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Abstract

Recognizing fallacies is crucial for ensuring001
the quality and validity of arguments across002
various domains. However, computational fal-003
lacy recognition faces challenges due to the004
diverse genres, domains, and types of fallacies005
found in datasets. This leads to a highly multi-006
class, and even multi-label, setup with substan-007
tial class imbalance. In this study, we aim to008
enhance existing models for fallacy recogni-009
tion by incorporating additional context and by010
leveraging large language models to generate011
synthetic data, thus increasing the representa-012
tion of the infrequent classes. We experiment013
with GPT3.5 to generate synthetic examples014
and we examine the impact of prompt settings015
for this. Moreover, we explore zero-shot and016
few-shot scenarios to evaluate the effectiveness017
of using the generated examples for training018
smaller models within a unified fallacy recogni-019
tion framework. Furthermore, we analyze the020
overlap between the synthetic data and existing021
fallacy datasets. Finally, we investigate the use-022
fulness of providing supplementary context for023
detecting fallacy types that need such context,024
e.g., diversion fallacies. Our evaluation results025
demonstrate consistent improvements across026
fallacy types, datasets, and generators. We will027
release the code and synthetic dataset upon the028
acceptance of the paper.029

1 Introduction030

Fallacies are common errors in reasoning that can031

mislead and invalidate arguments. The capacity to032

discern fallacies is fundamental to sustaining the033

robustness and authenticity of arguments across var-034

ious domains, such as public policy, legal reason-035

ing, and scientific discourse (Bailin and Battersby,036

2016). In recent years, the task of automated fal-037

lacy recognition has attracted significant interest038

from researchers in the fields of Natural Language039

Processing (NLP) and Artificial Intelligence (AI)040

(Amgoud and Besnard, 2013; Hamblin, 2022; Gof-041

fredo et al., 2022; Alhindi et al., 2022; Jin et al.,042

2022). Nevertheless, numerous challenges persist, 043

including the multiplicity of genres, domains, and 044

fallacy types, which contribute to a complex multi- 045

class and multi-label task structure compounded by 046

class imbalances in datasets. 047

Current state-of-the-art models struggle with the 048

recognition of underrepresented fallacies, which 049

may often require additional context for accurate 050

identification, such as diversion fallacies (Walton, 051

1996). Moreover, the variety of fallacies coupled 052

with the broad range of contexts in which they 053

may occur necessitates a comprehensive and di- 054

verse dataset for training these models. One strat- 055

egy to combat the challenge of sparse and imbal- 056

anced data in machine learning is data augmen- 057

tation (Wang et al., 2017) by creating synthetic 058

examples, thereby enhancing the dataset size and 059

diversity and improving the performance of the 060

machine learning model. Recent advancements in 061

large language models like GPT-3,3.5,4 (Brown 062

et al., 2020) provide a promising avenue for gen- 063

erating high-quality synthetic examples for fallacy 064

recognition. 065

The existing work in computational models for 066

fallacy recognition is still in its early stages, with 067

limited datasets available. These datasets cover dif- 068

ferent types of fallacies in various contexts, such as 069

question and answer dialog moves, name-calling 070

in social media debates, logical fallacies from edu- 071

cational websites, and fallacies related to Covid-19 072

misinformation in social media and news. Previous 073

work has focused on detecting fallacies in indi- 074

vidual datasets, using techniques like fine-tuning 075

transformers for sequence tagging (Goffredo et al., 076

2022), and training structure-aware classifiers (Jin 077

et al., 2022). However, fallacy recognition is chal- 078

lenging due to the high number of classification 079

labels, class imbalance in datasets, limited dataset 080

sizes, and poor out-of-distribution generalization. 081

Alhindi et al. (2022) proposes a multitask frame- 082

work using T5, which converts fallacy types into 083
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Figure 1: Our data augmentation and model training pipeline.

natural language instructions, and thus approaches084

the differences between fallacy datasets as different085

tasks, but their approach does not detect infrequent086

classes effectively. Goffredo et al. (2022) incor-087

porate argumentation features to detect fallacies088

in political debates, while Jin et al. (2022) trains089

a structure-aware classifier on fallacies from edu-090

cational websites; however, they both focus on a091

single fallacy scheme from one dataset while we092

include multiple fallacy schemes.093

We extend previous work on generic fallacy094

recognition by exploring the capabilities of large095

language models to generate synthetic data that096

augments manually labeled datasets. We study097

the effect of the data generated under zero-shot098

and few-shot conditions on the downstream task099

of fallacy recognition. We also analyze the quality100

of the synthetic data and its similarity to the fal-101

lacy datasets. Figure 1 shows an overview of our102

approach of using GPT3.5 to generate additional103

training examples in zero/few-shot settings, then104

training a T5 model (Raffel et al., 2020) for fallacy105

recognition on a combination of the original and106

the synthetic data.107

The rest of the paper is organized as follows: In108

Section 2, we describe the fallacy datasets included109

in this work. Then, we present our synthetic data110

generation approach in Section 3 and experimental111

setup in Section 4. We show the results in Section112

5 and analysis of the similarity between original113

and synthetic data in Section 6. We then present an114

overview of related work and conclude in Sections115

7 and 8, respectively.116

2 Fallacy Datasets117

We experiment with the five fallacy datasets cov-118

ered by Alhindi et al. (2022). They include fal-119

lacies in question-answer pairs in game settings120

(ARGOTARIO) (Habernal et al., 2017), 18 propa- 121

ganda techniques in news articles (PROPAGANDA) 122

(Da San Martino et al., 2019) that are recently ex- 123

tended to 23 (Piskorski et al., 2023) techniques, log- 124

ical fallacies from educational websites (LOGIC) 125

(Jin et al., 2022), and fallacies in misinformation 126

around covid in social media (COVID) (Musi et al., 127

2022) and climate change news articles (CLIMATE) 128

(Alhindi et al., 2022). These datasets identify dif- 129

ferent fallacy types and range from 5 to 18 fallacies. 130

Alhindi et al. (2022) unified the fallacy types from 131

the four schemes and introduced 28 fallacy types 132

in one unified scheme. These dataset are different 133

in size as they go from a few hundred examples 134

(450-880) for CLIMATE, COVID and ARGOTARIO, 135

to a few thousands (4,500 to 5,100) for LOGIC and 136

PROPAGANDA. The total number of examples per 137

fallacy type varies significantly as it ranges from 138

less than 100 examples for some fallacies (e.g., 139

False Analogy, Strawman, Whataboutism) to more 140

than 1,000 examples (e.g., Hasty Generalization, 141

Name Calling or Labeling, Loaded Language). De- 142

tailed numbers for each fallacy per dataset and split 143

can be found in Alhindi et al. (2022). 144

One main challenge in these datasets is the high 145

imbalance frequency of classes in a high multi- 146

class, and even multi-label task. The unified model 147

presented by Alhindi et al. (2022) improves the 148

overall results but still performs much better on 149

more frequent classes, thus we utilize data augmen- 150

tation to address this challenge. In addition, two of 151

the five fallacy datasets: PROPAGANDA and CLI- 152

MATE are from news articles where the fallacy is 153

annotated at the sentence or fragment level. There- 154

fore, we study the benefit from providing additional 155

context to the fallacious segment (sentence or frag- 156

ment) by including the preceding or succeeding 157

sentence when available. 158
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3 Synthetic Data Generation159

To generate additional examples for infrequent fal-160

lacy classes, we leverage gpt-3.5-turbo (hence-161

forth called GPT3.5), a conversational language162

model, as a data augmentation tool. We explore163

zero-shot, 1-shot, 2-shot, and 5-shot settings to164

generate examples that have not been seen in the165

original training data. These generated examples166

provide diversity and help address the data scarcity167

issue for less frequent fallacy types.168

In order to understand the capabilities of pre-169

trained large language models such as GPT3.5 in170

producing synthetic data, we control the informa-171

tion provided in the prompts as follows: i) zeroshot172

prompts that have no fallacy example and ask the173

model to generate an example in one form (e.g.174

sentence, tweet, question-answer pair) for a certain175

fallacy provided in the prompt; ii) fewshot prompts176

that list the fallacy type and output form in addition177

to providing 1 to 5 examples for the given fallacy178

type in the prompt. The model is asked to gen-179

erate the same number of examples given in the180

prompt (i.e. 1-shot prompt asks the model to gener-181

ate 1 example, 5-shot ask for 5 new examples and182

so on); iii) fewshot-context prompts that provide183

the examples of fallacy and their wider context if184

available (previous and next sentence) and asks the185

language model to do the same by generating both186

examples for a certain fallacy and their contexts.187

Figure 2 shows an example of the 1-shot-context188

prompt of the Irrelevant Authority fallacy from the189

PROPAGANDA dataset.190

For all data augmentation settings, we gener-191

ate the same number of examples per fallacy and192

thus study the quality of the synthetic data using193

different prompts for generation. The aim is to194

address data imbalance in these datasets so we ex-195

clude fallacies that are very frequent, especially196

if they only exist in one fallacy scheme and thus197

have a high number of examples with low diver-198

sity. Following this criteria, we exclude Loaded199

Language and Name Calling or Labeling that only200

appear in PROPAGANDA. We also do not generate201

examples for Hasty Generalization in a form simi-202

lar to the one found in the LOGIC dataset, but we203

generate ones in Covid-19 and climate change do-204

mains since their respective datasets has this fallacy205

but in very low counts. For all generated fallacies206

we double the number of examples with respect207

to the number of original examples for a certain208

fallacy thus maintain comparable ratios of both209

Prompt

Your task is to perform the following actions:
1. Read the sentence that has the fallacy of Irrelevant
Authority and its provided context. The sentence and
context below are both delimited by <>.
2. Generate a similar example of one sentence and its
context of the Irrelevant Authority fallacy. The con-
text should be a bigger chunk of text that includes the
sentence, similar to the provided example sentence and
context below.

Your generated output should be in JSON format with the
following keys: generated_sentence, generated_context.

Sentence: <Carlson cited Dr. Robert Epstein who has
said, in Carlson’s words, “Google alone could determine
the outcome of almost any election just by altering its
search selections and we would never know it.”>

Context: <Carlson cited Dr. Robert Epstein who has said,
in Carlson’s words, “Google alone could determine the
outcome of almost any election just by altering its search
selections and we would never know it.”. Dr. Robert
Epstein is a social scientist and an expert on Google. >

Generated Output
{

’generated_sentence’: ’As a dog groomer, I can tell you
that the earth is flat.’,

’generated_context’: ’While most people accept that the
earth is round, one dog groomer is convinced otherwise.
As a dog groomer, I can tell you that the earth is flat.
Dogs are great navigators, and they always sense when
the ground is flat or sloping.’
}

Figure 2: Example of 1-shot context prompt from the
Propaganda dataset of a sentence that has the Irrelevant
Authority fallacy and its context.

original and synthetic data. Also, we cap the num- 210

ber of synthetic examples for each fallacy to 100 211

examples generated from each dataset thus chang- 212

ing the distribution of the training set to bring the 213

very infrequent classes closer to the overall average 214

number of examples per class. 215

4 Experimental Setup 216

Similar to Alhindi et al. (2022), we use the T5 217

model (Raffel et al., 2020), a versatile text-to-text 218

transformer, as the backbone for fallacy recognition 219

by fine-tuning instruction-based prompts on all fal- 220

lacy datasets. The prompts are designed to provide 221

explicit instructions on identifying specific falla- 222

cies, enabling targeted learning within the model. 223

This approach is inline with a large body of re- 224
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search that utilizes instruction-tuning of large lan-225

guage models on many tasks (Wei et al., 2021; Sanh226

et al., 2022).227

We evaluate the proposed approach on the five228

fallacy datasets. We train the T5 model using a229

combination of the original labeled data and the230

generated examples from GPT3.5. We compare the231

performance of the model under different settings,232

including zero-shot, 1-shot, 2-shot, and 5-shot sce-233

narios, with and without additional context to un-234

derstand the impact of prompt and data availability235

on fallacy recognition.236

All fallacy examples, original and synthetic, are237

transformed into instruction-based prompts that are238

used to fine-tune the T5-3 Billion model (hence-239

forth T53B) in a multitask fashion. The model and240

hyperparameters are fixed and we only change the241

training data that is fed into the model with the aim242

to study the ability of a smaller size model such as243

T53B to learn from manually annotated or crowd-244

sourced data as well as synthetically generated data245

from a larger size model such as GPT3.5. We show246

the results of all training conditions for the PRO-247

PAGANDA and CLIMATE datasets in Table 1 and248

for the ARGOTARIO, LOGIC, and COVID datasets249

in Table 2. In both tables, we report the overall250

accuracy and macro F1 scores for each dataset as251

well as the F1 scores for each fallacy class. The252

results cover nine training conditions where we253

train on the original training set only (baseline-N254

(no-context)) similar to (Alhindi et al., 2022), and255

baseline-C with context for datasets that are from256

news articles. This applies to the PROPAGANDA257

and CLIMATE where this context is available. The258

remaining seven training conditions all use a dif-259

ferent form of data augmentation depending on the260

number of examples provided in the prompt during261

synthetic data generation which includes zero, one,262

two, and five examples. All data augmentations ex-263

periments are done with context (C columns) and264

no-context (N columns), except zero-shot prompts265

that were not enough for GPT3.5 to provide us-266

able examples with contexts in most cases without267

providing at least one example in the prompt for268

GPT3.5 to follow. Therefore zero-shot prompts are269

only reported in no-context settings. We discuss270

below the effect of data augmentation and adding271

context in more details.272

5 Results 273

5.1 Data Augmentation 274

Overall Results. Adding synthetic data to the 275

original dataset improves the results over the base- 276

lines where only the original training data is used 277

regardless of the data augmentation method. This 278

is true for both the overall accuracy and macro- 279

F1 scores in all five datasets as shown in Tables 1 280

and 2 whether the context is provided or not. In- 281

terestingly, 1-shot prompts seem to yield the best 282

results when compared to both zero-shot and other 283

few-shot settings. This results is counter to what 284

we initially expected. We hypothesized that 5-shot 285

prompts that have five examples of a fallacy and 286

ask GPT3.5 to generate five similar examples to 287

yield synthetic data that is more generic to the fal- 288

lacy (the one factor that is common among the five 289

examples in the prompt), and therefore would help 290

train a model for fallacy recognition to be more 291

resilient. The first part of our hypothesis seem to 292

be correct i.e. the synthetic examples are less sim- 293

ilar than the ones provided in the prompt as we 294

explore in detail in Section 6. However, having less 295

similar examples to the training data does not help 296

the model perform better on these benchmark test 297

sets for fallacy recognition. 298

Per-Class Results. Some fallacies show massive 299

gains after data augmentation compared to others. 300

This is true in the LOGIC dataset where the Equivo- 301

cation and Fallacy of Extension are among fallacies 302

with the biggest gains over baselines. These two 303

fallacies are also the least frequent in the LOGIC 304

dataset and thus the impact of data augmentation 305

is bigger. The diversion fallacies in PROPAGANDA 306

e.g., Red Herring, Strawman, Whataboutism are 307

particularly challenging in baseline settings due to 308

their low counts and complexity since they typi- 309

cally require external information to the fallacious 310

segment to be properly recognized, which is es- 311

pecially the case for Strawman where all models 312

fail to make any correct prediction with or with- 313

out data augmentation. However, for the other two 314

(Red Herring and Whataboutism), significant gains 315

are observed with data augmentation particularly 316

for Whataboutism in 1-shot settings where the f1- 317

scores jumps to 0.63 compared to 0 in the baseline 318

models. 319

Some fallacy types present a different level of 320

challenge across datasets due to their format in a 321

particular dataset, frequency, and the fallacies they 322
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Data Augmentation
Dataset Fallacy baseline zero-shot 1-shot 2-shot 5-shot

N C N N C N C N C
Propaganda Black and White Fallacy .14 .34 .39 .39 .29 .35 .33 .36 .34

Causal Oversimplification .34 .27 .41 .48 .27 .39 .23 .44 .29
Doubt .61 .66 .67 .66 .69 .66 .71 .69 .68
Exaggerate/Minimization .34 .32 .44 .58 .55 .58 .47 .58 .49
Fear or Prejudice .49 .44 .49 .54 .49 .67 .46 .51 .50
Flag-Waving .64 .67 .67 .68 .67 .67 .67 .69 .69
Irrelevant Authority .26 .30 .44 .46 .44 .47 .40 .41 .38
Loaded Language .79 .76 .81 .83 .81 .83 .79 .83 .80
Name Calling, Labeling .83 .79 .83 .85 .82 .85 .81 .86 .81
Red Herring 0 0 0 .29 .22 0 0 0 0
Reductio Ad Hitlerum .17 .18 .29 .40 .27 .44 .25 .40 .22
Slogans .49 .45 .59 .56 .52 .55 .51 .67 .48
Strawman 0 0 0 0 0 0 0 0 0
Thought-Termin. Cliches .29 .34 .29 .50 .40 .36 .41 .38 .39
Whataboutism 0 0 .29 .63 .62 .53 .53 .48 .47
Accuracy .68 .67 .71 .74 .71 .73 .70 .74 .70
Macro .36 .37 .44 .52 .47 .48 .44 .49 .44

Climate Causal Oversimplification .35 .33 .40 .53 .32 .42 .30 .60 .37
Cherry Picking .44 .41 .43 .48 .44 .43 .41 .46 .45
Evading Burden of Proof 0 0 0 .17 .12 0 .10 0 0
False Analogy 0 0 .36 .62 .18 .35 .17 .43 .17
Hasty Generalization 0 0 0 0 0 0 0 0 0
Irrelevant Authority .22 .25 .31 .31 .31 .31 .31 .43 .33
Red Herring 0 0 .12 .11 0 .18 0 .18 0
Strawman .22 0 .40 .40 .40 .36 .50 .55 .40
Vagueness .37 .39 .34 .40 .29 .36 .36 .36 .24
Accuracy .30 .28 .34 .40 .29 .34 .29 .39 .30
Macro .18 .15 .26 .33 .23 .27 .24 .33 .22

Table 1: F1 scores on the Propaganda and Climate datasets using multitask training of T53B model. N: no context
to the fallacious segment added. C: context of previous and next sentence to the fallacious segment provided.

are listed with in the prompt at inference time. For323

example, Red Herring is easier to detect in ARGO-324

TARIO and LOGIC in the baseline model to begin325

with due to a lower number of fallacies in AR-326

GOTARIO, and lack of other diversion fallacies in327

those two scheme thus making them more distinct328

than the other fallacies and easier to distinguish.329

However, for PROPAGANDA and CLIMATE, the330

baselines get 0 f1-scores for Red Herring and data331

augmentation helps in improving the results to 0.29332

in 1-shot for PROPAGANDA and 0.18 in 2-shot and333

5-shot settings in CLIMATE. Some fallacy types334

remain challenging to detect with any kind of data335

augmentation, such as Strawman in PROPAGANDA,336

and Hasty Generalization in CLIMATE given their337

low counts in the test set (e.g., 2-5 examples) and338

therefore the test sets might have one particular 339

form of this fallacy rather than represent the fallacy 340

type in general. Having a train-test split that can 341

truly evaluate the performance of machine learning 342

models for this task is not trivial due to the high 343

number of classes and the severe data imbalance. 344

5.2 Effect of Additional Context 345

The use of context during training is different for 346

PROPAGANDA and CLIMATE in Table 1 compared 347

to the other three datasets shown in Table 2. The dif- 348

ference between each N and C columns in Table 1 is 349

rather than only providing a fallacious segment, we 350

provide a wider context window of the previous and 351

next sentence when available for the two datasets 352

listed in the table. However, there is no difference 353
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Data Augmentation
Dataset Fallacy baseline zero-shot 1-shot 2-shot 5-shot

N C N N C N C N C
Argotario Ad Hominem .59 .63 .63 .71 .64 .62 .64 .65 .63

Emotional Language .64 .68 .70 .71 .70 .67 .69 .60 .65
Hasty Generalization .46 .44 .51 .47 .54 .47 .52 .55 .49
Irrelevant Authority .71 .72 .80 .75 .78 .74 .77 .75 .78
Red Herring .32 .42 .47 .50 .46 .44 .51 .53 .52
Accuracy .56 .57 .61 .61 .60 .59 .63 .61 .62
Macro .54 .58 .62 .61 .61 .58 .63 .61 .61

Logic Ad Hominem .77 .81 .87 .88 .88 .88 .85 .86 .88
Ad Populum .81 .80 .82 .89 .87 .86 .86 .89 .85
Black and White Fallacy .84 .84 .91 .91 .89 .92 .89 .91 .92
Causal Oversimplification .65 .70 .81 .79 .82 .81 .80 .78 .79
Circular Reasoning .57 .56 .68 .84 .84 .80 .77 .76 .83
Deductive Fallacy .32 .29 .48 .69 .57 .57 .54 .56 .57
Emotional Language .55 .53 .65 .76 .77 .72 .74 .71 .68
Equivocation .22 0 .27 .57 .43 .55 .39 .43 .42
Fallacy of Extension .08 .04 .48 .68 .68 .64 .60 .58 .64
Hasty Generalization .64 .63 .72 .80 .75 .77 .75 .77 .79
Intentional Fallacy .09 .15 .16 .55 .48 .46 .33 .35 .33
Irrelevant Authority .56 .54 .61 .74 .68 .68 .72 .68 .66
Red Herring .24 .30 .58 .78 .67 .67 .61 .65 .62
Accuracy .58 .58 .68 .79 .76 .75 .73 .73 .74
Macro .45 .48 .62 .76 .72 .72 .68 .69 .69

Covid Causal Oversimplification .45 .53 .40 .56 .59 .53 .53 .50 .50
Cherry Picking .35 .37 .37 .31 .36 .28 .34 .38 .38
Evading Burden of Proof 0 0 .31 .45 .53 .46 .57 .49 .40
False Analogy .33 .50 .25 .29 .29 .25 .29 .29 .25
Hasty Generalization .17 0 .11 .17 .16 .11 .25 .10 .11
Irrelevant Authority 0 0 0 0 0 0 0 0 0
Red Herring 0 0 0 0 0 0 0 0 0
Strawman 0 0 0 .20 0 0 .17 .17 .15
Vagueness .09 0 .09 .27 .33 .22 .30 .15 .19
Accuracy .23 .25 .26 .30 .34 .27 .36 .31 .30
Macro .16 .15 .17 .25 .25 .20 .27 .23 .22

Table 2: F1 scores on the Argotario, Logic and Covid datasets. N: no additional context provided. C: context of
previous and next sentence provided where available (Propaganda and Climate only and added with no-context
training sets of the three datasets shown).

in the training data between the N and C columns354

for the three datasets listed in Table 2 i.e. ARGO-355

TARIO, LOGIC, and COVID. The only difference356

is that they are combined in the multitask training357

model with two other datasets (PROPAGANDA and358

CLIMATE) where the context is provided. Since359

the training is done on all datasets combined with360

some overlap between fallacy types across datasets,361

we report the results on the ARGOTARIO, LOGIC,362

and COVID datasets for context-based experiments363

on all five datasets. 364

With minor exceptions (e.g. Doubt in PROPA- 365

GANDA, Vagueness and overall scores in COVID), 366

adding context does not improve the results for fal- 367

lacy recognition. This could be related to the fact 368

that some fallacy types require different context 369

than others. For example, Cherry Picking requires 370

understanding of the trend and Strawman requires 371

the retrieval of the original argument, while Evad- 372

ing the Burden of Proof needs information regard- 373
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Figure 3: Average BLEURT score (y-axis) between original and synthetic data for each fallacy type in few-shot
prompts (x-axis: 1-shot, 2shot, 5-shot).

ing the structure of the argument to assess its va-374

lidity (Goffredo et al., 2022; Alhindi et al., 2021).375

Therefore, a unified form of context across 28 fal-376

lacy types does not have consistent improvement377

over experiments conducted under similar condi-378

tions.379

Overall Observations If we examine all per-380

class results, we notice some inconsistency of the381

results under similar training settings. However,382

there are two general observations that are consis-383

tent across all results. First, data augmentation384

through large language models helps train smaller385

models on more data that is beneficial to fallacy386

recognition. Second, simple context of previous387

or next sentence does not provide valuable insight388

for this task and thus customization of the type of389

context based on the fallacy type is needed. In the390

next section, we take a closer look at the generated391

examples and how similar they are to the original392

ones.393

6 Original and Synthetic Data Similarity394

In order to understand the reason for 1-shot395

prompts to generate synthetic data that is more396

beneficial to the task, we analyze the similarity be- 397

tween the generated data and the original training 398

examples shown at the prompts. We use BLEURT 399

as our metric to calculate the similarity as it has 400

the most consistent results with human evaluation 401

(Sellam et al., 2020). 402

6.1 Similarity with the Training Sets 403

We calculate the BLEURT score for each original- 404

synthetic example pair where the original example 405

is the one included in the prompt to generate the 406

synthetic example. Thus, we only run this analy- 407

sis on the 1-shot, 2-shot, and 5-shot prompts. For 408

the 2-shot and 5-shot, we report the average score 409

for a generated example with respect to all orig- 410

inal examples included in the prompt that gener- 411

ated it. Figure 3 shows average BLEURT scores 412

for each fallacy type in all five datasets. We no- 413

tice high similarity scores in ARGOTARTIO and 414

LOGIC that range between 0.45 and 0.30 and much 415

lower scores for CLIMATE and COVID that range 416

between 0.18 and 0.30. This shows that it is harder 417

in general to produce examples that are similar to 418

those that naturally appear in misinformation found 419
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in news and social media in comparison to ones420

from dialogue in game settings or educational fal-421

lacy websites. However, what is shared across all422

datasets is that 1-shot prompts tend to be produce423

more similar examples to the ones included in the424

prompts.425

On the other hand using 2-shot prompts gener-426

ates examples that are both less similar than 1-shots427

prompts as well as 5-shot prompts. The regain in428

similarity in 5-shot prompts could be due to that429

including more examples improves the average sim-430

ilarity score for each generated example compared431

with all original examples in the prompt. In other432

words, each synthetic example generated by a 2-433

shot prompt is compared with the two examples in434

the prompt. Thus is could be very similar to one435

and very different from the other, which will keep436

the average similarity score at a lower value. How-437

ever, each synthetic example from 5-shot prompts438

is generated after seeing five examples from the439

original data for the given fallacy and therefore440

might not be too similar to a single one of them441

but rather comparably similar to all five, which will442

result in a higher average similarity.443

The drop in similarity scores is more signifi-444

cant in some fallacies than others such as Hasty445

Generalization in CLIMATE, and Causal Oversim-446

plification in both CLIMATE and COVID. Some447

fallacy types break the general pattern of having448

the highest score in 1-shot prompts and the lowest449

in 2-shot prompts such as Circular Reasoning in450

LOGIC, which tends to have more homogeneous451

examples in the original training set and thus av-452

erage similarity score increase with the number of453

shots in the prompt.454

7 Related Work455

With the significant focus on the development of456

generative large language models (LLM)s in recent457

years (Brown et al., 2020; Chowdhery et al., 2022;458

Zhang et al., 2022; Touvron et al., 2023), there has459

been an increase in the utilization of these models460

to annotate data (Feng et al., 2021; Chen et al.,461

2023; He et al., 2023; Bansal and Sharma, 2023;462

Zhang et al., 2023), or generate additional data463

instances that can be added to existing training sets464

for various tasks (Kumar et al., 2020; Schick and465

Schütze, 2021; Wang et al., 2023, 2021; Ye et al.,466

2022; Gao et al., 2022; Sahu et al., 2023).467

We build on the line of work that uses language468

models for generating additional training data. Our469

work differs form previous work in the following 470

aspects: i) we particularly focus on the ability of us- 471

ing synthetic data generated by language models to 472

address data imbalance challenges, ii) we use zero- 473

shot and few-shot settings to generate synthetic 474

data but use full-shot training on a mix of original 475

and synthetic data for the downstream task, and iii) 476

we tackle a challenging task of fallacy recognition 477

to understand the gains from using large language 478

models for data augmentation. 479

8 Conclusion and Future Work 480

Fallacy recognition remains a challenging problem 481

due to the high number of classes, severe data im- 482

balance and the need in some cases for external 483

information to the fallacious segment. To miti- 484

gate the effect of data imbalance, we studied the 485

capabilities of large language models to generate 486

synthetic data that can be used to train smaller 487

models on a combination of original and synthetic 488

data for fallacy recognition across multiple tasks. 489

The main observation is that data augmentation 490

through large language models is beneficial for this 491

task. However, the conditions under which the 492

data is generated impacts the quality of the syn- 493

thetic data significantly. Providing one example 494

in the prompt (1-shot) for a certain fallacy from 495

the original data and asking GPT3.5 to generate 496

a similar example results in synthetic data that is 497

more similar to the original data in comparison to 498

no examples (zero-shot) or more examples (e.g., 499

2-shot or 5-shot), and benefits downstream models 500

in detecting fallacy types in test sets from the same 501

distribution. The value in having synthetic data 502

that is less similar to the original training data and 503

possibly more generic to the task needs to be tested 504

on data from unseen fallacy schemes or domains, 505

which presents a potential avenue for future work. 506

Overall, large language models show great poten- 507

tial to generate additional training data for the task 508

of fallacy recognition, which can be used to train 509

smaller size open-source models for this task. 510

In future work, we want to test the resilience of 511

data augmentation on out-of-domain test sets such 512

as fallacy in political debates. Also, we want study 513

the ability of LLMs to generate examples that could 514

be labeled by multiple fallacies and train machine 515

learning for this tasks with multi-labeling. Finally, 516

we want to experiment with ability of LLMs to 517

provide more useful context for fallacy recognition. 518
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Limitations519

This work addresses challenges related to datasets520

with imbalance class ratios in high multi-class clas-521

sifications using data augmentation generated by522

large language models. However, this work does523

not address other challenges in fallacy recognition.524

These include incorporating external knowledge to525

the fallacious segment which is essential is detect-526

ing some diversion fallacies such as Cherry Picking527

and Strawman. In addition, this work assumes a sin-528

gle fallacy label for each segment of text. However,529

in reality fallacies can overlap and thus handling530

the multi-label aspect of this task is not covered531

in this work. Finally, labeling fallacy by humans532

is inherently subjective and thus concurrent work533

suggests incorporating subjectivity in fallacy labels534

(Helwe et al., 2023), and thus treating human an-535

notations as certain gold labels might provide a536

limited prospective for fallacy recognition models.537

Ethics and Broader Impact538

Using large language models to generate fallacy539

examples comes at a risk of having improper or540

hateful language. We have inspected a sample of541

the synthetic data and modified the prompts to min-542

imize these aspects in the generated data. However,543

it is hard to guarantee the nonexistence of harsh lan-544

guage in data from large language models at scale.545

Some fallacy techniques in the datasets used in this546

paper have harsh or impolite language by definition547

e.g., Name Calling. Studying fallacy and training548

machine learning models for fallacy recognition549

could potentially lead to the promotion of the topic550

and the misuse of these models. While we acknowl-551

edge the risks, we believe this study contributes to552

increasing the awareness of fallacious techniques553

for both readers and writers and better equip them554

with proper tools to increase their immunity against555

potential harms.556
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