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Abstract

In the framework of distributional semantics,
we introduce a novel notion and operationali-
sation of semantic information for natural lan-
guage. The key idea is as follows: a linguis-
tic sign carries semantic information about a
document if it reduces the amount of surprisal
for a language processor. We consider two
systems, an informed one and an uninformed
one, and describe semantic information in their
terms. Processing effort is quantified via sur-
prisal where the informed system is ‘aware’ of
the linguistic sign and the uninformed one is
not. On an English fairy tale corpus and on two
German news corpora, we tested successfully
the prediction that if the linguistic sign in ques-
tion carries pre-information through semantic
surprisal, the current level of surprisal for the
language processor is reduced. The conclusion
is that the degree of semantic information re-
sults from the degree of semantic prior infor-
mation.

1 Introduction

Semantics of natural language can be captured
through computational methods, as exemplified by
Firths famous assertion: ‘You shall know a word
by the company it keeps’(Firth, 1957). This is the
guidung principle that underpins distributional se-
mantics (Harris, 1954; Turney and Pantel, 2010;
Mikolov et al., 2013), which models linguistic
meaning based on co-occurrence patterns in large
corpora. Our study is carried out in this theoret-
ical framework, using statistical models to derive
semantic effects from linguistic data.

Surprisal is a key concept in psycholinguistics,
introduced to model human sentence processing
through information-theoretic means (Hale, 2001;
Jaeger and Levy, 2007). Surprisal theory posits
that processing difficulty is proportional to the un-
expectedness of a linguistic unit such as a word
in context and to the effort required to process the
linguistic unit. At this point it is already important

to emphasise that we strictly separate the concepts
of semantic surprisal and semantic information be-
cause, as we will show, in our model semantic sur-
prisal is the prerequisite for the determination of
semantic information (we will abbreviate our con-
cept of semantic information as Seml/ in the fol-
lowing). In the corse of this paper, we employ the
Topic Context Model (TCM) (Kolbl et al., 2020,
2021; Philipp et al., 2022, 2023a,b) that extends
the distributional approach by incorporating topic
distributions, providing a framework for comput-
ing semantic surprisal.

Empirical studies confirm surprisal effects in
reading times, eye movements, and neural re-
sponses (Boston et al., 2008; Levy, 2008; Dem-
berg and Keller, 2008; Roark et al., 2009; Levy,
2011; Monsalve et al., 2012; Smith and Levy,
2013; Brouwer et al., 2021; Bentum, 2021). Our
model aligns with this research by computing se-
mantic surprisal to examine its role in language
comprehension.

Shannons information theory (Shannon, 1948)
was designed to quantify information transmission
and describes an optimal code for information
compression. It is a model of the degree of cer-
tainty (and uncertainty) within any systems, but
Shannon himself explicitly did not want to see
his model applied to the semantics of natural lan-
guage. But Shannons theory is probabilistic, and
information in this view is a context-dependent en-
tity. That is, the inherently distributional nature of
Shannon information makes it a candidate for se-
mantic modeling, despite the (initial) reservations
of its creator.

Several approaches have applied information
theory to semantics of language, including for-
mal logic (Carnap et al., 1952), epistemol-
ogy (Dretske, 1981; Floridi, 2004), and statisti-
cal physics (Kolchinsky and Wolpert, 2018). The
mentioned models are only weakly empirical and
closely related to the Correspondence Theory of



Truth. In these models, the philosophically con-
troversial postulate applies that for a proposition
to have information, the proposition must be ‘true’
in a model of the world. In contrast, our model
is strongly empirically grounded, as large corpora
serve as the basis for the computation of Seml.
Furthermore, our model is not model-theoretic and
not truth functional.

Influential philosophical perspectives on in-
formation and meaning see information repre-
sented by a ‘difference’ prominently expressed
by Batesons notion of a difference that makes
a difference (Bateson, 2000) and Chalmers’ dis-
tinction between formal and semantic informa-
tion (Chalmers, 1997). These perspectives high-
light the relationship between information, knowl-
edge, and cognitive processing, reinforcing our
computational approach to Seml:

Our model quantifies Seml as the reduction
of surprisal in an informed language processor
(LP). We compare surprisal in informed and unin-
formed systems, distinguishing between surprisal
based on word frequency and semantic surprisal
that is derived from contextual topic distributions
through TCM which we introduced above.

This framework allows us to test the hypothesis
that SemlI reduces surprisal. From this it follows
that SemlI will facilitate language comprehension.
That is to say, Seml denotes a difference in the
level of knowledge of the language processor.

Recall that surprisal is a cognitive quality, and
its reduction is a process that we assume to apply
to Bateson’s dictum from above (Bateson, 2000)".
In our study we exploit English and German cor-
pora, making a novel contribution to the computa-
tional analysis of semantic information. Accord-
ing to Shannon, maximum disorder means maxi-
mum entropy and maximum uncertainty. The sup-
ply of information to a system leads to a reduction
in uncertainty. This is the basis of our SemI-model,
which manifests itself as a reduction of surprisal.

The structure of this paper is as follows: Sec-
tion 2 outlines prior research on semantic infor-
mation and its relationship to information states.
In Section 3 we present the methodology for
measuring semantic information, introducing the
surprisal-based approach and the use of proba-
bilistic models, and in Section 4 we describe the

'As indicated above and further explained below (Sec-
tion 2). Bateson’s notion of information is not only about
reducing uncertainty, but is inseparable from how it affects
the system.(Bateson, 2000).

datasets used in the study, along with preprocess-
ing steps. Section 5 details the probability distri-
butions and the workflow for computing seman-
tic information, distinguishing between informed
and uninformed language processors. Section 6
reports the results and finally, Section 7 provides
a discussion and conclusion, interpreting the find-
ings in relation to semantic information theory and
potential applications.

2 Points of departure and relevant work

Inspirations for our study are Chalmers (1997);
Tononi (2004); Floridi (2004, 2009). The con-
cept of ‘difference’ is central to these works.
Chalmers (Chalmers, 1997) sketches a model of
consciousness in which an information space is a
structure with information states and differences
between them. For example, if there were only the
two information states 0 and 1, we could regard ‘0’
as an uninformed state and ‘1’ as an informed state,
and the difference as Seml in the sense of our mod-
els. In Integrated Information Theory (Tononi,
2004), a transition matrix describes the transition
from one state to another information state.

Floridi’s non-modeltheoretic approach handles
information differences between two distinct sys-
tems and distinguish meaningful and meaningless
information Floridi (2004, 2009). This difference
is termed strongly semantic information. Inspired
by these works are, among others, the studies
of (Feldman and Peng, 2013; Peng et al., 2018; Ru-
bino et al., 2016; Venhuizen et al., 2019) on idiom
detection, translation-classification and predictive
language comprehension, respectively. Here, too,
‘differences’ are central: these approaches and
studies have in common that differences between
information states and systems represent qualita-
tive differences between a baseline condition and
a special, surprising condition which are inter-
preted as a representation of a semantic difference.
In (Feldman and Peng, 2013; Peng et al., 2018;
Philipp et al., 2023a) for example, the baseline
condition includes sentences that can be under-
stood literally, while the surprising, deviant con-
dition comprises idiomatic sentences.

3 Measuring semantic information

Let us imagine the following situation: we have
a language processor (LP) which processes texts
word by word. Each new word creates more or
less processing effort for the LP. For the sake of



simplicity, we will assume that the processing ef-
fort of each word is constant, regardless of where
and how often a word appears in a text. This as-
sumption, however, is non-essential and can easily
be dropped. An LP with this property can be mod-
eled with a probability distribution P on the set of
all words, which we will denote by X.

In such a situation, we can model the processing
effort for a word w as the surprisal of that word
(see Formula 1).

S(w) = —log, P(w) (1)

Given a document d = (w1, wsa, ..., wy) con-
sisting of k not necessarily distinct words, we can
consider the average processing effort of d. No-
tice that this is coincides with the cross-entropy of
the inner distribution P of the LP relative to the
‘true’ distribution 7" that describes the relative fre-
quency of every given word inside the document d
(see Formula 2).
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In particular, if 7' = P, we get exactly the en-
tropy of the distribution 7'. Within the context of
our model, this coincides with the lowest possible
average processing effort an LP can experience:
the internal probability distribution P of the LP is
taylormade to fit the ‘true’ distribution 7". We say
that in this case, the LP has full information about
d, since in practice, it is impossible to just guess T'
without knowing it.

Recall that the Kullback-Leibler-Divergence
(KL) of a pair of distributions 7" and P is given as
the difference of the cross-entropy H (7T, P) and
the entropy H(7,T). As such, it measures the
‘coding inefficiency’ of P on a T-distributed set.
Within the context of our model, K L(T, P) mea-
sures how much surplus in processing effort the
LP has to exert in order to process d, relative to
the optimal value. In particular, if the LP has full
information, we get KL(T,T) = 0.

3.1 A flexible LP

Let us now assume that our LP has more than one
setting: depending on a piece of information about

the text, the LP is capable of anticipating the words
it is going to encounter. In other words, it stores
more than one probability distribution. Suppose
we have n + 1 different distributions, denoted by
U Ii,1s,...,I,, where U is the default distribu-
tion (U stands for ‘uninformed’) and each of the
I; corresponds to a specific fopic 7; (I stands for

‘informed”).

The distribution U is generic in the sense that it
does not make any assumptions about the composi-
tion of d. In practice, it could be obtained by count-
ing the words in a large and diverse corpus, like
the British National Corpus. On the other hand,
the distribution I; makes an assumption about d,
namely that its content belongs to the topic 7; (for
the sake of example, let 7; indicate the topic of
biology). It assigns higher probabilities to words
that are associated to the topic 7; (in our example,
words like ‘animal’, ‘plant’, ‘metamorphosis’, etc)
and hence cause the LP to experience a lower av-
erage processing effort if d contains more of these
words. In practice, I; could be obtained by count-
ing the words in a specialised corpus that contains
exclusively texts belonging to topic 7.

In this setup, we call the 7; carriers of seman-
tic information about d. Note that in general, the
7; need not be topics. Their precise interpretations
depend on the LP and the way it adjusts its pro-
cessing strategy.

Our aim is to quantify the semantic information
content that each 7; carries about d. For that mat-
ter, we propose Formula 3.

KL(T,I;
SemlI(1;) = —log, KLETU;
=logy KL(T,U) — logy KL(T, I;)
3)
In words, Formula 3 measures the relative re-

duction of the surplus in processing effort obtained
by supplying the LP with the piece of semantic in-
formation 7; compared to the surplus in processing
effort when no additional piece of information is
given. Under the assumption that 7; does reduce
processing effort at all, the fraction lies between
0 and 1, which we project to the set of all non-
negative reals by taking the negative logarithm.

Note that it is possible to make changes to For-
mula 3. For example, one could omit the logarithm
like in Formula 4 or switch out the KL-divergence
for the cross-entropy like in Formula 5, or do both
(which yields Formula 4 again).



SemlI'(t;) = KL(T,U) — KL(T, I;) (4
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Either modification yields different behaviour.
For example, the logarithm in Formula 4 looks
only at the absolute improvement of the surplus
in processing effort, while Formula 3 looks at the
relative improvement. At the same time both For-
mulae 3 and 4 focus on the surplus in processing
effort alone, while Formula 5 accounts for process-
ing effort in its entirety.

However, regardless of the differences, it is easy
to see that all three behave essentially the same:

1. if I; approximates 7' much better than U does
the values are high,

2. if I; approximates 1" slightly better than U
does, the values are low,

3. if I; approximates 7" worse than U does, the
values are negative.

In our experiments, we choose Formula 3 because
it highlights the relative improvement of the sur-
plus. In fact, one unit of semantic information con-
tent computed this way corresponds to a reduction
of the surplus processing effort by the factor 2. See
Figure 1 for a proof of concept.

3.2 Misinformation and disinformation

As mentioned before, it can happen that I; ap-
proximates 7" worse than U does. In these cases,
SemlI(1;) < 0and we call 7; a carrier of semantic
misinformation. A semantic carrier of misinforma-
tion gives an LP a false sense of the type of text it
is going to process, thereby increasing its average
processing effort.

In research on the detection of fake news, the
terms ‘misinformation’ and ‘disinformation’ both
describe false information, but the latter carries
the connotation of deliberate deception. Since our
model does not capture the intent with which a car-
rier of semantic misinformation was given to the
LP, we use the neutral term.

4 Data

To test our prediction, we used three corpora:

(i) an English fairytale corpus from INESC-
ID Human Language Technology Lab?(Lobo
and De Matos, 2010) with 111 stories and a
total of 83,845 unique words. The average
number of words per fairytale is 270. Prepro-
cessing includes removing of all punctuation
and converting them to lowercase, the words
were already lemmatised. We split the texts
into 300 training texts and 110 test texts.

(ii) the Heise tech news (Philipp et al., 2022) cor-
pus in German language consisting of 5,322
articles and a total of 449,609 unique words
with an average of 280 words per document.
Preprocessing included conversion to lower-
case, removing all punctuation, and lemma-
tising. It was done using spaCy.

(iii) the Frankfurter Allgemeine Zeitung (FAZ)
newspaper corpus in German language con-
sisting of 20,924 articles and a total of
605,681 unique words with an average of
4703 words per document. Preprocessing was
identitcal to that of the heise corpus.

5 Probability distributions and Workflow

5.1 The distributions

For every text, we need a total of three distribu-
tions: an uninformed one, an informed one, and
the actual one. The uninformed distribution U has
to be independent of the text, the informed one [
has to depend on an informative token extracted
from the text, and the actual one T is the real dis-
tribution of words in the text.

For the uninformed distribution, we choose for
the probability function the relative frequency of
every word in the training corpus. Before normal-
ising however, we add 10~ to every word, in-
cluding those that do not make an appearance in
the training corpus, so as to prevent a division by
0 when the KL-divergence is computed. Hence,
the distribution is given by Formula 6.

https://www.hlt.inesc—id.pt/w/Fairy_
tale_corpus

3While it is suggestive that the fact that all three word
averages per document are powers of ten, we rounded only to
the nearest integer which happens to be a power of ten every
time.
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fu(wy) =0.20 fr(wy) =0.2
fu(wz) =0.10 Jr(wz) =02
fu(ws) =030 fr(ws) =02
fu(ws) =0.05  fr(ws) =0.1
fu(ws) =020  fr(ws)=0.1
fu(we) = 0.15 Jr(we) = 0.0

fr(wi) =0.27 fr(wy) =0.2
fr(wz) =0.23 Jr(wz2) =02
fr(ws) =0.21 fr(ws) =0.2
fr(wy) = 0.12 fr(ws) =0.1
fr(ws) = 0.11 Jr(ws) = 0.1
f1(we) = 0.06 fr(we) = 0.0

Figure 1: A document consisting of the words w, through wg whose distribution is given by fr is processed first
by an uninformed LP which estimates a distribution f;. Then the same document is processed by an LP that holds
a piece of information about it. It estimates another distribution f; which much more closely resembles fr.

N + 10717

Py(w) = (6)

Zwetraining and test corpus(N+10—17)

Where N is the number of occurrences of w
in the training corpus. In this study, the Topic
Context Model (TCM) (Kolbl et al., 2020, 2021;
Philipp et al., 2022, 2023a,b)* utilises the topic
detection model Latent Dirichlet Allocation (Blei
et al., 2003) (LDA). We initialise LDA with n =
100 topics and train it on the training corpus. This
gives us for each topic a probability distribution
P(w;lt;) that indicates the probability a word is
associated to a specific topic. We can define the
topic space as the simplex {(z1,z2,...,2,) €
[0,1]"] 3> @, = 1}. Then for each document d,
its fopic vector vg4 1s an element of the topic space
whose coordinates are given by the probabilities
P(t;|d) that any given word in d is associated to
topic ¢;. Now the informed distribution for a word
w given the topic vector vy of a document is given
by Formula 7.

Pr(wlvg) = > P(w|t;)P(ti|d) (7)
=1

5.2 The informed distributions

To minimise the risk that our results are based on
chance, we measured the informed distribution us-
ing four different topic vectors for each document.

*nttps://github.com/jnphilipp/tcm

The first one is the matching vector, i.e., the vec-
tor TCM assigns to the document. The other three
were the fixed, random, and inverted topic vec-
tors which were chosen to deliberately ‘mislead’
the hypothetical LP. The fixed vector is the match-
ing vector of one of the documents appearing in
a corpus that is used indiscriminately for all doc-
uments. This vector was included because unlike
the other two, it is a vector whose existence (and
hence, plausibility) is established. The random
vector is a randomly generated probability distri-
bution over the topics. A different one is generated
for each document. The inverted vector takes the
matching vector of a document and reassigns the
probabilities so that the n-th most likely topic be-
comes the n-th most unlikely topic. The prediction
was that Seml calculated from the matching vector
will be higher than the other three values since by
assumption, the matching vector is the only one
out of the four that prepares the LP with correct
information about the topics.

5.3 Workflow

We compute P once at the beginning and then we
compute for every document d in the test set four
probability functions: Pr, P( 9 (”) and P(m)
Here, Pr is the probability functlon of T. The
other three are three different informed distribu-
tions, each computed with a different topic vector:
P[(Z) uses vy, i.e., the correct topic vector; PI(“)
uses g, i.€., the topic vector of the first document

in the test set; PI(M) uses a randomly generated el-
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Figure 2: Seml calculated with Formula 3 for the FAZ
corpus. The amount of Seml can be read off the y-axis.

ement of the topic space; PI(iU) uses the inverted

probabilities in the topic vector in PI(Z).

Then we calculate K L(T,U) and the four dif-
ferent versions of K'L(T, I'). From these we calcu-
late for each K L(T, I') the pair of Seml measures
given in Formulae 3 and 4.

6 Results

First, we wanted to know whether there are signifi-
cant mean differences in Seml between the groups
‘matching’, ‘fixed’, ‘random’ and ‘inverted’ (see
above) in the three data sets. The question cen-
tres on whether the groups are taken from a com-
mon set or not. A brief explanation: the values
express the amount of Seml of a group. In our
model, positive values of Seml represent a reduc-
tion in surprisal, while negative values represent
an increase. Figures 2, 3 and 4 illustrate that the
meaningful topic contexts of the group ‘matching’
cause a reduction of surprisal. In the Fairy tale
and Heise corpora, the amount of Seml gradually
decreases from ‘fixed’ to ‘random’ to ‘inverted’
whereby in the Fairy tale corpus, ‘random’ and ‘in-
verted’ show decrease of Seml. The FAZ corpus
shows a dichotomy: only ‘matching’ yields Seml,
while in the remaining groups, we observe a loss
of Seml.

Because the four groups are not independent
and, in addition, not normally distributed, we
employed the non-parametric Friedman test for
the comparison of means. The test statistic

o
104
0.59
o
0.04 o
—0.5
-1.04 o
o

-1.5

-2.0-

T T T T
matching fixed random inverted

Figure 3: Seml calculated with Formula 3 for the Heise
corpus. The amount of Seml can be read off the y-axis.

T
— T

T T T T
matching fixed random inverted

Figure 4: Seml calculated with Formula 3 for the fairy
tale corpus. The amount of Seml can be read off the
y-axis.



of the Friedman test has approximately a chi-
square distribution. Table 1 displays the re-
sults which express high significant differences
between the groups in all corpora: the six
possible pairwise post-hoc test ‘matching-fixed’,
‘matching-random’, ‘matching-inverted’, ‘fixed-
random’, ‘fixed-inverted’ and ‘random-inverted’
yielded high significant results (p ~ 0). The FAZ
corpus has by far the highest chi square value,
which indicates the strongest group differences.

Table 1: Results of the Friedman test.

Corpus Chi-squared (x?) df p-value
Fairy tale 329.7 3 ~0
Heise 691.22 3 ~0
FAZ 45036 3 ~0

7 Discussion and conclusion

Within the test-setting of our study on the empiri-
cal application of our model we see our hypothesis
confirmed that Seml reduces surprisal.

Across all corpora, we observe that the match-
ing topic vectors carry the largest amount of Seml,
followed by the fixed, then random, and then in-
verted vectors. This shows that the matching vec-
tors give the most accurate Seml about its docu-
ment. Fixed vectors being next in line can be ex-
plained by the fact that some documents are sim-
ilar to one another w.r.t. their topics. Hence, if a
document is similar to the one the fixed vector is
taken from, it will carry higher Seml. The mys-
terious value gap observable in the FAZ corpus,
however, cannot be explained by this and will be
subject to future research.

In the case of the random vectors, it iS a matter
of chance whether or not they end up describing
their respective documents well, but the inverted
vectors are specifically designed to mislead the LP.
Hence, they always come last.

It can also be observed that among the fixed,
random, and inverted topics, the Seml values
are sometimes even negative. That means that
the Kullback-Leibler divergence is higher in the
informed system than in the uniformed system,
meaning that surprisal from the relative frequency
of words in the training corpus does a better job
setting the LP’s expectations than semantic sur-
prisal, if the underlying semantics are faulty. This
goes to show that Seml can be utilised as a mea-

sure of model evaluation since the results show
that our information model TCM works. It dis-
closes systematic differences between the groups
‘matching’, ‘fixed’, ‘random’ and ‘inverted’ since
the changes in surprisal are, as shown, not due to
chance.

As we already pointed out however, the con-
nection between surprisal and semantics is not
straightforward. The reduction of surprisal can
only give an indirect indication of semantics: for
text comprehension, a high degree of Seml ensures
a low processing effort, that is, the LP has to pro-
cess not as much new information. From this we
conclude that the LP has got some prior seman-
tic information about the text, and that this is why
Seml increases the certainty in language process-
ing and language comprehension: although, in this
study, we restricted ourselves to computing the
Seml values of given informing (or disinforming)
tokens, the results indicate this method’s potential
for applications to knowledge extraction. Among
a set of tokens, the one with the highest semantic
information may reveal useful knowledge about
the underlying text. This could be used, for exam-
ple, for measuring the quality of a set of extracted
keywords: a set of keywords is of good quality if
it prepares the LP for the text, resulting in lower
processing effort.

Limitations

(1) Theoretical: our concept of semantic infor-
mation captures the meaning of natural lan-
guage only indirectly. Also, it derives infor-
mation from purely frequency-based contexts
and does not make use of knowledge of the
world a human language processor typically
has and leverages.

(i) Methodological: due to memory limits, we
had to base our determination of SemlI on rel-
atively small corpora which might restrict the
empirical validity and the analytical signifi-
cance of our findings.

(iii)) Empirical: in the frame of this pilot study,
we were unable to empirically test our pre-
dictions regarding the reduction in processing
effort with human test subjects.
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