
Leveraging Temporal Graph Networks Using Module
Decoupling

Or Feldman, Chaim Baskin∗

Technion – Israel Institute of Technology
{orfeldman}@campus.technion.ac.il
{chaimbaskin}@cs.technion.ac.il

Abstract

Modern approaches for learning on dynamic graphs have adopted the use of
batches instead of applying updates one by one. The use of batches allows these
techniques to become helpful in streaming scenarios where updates to graphs are
received at extreme speeds. Using batches, however, forces the models to update
infrequently, which results in the degradation of their performance. In this work,
we suggest a decoupling strategy that enables the models to update frequently
while using batches. By decoupling the core modules of temporal graph networks
and implementing them using a minimal number of learnable parameters, we have
developed the Lightweight Decoupled Temporal Graph Network (LDTGN), an
exceptionally efficient model for learning on dynamic graphs. LDTG was validated
on various dynamic graph benchmarks, providing comparable or state-of-the-art
results with significantly higher throughput than previous art. Notably, our method
outperforms previous approaches by more than 20% on benchmarks that require
rapid model update rates, such as USLegis or UNTrade. The code to reproduce our
experiments is available at this http url.

1 Introduction

Dynamic graphs are commonly used to describe real-world dynamic systems, where the interacting
elements are modeled as nodes, and the interactions between two elements are represented as edges.
Each edge is usually labeled with a timestamp indicating its time of occurrence. Item recommendation
on e-commerce platforms (Ding et al., 2019), friendship suggestion on social networks (Backstrom
& Leskovec, 2011; Haghani & Keyvanpour, 2019), anomaly detection on communication networks
(Yu et al., 2018), and traffic forecasting (Cini et al., 2023) are all practical tasks that can be modeled
using dynamic graphs.

Although most graph-related real-world tasks are time-evolving, deep learning approaches usually
focus on problems described using static graphs. Moreover, it had also been shown that ignoring the
dynamic nature of a system by abstracting it with static graphs is inadequate (Rossi et al., 2020; Xu
et al., 2020). A dynamic representation of a system, on the other hand, is often able to define the
evolving behavior of the latter (Simmel, 1950; Granovetter, 1973; Mangan & Alon, 2003; Toivonen
et al., 2007; Gorochowski et al., 2018).

Dynamic graph approaches are often based on either discrete-time (Liben-Nowell & Kleinberg, 2003;
Sankar et al., 2020; Pareja et al., 2020) or continuous-time (Trivedi et al., 2019; Ma et al., 2020;
Cong et al., 2023) settings. In discrete-time settings, data are received as a sequence of snapshots
describing the full graph structure at specific times, while in the flexible continuous-time setting,
a single update on the graphs can happen at any moment. The setting in which the deep learning
models for dynamic graphs operate at inference time can be roughly divided into the following types:
streaming, deployed, and live-update (Huang et al., 2023). In this work, we focus on continuous-time

Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans.

https://github.com/TPFI22/MODULES-DECOUPLING


(a) Comparison with baseline models. The average
throughput and average rank were computed over all
the future edge prediction benchmarks described in
Section 4.1.

(b) Comparison with baseline models. The average
throughput and average rank were computed over
all the online future edge prediction benchmarks de-
scribed in Section 4.2.

Figure 1: Comparison with baseline models.

dynamic graphs in the context of streaming in which the models may update upon receiving new
information, but they usually cannot perform backpropagation due to the high throughput required.

In the streaming setting for continuous-time dynamic graphs, deep networks usually have to use
batches to keep up with the stream of incoming updates, which means they process multiple updates
in parallel. This situation introduces a new problem of missing updates – updates for the models that
are not being considered for the predictions of inputs inside their common batch (described in details
in Section 2). In this work, we suggest a strategy to minimize the frequency of missing updates
while still using batches. Guided by this strategy, we have built the Lightweight Decoupled Temporal
Graph Network (LDTGN) – an efficient model for dynamic graph learning that outperforms the vast
majority of many other well-known baselines, both in terms of running time and performance, as
illustrated in Fig. 1a.

As noted above, in the streaming setting, models usually cannot perform backpropagation at inference
time since this operation is excessively expensive. In Section 4.2, we demonstrate the importance of
using backpropagation at inference time in addition to solely applying updates in the scenario of online
future edge prediction, as depicted in Fig. 1b. Moreover, we show that when using backpropagation
with LDTGN, the model keeps the throughput within the range of other standard baselines, making it
suitable for the online learning scenario with high streaming rates.

To summarize, this work makes the following contributions:

• We suggest a novel methodology for building deep learning models for dynamic graph tasks.

• Based on the suggested methodology, we propose a new lightweight model for dynamic
graph learning tasks that can operate at high streaming rates.

• Based on our experiments, our lightweight model outperforms many baselines and achieves
state-of-the-art performance on various dynamic graph benchmarks.

2 Background

Static graph G = (V, E) is a tuple of vertex set V and edge set E , s.t., e ∈ E is a tuple of two vertices
from V . G is often equipped with a features function FV : V → Rn or FE : E → Rn that maps a
vertex or an edge into an n-dimensional vector representing their matching features. Continuous-Time
Dynamic Graph (CTDG) is a sequence Q = {xt1 , xt2 , ...} of timestamped updates on the graph.
An update xt that occurs at time t can be one of the following: node addition, node removal, edge
addition, and edge removal. Each update may include an n-dimensional vector describing its features.
A snapshot of Q at time t is the static graph received by applying all the actions that have occurred
until time t.

Deep learning models designed to learn on CTDG usually process the sequence of updates by using
batches to achieve reasonable throughput during inference time (Kumar et al., 2019; Rossi et al.,
2020; Wang et al., 2021b; Cong et al., 2023). In the streaming setting, where the graph receives new

2



updates at extremely high speeds, it is crucial for the model to have sufficient throughput. Otherwise,
a buffer to the model containing the new updates will overflow.

Models for dynamic graph learning tasks often suffer from the undesirable phenomenon of missing
updates when using batches. This phenomenon occurs when a batch contains crucial updates to
make correct predictions for subsequent inputs in the same batch. In such scenarios, the model will
give predictions based on its current state, which does not include the updates in the batch. Missing
updates are less likely to occur when using smaller batches since, in these circumstances, the models
update more frequently. Therefore, in the streaming setting, there is a trade-off with respect to the
batch size.

As a result of the growing interest in the CTDG scenario with a stream of updates, several techniques
were recently developed (Kumar et al., 2019; Trivedi et al., 2019; Xu et al., 2020; Wang et al.,
2021a,b; Cong et al., 2023). Many of these methods are specific cases of the Temporal Graph
Network (TGN, Rossi et al., 2020) model. TGN is a general deep learning architecture designed to
learn on CTDG while achieving throughput suitable for streaming tasks. TGN can be said to have
two central modules: memory and prediction.

Memory module The memory module is responsible for updating the state of the nodes in the
graph as seen by the model. When a new batch of updates arrives, the memory module applies a
message function that generates a message vector for each node involved in each update. If the update
is an interaction ei,j between nodes vi and vj at time t, their appropriate messages are:

mi(t) = msgs(si(t
−), sj(t

−),∆t, ei,j),mj(t) = msgd(sj(t
−), si(t

−),∆t, ei,j) (1)

where si(t
−) is the state of vi prior to t. msgs and msgd may have learnable parameters. Then, all

the messages in the batch are aggregated into a single message per node:

mi(t) = agg(mi(t1),mi(t1)...mi(tn)) (2)

Here t1 ≤ t2 ≤ .. ≤ tn = t. The aggregation function, for example, can take only mi(tn) and
neglects any previous messages in the batch. Finally, the message updater updates the state of the
model:

si(t) = mem(mi(t), si(t
−)) (3)

The mem function usually contains learnable memory such as LSTM (Hochreiter & Schmidhuber,
1997) or GRU (Cho et al., 2014).

Prediction module The prediction module gives the predictions for the inputs in a batch. First, it
reads from the memory module all the states of the nodes in the neighborhood of any input node, i.e.,
the source node and destination node in an interaction input, and their appropriate neighbors. Then it
generates a new embedding for each node in the input based on its neighborhood state. For node vi
its embedding formulation is:

zi(t) = Σj∈N (i)h(si(t
−), sj(t

−), FE(ei,j), FV(vi), FV(vj)) (4)

where N (i) is the neighborhood of vi, h is a learnable function, and FE and FV the feature mapping
functions. Note that the prediction for time t is based on the state prior to t. Using the neighborhood
of a node in the graph to compute its embedding averts the staleness problem (Kazemi et al., 2020).

As mentioned above, most standard approaches for learning on CTDG suffer from missing updates.
A good example of this is TGN with an attention aggregation on the Canadian Parliament benchmark
for future edge prediction (Poursafaei et al., 2022).

The Canadian Parliament is a dataset describing a dynamic political graph, where the nodes are the
members of the Canadian Parliament and there is an edge between two members if they both vote
yes on a bill. In practice, for the task of edge prediction for this dataset, it is relatively simple to
predict whether a given temporal edge at a specific time is real and positive or negative and randomly
sampled. This is because the dataset is built of sequences of edge updates (multiple edge updates per
sequence) and in each sequence, the source nodes of the edge updates are the same. When using a
standard batch size of 200, TGN usually misses the switch from one sequence to another as illustrated
in Fig. 5b, and, therefore, frequently gives wrong predictions.

3



In Fig. 5a we present the performance of TGN as a function of its batch size on the Canadian
Parliament dataset. We can clearly see that large batches prevent TGN from maximizing its potential,
even for a relatively simple benchmark.

3 Method

In the following section, we describe a method to balance the batch size trade-off described earlier
in Section 2. To do this, we decouple the TGN modules. Each module uses a different batch size.
In general, the memory module will use smaller batch sizes for frequent updates and the prediction
module will use larger batch sizes for efficiency.

Following that, we describe our proposed lightweight model for dynamic graphs. The model is a TGN
with decoupled modules that are implemented using efficient functions. Specifically, we parameterize
the EdgeBank (Poursafaei et al., 2022) model to allow it to learn. Then we add extra parameters to
consider single-node information in the prediction instead of solely relying on edge information.

3.1 The decoupling strategy

To this end, we propose to increase the decoupling between the core modules of TGN: the prediction
module and the memory module. We do this by first saving the neighborhood state in addition to the
node state:

SN (i)(t) = {(sj(t), ei,j , vj) |j ∈ N (i)} (5)

Next, given a batch of updates to apply and inputs to predict, the batch is divided by the model into
small consecutive batches called mini-batches. The memory module operates on the mini-batches
and thus it is able to perform memory updates more frequently as demonstrated in Fig. 4. After
processing a mini-batch, but before processing the next one, the memory module extracts the node
states and the neighborhood states relevant to the next mini-batch to prevent their override. Note that
extracting the states is prior to the memory update and consequently missing updates may still occur.
In Fig. 4 we have a missing update in the first mini-batch for the prediction of the interaction between
v2 and v3 since at this time, the decoupled model is unaware of the new interaction between v1 and
v2. The prediction module operates only after the full batch is processed by the memory module. It
uses the states extracted by the memory module as input and gives the appropriate predictions. In
Fig. 4 we managed to prevent a missing update for the interaction between v3 and v6 by using the
decoupling strategy since the memory module is aware of the interaction between v2 and v3.

Decoupling the memory module and the prediction module offers two immediate benefits. First,
by decoupling the memory module from the prediction module and setting the mini-batch size to
1, we completely solve the missing updates problem. Secondly, we can accelerate the running time
of an existing model while keeping its accuracy the same by decoupling its modules and setting the
mini-batch size to be equal to the model’s original batch size, and then increasing the new batch size
of the prediction module significantly. Using the same batch size for the mini-batches ensures the
same frequency of missing updates and the new larger batch size will improve the performance in
terms of throughput.

3.2 Lightweight Decoupled Temporal Graph Network

The EdgeBank model can be formulated as a memory-based algorithm as presented by Poursafaei
et al. (2022), but we can also describe it as a linear function that maps a time-based difference into a
prediction. Eq. (6) describes the linear function of EdgeBank with a decision function that considers
any edge ei,j that appeared in the last 1000 updates as positive.

p = −(t− ti,j) + 1000 (6)

Where ti,j is the last time the edge ei,j appeared and t is the current time. We can parameterize the
threshold of 1000 suggested by Poursafaei et al. (2022) and receive Eq. (7).

p = (t− ti,j)w + b (7)

4



Using Eq. (7) we can learn the right threshold for each task. As in EdgeBank, this function does not
incorporate the nodes themselves into the prediction. This can easily be solved by adding the time
distances of each node as in Eq. (8).

p = (t− ti,j)w1 + (t− ti)w2 + (t− tj)w3 + b (8)

Eq. (8) is the prediction function that will be used by our model.

We now describe the implementation details of LDTGN vis-à-vis each of its modules for the task of
future edge prediction, using the decoupling strategy.

Memory module Given a new interaction update ei,j at iteration t, LDTGN will compute the
following messages:

mi(t) = mj(t) = mi,j(t) = t (9)

Since in our implementation we set the mini-batch size to one, the message aggregator submodule is
not required. The memory updater is formulated by the following:

si(t) = (mi − si(t
−)2,mi), sj(t) = (mj − sj(t

−)2,mj), si,j = (mi,j − si,j(t
−)2,mi,j) (10)

Note that in contrast to the standard TGN memory module, we also generate messages for the edges
and save states for them. Also note that the memory representation is a 2-dimentaional vector where
si(t)j is the element at the j-th index of the memory of node vi at time t. Additional memory for
edges states does not increase the memory consumption of LDTGN compared to TGN and other
models. This is because other models maintain a snapshot of the graph, so they can perform correct
neighborhood aggregation for each node, which results in a memory consumption equivalent to that
of edges states.

Prediction module Given an interaction ei,j as input, the embedding performed by the prediction
module will be computed by the following:

zi,j(t) = (N(si(t
−)1), N(sj(t

−)1), N(si,j(t
−)1)) (11)

where N is a normalization function that can be either static or dynamic. The normalization is
required to keep the values of zi,j(t) between 0 and 1. The static normalization is calculated by:

Nstatic(x) =
log(x)

log(C)
(12)

where C is a predefined constant. In our experiments, we set C to be the maximum number of
iterations among all the datasets. The dynamic normalization also allows the model to set a threshold
that is relative to the current iteration instead of a static one, and it is computed by:

Ndynamic(x) =
x

t
(13)

Finally, if the edge has at least one previously seen node, the module will give it the following
prediction:

p = wT zi,j(t) + b (14)

Here, w is a weight vector and b is a bias. If ei,j does not have any previously seen node, the module
predicts -1, i.e., a negative edge.

5



3.3 Training

While LDTGN was developed to be trained for the future edge prediction task, it can easily be
adjusted to solve other tasks such as node classification. Furthermore, since the model requires a
relatively small number of calculations to make predictions and has only a few learnable parameters,
it is suitable for online-learning scenarios with high streaming rates. That is, even with minimal or no
training examples, the model performs its core training during inference time using backpropagation
while maintaining high throughput.

We trained LDTGN as if it were in an online-learning scenario, i.e., by iterating on the training data
once using batches and performing a few iterations (epochs) of forward and backward propagation
on a newly received batch of inputs. For a fair comparison in the experiments, we did not perform
backpropagation at inference time in the experiments with the standard setting of transductive and
inductive learning. Further details regarding the model training are provided in Appendix C.

4 Experiments

In this section, we present the results of the extensive experiments that we conducted. All the
experiments were performed for the task of future edge prediction with random negative edge
sampling on the following datasets: Wikipedia, Reddit, Mooc, lastFM, Enron, SocialEvo, UCI,
Flights, Can.Parl, USLegis, UNTrade, UNVote, Contacts, which were collected by Poursafaei et al.
(2022). Additional information and statistics regarding the datasets can be found in Appendix A.
We used nine popular methods as baselines for the task of future edge prediction: JODIE (Kumar
et al., 2019), DyRep (Trivedi et al., 2019), TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), CAWN
(Wang et al., 2021b), EdgeBank (Poursafaei et al., 2022), TCL (Wang et al., 2021a), GraphMixer
(Cong et al., 2023) and DyGFormer (Yu et al., 2023). Additional information regarding the baselines
can be found in Appendix B. For convenience, we do not present in this section the results of DyRep
and TCL. The full results can be found in Appendix D.

We adopted the approach that was used in many existing works and split the dataset into training,
validation and test sets by performing a chronological split of 70%–15%–15%. We report the mean
and standard deviation of the Average Precision (AP) on the test set.

4.1 Future edge prediction

In the first experiment, we tested transductive future edge prediction. The results are presented in
Table 1. We also performed an experiment for the inductive future edge prediction setting, in which
all the edges in the validation and test sets must contain nodes that have not been previously seen in
the training set. The results for this experiment are reported in Table 2. For both transductive and
inductive settings, the results for all the baselines except EdgeBank were taken from (Yu et al., 2023),
and the experiments were performed using a standard batch size of 200 and ideal hyperparameter
configurations as mentioned in (Yu et al., 2023). For fairness, we recreated the experiments for
EdgeBank with a batch size of 1, since even with a small batch size, its throughput is extremely high.
We also tuned the threshold value of the prediction function of EdgeBank to be between the standard
1000 and a new threshold of 100k.

In the results for the settings of transductive and inductive future edge prediction we can see that
LDTGN usually achieves state-of-the-art or comparable results to the other methods. In benchmarks
such as Wikipedia and Reddit, LDTGN does not achieve comparable performance to other baselines.
This can be explained by the fact that relying on edge features in these datasets is required for the
correct prediction of future edges, while LDTGN does not use the edge features in its computations
in order to stay extremely efficient. In benchmarks such as USLegis, UNTrade, and UNVote, LDTGN
achieves significant state-of-the-art results compared to previous art, since high update rates are
required for the correct prediction of future edges in these datasets. Similar to LDTGN, EdgeBank
also updates frequently but does not perform well on these datasets. This is because the memory
needed to maintain in these datasets is mostly at the node level but EdgeBank saves memory at the
edge level.

We calculated the average number of learnable parameters required for each model to achieve its best
performance and reported it in Fig. 2. We also measured the average throughput at inference time
for each model, where the throughput is defined as the number of edges the model can process in a

6



Table 1: AP for transductive future edge prediction with random negative sampling over five runs.
The significantly best result for each benchmark appears in bold font.

Dataset JODIE TGAT TGN CAWN EdgeBank GraphMixer DyGFormer LDTGN (ours)

wikipedia 96.50±0.14 96.94±0.06 98.45±0.06 98.76±0.03 94.41±0.02 97.25±0.03 99.03±0.02 94.43±0.03
reddit 98.31±0.14 98.52±0.02 98.63±0.06 99.11±0.01 95.78±0.02 97.31±0.01 99.22±0.01 95.80±0.01
mooc 80.23±2.44 85.84±0.15 89.15±1.60 80.15±0.25 71.46±0.08 82.78±0.15 87.52±0.49 94.08±0.04

lastFM 70.85±2.13 73.42±0.21 77.07±3.97 86.99±0.06 86.13±0.03 75.61±0.24 93.00±0.12 91.28±0.03
Enron 84.77±0.30 71.12±0.97 86.53±1.11 89.56±0.09 91.02±0.21 82.25±0.16 92.47±0.12 95.67±0.06

SocialEvo 89.89±0.55 93.16±0.17 93.57±0.17 84.96±0.09 94.64±0.02 93.37±0.07 94.73±0.01 93.12±0.06
UCI 89.43±1.09 79.63±0.70 92.34±1.04 95.18±0.06 84.93±0.10 93.25±0.57 95.79±0.17 86.83±0.06

Flights 95.60±1.73 94.03±0.18 97.95±0.14 98.51±0.01 91.86±0.01 90.99±0.05 98.91±0.01 91.85±0.00
Can.Parl 69.26±0.31 70.73±0.72 70.88±2.34 69.82±2.34 54.27±0.12 77.04±0.46 97.36±0.45 95.77±0.18
USLegis 75.05±1.52 68.52±3.16 75.99±0.58 70.58±0.48 54.20±0.08 70.74±1.02 71.11±0.59 92.18±0.23
UNTrade 64.94±0.31 61.47±0.18 65.03±1.37 65.39±0.12 69.02±0.11 62.61±0.27 66.46±1.29 89.19±0.13
UNVote 63.91±0.81 52.21±0.98 65.72±2.17 52.84±0.10 60.64±0.03 52.11±0.16 55.55±0.42 87.29±0.09
Contacts 95.31±1.33 96.28±0.09 96.89±0.56 90.26±0.28 94.63±0.02 91.92±0.03 98.29±0.01 96.10±0.01

single second. The results are shown in Fig. 3. In both Fig. 2 and Fig. 3, LDTGN is second only to
EdgeBank and surpasses the other baselines by a large margin in terms of efficiency.

From all the results presented above, we conclude that our model is the best alternative among the
tested models when considering both running time and performance.

4.2 Online future edge prediction

We also tested our model and the baselines in the online future edge prediction setting. In this setting,
the models receive a few data samples for training and validation and are then tested on the rest of
the data. This experiment setting is crucial since in many real world scenarios, there are a few to
zero training samples from which to learn. Moreover, in continual dynamic systems with a stream of
updates that operate over extended periods, the behavior of the systems may vary significantly over
time. In the following experiment, we see that relying on the memory updates solely is not sufficient
to achieve reasonable performance in the online future edge prediction setting.

To simulate the online future edge prediction setting, we split the data into 0.1%–1.9%–98% and ap-
plied backpropagation at inference time for LDTGN. The other models cannot apply back-propagation
at inference time either because they do not have learnable parameters such as EdgeBank or because
they contain an excessive number of learnable parameters as shown in Fig. 2, and hence they cannot
withstand the high throughput required for streaming tasks while performing backpropagation. The
results of this experiment are reported in Table 3. Here, the partition into a transductive setting and an
inductive setting is not required since most of the data are located in the test set and hence this setting
resembles the inductive setting already. Furthermore, in Fig. 1b we can see that even when LDTGN
performs backpropagation at inference time, it is still more efficient than many other baseline.

Table 2: AP for inductive future edge prediction with random negative sampling over 5 different
runs. The significantly best result for each benchmark appears in bold font.

Dataset JODIE TGAT TGN CAWN EdgeBank GraphMixer DyGFormer LDTGN (ours)

Wikipedia 94.82±0.20 96.22±0.07 97.83±0.04 98.24±0.03 92.90±0.46 96.65±0.02 98.59±0.03 92.61±0.39
Reddit 96.50±0.13 97.09±0.04 97.50±0.07 98.62±0.01 93.18±0.54 95.26±0.02 98.84±0.02 92.95±1.13
MOOC 79.63±1.92 85.50±0.19 89.04±1.17 81.42±0.24 67.22±1.13 81.41±0.21 86.96±0.43 89.10±0.35
LastFM 81.61±3.82 78.63±0.31 81.45±4.29 89.42±0.07 88.04±1.20 82.11±0.42 94.23±0.09 90.82±0.03
Enron 80.72±1.39 67.05±1.51 77.94±1.02 86.35±0.51 94.51±0.37 75.88±0.48 89.76±0.34 95.59±0.35

SocialEvo. 91.96±0.48 91.41±0.16 90.77±0.86 79.94±0.18 96.39±0.21 91.86±0.06 93.14±0.04 95.15±0.32
UCI 79.86±1.48 79.54±0.48 88.12±2.05 92.73±0.06 81.17±0.8 91.19±0.42 94.54±0.12 83.06±0.25

Flights 94.74±0.37 88.73±0.33 95.03±0.60 97.06±0.02 88.60±0.98 83.03±0.05 97.79±0.02 87.06±0.58
Can.Parl. 53.92±0.94 55.18±0.79 54.10±0.93 55.80±0.69 54.36±3.25 55.91±0.82 87.74±0.71 89.95±0.29
USLegis. 54.93±2.29 51.00±3.11 58.63±0.37 53.17±1.20 49.51±0.12 50.71±0.76 54.28±2.87 80.82±0.97
UNTrade 59.65±0.77 61.03±0.18 58.31±3.15 65.24±0.21 64.12±0.97 62.17±0.31 64.55±0.62 89.32±0.56
UNVote 56.64±0.96 52.24±1.46 58.85±2.51 49.94±0.45 59.07±0.45 50.68±0.44 55.93±0.39 86.25±0.31
Contacts 94.34±1.45 95.87±0.11 93.82±0.99 89.55±0.30 94.88±0.25 90.59±0.05 98.03±0.02 96.52±0.22

7



Table 3: AP for future edge prediction with random negative sampling over five runs in an online
learning setting. The significantly best result for each benchmark appears in bold font.

Dataset JODIE TGAT TGN CAWN EdgeBank GraphMixer DyGFormer LDTGN (ours)

wikipedia 49.40±8.44 64.89±6.22 54.41±13.68 90.81±0.88 94.21±0.01 77.76±1.24 75.54±4.43 94.22±0.01
reddit 70.60±3.53 62.00±1.04 68.30±3.78 97.29±0.16 94.04±0.01 84.11±0.96 74.57±4.02 94.04±0.01
mooc 66.02±2.26 81.61±0.33 76.44±0.67 75.82±2.62 71.35±0.03 75.89±1.45 76.59±0.69 89.54±0.02

lastFM 54.90±0.88 61.78±1.82 55.18±1.97 84.39±0.94 87.24±0.01 70.73±0.81 59.83±2.13 90.99±0.02
Enron 49.63±6.48 64.98±3.87 55.22±3.08 75.23±2.23 94.53±0.01 66.95±2.75 66.63±13.61 96.02±0.04

SocialEvo 66.44±0.72 79.13±3.19 75.44±2.67 79.80±1.70 94.65±0.01 71.44±1.04 91.04±0.79 93.40±0.02
UCI 50.26±10.47 73.38±4.18 79.66±2.86 81.60±2.19 82.76±0.04 58.16±14.26 71.97±9.69 84.71±0.08

Flights 76.37±8.90 67.97±8.90 87.49±1.69 51.19±5.64 90.23±0.00 69.42±10.47 82.33±5.97 90.23±0.00
Can.Parl 54.60±9.82 56.21±6.15 59.48±0.72 48.07±3.52 55.67±0.06 55.28±1.14 76.21±9.61 80.47±0.06
USLegis - 64.19±2.39 66.13±0.42 50.73±3.74 58.97±0.08 49.89±3.62 50.53±4.15 80.43±0.09
UNTrade 63.42±1.94 53.25±4.90 62.52±1.39 48.87±7.28 71.14±0.03 52.09±3.54 51.04±2.33 88.26±0.02
UNVote 55.35±0.82 51.67±2.43 56.62±0.72 53.30±1.06 64.71±0.01 50.48±3.61 47.73±2.87 83.48±0.02
Contacts 84.25±1.88 88.18±1.73 88.08±1.29 88.30±0.11 90.12±0.01 87.24±2.27 96.09±0.19 96.33±0.01

4.3 Applications

In this section we demonstrate the benefits and applicability of using the decoupling strategy as
described in Section 3.1, using a constant mini-batch size and a changing batch size.

In the previous experiments, all the baselines used a standard batch size of 200 except for EdgeBank,
which used a batch size of 1. To maintain fairness, we also used a batch size of 200 for our model.
Since, however, LDTGN is decoupled, it can use larger batches without compromising its precision.
In Fig. 6a we show the average throughput of our model on the Wikipedia dataset using different batch
sizes. The performance of LDTGN remained consistent across all batch sizes, while its throughput
increased with larger batch sizes. Similarly, the running time of TGN and other TGN-based models
can be reduced by using the decoupling strategy. In Figure 6b, we analyzed the total running time of
TGN. We can see that 33% of its running time is invested in the embedding module. By increasing
the batch size of a decoupled TGN, we can reduce its total running time by at least 25%.

The conclusion drawn from these experiments is that temporal networks for dynamic graphs can
improve running time performance without any additional cost by simply using the decoupling
strategy.

5 Conclusion

In this work, we presented a decoupling strategy for designing temporal graph networks. Decoupling
enables two types of batches to be used – one for the memory module and the other for the prediction
module. In this way, temporal graph networks can increase the frequency of the updates while
still handling their arrival streams. In addition, we introduced LDTGN – a lightweight model for
the future edge prediction task that is extremely efficient in terms of time and memory. We also
showed by extensive experiments that LDTGN has outstanding performance for both transductive
and inductive tasks while surpassing many other baselines for these tasks. Finally, we observed that
the vast majority of the well-known models are not suitable for the scenario of streaming online
dynamic link prediction, while our suggested model excels in this setting since it is able to apply
backpropagation at inference time.

Limitations Although LDTGN achieves great performance on various benchmarks, as reported in
Section 4, it does not fully utilize the given data. The model does not use the features of the given
inputs. From experiments we conducted, trivial solutions such as appending these features to the
results of the memory module do not provide significant benefits. This might be explained by the fact
that the timing data is more important in most of the datasets used here. In the datasets where the
features might be useful, they have high dimensionality (about 170 features per update). In addition,
LDTGN does not utilize the topological structure of the dynamic graph and hence might suffer from
the staleness problem (Kazemi et al., 2020). We leave the concepts of effectively and efficiently
combining input features and utilizing the full topological structure of the dynamic graph as a future
research direction.

8



References
Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and recommending links

in social networks. In Proceedings of the fourth ACM international conference on Web search and
data mining, pp. 635–644, 2011.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, pp. 1724–1734, 2014.

Andrea Cini, Ivan Marisca, Filippo Maria Bianchi, and Cesare Alippi. Scalable spatiotemporal graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 37(6),
pp. 7218–7226, 2023.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023.

Linlin Ding, Baishuo Han, Shu Wang, Xiaoguang Li, and Baoyan Song. User-centered recommen-
dation using us-elm based on dynamic graph model in e-commerce. International Journal of
Machine Learning and Cybernetics, 10:693–703, 2019.

James H Fowler. Legislative cosponsorship networks in the us house and senate. Social networks, 28
(4):454–465, 2006.

Thomas E Gorochowski, Claire S Grierson, and Mario Di Bernardo. Organization of feed-forward
loop motifs reveals architectural principles in natural and engineered networks. Science advances,
4(3):eaap9751, 2018.

Mark S Granovetter. The strength of weak ties. American journal of sociology, 78(6):1360–1380,
1973.

Sogol Haghani and Mohammad Reza Keyvanpour. A systemic analysis of link prediction in social
network. Artificial Intelligence Review, 52:1961–1995, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Shenyang Huang, Yasmeen Hitti, Guillaume Rabusseau, and Reihaneh Rabbany. Laplacian change
point detection for dynamic graphs. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 349–358, 2020.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph
benchmark for machine learning on temporal graphs. CoRR, abs/2307.01026, 2023.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. The Journal of Machine
Learning Research, 21(1):2648–2720, 2020.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in temporal
interaction networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1269–1278, 2019.

David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
Proceedings of the twelfth international conference on Information and knowledge management,
pp. 556–559, 2003.

Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural networks.
In Proceedings of the 43rd international ACM SIGIR conference on research and development in
information retrieval, pp. 719–728, 2020.

9



Graham K MacDonald, Kate A Brauman, Shipeng Sun, Kimberly M Carlson, Emily S Cassidy,
James S Gerber, and Paul C West. Rethinking agricultural trade relationships in an era of global-
ization. BioScience, 65(3):275–289, 2015.

Anmol Madan, Manuel Cebrian, Sai Moturu, Katayoun Farrahi, et al. Sensing the" health state" of a
community. IEEE Pervasive Computing, 11(4):36–45, 2011.

Shmoolik Mangan and Uri Alon. Structure and function of the feed-forward loop network motif.
Proceedings of the National Academy of Sciences, 100(21):11980–11985, 2003.

Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. Patterns and dynamics of users’ behavior
and interaction: Network analysis of an online community. Journal of the American Society for
Information Science and Technology, 60(5):911–932, 2009.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence, volume
34(04), pp. 5363–5370, 2020.

James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71(2001):2001, 2001.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. Advances in Neural Information Processing Systems, 35:
32928–32941, 2022.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. CoRR, abs/2006.10637,
2020.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
international conference on web search and data mining, pp. 519–527, 2020.

Piotr Sapiezynski, Arkadiusz Stopczynski, David Dreyer Lassen, and Sune Lehmann. Interaction
data from the copenhagen networks study. Scientific Data, 6(1):315, 2019.

Jitesh Shetty and Jafar Adibi. The enron email dataset database schema and brief statistical report.
Information sciences institute technical report, University of Southern California, 4(1):120–128,
2004.

Georg Simmel. The sociology of georg simmel, volume 92892. Simon and Schuster, 1950.

Martin Strohmeier, Xavier Olive, Jannis Lübbe, Matthias Schäfer, and Vincent Lenders. Crowd-
sourced air traffic data from the opensky network 2019–2020. Earth System Science Data, 13(2):
357–366, 2021.

Riitta Toivonen, Jussi M Kumpula, Jari Saramäki, Jukka-Pekka Onnela, János Kertész, and Kimmo
Kaski. The role of edge weights in social networks: modelling structure and dynamics. In Noise
and Stochastics in Complex Systems and Finance, volume 6601, pp. 48–55. SPIE, 2007.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Erik Voeten, Anton Strezhnev, and Michael Bailey. United Nations General Assembly Voting Data.
Harvard Dataverse, 2009. URL https://doi.org/10.7910/DVN/LEJUQZ.

Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren
Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via contrastive
learning. CoRR, abs/2105.07944, 2021a.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021b.

10

https://doi.org/10.7910/DVN/LEJUQZ


Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. CoRR, abs/2303.13047, 2023.

Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk: A
flexible deep embedding approach for anomaly detection in dynamic networks. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2672–2681, 2018.

11



A Datasets statistics and descriptions

In our experiments we used the following dynamic graph datasets:

• Wikipedia (Kumar et al., 2019): Wikipedia edit requests log over one month, where the editing
users and Wikipedia pages are represented as nodes and the edit requests are modeled as edges. The
edges are timestamped and contain LIWC feature vectors (Pennebaker et al., 2001) of the requested
text to post.

• Reddit (Kumar et al., 2019): Reddit post requests log over one month where the posting users and
subreddits are represented as nodes and the posting requests are modeled as edges.

• MOOC (Kumar et al., 2019): Students’ access records to MOOC online courses, where students
and content units (e.g., videos, answers, etc.) are described as nodes and the access actions (viewing
a video, submitting an answer, etc.) are modeled as edges. The edges are timestamped and have four
features describing the action.

• LastFM (Kumar et al., 2019): LastFM listening records over one month, where the LastFM users
and the songs are represented as nodes and there is an edge between the users and the songs to which
they listened. The edges are timestamped and do not contain any features.

• Enron (Shetty & Adibi, 2004): Email logs of the Enron employees over a period of three years,
where the employees are modeled as nodes and a single edge represents an email sent between two
employees. The edges are timestamped and do not contain any features.

• Social Evo. (Madan et al., 2011): Documentation of the everyday life of undergraduate students
living in dormitories from October 2008 to May 2009. Represented as a mobile phone proximity
network where each edge has two features.

• UCI (Panzarasa et al., 2009): Messages logs of the online community of students from the University
of California, Irvine, where the students are modeled as nodes and a single edge represents a message
sent between two students. The edges are timestamped with a granularity of seconds.

• Flights (Strohmeier et al., 2021): Tracked air traffic during the COVID-19 pandemic, where the
airports are modeled as nodes and the edges are the tracked flights between two airports. The edges
are timestamped and weighted. The weight of the edges indicates the number of flights between the
airports in a day.

• Can. Parl. (Huang et al., 2020): Documented interactions between Canadian members of parliaments
from 2006 to 2019, where the members of parliaments are described as nodes, two of which are
connected by an edge if they both voted “yes” on a bill. The edges are timestamped and weighted.
The weight of the edges indicates the number of times that one member voted “yes” for another
member’s bill within one year.

• US Legis. (Fowler, 2006): Documented interactions in the US Senate, where legislators are
modeled as nodes, two of which are connected by an edge if they co-sponsored a bill. The edges are
timestamped and weighted. The weight of the edges indicates the number of times that two members
of the US Congress co-sponsored a bill in a given term.

• UN Trade (MacDonald et al., 2015): Documented global food and agriculture trading connections
spanning over 30 years, where nations are represented as nodes, two of which are connected by an
edge if they have an agriculture import or export relations. The edges are timestamped and weighted.
The weight of the edges is the sum of normalized agriculture import or export values between two
countries.

• UN Vote (Voeten et al., 2009): Documentation of roll-call votes in the United Nations General
Assembly from 1946 to 2020 where nations are represented as nodes, two of which are connected by
an edge if they both voted “yes” for an item. The edges are timestamped and weighted. The weight
of the edges is the number of times the two countries vote “yes” on a call.

• Contact (Sapiezynski et al., 2019): Physical proximity records documenting around 700 university
students over a period of four weeks, where the students are modeled as nodes, two of which are
connected by an edge if they each are within close proximity to each other. The edges are timestamped
and weighted. The weight of the edges specifies the physical proximity between two students.

The full statistics of the datasets as collected by Yu et al. (2023) are reported in Table 4.

12



Table 4: Datasets statistics.
Dataset Domain #Nodes #Edges #Edge Features Bipartite Duration

Wikipedia Social 9,227 157,474 172 True 1 month
Reddit Social 10,984 672,447 172 True 1 month
MOOC Interaction 7,144 411,749 4 True 17 months
LastFM Interaction 1,980 1,293,103 – True 1 month
Enron Social 184 125,235 – False 3 years

Social Evo. Proximity 74 2,099,519 2 False 8 months
UCI Social 1,899 59,835 – False 196 days

Flights Transport 13,169 1,927,145 1 False 4 months
Can. Parl. Politics 734 74,478 1 False 14 years
US Legis. Politics 225 60,396 1 False 12 terms
UN Trade Economics 255 507,497 1 False 32 years
UN Vote Politics 201 1,035,742 1 False 72 years
Contact Proximity 692 2,426,279 1 False 1 month

13



B Baselines descriptions

In our experiments we used the following temporal graph baselines:

• JODIE (Kumar et al., 2019): JODIE was originally designed to learn the time-evolving nature of
temporal bipartite graphs. To do so, it uses two Recurrent Neural Network (RNN) components that
learn and update. JODIE also uses a novel projection to create a representation of a future trajectory
of each user and item.

•DyRep (Trivedi et al., 2019): DyRep is an RNN-based architecture that utilizes a temporal attention
mechanism to exploit the dynamic structure of the graphs.

• TGAT (Xu et al., 2020): TGAT uses a time-encoding function and aggregates neighborhood
information using self-attention to compute the embedding for each node.

• TGN (Rossi et al., 2020): TGN is a general architecture for CTDG learning tasks. It uses both a
prediction module and a memory module to get relevant and accurate predictions for each input at
each moment in time. It does this by aggregating information from the neighborhood of each node
and maintain learnable updated memory which is based on RNN, and thus also solves the staleness
problem.

• CAWN (Wang et al., 2021b): The CAWN model is based on causal anonymous walks that are
generated for each node. The walks are encoded using RNNs and aggregated to achieve the node
representation.

• EdgeBank (Poursafaei et al., 2022): EdgeBank is a memorization algorithm that saves any seen
update and, given an input, it predicts according to a simple decision rule that can be one of the
following: whether the input was seen in the last few iterations (EdgeBankth) or in the last few
time units (EdgeBanktw), or whether the input has already been seen a sufficient number of times
(EdgeBankre). While EdgeBank can also have a decision rule that is based on infinite memory i.e.,
predicts positive for any previously seen edge and predicts negative otherwise (EdgeBankinf ). The
algorithm’s simplicity allows it to perform extremely fast, making it significantly faster than any
other model for dynamic graph learning. In our experiments, we report the best results of EdgeBank
among all of its decision rule variations.

• TCL (Wang et al., 2021a): TCL uses an adapted transformer that is able to capture structural and
temporal dependency relationships. It also uses a neighborhood encoder that extracts representa-
tions of the neighborhood of interacting nodes. The model is optimized by mutual information
maximization based on the contrastive learning approach.

• GraphMixer (Cong et al., 2023): GraphMixer uses three components for the task of future edge
prediction: a link-encoder that is based on MLP and fixed time-encoding function, a node-encoder
that only performs neighborhood mean-pooling and another MLP for edge prediction.

• DyGFormer (Yu et al., 2023): DyGFormer is a transformer-based architecture. To generate an
encoding for a given interaction, DyGFormer generates a co-occurrence embedding of the interaction
in addition to a neighborhood representation for each interacting node. Then it uses a patching
technique on historical representations of the interacting nodes to better capture long-term temporal
dependencies. The patches are then sent to a transformer and its outputs are averaged to create the
final representation.

14



C Additional Experiments Details

An additional approach to implementing our model is to split the prediction function into two linear
classifiers instead of having just one classifier. In this setting, we used the original classifier in
Eq. (8) where the edge to predict was previously seen and Eq. (15) where the edge to predict was not
previously seen but the two interacting nodes are both not new.

p = (t− ti)w4 + (t− tj)w5 + c (15)

In our experiments, we tuned our model between using one classifier and using two classifiers and
reported the best results. Furthermore, we used stochastic gradient descent as an optimizer with a
learning rate of 0.0001, with mean squared error as the objective function.

In the setting in which we trained our model, it is also possible to perform forward-backward
propagation not only on the current batch but also to include a few of the previous batches to achieve
possibly better performance. To do so, the states of each previously trained batch must be saved until
the full batch finishes participating in the training, since the memory gets updated upon receiving a
new batch and consequently the states of the previous batch are overridden. In our experiments, we
did not use previous batches for training.

All the experiments were performed on RTX2080ti and Intel(R)Xeon(R)Silver4108.

15



D Additional results

In Fig. 2 we present the average number of learnable parameters each model used in our experiments.
We can see that our model needs a significantly lower number of learnable parameters compared to
the other baselines, which makes it practical to be used in the task of online future edge prediction.
EdgeBank does not contain learnable parameters at all and, therefore, it applies the same prediction
strategy throughout time even in an online scenario.

101 102 103 104 105 106

Average Number of Parameters

CAWNDyG
For

mer
TG

AT
TG

N

TC
L

DyR
epGrap

hM
ixe

r
JODIE

LD
TG

N (o
urs

)Ed
ge

Ban
k

M
od

el
s

Figure 2: Average number of learnable parameters used by each baseline in the experiments.

In Fig. 3 we show the average throughput (processed edges per second) of each baseline used in our
standard transductive and inductive experiments.

103 104 105

Average Throughput

CAWN
TG

ATDyG
For

merGrap
hM

ixe
r

TC
L

DyR
ep

TG
N

JODIE
LD

TG
N (o

urs
)Ed

ge
Ban

k

M
od

el
s

Figure 3: Average throughput (processed edges per second) of each baseline in the experiments.

In Table 5, Table 6 and Table 7 we report the full results of the transductive, inductive and online
experiments, respectively.

16



Table 5: AP for transductive future edge prediction with random negative sampling over five runs.
The significantly best result for each benchmark appears in bold font.

Dataset JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer LDTGN (ours)

wikipedia 96.50±0.14 94.86±0.06 96.94±0.06 98.45±0.06 98.76±0.03 94.41±0.02 96.47±0.16 97.25±0.03 99.03±0.02 94.43±0.03
reddit 98.31±0.14 98.22±0.04 98.52±0.02 98.63±0.06 99.11±0.01 95.78±0.02 97.53±0.02 97.31±0.01 99.22±0.01 95.80±0.01
mooc 80.23±2.44 81.97±0.49 85.84±0.15 89.15±1.60 80.15±0.25 71.46±0.08 82.38±0.24 82.78±0.15 87.52±0.49 94.08±0.04

lastFM 70.85±2.13 71.92±2.21 73.42±0.21 77.07±3.97 86.99±0.06 86.13±0.03 67.27±2.16 75.61±0.24 93.00±0.12 91.28±0.03
Enron 84.77±0.30 82.38±3.36 71.12±0.97 86.53±1.11 89.56±0.09 91.02±0.21 79.70±0.71 82.25±0.16 92.47±0.12 95.67±0.06

SocialEvo 89.89±0.55 88.87±0.30 93.16±0.17 93.57±0.17 84.96±0.09 94.64±0.02 93.13±0.16 93.37±0.07 94.73±0.01 93.12±0.06
UCI 89.43±1.09 65.14±2.30 79.63±0.70 92.34±1.04 95.18±0.06 84.93±0.10 89.57±1.63 93.25±0.57 95.79±0.17 86.83±0.06

Flights 95.60±1.73 95.29±0.72 94.03±0.18 97.95±0.14 98.51±0.01 91.86±0.01 91.23±0.02 90.99±0.05 98.91±0.01 91.85±0.00
Can.Parl 69.26±0.31 66.54±2.76 70.73±0.72 70.88±2.34 69.82±2.34 54.27±0.12 68.67±2.67 77.04±0.46 97.36±0.45 95.77±0.18
USLegis 75.05±1.52 75.34±0.39 68.52±3.16 75.99±0.58 70.58±0.48 54.20±0.08 69.59±0.48 70.74±1.02 71.11±0.59 92.18±0.23
UNTrade 64.94±0.31 63.21±0.93 61.47±0.18 65.03±1.37 65.39±0.12 69.02±0.11 62.21±0.03 62.61±0.27 66.46±1.29 89.19±0.13
UNVote 63.91±0.81 62.81±0.80 52.21±0.98 65.72±2.17 52.84±0.10 60.64±0.03 51.90±0.30 52.11±0.16 55.55±0.42 87.29±0.09
Contacts 95.31±1.33 95.98±0.15 96.28±0.09 96.89±0.56 90.26±0.28 94.63±0.02 92.44±0.12 91.92±0.03 98.29±0.01 96.10±0.01

Table 6: AP for inductive future edge prediction with random negative sampling over five different
runs. The significantly best result for each benchmark appears in bold font.

Dataset JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer LDTGN (ours)

Wikipedia 94.82±0.20 92.43±0.37 96.22±0.07 97.83±0.04 98.24±0.03 92.90±0.46 96.22±0.17 96.65±0.02 98.59±0.03 92.61±0.39
Reddit 96.50±0.13 96.09±0.11 97.09±0.04 97.50±0.07 98.62±0.01 93.18±0.54 94.09±0.07 95.26±0.02 98.84±0.02 92.95±1.13
MOOC 79.63±1.92 81.07±0.44 85.50±0.19 89.04±1.17 81.42±0.24 67.22±1.13 80.60±0.22 81.41±0.21 86.96±0.43 89.10±0.35
LastFM 81.61±3.82 83.02±1.48 78.63±0.31 81.45±4.29 89.42±0.07 88.04±1.20 73.53±1.66 82.11±0.42 94.23±0.09 90.82±0.03
Enron 80.72±1.39 74.55±3.95 67.05±1.51 77.94±1.02 86.35±0.51 94.51±0.37 76.14±0.79 75.88±0.48 89.76±0.34 95.59±0.35

SocialEvo. 91.96±0.48 90.04±0.47 91.41±0.16 90.77±0.86 79.94±0.18 96.39±0.21 91.55±0.09 91.86±0.06 93.14±0.04 95.15±0.32
UCI 79.86±1.48 57.48±1.87 79.54±0.48 88.12±2.05 92.73±0.06 81.17±0.80 87.36±2.03 91.19±0.42 94.54±0.12 83.06±0.25

Flights 94.74±0.37 92.88±0.73 88.73±0.33 95.03±0.60 97.06±0.02 88.60±0.98 83.41±0.07 83.03±0.05 97.79±0.02 87.06±0.58
Can.Parl. 53.92±0.94 54.02±0.76 55.18±0.79 54.10±0.93 55.80±0.69 54.36±3.25 54.30±0.66 55.91±0.82 87.74±0.71 89.95±0.29
USLegis. 54.93±2.29 57.28±0.71 51.00±3.11 58.63±0.37 53.17±1.20 49.51±0.12 52.59±0.97 50.71±0.76 54.28±2.87 80.82±0.97
UNTrade 59.65±0.77 57.02±0.69 61.03±0.18 58.31±3.15 65.24±0.21 64.12±0.97 62.21±0.12 62.17±0.31 64.55±0.62 89.32±0.56
UNVote 56.64±0.96 54.62±2.22 52.24±1.46 58.85±2.51 49.94±0.45 59.07±0.45 51.60±0.97 50.68±0.44 55.93±0.39 86.25±0.31
Contacts 94.34±1.45 92.18±0.41 95.87±0.11 93.82±0.99 89.55±0.30 94.88±0.25 91.11±0.12 90.59±0.05 98.03±0.02 96.52±0.22

Table 7: AP for future edge prediction with random negative sampling over five runs in an online
learning setting. The significantly best result for each benchmark appears in bold font.

Dataset JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer LDTGN (ours)

wikipedia 49.40±8.44 52.11±3.34 64.89±6.22 54.41±13.68 90.81±0.88 94.21±0.01 64.57±4.40 77.76±1.24 75.54±4.43 94.22±0.01
reddit 70.60±3.53 58.89±2.68 62.00±1.04 68.30±3.78 97.29±0.16 94.04±0.01 55.17±3.03 84.11±0.96 74.57±4.02 94.04±0.01
mooc 66.02±2.26 49.25±8.57 81.61±0.33 76.44±0.67 75.82±2.62 71.35±0.03 76.53±1.12 75.89±1.45 76.59±0.69 89.54±0.02

lastFM 54.90±0.88 52.51±1.33 61.78±1.82 55.18±1.97 84.39±0.94 87.24±0.01 55.44±2.44 70.73±0.81 59.83±2.13 90.99±0.02
Enron 49.63±6.48 51.58±7.22 64.98±3.87 55.22±3.08 75.23±2.23 94.53±0.01 61.60±3.89 66.95±2.75 66.63±13.61 96.02±0.04

SocialEvo 66.44±0.72 53.32±1.40 79.13±3.19 75.44±2.67 79.80±1.70 94.65±0.01 74.06±1.39 71.44±1.04 91.04±0.79 93.40±0.02
UCI 50.26±10.47 51.31±9.86 73.38±4.18 79.66±2.86 81.60±2.19 82.76±0.04 51.05±4.86 58.16±14.26 71.97±9.69 84.71±0.08

Flights 76.37±8.90 76.92±3.59 67.97±8.90 87.49±1.69 51.19±5.64 90.23±0.00 56.02±8.53 69.42±10.47 82.33±5.97 90.23±0.00
Can.Parl 54.60±9.82 58.03±2.12 56.21±6.15 59.48±0.72 48.07±3.52 55.67±0.06 51.86±4.03 55.28±1.14 76.21±9.61 80.47±0.06
USLegis - 64.19±2.39 52.76±1.30 66.13±0.42 50.73±3.74 58.97±0.08 55.45±3.94 49.89±3.62 50.53±4.15 80.43±0.09
UNTrade 63.42±1.94 63.09±0.24 53.25±4.90 62.52±1.39 48.87±7.28 71.14±0.03 46.04±3.91 52.09±3.54 51.04±2.33 88.26±0.02
UNVote 55.35±0.82 56.03±0.42 51.67±2.43 56.62±0.72 53.30±1.06 64.71±0.01 50.77±2.51 50.48±3.61 47.73±2.87 83.48±0.02
Contacts 84.25±1.88 54.15±2.42 88.18±1.73 88.08±1.29 88.30±0.11 90.12±0.01 85.25±1.17 87.24±2.27 96.09±0.19 96.33±0.01

17



E Decoupled model demonstration

1 2

2 3

4 5

3 6

Batch

Mini-Batch

t1

t2

t3

t4

Mini-Batch

1

2
3t1 t2

4
5

t3

t4 6

1

2
3t1 t2

4
5

t4 6

1

2
3

4
5

t4 6

Ground truth

Decoupled model

Coupled model

Figure 4: Coupled and decoupled models states compared to the ground truth at t−4 for predicting
the edge (v3, v6). The coupled model was previously updated at t−1 and, therefore, does not contain
(v1, v2), (v2, v3) and (v4, v5). The decoupled model was previously updated at t−3 and, therefore,
does not contain (v4, v5).

18



(a) Average precision of TGN with attention aggrega-
tion on the Canadian Parliament benchmark for future
edge prediction using different batch sizes. The means
and standard deviations over five different runs are re-
ported as circles and ranges, respectively.

Batch size = 200Batch size = 20Ground truth

(b) Simplified illustration of the Canadian parliament
graph as seen by TGN with batch sizes of 20 and 200,
at the same moment in time. With a batch size of 200,
TGN misses the change of sequence of updates from
updates to the purple node to updates to the yellow
node, while with a batch size of 20, TGN manages to
catch the change and a few updates to the yellow node.

Figure 5: TGN performance on the Canadian Parliament dataset.

F Additional Figures

(a) Average throughput of LDTGN on the Wikipedia
dataset for future edge prediction using different batch
sizes. The means and standard deviations over three
consecutive runs are reported as circles and ranges,
respectively.

(b) Running time analysis of TGN with attention aggre-
gation on the Reddit dataset for future edge prediction
using different batch sizes and a constant mini-batch
size of 200. The running time for each batch is nor-
malised by the running time with batch size 200.

Figure 6: TGN performance on the Canadian Parliament dataset.

19


	Introduction
	Background
	Method
	The decoupling strategy
	Lightweight Decoupled Temporal Graph Network
	Training

	Experiments
	Future edge prediction
	Online future edge prediction
	Applications

	Conclusion
	Datasets statistics and descriptions
	Baselines descriptions
	Additional Experiments Details
	Additional results
	Decoupled model demonstration
	Additional Figures

