
Semantic Information: A Difference that Makes a Difference

Anonymous ACL submission

Abstract

In the framework of distributional semantics,001
we introduce a novel notion and operationali-002
sation of semantic information for natural lan-003
guage. The key idea is as follows: a linguis-004
tic sign carries semantic information about a005
document if it reduces the amount of surprisal006
for a language processor. We consider two007
systems, an informed one and an uninformed008
one, and describe semantic information in their009
terms. Processing effort is quantified via sur-010
prisal where the informed system is ‘aware’ of011
the linguistic sign and the uninformed one is012
not. On an English fairy tale corpus and on two013
German news corpora, we tested successfully014
the prediction that if the linguistic sign in ques-015
tion carries pre-information through semantic016
surprisal, the current level of surprisal for the017
language processor is reduced. The conclusion018
is that the degree of semantic information re-019
sults from the degree of semantic prior infor-020
mation.021

1 Introduction022

Semantics of natural language can be captured023

through computational methods, as exemplified by024

Firths famous assertion: ‘You shall know a word025

by the company it keeps’(Firth, 1957). This is the026

guidung principle that underpins distributional se-027

mantics (Harris, 1954; Turney and Pantel, 2010;028

Mikolov et al., 2013), which models linguistic029

meaning based on co-occurrence patterns in large030

corpora. Our study is carried out in this theoret-031

ical framework, using statistical models to derive032

semantic effects from linguistic data.033

Surprisal is a key concept in psycholinguistics,034

introduced to model human sentence processing035

through information-theoretic means (Hale, 2001;036

Jaeger and Levy, 2007). Surprisal theory posits037

that processing difficulty is proportional to the un-038

expectedness of a linguistic unit such as a word039

in context and to the effort required to process the040

linguistic unit. At this point it is already important041

to emphasise that we strictly separate the concepts 042

of semantic surprisal and semantic information be- 043

cause, as we will show, in our model semantic sur- 044

prisal is the prerequisite for the determination of 045

semantic information (we will abbreviate our con- 046

cept of semantic information as SemI in the fol- 047

lowing). In the corse of this paper, we employ the 048

Topic Context Model (TCM) (Kölbl et al., 2020, 049

2021; Philipp et al., 2022, 2023a,b) that extends 050

the distributional approach by incorporating topic 051

distributions, providing a framework for comput- 052

ing semantic surprisal. 053

Empirical studies confirm surprisal effects in 054

reading times, eye movements, and neural re- 055

sponses (Boston et al., 2008; Levy, 2008; Dem- 056

berg and Keller, 2008; Roark et al., 2009; Levy, 057

2011; Monsalve et al., 2012; Smith and Levy, 058

2013; Brouwer et al., 2021; Bentum, 2021). Our 059

model aligns with this research by computing se- 060

mantic surprisal to examine its role in language 061

comprehension. 062

Shannons information theory (Shannon, 1948) 063

was designed to quantify information transmission 064

and describes an optimal code for information 065

compression. It is a model of the degree of cer- 066

tainty (and uncertainty) within any systems, but 067

Shannon himself explicitly did not want to see 068

his model applied to the semantics of natural lan- 069

guage. But Shannons theory is probabilistic, and 070

information in this view is a context-dependent en- 071

tity. That is, the inherently distributional nature of 072

Shannon information makes it a candidate for se- 073

mantic modeling, despite the (initial) reservations 074

of its creator. 075

Several approaches have applied information 076

theory to semantics of language, including for- 077

mal logic (Carnap et al., 1952), epistemol- 078

ogy (Dretske, 1981; Floridi, 2004), and statisti- 079

cal physics (Kolchinsky and Wolpert, 2018). The 080

mentioned models are only weakly empirical and 081

closely related to the Correspondence Theory of 082
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Truth. In these models, the philosophically con-083

troversial postulate applies that for a proposition084

to have information, the proposition must be ‘true’085

in a model of the world. In contrast, our model086

is strongly empirically grounded, as large corpora087

serve as the basis for the computation of SemI.088

Furthermore, our model is not model-theoretic and089

not truth functional.090

Influential philosophical perspectives on in-091

formation and meaning see information repre-092

sented by a ‘difference’ prominently expressed093

by Batesons notion of a difference that makes094

a difference (Bateson, 2000) and Chalmers’ dis-095

tinction between formal and semantic informa-096

tion (Chalmers, 1997). These perspectives high-097

light the relationship between information, knowl-098

edge, and cognitive processing, reinforcing our099

computational approach to SemI:100

Our model quantifies SemI as the reduction101

of surprisal in an informed language processor102

(LP). We compare surprisal in informed and unin-103

formed systems, distinguishing between surprisal104

based on word frequency and semantic surprisal105

that is derived from contextual topic distributions106

through TCM which we introduced above.107

This framework allows us to test the hypothesis108

that SemI reduces surprisal. From this it follows109

that SemI will facilitate language comprehension.110

That is to say, SemI denotes a difference in the111

level of knowledge of the language processor.112

Recall that surprisal is a cognitive quality, and113

its reduction is a process that we assume to apply114

to Bateson’s dictum from above (Bateson, 2000)1.115

In our study we exploit English and German cor-116

pora, making a novel contribution to the computa-117

tional analysis of semantic information. Accord-118

ing to Shannon, maximum disorder means maxi-119

mum entropy and maximum uncertainty. The sup-120

ply of information to a system leads to a reduction121

in uncertainty. This is the basis of our SemI-model,122

which manifests itself as a reduction of surprisal.123

The structure of this paper is as follows: Sec-124

tion 2 outlines prior research on semantic infor-125

mation and its relationship to information states.126

In Section 3 we present the methodology for127

measuring semantic information, introducing the128

surprisal-based approach and the use of proba-129

bilistic models, and in Section 4 we describe the130

1As indicated above and further explained below (Sec-
tion 2). Bateson’s notion of information is not only about
reducing uncertainty, but is inseparable from how it affects
the system.(Bateson, 2000).

datasets used in the study, along with preprocess- 131

ing steps. Section 5 details the probability distri- 132

butions and the workflow for computing seman- 133

tic information, distinguishing between informed 134

and uninformed language processors. Section 6 135

reports the results and finally, Section 7 provides 136

a discussion and conclusion, interpreting the find- 137

ings in relation to semantic information theory and 138

potential applications. 139

2 Points of departure and relevant work 140

Inspirations for our study are Chalmers (1997); 141

Tononi (2004); Floridi (2004, 2009). The con- 142

cept of ‘difference’ is central to these works. 143

Chalmers (Chalmers, 1997) sketches a model of 144

consciousness in which an information space is a 145

structure with information states and differences 146

between them. For example, if there were only the 147

two information states 0 and 1, we could regard ‘0’ 148

as an uninformed state and ‘1’ as an informed state, 149

and the difference as SemI in the sense of our mod- 150

els. In Integrated Information Theory (Tononi, 151

2004), a transition matrix describes the transition 152

from one state to another information state. 153

Floridi’s non-modeltheoretic approach handles 154

information differences between two distinct sys- 155

tems and distinguish meaningful and meaningless 156

information Floridi (2004, 2009). This difference 157

is termed strongly semantic information. Inspired 158

by these works are, among others, the studies 159

of (Feldman and Peng, 2013; Peng et al., 2018; Ru- 160

bino et al., 2016; Venhuizen et al., 2019) on idiom 161

detection, translation-classification and predictive 162

language comprehension, respectively. Here, too, 163

‘differences’ are central: these approaches and 164

studies have in common that differences between 165

information states and systems represent qualita- 166

tive differences between a baseline condition and 167

a special, surprising condition which are inter- 168

preted as a representation of a semantic difference. 169

In (Feldman and Peng, 2013; Peng et al., 2018; 170

Philipp et al., 2023a) for example, the baseline 171

condition includes sentences that can be under- 172

stood literally, while the surprising, deviant con- 173

dition comprises idiomatic sentences. 174

3 Measuring semantic information 175

Let us imagine the following situation: we have 176

a language processor (LP) which processes texts 177

word by word. Each new word creates more or 178

less processing effort for the LP. For the sake of 179
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simplicity, we will assume that the processing ef-180

fort of each word is constant, regardless of where181

and how often a word appears in a text. This as-182

sumption, however, is non-essential and can easily183

be dropped. An LP with this property can be mod-184

eled with a probability distribution P on the set of185

all words, which we will denote by X .186

In such a situation, we can model the processing187

effort for a word w as the surprisal of that word188

(see Formula 1).189

S(w) = − log2 P (w) (1)190

Given a document d = (w1, w2, . . . , wk) con-191

sisting of k not necessarily distinct words, we can192

consider the average processing effort of d. No-193

tice that this is coincides with the cross-entropy of194

the inner distribution P of the LP relative to the195

‘true’ distribution T that describes the relative fre-196

quency of every given word inside the document d197

(see Formula 2).198

S̄(d) = −1

k

k∑
i=1

log2 P (wi)

= −
∑
w∈X

T (w) log2 P (w)

= H(T, P )

(2)199

In particular, if T = P , we get exactly the en-200

tropy of the distribution T . Within the context of201

our model, this coincides with the lowest possible202

average processing effort an LP can experience:203

the internal probability distribution P of the LP is204

taylormade to fit the ‘true’ distribution T . We say205

that in this case, the LP has full information about206

d, since in practice, it is impossible to just guess T207

without knowing it.208

Recall that the Kullback-Leibler-Divergence209

(KL) of a pair of distributions T and P is given as210

the difference of the cross-entropy H(T, P ) and211

the entropy H(T, T ). As such, it measures the212

‘coding inefficiency’ of P on a T -distributed set.213

Within the context of our model, KL(T, P ) mea-214

sures how much surplus in processing effort the215

LP has to exert in order to process d, relative to216

the optimal value. In particular, if the LP has full217

information, we get KL(T, T ) = 0.218

3.1 A flexible LP219

Let us now assume that our LP has more than one220

setting: depending on a piece of information about221

the text, the LP is capable of anticipating the words 222

it is going to encounter. In other words, it stores 223

more than one probability distribution. Suppose 224

we have n + 1 different distributions, denoted by 225

U, I1, I2, . . . , In, where U is the default distribu- 226

tion (U stands for ‘uninformed’) and each of the 227

Ii corresponds to a specific topic τi (I stands for 228

‘informed’). 229

The distribution U is generic in the sense that it 230

does not make any assumptions about the composi- 231

tion of d. In practice, it could be obtained by count- 232

ing the words in a large and diverse corpus, like 233

the British National Corpus. On the other hand, 234

the distribution Ii makes an assumption about d, 235

namely that its content belongs to the topic τi (for 236

the sake of example, let τi indicate the topic of 237

biology). It assigns higher probabilities to words 238

that are associated to the topic τi (in our example, 239

words like ‘animal’, ‘plant’, ‘metamorphosis’, etc) 240

and hence cause the LP to experience a lower av- 241

erage processing effort if d contains more of these 242

words. In practice, Ii could be obtained by count- 243

ing the words in a specialised corpus that contains 244

exclusively texts belonging to topic τi. 245

In this setup, we call the τi carriers of seman- 246

tic information about d. Note that in general, the 247

τi need not be topics. Their precise interpretations 248

depend on the LP and the way it adjusts its pro- 249

cessing strategy. 250

Our aim is to quantify the semantic information 251

content that each τi carries about d. For that mat- 252

ter, we propose Formula 3. 253

SemI(τi) = − log2
KL(T, Ii)

KL(T, U)

= log2KL(T,U)− log2KL(T, Ii)

(3)

254

In words, Formula 3 measures the relative re- 255

duction of the surplus in processing effort obtained 256

by supplying the LP with the piece of semantic in- 257

formation τi compared to the surplus in processing 258

effort when no additional piece of information is 259

given. Under the assumption that τi does reduce 260

processing effort at all, the fraction lies between 261

0 and 1, which we project to the set of all non- 262

negative reals by taking the negative logarithm. 263

Note that it is possible to make changes to For- 264

mula 3. For example, one could omit the logarithm 265

like in Formula 4 or switch out the KL-divergence 266

for the cross-entropy like in Formula 5, or do both 267

(which yields Formula 4 again). 268
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SemI ′(τi) = KL(T,U)−KL(T, Ii) (4)269

SemI ′′(τi) = − log2
H(T, Ii)

H(T,U)

= log2H(T, U)− log2H(T, Ii)

(5)

270

Either modification yields different behaviour.271

For example, the logarithm in Formula 4 looks272

only at the absolute improvement of the surplus273

in processing effort, while Formula 3 looks at the274

relative improvement. At the same time both For-275

mulae 3 and 4 focus on the surplus in processing276

effort alone, while Formula 5 accounts for process-277

ing effort in its entirety.278

However, regardless of the differences, it is easy279

to see that all three behave essentially the same:280

1. if Ii approximates T much better than U does281

the values are high,282

2. if Ii approximates T slightly better than U283

does, the values are low,284

3. if Ii approximates T worse than U does, the285

values are negative.286

In our experiments, we choose Formula 3 because287

it highlights the relative improvement of the sur-288

plus. In fact, one unit of semantic information con-289

tent computed this way corresponds to a reduction290

of the surplus processing effort by the factor 2. See291

Figure 1 for a proof of concept.292

3.2 Misinformation and disinformation293

As mentioned before, it can happen that Ii ap-294

proximates T worse than U does. In these cases,295

SemI(τi) < 0 and we call τi a carrier of semantic296

misinformation. A semantic carrier of misinforma-297

tion gives an LP a false sense of the type of text it298

is going to process, thereby increasing its average299

processing effort.300

In research on the detection of fake news, the301

terms ‘misinformation’ and ‘disinformation’ both302

describe false information, but the latter carries303

the connotation of deliberate deception. Since our304

model does not capture the intent with which a car-305

rier of semantic misinformation was given to the306

LP, we use the neutral term.307

4 Data 308

To test our prediction, we used three corpora: 309

(i) an English fairytale corpus from INESC- 310

ID Human Language Technology Lab2(Lobo 311

and De Matos, 2010) with 111 stories and a 312

total of 83,845 unique words. The average 313

number of words per fairytale is 270. Prepro- 314

cessing includes removing of all punctuation 315

and converting them to lowercase, the words 316

were already lemmatised. We split the texts 317

into 300 training texts and 110 test texts. 318

(ii) the Heise tech news (Philipp et al., 2022) cor- 319

pus in German language consisting of 5,322 320

articles and a total of 449,609 unique words 321

with an average of 280 words per document. 322

Preprocessing included conversion to lower- 323

case, removing all punctuation, and lemma- 324

tising. It was done using spaCy. 325

(iii) the Frankfurter Allgemeine Zeitung (FAZ) 326

newspaper corpus in German language con- 327

sisting of 20,924 articles and a total of 328

605,681 unique words with an average of 329

4703 words per document. Preprocessing was 330

identitcal to that of the heise corpus. 331

5 Probability distributions and Workflow 332

5.1 The distributions 333

For every text, we need a total of three distribu- 334

tions: an uninformed one, an informed one, and 335

the actual one. The uninformed distribution U has 336

to be independent of the text, the informed one I 337

has to depend on an informative token extracted 338

from the text, and the actual one T is the real dis- 339

tribution of words in the text. 340

For the uninformed distribution, we choose for 341

the probability function the relative frequency of 342

every word in the training corpus. Before normal- 343

ising however, we add 10−17 to every word, in- 344

cluding those that do not make an appearance in 345

the training corpus, so as to prevent a division by 346

0 when the KL-divergence is computed. Hence, 347

the distribution is given by Formula 6. 348

2https://www.hlt.inesc-id.pt/w/Fairy_
tale_corpus

3While it is suggestive that the fact that all three word
averages per document are powers of ten, we rounded only to
the nearest integer which happens to be a power of ten every
time.
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fT (w1) = 0.25

fT (w2) = 0.25

fT (w3) = 0.20

fT (w4) = 0.15

fT (w5) = 0.10

fT (w6) = 0.05

fU (w1) = 0.20

fU (w2) = 0.10

fU (w3) = 0.30

fU (w4) = 0.05

fU (w5) = 0.20

fU (w6) = 0.15

fT (w1) = 0.25

fT (w2) = 0.25

fT (w3) = 0.20

fT (w4) = 0.15

fT (w5) = 0.10

fT (w6) = 0.05

fI(w1) = 0.27

fI(w2) = 0.23

fI(w3) = 0.21

fI(w4) = 0.12

fI(w5) = 0.11

fI(w6) = 0.06

i

Figure 1: A document consisting of the words w1 through w6 whose distribution is given by fT is processed first
by an uninformed LP which estimates a distribution fU . Then the same document is processed by an LP that holds
a piece of information about it. It estimates another distribution fI which much more closely resembles fT .

PU (w) =
N + 10−17∑

w∈training and test corpus(N+10−17)

(6)349

Where N is the number of occurrences of w350

in the training corpus. In this study, the Topic351

Context Model (TCM) (Kölbl et al., 2020, 2021;352

Philipp et al., 2022, 2023a,b)4 utilises the topic353

detection model Latent Dirichlet Allocation (Blei354

et al., 2003) (LDA). We initialise LDA with n =355

100 topics and train it on the training corpus. This356

gives us for each topic a probability distribution357

P (wi|ti) that indicates the probability a word is358

associated to a specific topic. We can define the359

topic space as the simplex {(x1, x2, . . . , xn) ∈360

[0, 1]n|
∑

xk = 1}. Then for each document d,361

its topic vector vd is an element of the topic space362

whose coordinates are given by the probabilities363

P (ti|d) that any given word in d is associated to364

topic ti. Now the informed distribution for a word365

w given the topic vector vd of a document is given366

by Formula 7.367

PI(w|vd) =
n∑

i=1

P (w|ti)P (ti|d) (7)368

5.2 The informed distributions369

To minimise the risk that our results are based on370

chance, we measured the informed distribution us-371

ing four different topic vectors for each document.372

4https://github.com/jnphilipp/tcm

The first one is the matching vector, i.e., the vec- 373

tor TCM assigns to the document. The other three 374

were the fixed, random, and inverted topic vec- 375

tors which were chosen to deliberately ‘mislead’ 376

the hypothetical LP. The fixed vector is the match- 377

ing vector of one of the documents appearing in 378

a corpus that is used indiscriminately for all doc- 379

uments. This vector was included because unlike 380

the other two, it is a vector whose existence (and 381

hence, plausibility) is established. The random 382

vector is a randomly generated probability distri- 383

bution over the topics. A different one is generated 384

for each document. The inverted vector takes the 385

matching vector of a document and reassigns the 386

probabilities so that the n-th most likely topic be- 387

comes the n-th most unlikely topic. The prediction 388

was that SemI calculated from the matching vector 389

will be higher than the other three values since by 390

assumption, the matching vector is the only one 391

out of the four that prepares the LP with correct 392

information about the topics. 393

5.3 Workflow 394

We compute PU once at the beginning and then we 395

compute for every document d in the test set four 396

probability functions: PT , P (i)
I , P (ii)

I , and P
(iii)
I . 397

Here, PT is the probability function of T . The 398

other three are three different informed distribu- 399

tions, each computed with a different topic vector: 400

P
(i)
I uses vd, i.e., the correct topic vector; P

(ii)
I 401

uses v0, i.e., the topic vector of the first document 402

in the test set; P (iii)
I uses a randomly generated el- 403
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Figure 2: SemI calculated with Formula 3 for the FAZ
corpus. The amount of SemI can be read off the y-axis.

ement of the topic space; P (iv)
I uses the inverted404

probabilities in the topic vector in P
(i)
I .405

Then we calculate KL(T, U) and the four dif-406

ferent versions of KL(T, I). From these we calcu-407

late for each KL(T, I) the pair of SemI measures408

given in Formulae 3 and 4.409

6 Results410

First, we wanted to know whether there are signifi-411

cant mean differences in SemI between the groups412

‘matching’, ‘fixed’, ‘random’ and ‘inverted’ (see413

above) in the three data sets. The question cen-414

tres on whether the groups are taken from a com-415

mon set or not. A brief explanation: the values416

express the amount of SemI of a group. In our417

model, positive values of SemI represent a reduc-418

tion in surprisal, while negative values represent419

an increase. Figures 2, 3 and 4 illustrate that the420

meaningful topic contexts of the group ‘matching’421

cause a reduction of surprisal. In the Fairy tale422

and Heise corpora, the amount of SemI gradually423

decreases from ‘fixed’ to ‘random’ to ‘inverted’424

whereby in the Fairy tale corpus, ‘random’ and ‘in-425

verted’ show decrease of SemI. The FAZ corpus426

shows a dichotomy: only ‘matching’ yields SemI,427

while in the remaining groups, we observe a loss428

of SemI.429

Because the four groups are not independent430

and, in addition, not normally distributed, we431

employed the non-parametric Friedman test for432

the comparison of means. The test statistic433

Figure 3: SemI calculated with Formula 3 for the Heise
corpus. The amount of SemI can be read off the y-axis.

Figure 4: SemI calculated with Formula 3 for the fairy
tale corpus. The amount of SemI can be read off the
y-axis.
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of the Friedman test has approximately a chi-434

square distribution. Table 1 displays the re-435

sults which express high significant differences436

between the groups in all corpora: the six437

possible pairwise post-hoc test ‘matching-fixed’,438

‘matching-random’, ‘matching-inverted’, ‘fixed-439

random’, ‘fixed-inverted’ and ‘random-inverted’440

yielded high significant results (p ≈ 0). The FAZ441

corpus has by far the highest chi square value,442

which indicates the strongest group differences.443

Table 1: Results of the Friedman test.

Corpus Chi-squared (χ2) df p-value

Fairy tale 329.7 3 ≈ 0
Heise 691.22 3 ≈ 0
FAZ 45036 3 ≈ 0

7 Discussion and conclusion444

Within the test-setting of our study on the empiri-445

cal application of our model we see our hypothesis446

confirmed that SemI reduces surprisal.447

Across all corpora, we observe that the match-448

ing topic vectors carry the largest amount of SemI,449

followed by the fixed, then random, and then in-450

verted vectors. This shows that the matching vec-451

tors give the most accurate SemI about its docu-452

ment. Fixed vectors being next in line can be ex-453

plained by the fact that some documents are sim-454

ilar to one another w.r.t. their topics. Hence, if a455

document is similar to the one the fixed vector is456

taken from, it will carry higher SemI. The mys-457

terious value gap observable in the FAZ corpus,458

however, cannot be explained by this and will be459

subject to future research.460

In the case of the random vectors, it is a matter461

of chance whether or not they end up describing462

their respective documents well, but the inverted463

vectors are specifically designed to mislead the LP.464

Hence, they always come last.465

It can also be observed that among the fixed,466

random, and inverted topics, the SemI values467

are sometimes even negative. That means that468

the Kullback-Leibler divergence is higher in the469

informed system than in the uniformed system,470

meaning that surprisal from the relative frequency471

of words in the training corpus does a better job472

setting the LP’s expectations than semantic sur-473

prisal, if the underlying semantics are faulty. This474

goes to show that SemI can be utilised as a mea-475

sure of model evaluation since the results show 476

that our information model TCM works. It dis- 477

closes systematic differences between the groups 478

‘matching’, ‘fixed’, ‘random’ and ‘inverted’ since 479

the changes in surprisal are, as shown, not due to 480

chance. 481

As we already pointed out however, the con- 482

nection between surprisal and semantics is not 483

straightforward. The reduction of surprisal can 484

only give an indirect indication of semantics: for 485

text comprehension, a high degree of SemI ensures 486

a low processing effort, that is, the LP has to pro- 487

cess not as much new information. From this we 488

conclude that the LP has got some prior seman- 489

tic information about the text, and that this is why 490

SemI increases the certainty in language process- 491

ing and language comprehension: although, in this 492

study, we restricted ourselves to computing the 493

SemI values of given informing (or disinforming) 494

tokens, the results indicate this method’s potential 495

for applications to knowledge extraction. Among 496

a set of tokens, the one with the highest semantic 497

information may reveal useful knowledge about 498

the underlying text. This could be used, for exam- 499

ple, for measuring the quality of a set of extracted 500

keywords: a set of keywords is of good quality if 501

it prepares the LP for the text, resulting in lower 502

processing effort. 503

Limitations 504

(i) Theoretical: our concept of semantic infor- 505

mation captures the meaning of natural lan- 506

guage only indirectly. Also, it derives infor- 507

mation from purely frequency-based contexts 508

and does not make use of knowledge of the 509

world a human language processor typically 510

has and leverages. 511

(ii) Methodological: due to memory limits, we 512

had to base our determination of SemI on rel- 513

atively small corpora which might restrict the 514

empirical validity and the analytical signifi- 515

cance of our findings. 516

(iii) Empirical: in the frame of this pilot study, 517

we were unable to empirically test our pre- 518

dictions regarding the reduction in processing 519

effort with human test subjects. 520
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