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Figure 1: A sample of some “skills” that our method identifies for the (a) AntMaze and (b) Kitchen
environments, where the transparency is higher (color is paler) for poses earlier in the trajectory. For
more discussion see Appendix B.

Abstract

Exploration in sparse-reward reinforcement learning (RL) is difficult due to the
need for long, coordinated sequences of actions in order to achieve any reward.
Moreover, in continuous action spaces there are an infinite number of possible
actions, which only increases the difficulty of exploration. One class of methods
designed to address these issues forms temporally extended actions, often called
skills, from interaction data collected in the same domain, and optimizes a policy
on top of this new action space. Such methods require a lengthy pretraining
phase in order to form the skills before reinforcement learning can begin. Given
prior evidence that the full range of the continuous action space is not required in
such tasks, we propose a novel approach to skill-generation with two components.
First we discretize the action space through clustering, and second we leverage
a tokenization technique borrowed from natural language processing to generate
temporally extended actions. Using this as an action-space for RL outperforms
comparable skill-based approaches in several challenging sparse-reward domains,
and requires orders-of-magnitude less computation.

1 Introduction

Reinforcement learning (RL), the learning paradigm that allows an agent to interact with an en-
vironment and collect its own data, is a promising approach to learning in many domains where
high-quality data collection is too financially expensive or otherwise intractable. Though it began with
dynamic programming in tabular settings, the recent use of neural networks as function approximators
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has led to great success on many challenging learning tasks [Mnih et al., 2013, Silver et al., 2017,
Gu et al., 2017]. These successful tasks tend to have some particular properties. In some cases, it is
simple to define a reward function that yields reward at every step of interaction (the “dense” reward
setting), like directional velocity of a robot learning to walk [Haarnoja et al., 2018a]. In other cases,
the environment dynamics are known, as in the case of Chess or Go [Silver et al., 2017]. However,
for many natural tasks like teaching a robot to make an omelet, it is much more straightforward to tell
when the task is completed without knowing how to automatically supervise each individual step,
how to model the environment dynamics. Learning in these “sparse” reward settings, where reward is
only obtained extremely infrequently (e.g., at the end of successful episodes) is notoriously difficult.
In order for a learning agent to improve its policy, the agent needs to explore its environment for long
periods of time, often in a coordinated fashion, until it finds any reward.

One class of solutions to this problem involves including additional task-agnostic dense rewards as
bonuses that encourage agents to explore the state space [Pathak et al., 2017, Burda et al., 2018b].
Another class of solutions to the exploration issue is to jumpstart the function approximator to be
used in reinforcement learning by training it on some pretext task [Yarats et al., 2021, Liu and Abbeel,
2021], which works well when the training and downstream domains are well aligned. A third class
of methods aims to create temporally extended actions, or “skills”, from interactions or data. A
particular subclass of methods learns skills that are conditioned on the observations [Singh et al.,
2020, Pertsch et al., 2021, Ajay et al., 2020, Sharma et al., 2019, Eysenbach et al., 2018, Park et al.,
2022, 2023], which means that the deployment scenario needs to match the data. Others relax this
assumption [Lynch et al., 2020, Pertsch et al., 2021, Bagatella et al., 2022] so that such skills can
easily be transferred to some new domain as long as the action space remains the same. This has the
potential to speed up exploration in new tasks for which it is not easy to collect data a priori (i.e.,
few-shot), which can lead to faster task adaptation. However, these recent efforts in skill learning all
require lengthy pretraining phases due to their reliance on neural networks in order to learn the skills.
Inspired by the recent cross-pollination of natural language processing (NLP) techniques in offline
RL [Chen et al., 2021, Janner et al., 2021, Shafiullah et al., 2022], we take a different approach.

Like the long-range coordination required for exploration in sparse-reward RL, language models
must model long range dependencies between discrete tokens. Character inputs leads to extremely
long sequences, and requires language models to both spell correctly and model inter-word relations.
On the other hand, word-level input results in the model poorly capturing certain rare and unseen
words. The solution is to create “subword” tokens somewhere in between individual characters and
words that can express any text [Gage, 1994, Sennrich et al., 2015, Provilkov et al., 2020, Kudo, 2018,
Schuster and Nakajima, 2012, He et al., 2020].

In the spirit of this development in language modeling, we propose a tokenization method for learning
skills. Following prior work [Dadashi et al., 2022, Shafiullah et al., 2022], we discretize the action
space and use a modified byte-pair encoding (BPE) scheme [Gage, 1994, Sennrich et al., 2015] to
obtain temporally extended actions. Then, we use this as the action-space for RL. As we demonstrate,
such a method benefits from extremely fast skill-generation (minutes v.s. hours for neural network-
based methods), significantly faster rollouts and training due to open-loop subword execution that
does not require an additional neural network, interpretability of a finite set of skills, and strong
results in several sparse-reward domains.

2 Related Work

Exploration in RL: Exploration is a fundamental problem in RL, particularly when reward is sparse.
A common approach to encouraging exploratory behavior is to augment the (sparse) environment
reward with a dense bonus term that biases toward exploration. This includes the use of state
visitation counts [Poupart et al., 2006, Lopes et al., 2012, Bellemare et al., 2016] and state entropy
objectives [Mohamed and Jimenez Rezende, 2015, Hazan et al., 2019, Lee et al., 2019, Pitis et al.,
2020, Liu and Abbeel, 2021, Yarats et al., 2021] that incentivize the agent to reach “novel” states.
Related, “curiosity”-based exploration bonuses encourage the agent to take actions in states where the
effect is difficult to predict using a learned forward [Schmidhuber, 1991, Chentanez et al., 2004, Stadie
et al., 2015, Pathak et al., 2017, Achiam and Sastry, 2017, Burda et al., 2018a] or inverse [Haber et al.,
2018] dynamics model. Burda et al. [2018b] propose a random network distillation exploration bonus
based upon the error in observation features predicted by a randomly initialized neural network.
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Temporally Extended Actions and Hierarchical RL: Another long line of work explores tem-
porally extended actions due to the potential for such abstractions to improve learning efficiency.
These advantages are particularly pronounced for difficult learning problems including sparse reward
tasks, which is the focus of our work. In particular, action abstractions enable more effective explo-
ration [Nachum et al., 2018] and simplify the credit assignment problem. Hierarchical reinforcement
learning (HRL) [Dayan and Hinton, 1992, Kaelbling, 1993, Sutton, 1995, Boutilier et al., 1997, Parr
and Russell, 1997, Parr, 1998, Sutton et al., 1999, Dietterich, 2000, Barto and Mahadevan, 2003,
Kulkarni et al., 2016, Bacon et al., 2017, Vezhnevets et al., 2017] considers the problem of learning
policies with successively higher levels of abstraction (typically two), whereby the lowest level
considers actions directly applied in the environment while the higher levels reason over temporally
extended transitions. A classic example of action abstractions is the options framework [Sutton et al.,
1999] , which provides a standardization of HRL in which an option is a terminating sub-policy that
maps states (or observations) to low-level actions. Options are often either prescribed as predefined
low-level controllers or learned via subgoals or explicit intermediate rewards [Dayan and Hinton,
1992, Dietterich, 2000, Sutton et al., 1999]. Some simple instantiations of options include repeated
actions [Sharma et al., 2017] and self-avoiding random walks [Amin et al., 2020]. Konidaris and
Barto [2009] learn a two-level hierarchy by incrementally chaining options (“skills”) backwards from
the goal state to the start state. Nachum et al. [2018] propose a hierarchical learning algorithm (HIRO)
that learns in an off-policy fashion and, in turn, is more sample-efficient than typical HRL algorithms,
which learn on-policy. Achieving these sample efficiency gains requires addressing the instability
typical of off-policy learning, which is complicated by the non-stationarity that comes with jointly
learning low- and high-level policies. Levy et al. [2017] use different forms of hindsight [Andrychow-
icz et al., 2017] to address similar instability issues that arise when learning policies at multiple levels
in parallel.

Skill Learning from Demonstrations: In addition to the methods mentioned above in the context
of HRL, there is an existing body of work that seeks to discover extended actions prior to their use
in online RL, often called “skills”. Many methods have been developed for skill discovery from
interaction [Daniel et al., 2012, Gregor et al., 2016, Eysenbach et al., 2018, Warde-Farley et al., 2018,
Park et al., 2022, 2023]. Most related to our setting is a line of work that explores extended action
discovery from demonstration data [Lynch et al., 2020, Ajay et al., 2020, Singh et al., 2020, Pertsch
et al., 2021, Bagatella et al., 2022]. As an example, Lynch et al. [2020] learn a VAE on chunks
of action sequences in order to generate a temporally extended action by sampling a single vector.
Ajay et al. [2020] follow a similar approach, but use flow models on top of entire trajectories, and
only rollout a partial trajectory at inference time. Some of these methods [Ajay et al., 2020, Singh
et al., 2020, Pertsch et al., 2021] condition on the observations when learning skills, which leads to
more efficient exploration, but such conditioning means that any skill that is learned will need to
be deployed in the same environment as the one in which the data was collected, resulting in poor
domain transfer performance [Bagatella et al., 2022]. Others [Lynch et al., 2020, Bagatella et al.,
2022] simply condition on actions, which means that the skills can be reused in any domain that
shares the same action space. In an effort to learn more generalizable skills, we follow this latter
example. There is also a related prior work that applies grammar-learning to online RL [Lange and
Faisal, 2019], but such a method learns an ever-growing number of longer actions, which poses
significant issues in the sparse-reward setting, as we discuss later.

3 Method

Similar to prior work [Lynch et al., 2020, Ajay et al., 2020, Singh et al., 2020, Pertsch et al., 2021,
Bagatella et al., 2022], we extract skills from demonstration data, more formally a dataset of N
trajectories with lengths {ni}i∈N that involve the same action space as our downstream task

D =
{
(oij , aij)i|i ∈ N ∩ [0, N), j ∈ N ∩ [0, ni), oij ∈ Rdobs , aij ∈ Rdact

}
,

where aij and oij denote actions and observations, respectively. After extracting skills from this
dataset, we use these skills as a new action space for reinforcement learning on some downstream
task. Crucially, our skills are unconditional so do not have any information as to when they should be
used in the downstream task. In following sections we detail our exact method.
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Figure 2: Abstract representation of our method. Given demonstrations in the same action space
as our downstream task, we discretize the actions and apply tokenization techniques to recover
“subwords” that form a vocabulary of skills. We then train a policy on top of these skills for some
new task. We only require a common action space between demonstrations and downstream task.

3.1 Byte-Pair Encoding

Byte-pair encoding (BPE) was first proposed as a simple method to compress files [Gage, 1994],
but it has recently been used to construct vocabularies for NLP tasks in between the resolution of
characters and whole-words [Sennrich et al., 2015]. With character vocabularies, the vocabulary is
small, but the sequence lengths are large. Such long sequences are extremely burdensome to process,
especially for the current generation of Transformers. In addition, making predictions at the character
level imposes a more difficult task on the language model: it needs to spell everything correctly,
or make a long-coordinated set of predictions, not unlike the requirement on action sequences for
sparse-reward exploration. Whole-word vocabularies shorten the sequence lengths and make the
prediction task easier, but if a word is rare in the training data, the outputs of the language model
may not be correct. Subword vocabularies have emerged as a sweet-spot between these two extremes
and are widely used in language models [Schuster and Nakajima, 2012, Sennrich et al., 2015, Kudo,
2018, Provilkov et al., 2020, He et al., 2020].

Given a long sequence of tokens and an initial fixed vocabulary, BPE consists of two core operations:
(i) compute the most frequent pair of neighboring tokens and add it to the vocabulary, and (ii) merge
all instances of the pair in the sequence. These two steps of adding tokens and making merges
alternate until a fixed maximum vocabulary size is reached.

3.2 Discretizing the Action Space

In order to run BPE, it is necessary to have an initial vocabulary V as well as a string of discrete
tokens. In a continuous action space, one simple way to form tokens is through clustering. Prior work
has leveraged these ideas in similar contexts [Janner et al., 2021, Shafiullah et al., 2022, Jiang et al.,
2022] and we follow suit. For simplicity, we perform k-means clustering with the Euclidean metric
on the actions of demonstrations in D to form a vocabulary of k discrete tokens V = {v0, . . . , vk}.
Our default choice for k will be two times the number of degrees-of-freedom (DoF) of the original
action space, or 2 · dact. We will further study this choice in Appendix A.1. Such clustering is the
same as the action space of Shafiullah et al. [2022] without the residual correction.

3.3 Scoring Merges

In NLP, we often have access to a large amount of text data from (mostly) correct human authors.
However, for robotics applications we may not have the same quantity of near-optimal (or even
suboptimal) demonstrations. As a result, it may be undesirable to merge tokens based on frequency
alone. Thus, in addition to merging based on frequency, we implement a variant of our method that
merges based on a proxy for the distance traveled in the observation space in order to encourage
the creation of skills that explore diversely in state space and thus are efficient for tasks. We take
inspiration from LSD [Park et al., 2022] and CSD [Park et al., 2023] for this choice. At the high
sampling rate of continuous control observations, the observation space should be locally Euclidean,
so euclidean distance makes sense as long as the length of skills is short enough. We label the two
variants of our method as SaS-freq and SaS-dist respectively (SaS for Subwords as Skills).
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Algorithm 1 Subword merging and pruning

1: Given dataset D = {(oij , aij)i|i ∈ N ∩ [0, N), j ∈ N ∩ [0, ni), oij ∈ Rdobs , aij ∈ Rdact}
2: Given k, Nmax, Nmin, ϵ≪ 1
3: Run k-means on actions with k clusters to get tokens V = {vi}ki=1
4: Tokenize D according to V
5: InitializeW = {wi}ki=1 ← V , Q ← ∅, q̄ = 0, Σq = I
6: // Merge vocabulary
7: while |W| < Nmax do
8: W ′ ← {All possible merges w = concat(w1, w2) in D | w1, w2 ∈ W} // Get candidates
9: for w′ ∈ W ′ do

10: Compute qw′ = Einstances of w′ in D

[
1
L

∑L = length of w′

r=1 oir − oi1

]
// Compute vectors

11: end for
12: w′ = arg maxw′∈W′(qw′ − q̄)⊤Σ−1

q (qw′ − q̄) // Find best possible merge
13: W ←W ∪ {w′}, Q ← Q∪ {qw′} // Add merge to vocabulary
14: q̄ ← Eq∈Q[q], Σq ← Covq∈Q(q) + ϵI // Update vocabulary mean and covariance
15: Retokenize D according toW
16: end while
17: // Prune vocabulary
18: while |W| > Nmin do
19: w′ = arg minw′∈W(qw′ − q̄)⊤Σ−1

q (qw′ − q̄) // Find most redundant subword
20: W ←W \ {w′}, Q ← Q \ {qw′} // Remove worst
21: q̄ ← Eq∈Q[q], Σq ← Covq∈Q(q) + ϵI // Update vocabulary mean and covariance
22: end while
23:
24: return W

More formally, suppose that two neighboring subwords w1 and w2 correspond to the trajectories
τ1 = {(o1, a1), . . . , (on, an)} and τ2 = {(on+1, an+1), . . . , (om, am)}. For an instance of the
subword w = concat(w1, w2) consisting of the entire trajectory τ = concat(τ1, τ2), we associate the
vector qτ = 1

m

∑m
i=1(oi − o1). This vector is analogous to the average “heading” of the subword,

which ignores possible high-frequency, periodic motion like legs moving up and down. In order to
obtain a vector that summarizes w, we compute the mean of such instances qw = E(τ1,τ2)∈D [qτ ],
which takes into account possible observation noise at different instances.

Given an existing vocabulary of subwordsW = {w0, . . . , wn−1} and their corresponding vectors
Q = {q0, . . . , qn−1}, we compute the mean q̄ = Eq∈Q[q] and covariance matrix Σq = Covq∈Q(q) +
ϵI for small ϵ. We associate a score to each possible new subword according to the Mahalanobis
distance between the candidate subword and the set of existing subwords: dw = (qw− q̄)⊤Σ−1

q (qw−
q̄). We add the subword with maximum distance dw to our vocabulary. We update Σq and q̄ at every
iteration. These steps yield a growing vocabulary of subwords that achieve high distance and diversity
in observation space. Such a scoring function also accounts for the fact that different parts of the
observation space may have different natural scales. We merge up to a maximum vocabulary size
|W| = Nmax. The choice of Nmax is studied in Appendix A.2.

3.4 Pruning the Subwords

If we stopped after merging to a maximum size, the final vocabulary would contain the intermediate
subwords that make up the longest units. In the context of NLP, this redundancy may not be
particularly detrimental. In reinforcement learning, however, redundancy in the action space of a
new policy will result in similar actions competing for probability mass, making exploration and
optimization more difficult. Thus we propose pruning the vocabulary.

For frequency-based merging, we begin with the longest subword, and remove subwords that are
strictly contained, then move to the next longest and repeat the process. We do this until we reach the
desired vocabulary size Nmin.

For distance-based merging, we prune the set of subwords using the same metric as was used to
merge. In particular, we find w′ = arg minwdw, updateW ← W \ {w′}, and recompute Σq and
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Figure 3: All skills generated for antmaze-medium-diverse where the transparency is higher
for poses earlier in the trajectory. See Appendix B for more details.

q̄. We continue pruning in this fashion until reaching a minimum vocabulary size |W| = Nmin.
Finally,W becomes the action space for a new policy. Algorithm 1 provides the pseudocode for the
distance-based method, and Figure 2 provides a graphical representation. We ablate the choice of
Nmin in Appendix A.3.

Implicit in our method is an assumption that portions of the demonstrations can be recomposed to
solve a new task, i.e., that there exists a policy that solves the new task with this new action space.
One can imagine a counter-example where the subwords we obtain lack some critical action sequence
without which the task cannot be solved. Still, we will show that this is a reasonable assumption for
several sparse-reward tasks.

4 Experiments

In the following sections, we explore the empirical performance of our proposed method: first
extracting skills from data, then using those skills as an action space for learning a new policy through
sparse-reward RL. We see that there are significant speed and performance benefits, with strong
exploration behavior. We also discuss benefits and drawbacks of our unconditional skills when
compared to conditional skills like those of SPiRL [Pertsch et al., 2021].

4.1 Reinforcement Learning with Unconditional Skills

Table 1: Main comparison (unnormalized scores). SSP corresponds to results from official code of
Pertsch et al. [2021]. We report numbers at the end of training for consistency. SFP takes so long it is
unmanageable on many domains. AntMaze is scored 0–1, Kitchen is scored 0–4 in increments of
1, CoinRun is scored 0–100 in increments of 10. ∗CoinRun is a discrete-action domain, so instead
of SAC only SAC-discrete can be used. SSP results exist for Kitchen, (0.8±0.2 [Pertsch et al., 2021,
Figure 4]), but we are unable to reproduce this number using official code.

Task SAC SAC-discrete SSP SFP SaS-freq SaS-dist

antmaze-umaze-diverse 0.0 0.0 0.0 — 0.0 0.76±0.43

antmaze-medium-diverse 0.0 0.0 0.0 0.0 0.0 0.40±0.55

antmaze-large-diverse 0.0 0.0 0.0 0.0 0.0 0.34±0.46

kitchen-mixed 0.0 0.0 0.0∗ 0.12±0.07 0.16±0.17 0.72±0.40

CoinRun —∗ 0.0 5.3±3.4 0.0 4.90±9.10 2.9±2.9

Tasks: We consider AntMaze and Kitchen from D4RL [Fu et al., 2020], two challenging sparse-
reward state-based tasks/datasets. AntMaze is a maze navigation task with a quadrupedal robot where
the reward is 0 except for at the goal, and Kitchen is a manipulation task in a kitchen setting where
reward is 0 except for on successful completion of a subtask. Demonstrations in AntMaze consist of
random start and end states in the same maze, while demonstrations in Kitchen consist of different
sequences of subtasks than the eventual task. We also consider CoinRun [Cobbe et al., 2019], a
discrete-action platforming game. Unlike AntMaze and Kitchen, CoinRun is a visual domain and the
demonstrations are collected in distinct levels than the final task. All of these domains require many
coordinated actions in sequence to achieve any reward, with horizons between 280 and 1000 steps.
See Appendix E for more information on the data.
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Baselines: We consider SAC [Haarnoja et al., 2018b]; SAC-discrete [Christodoulou, 2019] on top of
our discretized k-means actions; Skill-Space Policy (SSP), a VAE trained on sequences of 10 actions
at a time [Pertsch et al., 2021]; and State-Free Priors (SFP) [Bagatella et al., 2022] a sequence model
of actions that is used to inform action-selection during SAC inference, which takes the last action
as context. For SAC, SAC-discrete, SSP, and SFP, we implement or run the official code with the
default hyperparameters listed in the respective papers. Complete results are available in Table 1. All
numbers are taken from the end of training. We report mean and standard deviation across five seeds.
As defaults we use k = 2 · dact and Nmin = 16. We pick Nmax per-domain such that skill lengths
are comparable with SSP’s length 10. For more experimental details see Appendix E. Including our
method, all skills are not conditioned on observations.

Table 2: Per-domain subword lengths. Numbers are intended
to match the length-10 skills of SSP, but it is difficult to pre-
cisely control length due to the merging and pruning process.

Task Subword length

antmaze-umaze-diverse 11.3±5.6

antmaze-medium-diverse 8.5±5.0

antmaze-large-diverse 12.5±5.3

kitchen-mixed 9.2±4.5

CoinRun 9.1±5.6

We see in Table 1, that even
in these challenging sparse-reward
tasks, our method is the only one
that is able to achieve nonzero re-
ward across all tasks. All settings
with zero reward fail to achieve
any reward during training. The
large standard deviations are due
to the fact that some seeds fail
to achieve any reward. Figure 3
visualizes 200-step rollouts of all
of the discovered subwords for
antmaze-medium-diverse. We provide mean and standard deviations for subword lengths
in extracted vocabularies in Table 2. Failures of frequency-based merging in AntMazes are di-
rectly attributable to the discovery of long, constant sequences of actions, likely due to suboptimal
demonstration trajectories that often jitter in place.

Table 3: Timing on antmaze-medium-diverse
in seconds. Methods measured on the same Nvidia
RTX 3090 GPU with 8 Intel Core i7-9700 3 GHz
CPUs @ 3.00 GHz. SSP takes around 36 hours for
skill generation and SFP takes around 2 hours.

Method Skill Generation Online Rollout

SSP 130000±1800 0.9±0.05

SFP 8000±500 4.1±0.1

SaS-dist 210±10 0.007±0.0006

Due to the simplicity of our method, it also
enjoys significant acceleration compared to
the baselines. In Table 3, we measure the
wall-clock time required to generate skills, as
well as inference for a single rollout. We see
that our method achieves extremely signifi-
cant speedups compared to prior work, achiev-
ing both faster and more efficient learning, as
well as faster inference during execution. Our
skill discovery is fast as we simply need to
run k-means and tokenization. SSP and SFP
require training larger generative models. In
the case of rollouts our method predicts an entire sequence of actions using a simple policy every 10
steps or so, while SSP and SFP require much larger models in order to predict the latent variable, and
then generate the next action from that latent. The speedup of our method also translates to faster RL
(around 10 hours for our method vs. 12 hours for SSP and 1 week for SFP).

4.2 Exploration Behavior on AntMaze Medium

The stringent evaluation procedure for sparse-reward RL equally penalizes poor learning and explo-
ration. In order to shed light on the many zeros in Table 1, we examine the exploration behavior on
AntMaze Medium. We choose this domain because it is particularly straightforward to interpret what
good and bad exploration looks like: coverage of the maze. In Figure 4 and Figure 5 we plot state
visitation for the first 1 million of 10 million steps of RL. We show the approximate start position
in grey in the bottom left and the approximate goal location in green in the top right. Higher color
intensity (saturation) corresponds to a higher probability of that state. Color is scaled nonlinearly
according to a power law between 0 and 1 for illustration purposes. Thin white areas between the
density and the walls can be attributed to the fact that we plot the center body position, and the legs
have a nontrivial size limiting the proximity to the wall.

In Figure 4, we show the exploration behavior across methods, averaged over 5 seeds. We see that the
0 values for the final reward in Table 1 for SAC, SSP and SFP are likely due not to poor optimization,
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(a) SAC-discrete (b) SFP (c) SSP (d) SaS-dist

Figure 4: A visualization of state visitation for RL on antmaze-medium-diverse in the first 1
million timesteps for (a) SAC-discrete, (b) SFP, (c) SSP, and (d) our method. The grey circle in the
bottom-left denotes the start position, while the green circle in the top-right indicates the goal. Notice
that our method explores the maze much more extensively. SAC’s visitation is tightly concentrated
on the start state, which is why there is so little red in (a).

(a) Seed 0 (b) Seed 1 (c) Seed 2 (d) Seed 3 (e) Seed 4

Figure 5: State visitation achieved with our method for each of the 5 individual seeds. Notice the
diversity of exploration behavior. This is true even for seeds 0, 2 and 3 that, as reflected in the
standard deviations in Table 1, eventually finish with a final reward of 0.

but rather poor exploration early in training, unlike our method. One reason for this could be due to
the fact that our subwords are a discrete set, so policy exploration does not include small differences
in a continuous space. In addition, SAC has fundamental issues in sparse-reward environments as the
signal to the Q function is driven entirely by the entropy bonus, which will lead to uniform weighting
on every action and as a result Brownian motion in the action space. Such behavior is likely why the
default setting for SAC [Haarnoja et al., 2018b] aggressively drives the policy to determinism, but in
the sparse reward setting this also results in a uniform policy. Without long sequences of coordinated
actions such exploration is insufficient.

In Figure 5, we show the individual seed visitation of our method in the first 1 million steps. This is
to demonstrate that, even though individual seeds may have some bias, they all are able to explore
much more widely than the collective exploration of baseline methods. Indeed, this suggests that the
large standard deviations of our method are a result of an optimization failure, as suggested by Zhou
et al. [2022], and not poor exploration due to bad skill-encoding.

4.3 Comparison to Observation-Conditioned Skills

Our method for extracting skills is an unconditional, open-loop method with the objective that
the skills should generalize. Still, this comes with the drawback that a policy needs to learn the
context to deploy skills from scratch. Alternatively, observation-conditioned skills bias policy
exploration to match that of the demonstrations. This allows for more stable exploration, but worse
generalization [Bagatella et al., 2022].

Baselines: Here we compare to observation-conditioned extension of SSP, SPiRL and SPiRL-cl (the
closed-loop version) [Pertsch et al., 2021, 2022] which bias a policy toward skills used in the exact
context of demonstrations in the dataset. We also include OPAL [Ajay et al., 2020], a conditional
flow model similar to SPiRL. We take numbers from the paper as OPAL is closed-source.

In Table 4, we see that SPiRL and SPiRL-cl show very strong performance on Kitchen, where the
overlap between the dataset and the downstream task is exact, but SPiRL fails on AntMaze-large,
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Table 4: Comparison to methods with observation-conditioned skills. In general we see conditioning
helps when the data closely overlaps with the downstream task (Kitchen), but not in CoinRun where
such an overlap cannot be assumed. With AntMaze the results are mixed likely due to the suboptimal
quality of the demonstrations. We highlight that, even without conditioning, our method is competitive
in AntMaze-large and comparable to SPiRL in AntMaze-medium. OPAL is a closed-source method
similar to SPiRL, and results are from Ajay et al. [2020].

Task SPiRL SPiRL-cl OPAL SaS-freq SaS-dist

antmaze-medium-diverse 0.40±0.49 1.00±0.00 0.82±0.04 0.0 0.40±0.55

antmaze-large-diverse 0.0 0.20±0.40 0.0 0.0 0.34±0.46

kitchen-mixed 1.87±0.16 3.00±0.00 — 0.16±0.17 0.72±0.40

CoinRun 5.32±5.41 0.0 — 4.90±9.10 2.90±2.90

while SPiRL-cl fails on CoinRun, likely due to differences between the dataset for CoinRun (easy
levels) and the downstream task (hard levels). In addition, notice that BPE with simple frequency
merging (SaS-freq) is poor in AntMaze as discussed previously but comparable in CoinRun. We are
able to replicate results for SPiRL-cl (2–3 in the original paper [Pertsch et al., 2022]), but for SPiRL
our result is significantly worse (2–3 in the original paper [Pertsch et al., 2021]). Given we use the
official code which already implements Kitchen, the difficulty of sparse-reward is likely to blame.

In addition, we examine generalization behavior across observation-conditioned methods. Table 5
highlights the drawback that conditioning has in generalization. In particular the strongest advantage
for conditional skills is in a setting where the data closely matches the final task, but it may be
detrimental when we do not have access to sufficiently general demonstrations, like the ∼10,000
trajectories in randomized environments that SPiRL uses for visual PointMaze [Pertsch et al., 2021].

Table 5: Results on transferring skills extracted from antmaze-medium-diverse to downstream
RL on antmaze-umaze-diverse. We see that methods with conditioning (SPiRL and SPiRL-cl)
underperform our simple unconditional method. Similar conclusions were drawn by the authors of
SFP [Bagatella et al., 2022, Figures 7, 16], where stronger conditioning fails to generalize.

Task SSP SPiRL SPiRL-cl SaS-dist

antmaze-medium-diverse → antmaze-umaze-diverse 0.0 0.60±0.49 0.20±0.40 0.97±0.12

5 Conclusion

Limitations: As proposed, there are a few key limitations to our method. Discretization removes reso-
lution from the action space, which may be detrimental in settings like fast locomotion (Appendix H),
but this may be fixed by more clusters or a residual correction [Shafiullah et al., 2022]. In addition,
like prior work execution of our subwords is open loop, so exploration can be inefficient [Amin
et al., 2020] and unsafe [Park et al., 2021]. Finally, in order to operate on the CoinRun domain, we
downsample inputs from 64× 64 resolution to 32× 32 to make matrix inversion during merging less
expensive (2 hours vs. 2 minutes). In high-dimensional visual input domains, our merging may be
too computationally expensive to perform. However, this can be resolved by using neural network
features instead of images. We also speculate that higher-quality demonstrations could allow us to
generate skills simply by merging based on frequency (Table 1, CoinRun), and these demonstrations
may be easy to obtain if they don’t need to be collected in the deployment domain (Table 5).

Architectures from NLP have made their way into offline RL [Chen et al., 2021, Janner et al.,
2021, Shafiullah et al., 2022], but as we have demonstrated, there is a trove of further techniques to
explore. Given prior evidence that the full range of the action space is not required, we discretize
and form skills through a simple tokenization method. Such a method is much faster both in skill
generation and in policy inference, and leads to strong performance in a relatively small sample
budget on several challenging sparse-reward tasks. Moreover, the discrete nature of our skills lends
itself to interpretation: one can simply look at the execution to figure out what has been extracted
(Appendix B). Given its many advantages, we believe that such a tokenization method is the first step
on a new road to efficient reinforcement learning.
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A Ablations

Certainly the level of discretization, and the size of the vocabulary will have an effect on performance.
In the following sections we perform ablations over the primary hyperparameters on AntMaze-
Medium and Kitchen.

A.1 Number of Discrete Primitives

All of our results in Table 1 use the simple rule-of-thumb that k = 2× degrees-of-freedom. Such a
choice may not be optimal depending on the setting. In Table 6 we see that this choice seems to be a
simple sweet spot across the two domains, though the method can achieve reward with significantly
different values of k.

Table 6: Results for different numbers of clusters in terms of the number of degrees-of-freedom
(DoF). AntMaze DoF = 8, Kitchen DoF = 9. The default setting is in bold.
k 4 1 × DoF 2 × DoF 4 × DoF 8 × DoF

antmaze-medium-diverse 0.0 0.0 0.40±0.55 0.20±0.45 0.0
kitchen-mixed 0.16±0.35 0.08±0.18 0.72±0.40 0.0 0.20±0.45

A.2 Maximum Vocabulary Size

A crucial property of the vocabulary is the length of the subwords within. Long subwords lead to
more temporal abstraction and easier credit-assignment for the policy, but long subwords can also get
stuck for many transitions, leading to poor exploration. In Table 7, we vary the value of Nmax, which
is a proxy for the length of the subwords in the vocabulary. Our default setting for each environment
targets an average length of around 10 to match the baselines, but we see that different domains may
have different optimal choices for length, which makes sense given the episode length for Kitchen is
around a quarter of that of AntMaze.

Table 7: Results for maximum vocabulary size (proxy for length).
Nmax 32 64 128 256 512

antmaze-medium-diverse 0.0 0.25±0.5 0.40±0.55 0.61±0.48 0.07±0.08
kitchen-mixed 0.0 0.50±0.57 0.72±0.40 0.04±0.10 0.0

A.3 Minimum Vocabulary Size

Ultimately, the dimensionality of the action space will make exploration easier or harder. A large
vocabulary results in too many paths for the policy to explore well, but a vocabulary that is too small
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Table 8: Results for minimum vocabulary size Nmin. In bold is the default setting.
Nmin 4 6 8 12 16
antmaze-medium-diverse 0.0 0.24±0.49 0.71±0.41 0.41±0.49 0.40±0.55
kitchen-mixed 0.0 0.0 0.0 0.01±0.01 0.72±0.40

may not include all the subwords necessary to represent a good policy for the task. We see in Table 8
that even if AntMaze can be accomplished with fewer subwords (a smart handcrafted action space
might consist of one action for turning and one for moving forward), Kitchen performance suffers
significantly at low values.

B Qualitative Description of Skills

One nice property of our method is that, given that we create a finite and discrete vocabulary, we can
inspect the discovered skills. Below, we discuss the AntMaze and Kitchen domains as an example. In
order to visualize skills, we take the subwords and execute them for 200 steps in the environment,
and visualize the resulting trajectory. It may be the case that the actual duration of a skill could be
much shorter, but this is done to make the motions very clear.

In Figure 3 (main paper), we see all the skills extracted for a run of AntMaze. In particular, turning
in both directions, with differing turn radii, as well as linear motions in different directions are
discovered. It is straightforward to imagine why one would need both in designing an action space,
and it seems that there are few explicit repetitions (though many variations on a theme) in the
discovered skills. Also, as desired, the skills accomplish some coherent motion, instead of just
repeating the same action and staying in place as a result, or falling over due to an unstable execution,
or jittering randomly.

Figure 6: All skills generated for kitchen-mixed-v0 where the transparency is higher for poses
earlier in the trajectory. We see a range of different behaviors across the skills. Framed skills are
highlighted in more detail in the text.

In Figure 6, we visualize the different skills discovered in the Kitchen domain. These are difficult
to present in a static form, as it is not simple to visualize interaction with the environment, but they
consist of a variety of reaching and rotational motions that are useful for interacting with different
objects. In the bordered images, we highlight three particular skills. In the bottom left is a reaching
skill that might be used for reaching the light switch/oven knobs. Next from the left is a turning skill
that could be useful for adjusting some knob if the arm is in a particular position. Lastly there is a
pulling skill, that might be useful for opening the microwave door. In general, these skills may not
make sense unless the arm is already in a particular starting position, which makes visualizing them
nontrivial.

C Discrete Actions from Data

Prior work combines discretization with many additional architectural and optimization components.
To test the behavior of discrete actions in isolation, we perform behavior cloning with a simple
fully-connected neural network on demonstration data from the D4RL [Fu et al., 2020] dataset. To be
clear, our objective is not to show that simple k-means on demonstrations outperforms contemporary
methods. Instead, we investigate whether behavioral cloning with these actions achieves modest
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Table 9: D4RL offline learning results. BC numbers are from Emmons et al. [2021], Diffusion-QL
numbers are from Wang et al. [2022], CQL numbers are from Kumar et al. [2020]. k-means BC
numbers are from the checkpoint with the best average score during training.

Task BC k-means BC CQL Diffuser Diffusion-QL k-means BC + goals

hopper-medium 52.9 8.3±1.9 58.0 74.3±1.4 90.5±4.6 —
hopper-medium-replay 18.1 8.3±1.6 — 93.6±0.4 101.3±0.6 —
hopper-medium-expert 52.5 10.2±1.7 111.0 103.3±1.3 111.1±1.3 —
walker2d-medium 75.3 9.8±2.7 79.2 79.6±0.55 87.0±0.9 —
walker2d-medium-replay 26.0 7.9±0.7 0 70.6±1.6 95.5±1.5 —
walker2d-medium-expert 107.5 9.7±0.6 98.7 106.9±0.2 110.1±0.3 —
halfcheetah-medium 42.6 27.2±3.5 — 42.8±0.3 51.1±0.5 —
halfcheetah-medium-replay 36.6 8.6±2.8 — 37.7±0.5 47.8±0.3 —
halfcheetah-medium-expert 55.2 15.1±4.4 62.4 88.9±0.3 96.8±0.3 —

antmaze-umaze 54.6 84.0±8.3 74.0 — 93.4±3.4 82.6±6.6

antmaze-umaze-diverse 45.6 93.8±4.7 84.0 — 66.2±8.6 89.0±7.2

antmaze-medium-play 0.0 0.0 61.2 — 76.6±10.8 15.2±9.8

antmaze-medium-diverse 0.0 0.0 53.7 — 78.6±10.3 14.4±7.5

antmaze-large-play 0.0 0.0 15.8 — 46.4±8.3 2.6±2.8

antmaze-large-diverse 0.0 0.0 14.9 — 56.6±7.6 10.8±5.6

kitchen-complete 65.0 54.0±3.5 43.8 — 84.0±7.4 —
kitchen-partial 38.0 14.8±0.2 49.8 — 60.5±6.9 —
kitchen-mixed 51.5 18.0±4.6 — — 62.6±5.1 —

performance in which case there is the potential for further tokenization to be effective in sparse-
reward domains.

We compare to CQL [Kumar et al., 2020], an offline Q-learning algorithm that encourages staying
close to the demonstration distribution; Diffuser [Janner et al., 2022], a diffusion model conditioned
on an initial and final state; and Diffusion-QL [Wang et al., 2022], an offline Q-learning algorithm
that uses a diffusion model on top of actions to stay close to the demonstration distribution. For more
details on the experimental setting, see Appendix D.

In Table 9, we see that the dense-reward locomotion domains suffer from discretization, which makes
sense as locomotion policies may require fine-grained control to move at high speed and achieve
high reward. On AntMaze, however, we see that simple k-means discretization significantly boosts
performance. This can be due to the fact that, at a given position, there are many possible motions
that can move the body, but they are completely distinct in action space, which a unimodal policy
may fail to capture. In the Kitchen domain, a policy that reasons over discrete actions achieves
modest performance. The data in this domain was collected from expert human demonstrations, and
there is very low variability in the executions, so it may be the case that multimodality is simply not
necessary.

D Offline RL Experimental Details

D.1 Data

To measure the performance of behavior cloning with discrete actions, we take advantage of datasets
from D4RL [Fu et al., 2020]. In particular, we select three subclasses of tasks. First are the MuJoCo
dense-reward locomotion tasks, which consist of demonstrations collected from an RL agent, where
medium refers to a policy partway through optimization, medium-replay refers to all samples
in the replay buffer til the policy obtains medium performance, and medium-expert refers to a
mix of data from an expert policy and a policy midway through training. Second are the AntMaze
tasks, which are a collection of sparse-reward maze navigation tasks on top of the MuJoCo Ant
quadrupedal robot. Demonstrations are either play, which is a scripted policy navigating between a
couple fixed start and endpoints, which do not overlap with the final task, and diverse, which is
the same scripted policy navigating between random start and endpoints. Third, are the Kitchen tasks,
which are a collection of VR-collected demonstrations of subtasks in a Kitchen, where the final goal
is to perform 4 in sequence. The settings include complete that consists of demonstrations of all
subtasks in order, partial that consists of some sequences in the correct order, and others not, and
mixed that consists of subtask demonstrations, some of which are unused for the final task.
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(a) antmaze-medium (b) antmaze-large (c) kitchen (d) CoinRun

Figure 7: Offline environments, figures courtesy of Fu et al. [2020] and Cobbe et al. [2019]. For
mazes, the starting locations are in the bottom left, and goals are in the top right.

To perform the goal-conditioned experiments for the AntMaze task, for each trajectory we extract
the last state that is considered “terminal” (e.g., falling over or reaching the goal) and create a (state,
action, goal) triplet for each transition in the trajectory.

D.2 Model

For the model, we choose a 4-layer MLP with 256 hidden units in each layer. We use the default
initialization in Stable Baselines 3 [Raffin et al., 2021].

D.3 Optimization

We train our model with Adam [Kingma and Ba, 2014] with a learning rate of 3e− 4 and the default
PyTorch [Paszke et al., 2019] betas. All numbers are reported for 5 random seeds with 300 epochs of
training.

D.4 Choice of Number of Clusters

For the locomotion and AntMaze environments, we choose k = 2× the number of DoF. For Kitchen,
we choose k = 8× DoF. This discrepancy is due to the fact that Kitchen performs poorly with the
simple baseline choice. In particular we believe that this is due to the fact that Kitchen demonstrations
are particularly good, and not particularly multimodal, so they benefit from the higher resolution that
a larger k affords. This is similar to the hyperparameter settings of Shafiullah et al. [2022] in the
same environment.

D.5 Implementation

Code was implemented in Python using PyTorch [Paszke et al., 2019] and PyTorch Lightning [Falcon]
for deep learning, and Weights & Biases [Biewald, 2020] for logging.

D.6 Computational Requirements

All experiments were performed on an internal cluster with access to around 100 Nvidia 2080 Ti (or
more capable) GPUs. Each single run fits in around 2GB of GPU memory on a single machine. For
supervised learning, training takes less than 2 hours on a single machine.

E Online RL Experimental Details

E.1 Data

As a set of diverse and challenging sparse-reward tasks, we select AntMaze and Kitchen from
D4RL [Fu et al., 2020] and CoinRun [Cobbe et al., 2019].

AntMaze (Figs. 7(a) and 7(b)) is a task where a MuJoCo Ant robot is tasked with solving a maze.
The observation space consists of positions and joint angles of the body geometries, while actions
correspond to joint torques. Crucially, no information about the maze layout is given, so the agent
must learn this through exploration. Reward is 0 unless within a small distance ϵ of the goal, in which
case it is 1. Demonstrations from the dataset consist of a non-RL agent navigating between random
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start and end points within the maze. In particular, the demonstrations are highly suboptimal, often
crashing into walls, flipping over, and getting stuck.

Kitchen (Fig. 7(c)) is a task where a Franka Panda arm is tasked with performing a set sequence of 4
subtasks in a mock kitchen environment. Example subtasks might be moving a kettle between burners,
turning on the stove, or opening the microwave. Observations consist of position and joint angles of
the arm, as well as positions of key objects to be manipulated, and actions are joint torques. Once
again, no information about the layout is given to the agent and must be learned through exploration.
Rewards are 0 unless the correct subtask is completed in the correct order, which yields a reward of 1.
The 4 subtasks must be completed, so there is a maximum reward of 4 available. Demonstrations
are collected by humans using a VR interface, and consist of near-perfect executions of different
sequences of 4 subtasks from the final subtask sequence.

CoinRun (Fig. 7(d)) is a procedurally-generated platforming game intended to mimic classic games
that involves traversing obstacles and avoiding enemies in order to reach a final goal. Each level has a
different layout and visual style, designed by humans, in order to require more general recognition
from the policy. Observations consist of a 64 × 64 visual observation of the scene, centered on the
agent, with velocity information painted into the upper-left corner. Actions are discrete and consist of
moving, jumping, and staying still. Reward is 0 until the final goal for a level is reached, in which
case it is 10. For RL, we select a fixed subset of 10 “hard” levels in sequence for an agent to complete,
to mimic classic games, so the maximum possible reward is 100. Demonstration data is collected by
us through playing around 100 “easy” levels with different layout and visual style than the eventual
levels we perform RL on.

E.2 Model

For the model, we choose a 4-layer MLP with 256 hidden units in each layer. We use the default
initialization in Stable Baselines 3 [Raffin et al., 2021].

E.3 Optimization

For our RL agent, we use SAC-discrete [Christodoulou, 2019]. Both critics as well as the policy
are optimized with Adam with a learning rate of 3e − 4. Replay buffer size is set to the standard
1 million transitions. We update both critics and the policy every step of environment interaction
and sample uniformly from the replay buffer to do so. Unlike Christodoulou [2019], we follow a
similar convention to Haarnoja et al. [2018b] and automatically optimize α. We choose a target
entropy of− log |V|, except for CoinRun domains, where we use 1

2 · log |V|. A negative target entropy
may not make sense for a discrete distribution, but we found that any other choice led to extremely
unstable optimization due to runaway Q estimates. This hints that SAC may not be well-adjusted to
discrete-action sparse-reward domains, as argued by Zhou et al. [2022].

For AntMaze we train for 10 million steps, for Kitchen we train for 2 million, and for CoinRun
we train for 500, 000 or til policy divergence. All numbers come from 5 random seeds of training,
evaluated over 100 rollouts of the deterministic policy. To avoid biasing numbers, we simply report
the final average deterministic performance of the policy, even in cases when performance is better
earlier in training.

E.4 Skill-extraction hyperparameters

For AntMazes we choose defaults of k = 2 ·dact, Nmax = 128 and Nmin = 16. For Kitchen we choose
defaults of k = 2 · dact, Nmax = 256 and Nmin = 16. For CoinRun there is no need for discretization,
so we only choose Nmax = 64 and Nmin = 16. These defaults are chosen to approximately match the
length 10 skills of SSP, as the choice of k and Nmax will directly influence the length of discovered
skills.

E.5 Implementation

Code was implemented in Python using PyTorch [Paszke et al., 2019] for deep learning, Stable
Baselines 3 [Raffin et al., 2021] for RL, and Weights & Biases [Biewald, 2020] for logging.
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E.6 Computational Requirements

All experiments were performed on an internal cluster with access to around 100 Nvidia 2080 Ti (or
more capable) GPUs. Each single run fits in around 2GB of GPU memory on a single machine. On
AntMaze, training for our method typically takes around 10 hours for a single run, while SSP [Pertsch
et al., 2021] takes 12 hours and SFP [Bagatella et al., 2022] takes over a week. In particular, this
highlights exactly how poor the scaling can be for methods that call a large model at every transition.
More precise information is available in Table 3 (main paper).

F Notes on Reproducibility

One important note to draw from this work is that the results are not always stable. Such inconsistency
goes beyond our work alone: the disagreement of dense-reward offline RL [Fu et al., 2020, Emmons
et al., 2021, Janner et al., 2021, Wang et al., 2022] numbers; the failure to reproduce SSP baseline
results Table 1; and large standard deviations and unclear trends across Tables 1, 6, 7, and 8. In our
case, there are a few sources of nondeterminism. We use Scikit-learn [Pedregosa et al., 2011] for our
k-means implementation, which yields slightly different results depending on the CPU even with the
same seed, which then leads to slightly different skills in the downstream merging process (though
they are largely of the same categories). In addition, the library we use for RL, Stable Baselines
3 [Raffin et al., 2021], has subroutines that cannot be controlled on the GPU. Finally, we often observe
collapse of the policy during training, which is not an unfamiliar issue in RL. This could be due to the
design of SAC [Haarnoja et al., 2018b], which may not easily adapt to the discrete or sparse-reward
setting [Zhou et al., 2022], leading to further instability. All the above suggests that five random
seeds is not enough to quantify performance [Henderson et al., 2018], however running more samples
incurs a significant computational burden, which is not a substantial issue for our method, but is
particularly burdensome for baselines. Still, results on exploration in Section 4.2 give us confidence
that our modification is working as desired, and we hope that a method like ours may lead to stronger
and faster sparse-reward RL in the future.

G Data Quantity

To see how our method performs under limited quantities of data, we subsample the trajectory datasets
before generating subwords. We see in Table 10 that less data does not always correlate with worse
performance, though the results are mixed as to what is the best setting. Such a result is due to the
fact that our subword extraction method only merges the skill that moves "farthest," thus the amount
of distracting data is not a core issue, but rather the existence of good skills within that data.

Table 10: Experiments across domains for our method when data is subsampled, by percentage of the
original dataset. We see that performance is rather uncorrelated with dataset percentage, which is a
result of our subword extraction pipeline.

Task 10% 25% 50% 100%

antmaze-medium-diverse 0.99±0.02 0.20±0.45 0.80±0.45 0.40±0.55
antmaze-large-diverse 0.0 0.0 0.0 0.34±0.46
kitchen-mixed 0.20±0.04 0.0 0.20±0.04 0.72±0.40
CoinRun 3.44±1.40 3.40±1.73 2.72±2.22 2.90±2.90

H Effect of Discretization In Locomotion

As mentioned in our Limitations, discretization may remove resolution from the action space that
could be useful, in particular for fine-grained manipulation or fast-locomotion tasks. To study this
limitation, we investigate the effect of varying the discretization level on the Hopper locomotion task
from D4RL [Fu et al., 2020]. We use SaS-freq with Nmin = 32, Nmax = 128, training 5 seeds for 3
million steps each.

In Table 11, we see that the conclusions are quite straightforward. More discretization hurts perfor-
mance, where higher k recovers more of the original action space as smaller regions are clustered
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together. For simplicity in our sparse-reward results, we used a relatively small number of clusters
(2 · dact), but there is no reason why a larger number could not be used in domains that require it.

Table 11: Experiments on the hopper-expert domain for varying number of cluster k. Coarser
discretization is worse.

k SaS-freq Reward

12 2813.3±104.4
32 3182.6±335.4
64 3248.8±137.8

I Effect of Data Quality

To see how our method performs under different kinds of data quality, we study SaS-freq on the
Hopper task from D4RL [Fu et al., 2020]. This is because, unlike sparse-reward tasks considered
in the rest of the paper, Hopper provides a clear delineation of demonstration quality: random for
transitions from a random policy, medium for transitions from a policy partway through training, and
expert for transitions from a policy at the end of training. We set k = 12, Nmin = 32, Nmax = 128
and train 5 seeds for 3 million steps.

From Table 12, expert demonstrations provide the best skills, but surprisingly random demonstrations
are much more competitive than skills from a medium policy. On further inspection, this is because
medium demonstrations contain long segments of the policy standing, which it learns before walking
quickly, so the skills discovered primarily relate to standing. In the case of random demonstrations,
the skills are quite short in length, so through RL the policy can learn to recombine them. For expert
demonstrations this is similar, but the skills are of higher quality.

Table 12: Experiments on the Hopper domain for varying data quality. Random demonstrations
outperform medium demonstrations as the skills extracted are much shorter for equivalent hyperpa-
rameters, so during RL the policy learns to recombine them.

Task SaS-freq Reward

hopper-random 2607.3±122.0
hopper-medium 980.2±2.0
hopper-expert 2916.1±129.3

J Q-value Collapse

Here we provide visualizations of the Q-function during RL for one seed of SaS-dist on
antmaze-umaze that shows good exploration, but at the end of training achieves no reward.
We see in Figure 8 that initially Q-estimates are highest on the frontier, but as training progresses,
Q-estimates equalize and drive the policy to uniform behavior, which eventually ruins exploration.
Combatting such collapse is a large priority in the future for making exploration much more stable.

(a) 1m (b) 2m (c) 5m (d) 9m (e) 10m

Figure 8: Q-value for locations in the replay buffer during RL for a seed where optimization collapses.
Initially Q-values are aligned with the task, but as optimization progresses, Q-values equalize, which
leads to collapse to a random policy.
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