or 16,000 samples (these findings are based on the ablation
study when examining several cases). To prevent prolonged
training times, we implemented an early stopping condition
that halts training if the AE and clustering losses drop below
0.0005 and 0.005, respectively, for 20 consecutive epochs.

Our findings also suggest that metamodel-based methods
are more effective than score-based methods for uncertainty
quantification (UQ), with each metamodel being tailored for
specific tasks. However, we recognize that these results may
differ depending on the datasets or tasks used. Therefore,
future work will focus on applying our transfer learning model
to additional cybersecurity datasets, including the Canadian
Institute for Cybersecurity (CIC) IoT 2023 dataset and the
Unified Multimodal Network Intrusion Detection Systems
(UM-NIDS) dataset, to further assess its performance.

ACKNOWLEDGMENT

This work was supported by the U.S. Military Academy
(USMA) under Cooperative Agreement No. W911NF-23-2-
0108 and the Defense Advanced Research Projects Agency
(DARPA) under Support Agreement No. USMA 23004. The
views and conclusions expressed in this paper are those of
the authors and do not reflect the official policy or position
of the U.S. Military Academy, U.S. Army, U.S. Department
of Defense, or U.S. Government.

REFERENCES

[1] M. Al-Omari, M. Rawashdeh, F. Qutaishat, M. Alshira’H, and N. Abab-
neh, “An intelligent tree-based intrusion detection model for cyber
security,” Journal of Network and Systems Management, vol. 29, no. 2,
p. 20, 2021.

[2] J. Sander, C.-E. J. Yu, B. Jalaian, and N. D. Bastian, “Uncertainty-
quantified neurosymbolic ai for open set recognition in network intrusion
detection,” in MILCOM 2024-2024 IEEE Military Communications
Conference (MILCOM). IEEE, 2024, pp. 13–18.

[3] B. Jalaian and N. D. Bastian, “Neurosymbolic ai in cybersecurity:
Bridging pattern recognition and symbolic reasoning,” in MILCOM
2023-2023 IEEE Military Communications Conference (MILCOM).
IEEE, 2023, pp. 268–273.

[4] F. Shahoveisi, H. Taheri Gorji, S. Shahabi, S. Hosseinirad, S. Markell,
and F. Vasefi, “Application of image processing and transfer learning
for the detection of rust disease,” Scientific Reports, vol. 13, no. 1, p.
5133, 2023.

[5] S. Amiriparian, T. Hübner, V. Karas, M. Gerczuk, S. Ottl, and B. W.
Schuller, “Deepspectrumlite: A power-efficient transfer learning frame-
work for embedded speech and audio processing from decentralized
data,” Frontiers in Artificial Intelligence, vol. 5, p. 856232, 2022.

[6] S. Moon, S. Kim, and H. Wang, “Multimodal transfer deep learn-
ing with applications in audio-visual recognition,” arXiv preprint
arXiv:1412.3121, 2014.

[7] H. E. Kim, A. Cosa-Linan, N. Santhanam, M. Jannesari, M. E. Maros,
and T. Ganslandt, “Transfer learning for medical image classification:
a literature review,” BMC medical imaging, vol. 22, no. 1, p. 69, 2022.

[8] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani et al., “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSp, vol. 1, pp. 108–116, 2018.

[9] Y. Lee, A. S. Chen, F. Tajwar, A. Kumar, H. Yao, P. Liang, and C. Finn,
“Surgical fine-tuning improves adaptation to distribution shifts,” arXiv
preprint arXiv:2210.11466, 2022.

[10] B. Liu, Y. Cai, Y. Guo, and X. Chen, “Transtailor: Pruning the pre-
trained model for improved transfer learning,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 35, no. 10, 2021, pp.
8627–8634.

[11] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris,
“Spottune: transfer learning through adaptive fine-tuning,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 4805–4814.

[12] G. Smith, “Quantifying information flow using min-entropy,” in 2011
Eighth International Conference on Quantitative Evaluation of SysTems.
IEEE, 2011, pp. 159–167.

[13] T. Chen, J. Navrátil, V. Iyengar, and K. Shanmugam, “Confidence
scoring using whitebox meta-models with linear classifier probes,” in The
22nd International Conference on Artificial Intelligence and Statistics.
PMLR, 2019, pp. 1467–1475.

[14] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” Advances in neural information processing systems,
vol. 30, 2017.

[15] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
pp. 81–106, 1986.

[16] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in Proceedings of the 33rd International Conference
on International Conference on Machine Learning - Volume 48, ser.
ICML’16. JMLR.org, 2016, p. 478–487.

[17] N. Tagasovska and D. Lopez-Paz, “Single-model uncertainties for deep
learning,” Advances in neural information processing systems, vol. 32,
2019.

[18] S. M. Lundberg, G. G. Erion, and S.-I. Lee, “Consistent individualized
feature attribution for tree ensembles,” 2019. [Online]. Available:
https://arxiv.org/abs/1802.03888

[19] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin,
B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, “From
local explanations to global understanding with explainable ai for trees,”
Nature machine intelligence, vol. 2, no. 1, pp. 56–67, 2020.

[20] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[21] N. Bastian, D. Bierbrauer, M. McKenzie, and E. Nack, “Aci
iot network traffic dataset 2023,” 2023. [Online]. Available:
https://dx.doi.org/10.21227/qacj-3x32

