
Under review as submission to TMLR

Efficient Prompting via Dynamic In-Context Learning

Anonymous authors
Paper under double-blind review

Abstract

In context learning has become a common practice for prompting generalist models. Despite
being effective, in-context learning can be computationally inefficient because it makes the
input prompt much longer, consuming valuable space in the context window and leading
to larger computational costs. In this paper, we propose DynaICL, a recipe for efficient
prompting with black-box generalist models that dynamically allocates in-context examples
according to the input complexity and the computational budget. We train a meta controller
that predicts the number of in-context examples suitable for the generalist model to make a
good prediction based on the difficulty of a specific input. We then dynamically allocate the
number of demonstrations for an input according to the computation budget. Experimental
results show that DynaICL helps achieve a better performance-efficiency trade-off in two
practical settings where we have constraints on computational resources or the minimum
required performance. Specifically, DynaICL saves up to 46% token budget compared to
the common practice that allocates the same number of in-context examples to each input.
In addition, we also find that a meta controller trained on a certain backbone model and
tasks can successfully generalize to unseen models and tasks, suggesting that we can train a
meta controller once and use it in various use cases.

1 Introduction

The field of artificial intelligence and natural language processing is witnessing a major paradigm shift from
training and deploying multiple specialist models for specific tasks to pre-training one generalist model (e.g.,
a large language model (LLM)) and prompting for different tasks (Radford et al., 2018; 2019; Brown et al.,
2020; Chowdhery et al., 2022; Ouyang et al., 2022; OpenAI, 2023; Zhang et al., 2022; Touvron et al., 2023).
While prompting is an elegant and effective way to utilize generalist models, the computational cost remains
a major bottleneck. We identify two key sources of the computational inefficiency of prompting generalist
models: model size and sample size. The former is arguably a prerequisite for generalist models to solve
all kinds of tasks via prompting and there already exist a number of model compression techniques (Sanh
et al., 2020; Michel et al., 2019; Dettmers et al., 2022; Xu et al., 2020) that aim to reduce the size of generalist
models. One obvious limitation of these approaches is that they all require the user to train or deploy their
own models, and most of them assume the users have access to the model parameters.

In this paper, we instead focus on reducing sample size, a relatively new perspective for improving the
efficiency of black-box generalist models of which the parameters are unavailable to users. This particular
direction has received relatively limited exploration within the era of specialist models, as the inputs and
outputs associated with it are clearly defined and largely devoid of redundancy. This is no longer true in
the context of prompting generalist models such as LLMs because we have a lot of different ways to prompt
a model that results in prompts of different lengths. We identify the main factor influencing the prompt
length to be the use of in-context learning and the number of in-context examples (demonstrations) in the
prompt. Specifically, in-context learning (Brown et al., 2020) refers to the practice of adding a few exemplar
input-output pairs that are related to the input, which helps the generalist model better understand and solve
the problem. Although it is still unclear how in-context examples help a generalist model (Min et al., 2022;
Yoo et al., 2022; Dai et al., 2022), it is evident that samples of greater complexity necessitate a greater number
of in-context examples for a generalist model to acquire contextual understanding. Conversely, simpler

1



Under review as submission to TMLR

Controller
LM

This movie is by far the 
worst movie of the year.

This movie is more 
deeply thought 

through than in most 
“right thinking” films.

The movie 
demonstrates that 

the director of such 
hollywood

blockbusters as 
patriot games can still 

turn out a small , 
personal film with an 

emotional wallop.

“3”

“6”

💰Budget

LLM

“0”

6 " 1.5

3 " 1.5

Pl
ea

se
 p

re
di

ct
 h

ow
 m

an
y 

de
m

on
st

ra
tio

ns
 d

oe
s C

ha
tG

PT
ne

ed
s 

to
 s

ol
ve

 th
e 

fo
llo

w
in

g 
ta

sk
: T

as
k 

de
sc

rip
tio

n:
 P

re
di

ct
th

e
se

nt
im

en
t o

f t
he

 m
ov

ie
. I

np
ut

:

Input

+

Prefix Input: This movie is by far the worst 
movie of the year. Did this critic like the 
movie? OPTIONS: yes,no. Output:

Input: [example1]. Did this critic like the 
movie? OPTIONS: yes,no. Output: yes. 
…… Input: [example5]. Did this critic like 
the movie? OPTIONS: yes,no. Output: 
no. Input: This movie is more deeply 
thought through than in most “right 
thinking” films.. Did this critic like the 
movie? OPTIONS: yes,no. Output: 

Input: [example1]. Did this critic like the 
movie? OPTIONS: yes,no. Output: yes. 
…… Input: [example9]. Did this critic like 
the movie? OPTIONS: yes,no. Output: 
no. Input: The movie demonstrates that 
the director of such hollywood
blockbusters as patriot games can still 
turn out a small , personal film with an 
emotional wallop. Did this critic like the 
movie? OPTIONS: yes,no. Output: 

“yes”

“yes”

“no”

Output

+

+

Figure 1: Overview of the DynaICL framework. Given a set of samples and a token/computation budget, a
meta controller first predict a number of in-context examples suitable for each sample. The predictions are then
normalized and adjusted according to the budget. We then append the corresponding number of in-context
examples to the original prompt. The prompts are then fed into a generalist model to generate predictions.

samples may be solvable even without relying on in-context learning. This is confirmed by our preliminary
study, which also finds that assigning more in-context examples to simple samples occasionally confuses the
generalist model and turns its prediction from correct to erroneous. These findings suggest that the current
practice of allocating a fixed number of in-context examples for all inputs is sub-optimal.

To this end, we propose Dynamic In-Context Learning (DynaICL), a dynamic computation framework
for prompting generalist models. DynaICL is conceptually similar to previous work on input adaptive
computation for specialist models (Han et al., 2021; Graves, 2017; Teerapittayanon et al., 2016; Schwartz et al.,
2020b; Zhou et al., 2020; Huang et al., 2023). The main difference is that DynaICL aims to dynamically
adjust the size of the input while previous work focuses on adjusting the complexity of the model. This results
in a major advantage of DynaICL: it only operates on inputs, thus is disentangled with model architectures
or parameters, and suits an increasingly common scenario in the era of generalist models where the users
do not have access to the model’s parameters. To achieve this, we train a meta controller that predicts
the number of in-context examples suitable for the generalist model to make a good performance-efficiency
trade-off given a specific input. The meta controller can be instantiated with a smaller pre-trained model
(e.g., FLAN-T5 (Wei et al., 2022)) and multi-task fine-tuned with the combination of supervised learning with
a novel data synthesis algorithm and reinforcement learning with rewards based on performance-efficiency
trade-off. Then at test time, we can dynamically allocate the number of demonstrations for an input according
to both the predictions from the meta controller and the computation budget. We illustrate the procedure of
efficient prompting with DynaICL in Figure 1.

We test the effectiveness of DynaICL in the context of prompting LLMs due to its prominence as the
predominant use case for generalist models at present. We experiment with ChatGPT as the generalist
model and train a meta controller on a subset of the FLAN dataset collection (Longpre et al., 2023). We
evaluate DynaICL in two practical settings where either the computational resources or the performance
is under constraints. We find that compared with the common practice of uniformly allocating in-context
examples, DynaICL can achieve an averaged absolute performance improvement of 2.6% within a certain
computational budget or reach a certain performance requirement with up to 46% less compute (in terms of
total token consumption) across 8 tasks. We also find that a meta controller trained on certain tasks with
a certain generalist model (i.e., ChatGPT) can generalize well to unseen tasks (even with different output
formats) and other generalist models (e.g., LLAMA (Touvron et al., 2023)). To the best of our knowledge,
our work is among the first approaches that can accelerate a black-box generalist model without access to its
parameters.

2



Under review as submission to TMLR

2 Methodology

2.1 Background: In-Context Learning

We first recall some basics of prompting and in-context learning. Prompting refers to the process of providing
a prompt, which typically contains a description of the task and the task input, to a generalist model that
guides its response generation. Formally, let G be a generalist model and P be a prompt. Then, the output O
is given by: O = G(P ). Prompting relies on the generalist model’s ability to understand and follow abstract
instructions, which sometimes leads to unsatisfactory empirical performance, especially for hard tasks that
require complex reasoning.

On the other hand, in-context learning leverages the ability of a generalist model to adapt to new information
provided within the input context. Formally, given N labeled examples {(xi, yi)}N

i=1 and a hand-crafted
template T , in-context learning first verbalizes each input-output pair with a template, resulting in demon-
strations di = T (xi, yi). Then the generalist model takes the concatenation of the original prompt and the
demonstrations to generate the output:

O = G(P ⊕ d1 ⊕ d2 ⊕ · · · ⊕ dN ) (1)

where ⊕ denotes the concatenation of token sequences.

2.2 Meta Controller

Architecture and Input/Output Formats: The meta controller C can be modeled by any sequence
generation model including both encoder-decoder models and decoder-only models. We use an instruction-
tuned model such as FLAN-T5 as the backbone for the meta controller to facilitate training. As illustrated
in Figure 1, it receives a task instruction and an input, which is identical to most instruction tuning
literature (Sanh et al., 2022; Wei et al., 2022; Taori et al., 2023). But instead of generating the corresponding
outputs like instruction-tuned models, our meta controller is trained to generate the number of in-context
examples suitable for the input to achieve the best performance-efficiency trade-off, which we denote as k.
This process can be expressed by k = C(P ). The output expresses the confidence modeling of the meta
controller for the generalist model to some extent. This method pertains to, albeit distinguishes itself from,
prior existing work on model calibration (Guo et al., 2017; Kadavath et al., 2022), which addresses the
inherent confidence levels of the model itself.

Training We then present our two-stage training framework for the meta controller. In the first stage, we
train the meta controller to predict the minimum number of in-context examples for the generalist model to
produce a good output. “A good output” can have different definitions for different tasks. For example, it
can be defined as predicting the correct label with a high probability for classification tasks and generating
outputs similar to the ground truth for generation tasks. In this paper, we consider only classification tasks
following (Hao et al., 2022; Li et al., 2023b). To synthesize training data for supervised training, we propose a
simple and intuitive data generation method. Specifically, for a prompt P , we consider the minimum number
of in-context examples k∗ for it to be the number that makes the generalist model’s expected accuracy exceed
a certain (hand-crafted) threshold t:

k∗ = min
k∈N

{
k

∣∣E(xi,yi)k∼Dk [Acc(G(P, T (x1:k, y1:k))] > t
}

(2)

where Dk denotes all subsets of the training data of size k and Acc(G(P, T (x1:k, y1:k)) denotes the performance
(e.g., accuracy) of model G using template P and in-context examples (x1, y1) · · · (xk, yk).

We synthesize (P, k∗) pairs on a mixture of instruction-tuning datasets from the FLAN collection and train
the meta controller with maximum likelihood estimation.

After the first stage, the meta controller can already predict a reasonable number of in-context examples
for a prompt. However, we may want it to better satisfy a certain performance-efficiency trade-off in a
more fine-grained way. To this end, we propose to fine-tune the meta controller with reinforcement learning

3



Under review as submission to TMLR

1 2 3 4 5 6 7 8 9 10

#-Shots

0

5

10

15

20

25

30

P
er

ce
nt

ag
e 

of
 S

am
pl

es

ChatGPT
LLAMA-65B

Figure 2: Distribution of the number of in-context
examples that suffice for making the correct pre-
diction for samples that cannot be answered cor-
rectly by zero-shot inference with generalist mod-
els but can be solved with in-context learning for
up to 10 shots. The generalist model we consider
are ChatGPT and LLAMA-65B, and the dataset
is CSQA.

∆ Accuracy ✗→ ✓ ✓→ ✗

zero-shot → 1-shot
+ 2.5% 3.9% 1.4%

1-shot → 5-shots
+ 1.4% 1.9% 0.5%

5-shots → 64-shots
+ 0.3% 0.7% 0.4%

Figure 3: The impact of adding more in-context
examples. ∆ Accuracy denotes the change of
accuracy after adding more in-context examples.
✗→ ✓ and ✓→ ✗ denotes the percentage of ex-
amples of which the predictions are changed from
incorrect to correct, and vice versa, after adding
more in-context examples. We use ChatGPT as
the generalist model and TriviaQA as the dataset.

using a reward reflecting the performance-efficiency trade-off. In particular, we define the reward R to be a
linear interpolation of the expected performance (defined as accuracy in case of classification task), and the
efficiency, defined as the number of in-context examples k:

R(G, P, k) = E(xi,yi)k∼Dk [Acc(G(P, T (x1:k, y1:k))] + α · k (3)

where α is the weight controlling whether the controller should lean towards better performance or efficiency.
The meta controller C is then fine-tuned with policy gradient:

∇θJ(θ) = EP ∼P,k∼C(k|P,θ)[∇θ log C(k|P, θ)(R(G, P, k))] (4)
where P is the set of prompts from a mixture of instruction tuning datasets, and C(k|P, θ) denotes the
predicted probability mass of k from the meta controller C for a prompt P .

The training framework can be easily adapted for generation tasks by changing the accuracy metric to some
generation metrics such as BLEU (Papineni et al., 2002) or BERTScore (Zhang et al., 2020), and doing some
normalization to make it compatible with classification tasks. We leave this for future work.

2.3 Dynamic In-Context Example Allocation

After training, the meta controller predicts the number of in-context examples for a specific input. This is a
naive version of DynaICL. However, in practice one may have a different computation budget. Therefore it
is often desirable to normalize the predictions from the meta controller and dynamically adjust the actual
number of in-context examples according to the computation budget. In this work, we propose a simple
recipe for dynamic in-context example allocation. Assuming we have a budget of N tokens1 for K samples.
The uniform baseline is to allocate N/(K · L) in-context examples for each sample assuming L is the average
length of an example. DynaICL instead allocates E in-context examples for an input P following:

E(P ) = [β · (C(P )/C̃) · N/(K · L)] (5)

where C(P ) is the prediction from the meta controller, [] denotes the rounding operator, C̃ is the averaged
prediction for all examples, and β is the token saving ratio ranging from 0 to 1.

1We consider the budget in terms of the token count because this is the typical scenario for using commercial generalist
models such as ChatGPT. We omit the token consumption for the original input for simplicity.

4



Under review as submission to TMLR

Models SST-2 AGNews RTE CB ARC-E ARC-C MRPC COPA Avg. Acc
zero-shot

ChatGPT 88.5 84.5 84.5 89.5 85.1 61.0 88.4 67.2 81.1
Budget: 5-shots on average

Uniform 93.2 87.9 86.1 91.1 88.3 64.8 90.4 88.2 86.2
Random 93.0 87.7 86.1 91.0 88.1 65.0 90.4 89.4 86.3
DynaICL 95.3 90.2 88.1 92.9 90.5 68.4 91.8 93.0 88.8

Budget: 10-shots on average
Uniform 95.8 90.9 88.5 93.1 90.8 68.3 92.0 93.4 89.1
Random 95.9 90.7 88.4 93.3 90.8 68.2 92.1 92.8 88.9
DynaICL 96.7 92.5 90.0 94.1 91.9 70.0 93.1 95.8 90.5

Table 1: Main results on seen tasks during meta controller training. The total computation/token budget is
the same inside each group. DynaICL consistently outperforms all baselines across all tasks and budgets.

3 Experiments

In this section, we test the empirical effectiveness of DynaICL by experimenting on some NLP tasks with
ChatGPT, a popular large language model, as the generalist model. We first describe the experimental
settings. Then we begin with a preliminary study about the impact of the number of in-context examples
to motivate our approach. After that, we evaluate DynaICL by answering two research questions for two
realistic settings:

• RQ1: To what extent can DynaICL improves the performance of a generalist model with fixed
computational budgets?

• RQ2: To what extent can DynaICL reduce computational cost or token consumption for a generalist
model to achieve a fixed target performance?

3.1 Experimental Settings

Models We consider ChatGPT as the generalist model for training the meta controller and the main
experiments. We use LLAMA-65B as an unseen generalist model for evaluating the generalization ability
of the meta controller. We use FLAN-T5-large, which has less than 1B parameters, to initialize the meta
controller. We also test with FLAN-T5-base in the analysis.

Tasks We use a subset in the FLAN collection containing 30+ classification tasks to train the meta controller.
For evaluation, we test DynaICL on both seen and unseen tasks, which are explicitly excluded from the
training data for the meta controller. To be specific, we use SST-2 (Socher et al., 2013), AGNews (Zhang
et al., 2015), RTE (Dagan et al., 2006; Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009),
CB (De Marneffe et al., 2019), ARC-E (Clark et al., 2018), ARC-C (Clark et al., 2018), MRPC (Dolan
& Brockett, 2005), and COPA (Roemmele et al., 2011) as the seen tasks, and PIQA (Bisk et al., 2020),
OpenBookQA (Mihaylov et al., 2018), CommonsenseQA (Talmor et al., 2019), TriviaQA (Joshi et al., 2017),
Natural Questions (Kwiatkowski et al., 2019), and Web Questions (Berant et al., 2013) as unseen tasks. It is
noteworthy that TriviaQA, Natural Questions, and Web Questions are not classification tasks but a trained
meta controller can still be used despite being trained only on classification tasks. This is because its input
format (i.e., instruction + input) is agnostic to the type of the task.

Training Details We follow Wei et al. (2022) and fine-tune the meta controller for 30k/5k gradient steps
with a batch size of 8,192 tokens using the Adafactor Optimizer (Shazeer & Stern, 2018) with a learning rate
of 3e-5/1e-5, for the first/second training stage, respectively.

5



Under review as submission to TMLR

2 4 6 8 10

Token-Saving Ratio

82

84

86

88

90

Av
g.

 A
cc

ur
ac

y

Uniform
DynaICL

(a) Performance comparison between DynaICL and
the uniform baseline under different token saving ra-
tios defined as the ratio between actual token usage
and the token usage of using 20 in-context examples
per sample. The accuracy is averaged across all seen
test datasets. The dashed line is the zero-shot perfor-
mance.

400 800 1200 1600 2000

Baseline # Tokens

400

800

1200

1600

2000

D
yn

aI
C

L 
# 

To
ke

ns
 (A

vg
.)

Uniform
DynaICL

(b) Token saving ratio of DynaICL compared to
the uniform baseline under performance constraints
defined by the performance of the uniform baseline
with different token budgets. Each point (x,y) in the
line indicates that on average, DynaICL needs to use
y tokens to match the performance of the uniform
baseline with x tokens.

Figure 4: Performance comparison when fixing either the compute budget or the target performance.

Baselines We mainly compare DynaICL with the uniform baseline that allocates the same number of
in-context examples for each sample, and the random baseline that randomly samples a number of in-context
examples from a Gaussian distribution. We only compare these two naive baselines because there is no prior
work in this direction and popular methods for efficient NLP can not be applied in this setting.

3.2 Preliminary Study: How Much Do More In-Context Examples Help?

We first conduct a preliminary study investigating the role of adding more in-context examples to the prompt
for different samples. We first test if most samples for a task require a similar amount of in-context examples
for a generalist model to generate a good output. We plot the distribution of the number of in-context
examples that suffice for making the correct prediction for samples from the CommonsenseQA dataset that
cannot be answered correctly by zero-shot inference with ChatGPT or LLAMA-65B but can be solved with
in-context learning for up to 10 shots. As shown in Figure 2, different samples requires a very different
amount of in-context examples. Some hard examples require 10 in-context examples for a generalist model to
make the correct prediction while most examples require only one in-context example or can be solved with
zero-shot inference. This observation confirms the necessity of dynamically allocating in-context examples
according to sample difficulties. Moreover, we can see that ChatGPT and LLAMA-65B share similar trends in
the Figure. This suggests that a meta controller trained with one generalist model may be able to generalize
to other generalist models, which is later proved in our analysis.

Then we further analyze the effect of scaling more in-context examples. As shown in Figure 3, the effectiveness
of adding more in-context examples to the prompt is amortized when there are already a few (e.g., 5)
in-context examples. This also supports our motivation that only a few samples require many in-context
examples and uniformly allocating an equal number of in-context examples for all samples is a waste of
tokens and computation. More interestingly, we find that sometimes it can be harmful to include more
in-context examples for a sample that can already be correctly solved by the generalist model, which is shown
by a non-negligible amount of samples’ predictions are changed from correct to incorrect after adding more
in-context examples. This further confirms the potential of DynaICL to achieve better performance while
consuming fewer tokens.

6



Under review as submission to TMLR

400 800 1200 1600 2000

Baseline # Tokens

400

800

1200

1600

2000

D
yn

aI
C

L 
# 

To
ke

ns
 (A

vg
.)

Uniform
DynaICL

(a) Token saving ratio of DynaICL compared to the
uniform baseline under different performance constraints
on seen tasks. DynaICL is trained with ChatGPT but
tested with LLAMA-65B.

1 2 3 4 5 6 7 8 9 10

# In-Context Examples

0

5

10

15

20

25

P
er

ce
nt

ag
e 

of
 S

am
pl

es

(b) Distribution of samples (on seen tasks) according to
the number of in-context examples allocated for them.
The computational budget is fixed to 5 in-context exam-
ples per sample.

Figure 5: Analysis on the generalization ability of DynaICL on unseen generalist models and the distribution
of samples according to the number of in-context examples allocated for them.

3.3 Main Results

We first compare the performance of DynaICL with the baselines in Table 1. We can see that DynaICL
leads to an averaged performance improvement of 2.6% and 1.4% over the uniform baseline with budgets of 5
and 10 in-context examples for each sample, respectively. This confirms that DynaICL leads to improved
performance with fixed budgets. We also plot the trend of averaged performance on seen tasks with different
token-saving ratios in Figure 4 (a). We can see that DynaICL leads to consistent improvements across all
budgets and the improvements are larger when the computation/token budget is more limited. We then
show the extent to which DynaICL can save tokens for achieving a fixed target performance in Figure 4
(b). We can see that DynaICL consistently require fewer tokens to match the performance achieved by the
uniform baseline with certain budgets. Specifically, DynaICL only consumes 108 tokens on average to match
the performance of the common practice with 200 tokens on average. This confirms that DynaICL can
effectively reduce token/computation consumption for achieving a fixed target performance.

3.4 Analysis

We then conduct an analysis investigating the impact of different components in DynaICL and the general-
ization ability of DynaICL on unseen tasks or generalist models when training the meta controller.

Ablation Study We first analyze the impact of the two training stages, the size of the meta controller, and
the number of tasks the meta controller is trained with. The results are shown in Table 2. We find that
both training stages contributes to the performance of DynaICL and the first stage is more important. We
think this is because the first training stage provides an important starting point for the second stage using
reinforcement learning. We also find that DynaICL with a smaller meta controller or a meta controller train
on fewer tasks also achieves competitive performances.

Generalization on Unseen Tasks We then test how well DynaICL can generalize on unseen tasks. The
results are shown in Table 3. We find that DynaICL consistently leads to performance improvements across
all 6 unseen tasks. Notably, DynaICL also leads to substantial improvements on Natural Questions and Web
Questions, which are generative question answering datasets that are very different from text classification
tasks during training. This confirms that DynaICL can generalize well on tasks that are not used to train
the meta controller.

7



Under review as submission to TMLR

Models SST-2 AGNews RTE CB ARC-E ARC-C MRPC COPA Avg. Acc
Budget: 5-shots on average

Uniform 93.2 87.9 86.1 91.1 88.3 64.8 90.4 88.0 86.2
DynaICL 95.3 90.2 88.1 92.9 90.5 68.4 91.8 93.0 88.8
- first stage 93.8 88.4 86.6 91.8 89.1 65.5 90.8 89.6 86.9
- second stage 94.4 89.5 87.5 92.1 89.5 67.1 91.2 91.4 87.8
w/ smaller model 94.8 89.2 87.5 92.3 90.2 67.7 91.3 92.2 88.2
w/ fewer tasks 95.0 89.3 87.3 92.5 90.0 68.0 91.5 92.4 88.3

Table 2: Ablation study results. “- first stage” and “- second stage” denotes the ablated variants where the
meta controller is not trained with the first or second stage training, respectively. “w/ smaller model” and
“w/ fewer tasks” denotes the ablated variants where the meta controller is parameterized with FLAN-T5-Base
and the meta controller is trained with 50% less training tasks.

Models PIQA OBQA CSQA TriviaQA (EM) NaturalQ (EM) WebQS (EM) Avg.
zero-shot

ChatGPT 83.3 60.9 74.5 80.2 27.5 22.9 58.2
Budget: 5-shots on average

Uniform 84.3 61.5 76.6 84.1 37.1 26.3 61.6
DynaICL 85.4 62.8 77.2 84.4 40.2 28.8 63.1

Budget: 10-shots on average
Uniform 85.9 63.1 77.4 84.3 40.8 29.2 63.4
DynaICL 86.3 63.7 77.9 84.5 42.4 29.9 64.1

Table 3: Analysis of the generalization ability of DynaICL on datasets that are unseen when training the
meta controller. Tasks with (EM) suffix denotes the task is generative question answering and we use exact
match as the metric. DynaICL still consistently outperforms the baseline across all tasks.

Generalization on Unseen Generalist Models We also test if DynaICL can generalize to other
generalist models that are not used for training the meta controller by applying the meta controller trained
with ChatGPT with LLAMA-65B as the generalist model. Results in Figure 5 (a) show that DynaICL still
saves a great number of tokens for achieving the same performance with the uniform baseline even tested
with a different generalist model. This confirms that DynaICL can generalize well on generalist models that
are not used to train the meta controller.

Distribution of In-context Examples Count We then plot the distribution of samples according to the
number of in-context examples allocated for them to better understand the meta controller. As shown in
Figure 5 (b), with a target budget of 5 in-context examples, a large portion of samples are allocated with 5
in-context examples in DynaICL. This indicates that most samples are predicted to need a similar number
of in-context examples as the averaged prediction. We also find that more samples are assigned with fewer
than 5 in-context examples while a few hard samples are assigned with more in-context examples. We present
a qualitative study of different samples and the corresponding number of in-context examples allocated to
them in the Appendix.

Computation Cost of the Meta Controller Finally, it is noteworthy that the meta controller does add
some computational cost and latency overhead to the overall prompting procedure. However, since the meta
controller can use a very small backbone such as T5-large or T5-base, its computation cost is negligible
compared to that of a generalist model. To be specific, the computational cost (in terms of FLOPs) of a
T5-large based meta controller for a sample of 50 tokens is less than 0.1% of the change of the computation

8



Under review as submission to TMLR

cost when changing the input from 200 tokens to 199 tokens, or less than 0.0005% of the computational cost
saved by reducing one in-context example from the prompt. Similarly, since the meta controller only needs
to predict 1 or 2 tokens, the latency overhead accounts for only 0.1% to 0.2% of the latency of calling the
GPT-3.5-turbo API, and reducing one in-context example will lead to a speedup of around 10%. In sum, we
believe the computational and latency overhead from the meta controller is almost negligible.

4 Related Works

Training a generalist model that can solve a wide range of tasks without task-specific training has been
a long-standing goal in the field of artificial intelligence. One pioneering work dates back to Collobert &
Weston (2008) that attempted to solve all NLP tasks with a shared architecture using multi-task learning.
This idea is further improved by decaNLP (McCann et al., 2018) that proposes to convert all NLP tasks
to question answering format. T5 (Raffel et al., 2020) then improves this paradigm by using text-to-text
format for unifying all NLP tasks, which is more general and friendly to scaling. Finally, GPT-3 (Brown
et al., 2020) show that by scaling model size, training data, and training FLOPs, a large language model can
serve as a generalist model that solves many tasks by simply writing a prompt that describes the task and
the input. They also showed that the zero-shot ability of a large language model can be further improved
by adding a few input-output demonstrations in the prompt to help the model better understand the task.
Since then, a large number of work has been done for improving and understanding prompting and in-context
learning with large language models. For instance, Schick & Schütze (2021) show that small encoder models
can also be prompted. Min et al. (2022) show that in-context examples mainly help a generalist model learn
output label space and distribution of input text. Kadavath et al. (2022) prove that generalist models are
well calibrated and can be trained to model their confidence level. Hao et al. (2022) and Li et al. (2023b)
show that in-context learning with many examples improves the overall performance of a generalist model.

4.1 Generalist Models, Prompting, and In-context Learning

Training a generalist model that can solve a wide range of tasks without task-specific training has been
a long-standing goal in the field of artificial intelligence. One pioneering work dates back to Collobert &
Weston (2008) that attempted to solve all NLP tasks with a shared architecture using multi-task learning.
This idea is further improved by decaNLP (McCann et al., 2018) that proposes to convert all NLP tasks
to question answering format. T5 (Raffel et al., 2020) then improves this paradigm by using text-to-text
format for unifying all NLP tasks, which is more general and friendly to scaling. Finally, GPT-3 (Brown
et al., 2020) show that by scaling model size, training data, and training FLOPs, a large language model can
serve as a generalist model that solves many tasks by simply writing a prompt that describes the task and
the input. They also showed that the zero-shot ability of a large language model can be further improved
by adding a few input-output demonstrations in the prompt to help the model better understand the task.
Since then, a large number of work has been done for improving and understanding prompting and in-context
learning with large language models. For instance, Schick & Schütze (2021) show that small encoder models
can also be prompted. Min et al. (2022) show that in-context examples mainly help a generalist model learn
output label space and distribution of input text. Kadavath et al. (2022) prove that generalist models are
well calibrated and can be trained to model their confidence level. Hao et al. (2022) and Li et al. (2023b)
show that in-context learning with many examples improves the overall performance of a generalist model.
Recently, the paradigm of prompting generalist models is successfully transferred to other modalities other
than language. For example, Zhou et al. (2022) and Li et al. (2023a) explored prompting vision models. It is
foreseeable that prompting generalist models will become the de-facto paradigm for most domains in artificial
intelligence.

4.2 Efficient Deep Learning

Improving the performance-efficiency trade-off of deep learning models is a very interesting research problem
and is attracting more and more attention since the rise of large generalist models (Xu et al., 2021; Schwartz
et al., 2020a). A large number of work has been done on improving the speed and efficiency of large language
models, including both static methods such as knowledge distillation (Hinton et al., 2015; Romero et al.,

9



Under review as submission to TMLR

2015; Sanh et al., 2020), pruning (LeCun et al., 1989; Michel et al., 2019), quantization (Han et al., 2016;
Shen et al., 2020; Dettmers et al., 2022) and module replacing (Xu et al., 2020); and dynamic methods such
as adaptive computation (Graves, 2017), early-exiting (Teerapittayanon et al., 2016; Schwartz et al., 2020b;
Zhou et al., 2020), and model cascade (Li et al., 2021; Varshney & Baral, 2022).

However, most of the aforementioned methods require access to the model parameters, which may not be
possible for closed source models. One exemption is model cascade, which first sends the input to a cheaper
model and optionally sends it to a more powerful model if the previous model is not confident enough. This
method, however, also faces server latency issues because harder samples will be computed by multiple
generalist models sequentially. Concurrently to our work, Mu et al. (2023) proposes to train gist tokens to
replace long-form prompts and show promising results on prompt compression. However, this approach is still
limited to white-box settings where the model parameter is available and also compromises interpretability.

5 Conclusions

This paper introduces DynaICL, a framework for efficiently prompting generalist models. We propose
to train a meta controller that predicts the suitable number of in-context examples for a specific sample
with a two-stage training framework. During inference, DynaICL dynamically allocate different number
of in-context examples to samples according to the predicted difficulty and the computational budget. Our
experiments show that DynaICL consistently leads to better performance-efficiency trade-offs across tasks,
models, and scenarios. We also find a meta controller trained on a collection of around ten tasks can
successfully generalize to tasks unseen during training.

6 Ethics Statement

As for technical limitations, the main limitation of this work is that we only test DynaICL on NLP tasks
with LLMs as the backbone, while it may also be interesting to test on other modalities such as vision tasks
with multi-modal generalist models. This is because the main experiments are conducted before multi-modal
instruction following models such as LLAVA came out. We leave this for future work. Another limitation is
that we only train the meta controller with text classification datasets. We explain how the meta controller can
be trained on generation tasks at the end of Section 2.2. We also experiment with some generative question
answering datasets and show DynaICL trained only on classification tasks can successfully transfer to these
tasks. Finally, the dynamic in-context example allocation algorithm is quite naive. Potential improvements
may be made using some more sophisticated planning or optimization algorithms. We also leave this for
future work.

As for social impact, this work aims to reduce the token/computation consumption of prompting generalist
models. It probably leads to a positive environmental impact and will unlikely lead to any negative social
impact.

References
Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing textual

entailment challenge. In TAC. Citeseer, 2009.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from question-
answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pp. 1533–1544, Seattle, Washington, USA, October 2013. Association for Computational Linguistics. URL
https://aclanthology.org/D13-1160.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about physical
commonsense in natural language. In AAAI, pp. 7432–7439. AAAI Press, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen

10

https://aclanthology.org/D13-1160


Under review as submission to TMLR

Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge, 2018.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th International Conference on Machine
Learning, ICML ’08, pp. 160–167, New York, NY, USA, 2008. Association for Computing Machinery. ISBN
9781605582054. doi: 10.1145/1390156.1390177. URL https://doi.org/10.1145/1390156.1390177.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment challenge.
In Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and
Recognising Tectual Entailment: First PASCAL Machine Learning Challenges Workshop, MLCW 2005,
Southampton, UK, April 11-13, 2005, Revised Selected Papers, pp. 177–190. Springer, 2006.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can gpt learn in-context?
language models secretly perform gradient descent as meta-optimizers, 2022.

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: Investigating
projection in naturally occurring discourse. In proceedings of Sinn und Bedeutung, volume 23, pp. 107–124,
2019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8(): 8-bit matrix multiplication
for transformers at scale. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=
dXiGWqBoxaD.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL https:
//aclanthology.org/I05-5002.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment and
paraphrasing, pp. 1–9, 2007.

Alex Graves. Adaptive computation time for recurrent neural networks, 2017.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks. In
ICML, volume 70 of Proceedings of Machine Learning Research, pp. 1321–1330. PMLR, 2017.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor.
The second pascal recognising textual entailment challenge. In Proceedings of the Second PASCAL
Challenges Workshop on Recognising Textual Entailment, volume 7, 2006.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network with
pruning, trained quantization and huffman coding. In ICLR, 2016.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural networks:
A survey, 2021.

11

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/1390156.1390177
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002


Under review as submission to TMLR

Yaru Hao, Yutao Sun, Li Dong, Zhixiong Han, Yuxian Gu, and Furu Wei. Structured prompting: Scaling
in-context learning to 1,000 examples, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

Gao Huang, Yulin Wang, Kangchen Lv, Haojun Jiang, Wenhui Huang, Pengfei Qi, and Shiji Song. Glance and
focus networks for dynamic visual recognition. IEEE Trans. Pattern Anal. Mach. Intell., 45(4):4605–4621,
apr 2023. ISSN 0162-8828. doi: 10.1109/TPAMI.2022.3196959. URL https://doi.org/10.1109/TPAMI.
2022.3196959.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly supervised
challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017.
Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.
org/P17-1147.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer,
Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El-Showk, Andy Jones,
Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, Deep Ganguli, Danny
Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine
Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish,
Chris Olah, and Jared Kaplan. Language models (mostly) know what they know, 2022.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural questions: A
benchmark for question answering research. Transactions of the Association for Computational Linguistics,
7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL https://aclanthology.org/Q19-1026.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky (ed.), Advances in
Neural Information Processing Systems, volume 2. Morgan-Kaufmann, 1989. URL https://proceedings.
neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. CoRR, abs/2301.12597, 2023a.

Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li, Jie Zhou, and Xu Sun. CascadeBERT: Accelerating
inference of pre-trained language models via calibrated complete models cascade. In Findings of the
Association for Computational Linguistics: EMNLP 2021, pp. 475–486, Punta Cana, Dominican Republic,
November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.43. URL
https://aclanthology.org/2021.findings-emnlp.43.

Mukai Li, Shansan Gong, Jiangtao Feng, Yiheng Xu, Jun Zhang, Zhiyong Wu, and Lingpeng Kong. In-context
learning with many demonstration examples, 2023b.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods for effective
instruction tuning, 2023.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language decathlon:
Multitask learning as question answering, 2018.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf.

12

https://doi.org/10.1109/TPAMI.2022.3196959
https://doi.org/10.1109/TPAMI.2022.3196959
https://aclanthology.org/P17-1147
https://aclanthology.org/P17-1147
https://aclanthology.org/Q19-1026
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://aclanthology.org/2021.findings-emnlp.43
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf


Under review as submission to TMLR

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a
new dataset for open book question answering. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 2381–2391, Brussels, Belgium, October-November 2018. Association
for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL https://aclanthology.org/D18-1260.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer.
Rethinking the role of demonstrations: What makes in-context learning work? In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 11048–11064, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. URL https://aclanthology.
org/2022.emnlp-main.759.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens, 2023.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=TG8KACxEON.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational
Linguistics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text transformer.
J. Mach. Learn. Res., 21(140):1–67, 2020.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives: An
evaluation of commonsense causal reasoning. In AAAI spring symposium: logical formalizations of
commonsense reasoning, pp. 90–95, 2011.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. Fitnets: Hints for thin deep nets, 2015.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter, 2020.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin,
Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma
Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan
Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey,
Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault
Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and
Alexander M Rush. Multitask prompted training enables zero-shot task generalization. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=9Vrb9D0WI4.

Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also few-shot
learners. In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 2339–2352, Online, June 2021. Association

13

https://aclanthology.org/D18-1260
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2022.emnlp-main.759
https://openreview.net/forum?id=TG8KACxEON
https://aclanthology.org/P02-1040
https://openreview.net/forum?id=9Vrb9D0WI4


Under review as submission to TMLR

for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.185. URL https://aclanthology.org/
2021.naacl-main.185.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. Commun. ACM, 63(12):54–63,
2020a.

Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse Dodge, and Noah A. Smith. The right
tool for the job: Matching model and instance complexities. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 6640–6651, Online, July 2020b. Association for
Computational Linguistics. doi: 10.18653/v1/2020.acl-main.593. URL https://aclanthology.org/2020.
acl-main.593.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost, 2018.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. Q-BERT: hessian based ultra low precision quantization of BERT. In AAAI, pp. 8815–8821.
AAAI Press, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–
1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics. URL https:
//aclanthology.org/D13-1170.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/
tatsu-lab/stanford_alpaca, 2023.

Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference via early exiting from
deep neural networks. In ICPR, pp. 2464–2469. IEEE, 2016.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023.

Neeraj Varshney and Chitta Baral. Model cascading: Towards jointly improving efficiency and accuracy of
NLP systems. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 11007–11021, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. URL https://aclanthology.org/2022.emnlp-main.756.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=gEZrGCozdqR.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, and Ming Zhou. BERT-of-theseus: Compressing BERT
by progressive module replacing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 7859–7869, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.633. URL https://aclanthology.org/2020.emnlp-main.
633.

Jingjing Xu, Wangchunshu Zhou, Zhiyi Fu, Hao Zhou, and Lei Li. A survey on green deep learning, 2021.

14

https://aclanthology.org/2021.naacl-main.185
https://aclanthology.org/2021.naacl-main.185
https://aclanthology.org/2020.acl-main.593
https://aclanthology.org/2020.acl-main.593
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/N19-1421
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2022.emnlp-main.756
https://openreview.net/forum?id=gEZrGCozdqR
https://aclanthology.org/2020.emnlp-main.633
https://aclanthology.org/2020.emnlp-main.633


Under review as submission to TMLR

Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-goo
Lee, and Taeuk Kim. Ground-truth labels matter: A deeper look into input-label demonstrations. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 2422–2437,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.155.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating text
generation with BERT. In ICLR. OpenReview.net, 2020.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text classification.
In NIPS, 2015.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language
models. Int. J. Comput. Vis., 130(9):2337–2348, 2022.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J. McAuley, Ke Xu, and Furu Wei. BERT loses patience:
Fast and robust inference with early exit. In NeurIPS, 2020.

A Appendix

We present a few examples of how many in-context examples DynaICL allocates to different samples in the
SST-2 dataset with an average budget of 5 in-context examples:

• “it ’s disappointing when filmmakers throw a few big-name actors and cameos at a hokey script .” : 1

• “how did it ever get made ?”: 2

• “not only does the movie fail to make us part of its reality , it fails the most basic relevancy test as
well .” : 2

• “it would n’t be my preferred way of spending 100 minutes or $7.00.”: 6

• “but if it is indeed a duty of art to reflect life , than leigh has created a masterful piece of artistry
right here .”: 7

We find that DynaICL does tend to assign fewer in-context examples to easier samples and more
in-context examples to harder samples.

15

https://aclanthology.org/2022.emnlp-main.155

	Introduction
	Methodology
	Background: In-Context Learning
	Meta Controller
	Dynamic In-Context Example Allocation

	Experiments
	Experimental Settings
	Preliminary Study: How Much Do More In-Context Examples Help?
	Main Results
	Analysis

	Related Works
	Generalist Models, Prompting, and In-context Learning
	Efficient Deep Learning

	Conclusions
	Ethics Statement
	Appendix

