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Abstract

In context learning has become a common practice for prompting generalist models. Despite
being effective, in-context learning can be computationally inefficient because it makes the
input prompt much longer, consuming valuable space in the context window and leading
to larger computational costs. In this paper, we propose DynaICL, a recipe for efficient
prompting with black-box generalist models that dynamically allocates in-context examples
according to the input complexity and the computational budget. We train a meta controller
that predicts the number of in-context examples suitable for the generalist model to make a
good prediction based on the difficulty of a specific input. We then dynamically allocate the
number of demonstrations for an input according to the computation budget. Experimental
results show that DynaICL helps achieve a better performance-efficiency trade-off in two
practical settings where we have constraints on computational resources or the minimum
required performance. Specifically, DynaICL saves up to 46% token budget compared to
the common practice that allocates the same number of in-context examples to each input.
In addition, we also find that a meta controller trained on a certain backbone model and
tasks can successfully generalize to unseen models and tasks, suggesting that we can train a
meta controller once and use it in various use cases.

1 Introduction

The field of artificial intelligence and natural language processing is witnessing a major paradigm shift from
training and deploying multiple specialist models for specific tasks to pre-training one generalist model (e.g.,
a large language model (LLM)) and prompting for different tasks (Radford et al., 2018; 2019; Brown et al.,
2020; Chowdhery et al., 2022; Ouyang et al., 2022; OpenAI, 2023; Zhang et al., 2022; Touvron et al., 2023).
While prompting is an elegant and effective way to utilize generalist models, the computational cost remains
a major bottleneck. We identify two key sources of the computational inefficiency of prompting generalist
models: model size and sample size. The former is arguably a prerequisite for generalist models to solve
all kinds of tasks via prompting and there already exist a number of model compression techniques (Sanh
et al., 2020; Michel et al., 2019; Dettmers et al., 2022; Xu et al., 2020) that aim to reduce the size of generalist
models. One obvious limitation of these approaches is that they all require the user to train or deploy their
own models, and most of them assume the users have access to the model parameters.

In this paper, we instead focus on reducing sample size, a relatively new perspective for improving the
efficiency of black-box generalist models of which the parameters are unavailable to users. This particular
direction has received relatively limited exploration within the era of specialist models, as the inputs and
outputs associated with it are clearly defined and largely devoid of redundancy. This is no longer true in
the context of prompting generalist models such as LLMs because we have a lot of different ways to prompt
a model that results in prompts of different lengths. We identify the main factor influencing the prompt
length to be the use of in-context learning and the number of in-context examples (demonstrations) in the
prompt. Specifically, in-context learning (Brown et al., 2020) refers to the practice of adding a few exemplar
input-output pairs that are related to the input, which helps the generalist model better understand and solve
the problem. Although it is still unclear how in-context examples help a generalist model (Min et al., 2022;
Yoo et al., 2022; Dai et al., 2022), it is evident that samples of greater complexity necessitate a greater number
of in-context examples for a generalist model to acquire contextual understanding. Conversely, simpler
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Figure 1: Overview of the DynaICL framework. Given a set of samples and a token/computation budget, a
meta controller first predict a number of in-context examples suitable for each sample. The predictions are then
normalized and adjusted according to the budget. We then append the corresponding number of in-context
examples to the original prompt. The prompts are then fed into a generalist model to generate predictions.

samples may be solvable even without relying on in-context learning. This is confirmed by our preliminary
study, which also finds that assigning more in-context examples to simple samples occasionally confuses the
generalist model and turns its prediction from correct to erroneous. These findings suggest that the current
practice of allocating a fixed number of in-context examples for all inputs is sub-optimal.

To this end, we propose Dynamic In-Context Learning (DynaICL), a dynamic computation framework
for prompting generalist models. DynaICL is conceptually similar to previous work on input adaptive
computation for specialist models (Han et al., 2021; Graves, 2017; Teerapittayanon et al., 2016; Schwartz et al.,
2020b; Zhou et al., 2020; Huang et al., 2023). The main difference is that DynaICL aims to dynamically
adjust the size of the input while previous work focuses on adjusting the complexity of the model. This results
in a major advantage of DynaICL: it only operates on inputs, thus is disentangled with model architectures
or parameters, and suits an increasingly common scenario in the era of generalist models where the users
do not have access to the model’s parameters. To achieve this, we train a meta controller that predicts
the number of in-context examples suitable for the generalist model to make a good performance-efficiency
trade-off given a specific input. The meta controller can be instantiated with a smaller pre-trained model
(e.g., FLAN-T5 (Wei et al., 2022)) and multi-task fine-tuned with the combination of supervised learning with
a novel data synthesis algorithm and reinforcement learning with rewards based on performance-efficiency
trade-off. Then at test time, we can dynamically allocate the number of demonstrations for an input according
to both the predictions from the meta controller and the computation budget. We illustrate the procedure of
efficient prompting with DynaICL in Figure 1.

We test the effectiveness of DynaICL in the context of prompting LLMs due to its prominence as the
predominant use case for generalist models at present. We experiment with ChatGPT as the generalist
model and train a meta controller on a subset of the FLAN dataset collection (Longpre et al., 2023). We
evaluate DynaICL in two practical settings where either the computational resources or the performance
is under constraints. We find that compared with the common practice of uniformly allocating in-context
examples, DynaICL can achieve an averaged absolute performance improvement of 2.6% within a certain
computational budget or reach a certain performance requirement with up to 46% less compute (in terms of
total token consumption) across 8 tasks. We also find that a meta controller trained on certain tasks with
a certain generalist model (i.e., ChatGPT) can generalize well to unseen tasks (even with different output
formats) and other generalist models (e.g., LLAMA (Touvron et al., 2023)). To the best of our knowledge,
our work is among the first approaches that can accelerate a black-box generalist model without access to its
parameters.
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2 Methodology

2.1 Background: In-Context Learning

We first recall some basics of prompting and in-context learning. Prompting refers to the process of providing
a prompt, which typically contains a description of the task and the task input, to a generalist model that
guides its response generation. Formally, let G be a generalist model and P be a prompt. Then, the output O
is given by: O = G(P ). Prompting relies on the generalist model’s ability to understand and follow abstract
instructions, which sometimes leads to unsatisfactory empirical performance, especially for hard tasks that
require complex reasoning.

On the other hand, in-context learning leverages the ability of a generalist model to adapt to new information
provided within the input context. Formally, given N labeled examples {(xi, yi)}N

i=1 and a hand-crafted
template T , in-context learning first verbalizes each input-output pair with a template, resulting in demon-
strations di = T (xi, yi). Then the generalist model takes the concatenation of the original prompt and the
demonstrations to generate the output:

O = G(P ⊕ d1 ⊕ d2 ⊕ · · · ⊕ dN ) (1)

where ⊕ denotes the concatenation of token sequences.

2.2 Meta Controller

Architecture and Input/Output Formats: The meta controller C can be modeled by any sequence
generation model including both encoder-decoder models and decoder-only models. We use an instruction-
tuned model such as FLAN-T5 as the backbone for the meta controller to facilitate training. As illustrated
in Figure 1, it receives a task instruction and an input, which is identical to most instruction tuning
literature (Sanh et al., 2022; Wei et al., 2022; Taori et al., 2023). But instead of generating the corresponding
outputs like instruction-tuned models, our meta controller is trained to generate the number of in-context
examples suitable for the input to achieve the best performance-efficiency trade-off, which we denote as k.
This process can be expressed by k = C(P ). The output expresses the confidence modeling of the meta
controller for the generalist model to some extent. This method pertains to, albeit distinguishes itself from,
prior existing work on model calibration (Guo et al., 2017; Kadavath et al., 2022), which addresses the
inherent confidence levels of the model itself.

Training We then present our two-stage training framework for the meta controller. In the first stage, we
train the meta controller to predict the minimum number of in-context examples for the generalist model to
produce a good output. “A good output” can have different definitions for different tasks. For example, it
can be defined as predicting the correct label with a high probability for classification tasks and generating
outputs similar to the ground truth for generation tasks. In this paper, we consider only classification tasks
following (Hao et al., 2022; Li et al., 2023b). To synthesize training data for supervised training, we propose a
simple and intuitive data generation method. Specifically, for a prompt P , we consider the minimum number
of in-context examples k∗ for it to be the number that makes the generalist model’s expected accuracy exceed
a certain (hand-crafted) threshold t:

k∗ = min
k∈N

{
k

∣∣E(xi,yi)k∼Dk [Acc(G(P, T (x1:k, y1:k))] > t
}

(2)

where Dk denotes all subsets of the training data of size k and Acc(G(P, T (x1:k, y1:k)) denotes the performance
(e.g., accuracy) of model G using template P and in-context examples (x1, y1) · · · (xk, yk).

We synthesize (P, k∗) pairs on a mixture of instruction-tuning datasets from the FLAN collection and train
the meta controller with maximum likelihood estimation.

After the first stage, the meta controller can already predict a reasonable number of in-context examples
for a prompt. However, we may want it to better satisfy a certain performance-efficiency trade-off in a
more fine-grained way. To this end, we propose to fine-tune the meta controller with reinforcement learning
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Figure 2: Distribution of the number of in-context
examples that suffice for making the correct pre-
diction for samples that cannot be answered cor-
rectly by zero-shot inference with generalist mod-
els but can be solved with in-context learning for
up to 10 shots. The generalist model we consider
are ChatGPT and LLAMA-65B, and the dataset
is CSQA.

∆ Accuracy ✗→ ✓ ✓→ ✗

zero-shot → 1-shot
+ 2.5% 3.9% 1.4%

1-shot → 5-shots
+ 1.4% 1.9% 0.5%

5-shots → 64-shots
+ 0.3% 0.7% 0.4%

Figure 3: The impact of adding more in-context
examples. ∆ Accuracy denotes the change of
accuracy after adding more in-context examples.
✗→ ✓ and ✓→ ✗ denotes the percentage of ex-
amples of which the predictions are changed from
incorrect to correct, and vice versa, after adding
more in-context examples. We use ChatGPT as
the generalist model and TriviaQA as the dataset.

using a reward reflecting the performance-efficiency trade-off. In particular, we define the reward R to be a
linear interpolation of the expected performance (defined as accuracy in case of classification task), and the
efficiency, defined as the number of in-context examples k:

R(G, P, k) = E(xi,yi)k∼Dk [Acc(G(P, T (x1:k, y1:k))] + α · k (3)

where α is the weight controlling whether the controller should lean towards better performance or efficiency.
The meta controller C is then fine-tuned with policy gradient:

∇θJ(θ) = EP ∼P,k∼C(k|P,θ)[∇θ log C(k|P, θ)(R(G, P, k))] (4)
where P is the set of prompts from a mixture of instruction tuning datasets, and C(k|P, θ) denotes the
predicted probability mass of k from the meta controller C for a prompt P .

The training framework can be easily adapted for generation tasks by changing the accuracy metric to some
generation metrics such as BLEU (Papineni et al., 2002) or BERTScore (Zhang et al., 2020), and doing some
normalization to make it compatible with classification tasks. We leave this for future work.

2.3 Dynamic In-Context Example Allocation

After training, the meta controller predicts the number of in-context examples for a specific input. This is a
naive version of DynaICL. However, in practice one may have a different computation budget. Therefore it
is often desirable to normalize the predictions from the meta controller and dynamically adjust the actual
number of in-context examples according to the computation budget. In this work, we propose a simple
recipe for dynamic in-context example allocation. Assuming we have a budget of N tokens1 for K samples.
The uniform baseline is to allocate N/(K · L) in-context examples for each sample assuming L is the average
length of an example. DynaICL instead allocates E in-context examples for an input P following:

E(P ) = [β · (C(P )/C̃) · N/(K · L)] (5)

where C(P ) is the prediction from the meta controller, [] denotes the rounding operator, C̃ is the averaged
prediction for all examples, and β is the token saving ratio ranging from 0 to 1.

1We consider the budget in terms of the token count because this is the typical scenario for using commercial generalist
models such as ChatGPT. We omit the token consumption for the original input for simplicity.
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Models SST-2 AGNews RTE CB ARC-E ARC-C MRPC COPA Avg. Acc
zero-shot

ChatGPT 88.5 84.5 84.5 89.5 85.1 61.0 88.4 67.2 81.1
Budget: 5-shots on average

Uniform 93.2 87.9 86.1 91.1 88.3 64.8 90.4 88.2 86.2
Random 93.0 87.7 86.1 91.0 88.1 65.0 90.4 89.4 86.3
DynaICL 95.3 90.2 88.1 92.9 90.5 68.4 91.8 93.0 88.8

Budget: 10-shots on average
Uniform 95.8 90.9 88.5 93.1 90.8 68.3 92.0 93.4 89.1
Random 95.9 90.7 88.4 93.3 90.8 68.2 92.1 92.8 88.9
DynaICL 96.7 92.5 90.0 94.1 91.9 70.0 93.1 95.8 90.5

Table 1: Main results on seen tasks during meta controller training. The total computation/token budget is
the same inside each group. DynaICL consistently outperforms all baselines across all tasks and budgets.

3 Experiments

In this section, we test the empirical effectiveness of DynaICL by experimenting on some NLP tasks with
ChatGPT, a popular large language model, as the generalist model. We first describe the experimental
settings. Then we begin with a preliminary study about the impact of the number of in-context examples
to motivate our approach. After that, we evaluate DynaICL by answering two research questions for two
realistic settings:

• RQ1: To what extent can DynaICL improves the performance of a generalist model with fixed
computational budgets?

• RQ2: To what extent can DynaICL reduce computational cost or token consumption for a generalist
model to achieve a fixed target performance?

3.1 Experimental Settings

Models We consider ChatGPT as the generalist model for training the meta controller and the main
experiments. We use LLAMA-65B as an unseen generalist model for evaluating the generalization ability
of the meta controller. We use FLAN-T5-large, which has less than 1B parameters, to initialize the meta
controller. We also test with FLAN-T5-base in the analysis.

Tasks We use a subset in the FLAN collection containing 30+ classification tasks to train the meta controller.
For evaluation, we test DynaICL on both seen and unseen tasks, which are explicitly excluded from the
training data for the meta controller. To be specific, we use SST-2 (Socher et al., 2013), AGNews (Zhang
et al., 2015), RTE (Dagan et al., 2006; Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009),
CB (De Marneffe et al., 2019), ARC-E (Clark et al., 2018), ARC-C (Clark et al., 2018), MRPC (Dolan
& Brockett, 2005), and COPA (Roemmele et al., 2011) as the seen tasks, and PIQA (Bisk et al., 2020),
OpenBookQA (Mihaylov et al., 2018), CommonsenseQA (Talmor et al., 2019), TriviaQA (Joshi et al., 2017),
Natural Questions (Kwiatkowski et al., 2019), and Web Questions (Berant et al., 2013) as unseen tasks. It is
noteworthy that TriviaQA, Natural Questions, and Web Questions are not classification tasks but a trained
meta controller can still be used despite being trained only on classification tasks. This is because its input
format (i.e., instruction + input) is agnostic to the type of the task.

Training Details We follow Wei et al. (2022) and fine-tune the meta controller for 30k/5k gradient steps
with a batch size of 8,192 tokens using the Adafactor Optimizer (Shazeer & Stern, 2018) with a learning rate
of 3e-5/1e-5, for the first/second training stage, respectively.
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(b) Token saving ratio of DynaICL compared to
the uniform baseline under performance constraints
defined by the performance of the uniform baseline
with different token budgets. Each point (x,y) in the
line indicates that on average, DynaICL needs to use
y tokens to match the performance of the uniform
baseline with x tokens.

Figure 4: Performance comparison when fixing either the compute budget or the target performance.

Baselines We mainly compare DynaICL with the uniform baseline that allocates the same number of
in-context examples for each sample, and the random baseline that randomly samples a number of in-context
examples from a Gaussian distribution. We only compare these two naive baselines because there is no prior
work in this direction and popular methods for efficient NLP can not be applied in this setting.

3.2 Preliminary Study: How Much Do More In-Context Examples Help?

We first conduct a preliminary study investigating the role of adding more in-context examples to the prompt
for different samples. We first test if most samples for a task require a similar amount of in-context examples
for a generalist model to generate a good output. We plot the distribution of the number of in-context
examples that suffice for making the correct prediction for samples from the CommonsenseQA dataset that
cannot be answered correctly by zero-shot inference with ChatGPT or LLAMA-65B but can be solved with
in-context learning for up to 10 shots. As shown in Figure 2, different samples requires a very different
amount of in-context examples. Some hard examples require 10 in-context examples for a generalist model to
make the correct prediction while most examples require only one in-context example or can be solved with
zero-shot inference. This observation confirms the necessity of dynamically allocating in-context examples
according to sample difficulties. Moreover, we can see that ChatGPT and LLAMA-65B share similar trends in
the Figure. This suggests that a meta controller trained with one generalist model may be able to generalize
to other generalist models, which is later proved in our analysis.

Then we further analyze the effect of scaling more in-context examples. As shown in Figure 3, the effectiveness
of adding more in-context examples to the prompt is amortized when there are already a few (e.g., 5)
in-context examples. This also supports our motivation that only a few samples require many in-context
examples and uniformly allocating an equal number of in-context examples for all samples is a waste of
tokens and computation. More interestingly, we find that sometimes it can be harmful to include more
in-context examples for a sample that can already be correctly solved by the generalist model, which is shown
by a non-negligible amount of samples’ predictions are changed from correct to incorrect after adding more
in-context examples. This further confirms the potential of DynaICL to achieve better performance while
consuming fewer tokens.
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(a) Token saving ratio of DynaICL compared to the
uniform baseline under different performance constraints
on seen tasks. DynaICL is trained with ChatGPT but
tested with LLAMA-65B.
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(b) Distribution of samples (on seen tasks) according to
the number of in-context examples allocated for them.
The computational budget is fixed to 5 in-context exam-
ples per sample.

Figure 5: Analysis on the generalization ability of DynaICL on unseen generalist models and the distribution
of samples according to the number of in-context examples allocated for them.

3.3 Main Results

We first compare the performance of DynaICL with the baselines in Table 1. We can see that DynaICL
leads to an averaged performance improvement of 2.6% and 1.4% over the uniform baseline with budgets of 5
and 10 in-context examples for each sample, respectively. This confirms that DynaICL leads to improved
performance with fixed budgets. We also plot the trend of averaged performance on seen tasks with different
token-saving ratios in Figure 4 (a). We can see that DynaICL leads to consistent improvements across all
budgets and the improvements are larger when the computation/token budget is more limited. We then
show the extent to which DynaICL can save tokens for achieving a fixed target performance in Figure 4
(b). We can see that DynaICL consistently require fewer tokens to match the performance achieved by the
uniform baseline with certain budgets. Specifically, DynaICL only consumes 108 tokens on average to match
the performance of the common practice with 200 tokens on average. This confirms that DynaICL can
effectively reduce token/computation consumption for achieving a fixed target performance.

3.4 Analysis

We then conduct an analysis investigating the impact of different components in DynaICL and the general-
ization ability of DynaICL on unseen tasks or generalist models when training the meta controller.

Ablation Study We first analyze the impact of the two training stages, the size of the meta controller, and
the number of tasks the meta controller is trained with. The results are shown in Table 2. We find that
both training stages contributes to the performance of DynaICL and the first stage is more important. We
think this is because the first training stage provides an important starting point for the second stage using
reinforcement learning. We also find that DynaICL with a smaller meta controller or a meta controller train
on fewer tasks also achieves competitive performances.

Generalization on Unseen Tasks We then test how well DynaICL can generalize on unseen tasks. The
results are shown in Table 3. We find that DynaICL consistently leads to performance improvements across
all 6 unseen tasks. Notably, DynaICL also leads to substantial improvements on Natural Questions and Web
Questions, which are generative question answering datasets that are very different from text classification
tasks during training. This confirms that DynaICL can generalize well on tasks that are not used to train
the meta controller.
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Models SST-2 AGNews RTE CB ARC-E ARC-C MRPC COPA Avg. Acc
Budget: 5-shots on average

Uniform 93.2 87.9 86.1 91.1 88.3 64.8 90.4 88.0 86.2
DynaICL 95.3 90.2 88.1 92.9 90.5 68.4 91.8 93.0 88.8
- first stage 93.8 88.4 86.6 91.8 89.1 65.5 90.8 89.6 86.9
- second stage 94.4 89.5 87.5 92.1 89.5 67.1 91.2 91.4 87.8
w/ smaller model 94.8 89.2 87.5 92.3 90.2 67.7 91.3 92.2 88.2
w/ fewer tasks 95.0 89.3 87.3 92.5 90.0 68.0 91.5 92.4 88.3

Table 2: Ablation study results. “- first stage” and “- second stage” denotes the ablated variants where the
meta controller is not trained with the first or second stage training, respectively. “w/ smaller model” and
“w/ fewer tasks” denotes the ablated variants where the meta controller is parameterized with FLAN-T5-Base
and the meta controller is trained with 50% less training tasks.

Models PIQA OBQA CSQA TriviaQA (EM) NaturalQ (EM) WebQS (EM) Avg.
zero-shot

ChatGPT 83.3 60.9 74.5 80.2 27.5 22.9 58.2
Budget: 5-shots on average

Uniform 84.3 61.5 76.6 84.1 37.1 26.3 61.6
DynaICL 85.4 62.8 77.2 84.4 40.2 28.8 63.1

Budget: 10-shots on average
Uniform 85.9 63.1 77.4 84.3 40.8 29.2 63.4
DynaICL 86.3 63.7 77.9 84.5 42.4 29.9 64.1

Table 3: Analysis of the generalization ability of DynaICL on datasets that are unseen when training the
meta controller. Tasks with (EM) suffix denotes the task is generative question answering and we use exact
match as the metric. DynaICL still consistently outperforms the baseline across all tasks.

Generalization on Unseen Generalist Models We also test if DynaICL can generalize to other
generalist models that are not used for training the meta controller by applying the meta controller trained
with ChatGPT with LLAMA-65B as the generalist model. Results in Figure 5 (a) show that DynaICL still
saves a great number of tokens for achieving the same performance with the uniform baseline even tested
with a different generalist model. This confirms that DynaICL can generalize well on generalist models that
are not used to train the meta controller.

Distribution of In-context Examples Count We then plot the distribution of samples according to the
number of in-context examples allocated for them to better understand the meta controller. As shown in
Figure 5 (b), with a target budget of 5 in-context examples, a large portion of samples are allocated with 5
in-context examples in DynaICL. This indicates that most samples are predicted to need a similar number
of in-context examples as the averaged prediction. We also find that more samples are assigned with fewer
than 5 in-context examples while a few hard samples are assigned with more in-context examples. We present
a qualitative study of different samples and the corresponding number of in-context examples allocated to
them in the Appendix.

Computation Cost of the Meta Controller Finally, it is noteworthy that the meta controller does add
some computational cost and latency overhead to the overall prompting procedure. However, since the meta
controller can use a very small backbone such as T5-large or T5-base, its computation cost is negligible
compared to that of a generalist model. To be specific, the computational cost (in terms of FLOPs) of a
T5-large based meta controller for a sample of 50 tokens is less than 0.1% of the change of the computation

8



Under review as submission to TMLR

cost when changing the input from 200 tokens to 199 tokens, or less than 0.0005% of the computational cost
saved by reducing one in-context example from the prompt. Similarly, since the meta controller only needs
to predict 1 or 2 tokens, the latency overhead accounts for only 0.1% to 0.2% of the latency of calling the
GPT-3.5-turbo API, and reducing one in-context example will lead to a speedup of around 10%. In sum, we
believe the computational and latency overhead from the meta controller is almost negligible.

4 Related Works

Training a generalist model that can solve a wide range of tasks without task-specific training has been
a long-standing goal in the field of artificial intelligence. One pioneering work dates back to Collobert &
Weston (2008) that attempted to solve all NLP tasks with a shared architecture using multi-task learning.
This idea is further improved by decaNLP (McCann et al., 2018) that proposes to convert all NLP tasks
to question answering format. T5 (Raffel et al., 2020) then improves this paradigm by using text-to-text
format for unifying all NLP tasks, which is more general and friendly to scaling. Finally, GPT-3 (Brown
et al., 2020) show that by scaling model size, training data, and training FLOPs, a large language model can
serve as a generalist model that solves many tasks by simply writing a prompt that describes the task and
the input. They also showed that the zero-shot ability of a large language model can be further improved
by adding a few input-output demonstrations in the prompt to help the model better understand the task.
Since then, a large number of work has been done for improving and understanding prompting and in-context
learning with large language models. For instance, Schick & Schütze (2021) show that small encoder models
can also be prompted. Min et al. (2022) show that in-context examples mainly help a generalist model learn
output label space and distribution of input text. Kadavath et al. (2022) prove that generalist models are
well calibrated and can be trained to model their confidence level. Hao et al. (2022) and Li et al. (2023b)
show that in-context learning with many examples improves the overall performance of a generalist model.

4.1 Generalist Models, Prompting, and In-context Learning

Training a generalist model that can solve a wide range of tasks without task-specific training has been
a long-standing goal in the field of artificial intelligence. One pioneering work dates back to Collobert &
Weston (2008) that attempted to solve all NLP tasks with a shared architecture using multi-task learning.
This idea is further improved by decaNLP (McCann et al., 2018) that proposes to convert all NLP tasks
to question answering format. T5 (Raffel et al., 2020) then improves this paradigm by using text-to-text
format for unifying all NLP tasks, which is more general and friendly to scaling. Finally, GPT-3 (Brown
et al., 2020) show that by scaling model size, training data, and training FLOPs, a large language model can
serve as a generalist model that solves many tasks by simply writing a prompt that describes the task and
the input. They also showed that the zero-shot ability of a large language model can be further improved
by adding a few input-output demonstrations in the prompt to help the model better understand the task.
Since then, a large number of work has been done for improving and understanding prompting and in-context
learning with large language models. For instance, Schick & Schütze (2021) show that small encoder models
can also be prompted. Min et al. (2022) show that in-context examples mainly help a generalist model learn
output label space and distribution of input text. Kadavath et al. (2022) prove that generalist models are
well calibrated and can be trained to model their confidence level. Hao et al. (2022) and Li et al. (2023b)
show that in-context learning with many examples improves the overall performance of a generalist model.
Recently, the paradigm of prompting generalist models is successfully transferred to other modalities other
than language. For example, Zhou et al. (2022) and Li et al. (2023a) explored prompting vision models. It is
foreseeable that prompting generalist models will become the de-facto paradigm for most domains in artificial
intelligence.

4.2 Efficient Deep Learning

Improving the performance-efficiency trade-off of deep learning models is a very interesting research problem
and is attracting more and more attention since the rise of large generalist models (Xu et al., 2021; Schwartz
et al., 2020a). A large number of work has been done on improving the speed and efficiency of large language
models, including both static methods such as knowledge distillation (Hinton et al., 2015; Romero et al.,
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2015; Sanh et al., 2020), pruning (LeCun et al., 1989; Michel et al., 2019), quantization (Han et al., 2016;
Shen et al., 2020; Dettmers et al., 2022) and module replacing (Xu et al., 2020); and dynamic methods such
as adaptive computation (Graves, 2017), early-exiting (Teerapittayanon et al., 2016; Schwartz et al., 2020b;
Zhou et al., 2020), and model cascade (Li et al., 2021; Varshney & Baral, 2022).

However, most of the aforementioned methods require access to the model parameters, which may not be
possible for closed source models. One exemption is model cascade, which first sends the input to a cheaper
model and optionally sends it to a more powerful model if the previous model is not confident enough. This
method, however, also faces server latency issues because harder samples will be computed by multiple
generalist models sequentially. Concurrently to our work, Mu et al. (2023) proposes to train gist tokens to
replace long-form prompts and show promising results on prompt compression. However, this approach is still
limited to white-box settings where the model parameter is available and also compromises interpretability.

5 Conclusions

This paper introduces DynaICL, a framework for efficiently prompting generalist models. We propose
to train a meta controller that predicts the suitable number of in-context examples for a specific sample
with a two-stage training framework. During inference, DynaICL dynamically allocate different number
of in-context examples to samples according to the predicted difficulty and the computational budget. Our
experiments show that DynaICL consistently leads to better performance-efficiency trade-offs across tasks,
models, and scenarios. We also find a meta controller trained on a collection of around ten tasks can
successfully generalize to tasks unseen during training.

6 Ethics Statement

As for technical limitations, the main limitation of this work is that we only test DynaICL on NLP tasks
with LLMs as the backbone, while it may also be interesting to test on other modalities such as vision tasks
with multi-modal generalist models. This is because the main experiments are conducted before multi-modal
instruction following models such as LLAVA came out. We leave this for future work. Another limitation is
that we only train the meta controller with text classification datasets. We explain how the meta controller can
be trained on generation tasks at the end of Section 2.2. We also experiment with some generative question
answering datasets and show DynaICL trained only on classification tasks can successfully transfer to these
tasks. Finally, the dynamic in-context example allocation algorithm is quite naive. Potential improvements
may be made using some more sophisticated planning or optimization algorithms. We also leave this for
future work.

As for social impact, this work aims to reduce the token/computation consumption of prompting generalist
models. It probably leads to a positive environmental impact and will unlikely lead to any negative social
impact.
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A Appendix

We present a few examples of how many in-context examples DynaICL allocates to different samples in the
SST-2 dataset with an average budget of 5 in-context examples:

• “it ’s disappointing when filmmakers throw a few big-name actors and cameos at a hokey script .” : 1

• “how did it ever get made ?”: 2

• “not only does the movie fail to make us part of its reality , it fails the most basic relevancy test as
well .” : 2

• “it would n’t be my preferred way of spending 100 minutes or $7.00.”: 6

• “but if it is indeed a duty of art to reflect life , than leigh has created a masterful piece of artistry
right here .”: 7

We find that DynaICL does tend to assign fewer in-context examples to easier samples and more
in-context examples to harder samples.

15

https://aclanthology.org/2022.emnlp-main.155

	Introduction
	Methodology
	Background: In-Context Learning
	Meta Controller
	Dynamic In-Context Example Allocation

	Experiments
	Experimental Settings
	Preliminary Study: How Much Do More In-Context Examples Help?
	Main Results
	Analysis

	Related Works
	Generalist Models, Prompting, and In-context Learning
	Efficient Deep Learning

	Conclusions
	Ethics Statement
	Appendix

