

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SAFEMOE: SAFE FINE-TUNING FOR MoE LLMs BY ALIGNING HARMFUL INPUT ROUTING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

Recent large language models (LLMs) have increasingly adopted the Mixture-of-Experts (MoE) architecture for efficiency. MoE-based LLMs heavily depend on a superficial safety mechanism in which harmful inputs are routed safety-critical experts. However, our analysis reveals that routing decisions for harmful inputs drift significantly after fine-tuning, exposing a critical vulnerability to harmful fine-tuning (HFT) attacks. Existing defenses, primarily designed for monolithic LLMs, are less effective for MoE LLMs as they fail to prevent drift in harmful input routing. To address this limitation, we propose SAFEMOE, a safe fine-tuning method tailored to MoE LLMs. SAFEMOE directly mitigates routing drift by penalizing the gap between the routing weights of a fine-tuned model and those of the initial safety-aligned model, thereby preserving the safety-aligned routing of harmful inputs to safety-critical experts. Experiments on open-source MoE LLMs ranging from 7B to 141B parameters demonstrate that SAFEMOE effectively mitigates HFT attacks, reducing the harmfulness score of OLMoE from 62.0 to 5.0, for example, while maintaining task utility within 1% degradation and incurring only 2% overhead. It significantly outperforms state-of-the-art defense methods for safeguarding LLM fine-tuning and remains effective in recent large-scale MoE LLMs such as gpt-oss and Llama 4. Our implementation is available at <https://anonymous.4open.science/r/SafeMoE>.

1 INTRODUCTION

Mixture-of-Experts (MoE) (Shazeer et al., 2017) is a sparse model architecture that improves efficiency by dynamically routing inputs to a subset of expert layers, which have gained adoption for large language models (LLMs). Recent MoE-based LLMs, including gpt-oss (OpenAI, 2025), Llama 4 (Meta AI, 2025a), Qwen3 MoE (Qwen Team, 2025), and DeepSeek-R1 (Guo et al., 2025), have achieved surpassing performance on a wide range of challenging tasks, outperforming their monolithic counterparts. However, recent studies (Lai et al., 2025; Fayyaz et al., 2025) show that the safety of MoE LLMs heavily relies on certain *safety-critical* experts and intentionally manipulating routing decisions to disable these experts leads to significant increases in harmfulness. **This superficial safety mechanism leaves MoE LLMs particularly susceptible to harmful fine-tuning (HFT) attacks** (Qi et al., 2024; Yang et al., 2024; Zhan et al., 2024; Huang et al., 2024a; Wallace et al., 2025). These attacks are designed to compromise the safety of a target LLM by injecting only a limited number of harmful samples into the training dataset, rendering a practical yet severe threat to commercial LLM providers given the growing prevalence of fine-tuning API services (OpenAI, 2024b; Google, 2025).

Our systematic analysis of MoE LLMs uncovers a novel architectural vulnerability in their routing mechanism, which determines which expert layers should be activated for processing inputs. We find that routing decisions for harmful inputs drift substantially from those of the initial safety-aligned model under both harmful and benign fine-tuning, a phenomenon we term *safety routing drift*. This drift impedes the activation of safety-critical experts and thereby undermines the model’s safety. Given the reliance of MoE LLM safety on routing aligned toward these safety-critical experts, preserving the initial routing decisions of the safety-aligned models is important to safeguarding MoE LLMs against HFT attacks. However, existing defenses (Huang et al., 2025b; Li et al., 2025a; Lu et al., 2025) are primarily designed for the monolithic transformer architecture and overlook the superficial safety mechanisms of MoE LLMs, exhibiting limitations in mitigating fine-tuning risks.

Figure 1: Effectiveness of defenses against HFT attacks.

2 PRELIMINARIES

Mixture-of-experts (MoE). Figure 2 shows the standard MoE architecture for LLMs (Shazeer et al., 2017; Lepikhin et al., 2021; Du et al., 2022; Komatsuzaki et al., 2023; Fedus et al., 2022). These MoE LLMs typically adhere to the transformer architecture, but the feed-forward network (FFN) layer in each transformer layer is replaced by an MoE layer. The MoE layer consists of multiple independent FFNs, referred to as *experts*, along with a gating network. For each input token, the gating network dynamically assigns a *routing weight* to every expert in the MoE layer based on the token’s hidden state from the self-attention layer. The top- k experts are then selected for forward pass computation, and their outputs are combined according to the assigned weights.

108 The MoE layer output is formalized as:

109

$$h_{\text{MoE}} = \sum_{i \in N} \text{TopK}(\sigma(r(x))) \text{FFN}_i(x), \quad (1)$$

110

111 where N is the number of experts, σ is Softmax, $r(h) \in \mathbb{R}^N$ is routing weights on an input token x , and FFN_i is the i -th expert layer. By leveraging this conditional computation approach, the MoE architecture provides substantial efficiency gains in both training and inference, which has driven its adoption in recent advanced LLMs.

112

113 **Superficial safety mechanism in MoE.** Previous studies have examined safety vulnerabilities in LLMs by analyzing specific model parameters and forwarding paths (Wei et al., 2024; Lee et al., 2024; Peng et al., 2024; Tamirisa et al., 2025). However, the safety implications of the fundamentally different mechanisms introduced by the MoE architecture remain insufficiently understood. Routing decisions in MoE LLMs play a crucial role in composing the outputs and have a direct impact on their safety. Recent studies (Lai et al., 2025; Fayyaz et al., 2025) show that harmful instructions to safety-aligned MoE LLMs, such as “*How to make a bomb?*”, consistently trigger specific experts, referred to *safety-critical experts*. Moreover, masking these experts causes significant degradation in safety even when the model parameters remain unchanged. This indicates that the safety of MoE LLMs heavily depends on routing decisions that determine the activation of safety-critical experts.

114

115 **Harmful fine-tuning (HFT) attacks.** Safety alignment has become an essential step in ensuring that LLM outputs are harmless and aligned with human values (Ouyang et al., 2022; Rafailov et al., 2023). However, researchers show that this alignment can be undone through user fine-tuning (Qi et al., 2024; Yang et al., 2024; Zhan et al., 2024). Specifically, they find that HFT attacks that inject a small portion of harmful samples into the training dataset, or even benign fine-tuning alone, can severely impair LLM safety. Considering the increasing availability of fine-tuning API services (OpenAI, 2024b; Google, 2025), HFT attacks have become a practical threat to LLM providers.

116

117 To mitigate this threat, several methods have been proposed to enhance the safety of LLM fine-tuning—for example, augmenting datasets with safe samples (Bianchi et al., 2024; Zong et al., 2024), constraining training to prevent harmful-direction drift (Huang et al., 2024b; Wu et al., 2025), and pruning harmful parameters from the fine-tuned models (Huang et al., 2025a; Lu et al., 2025).

118

119 However, existing defenses focus solely on monolithic LLMs and overlook the distinct architecture of MoE LLMs based on dynamic input routing and their superficial safety mechanisms. To the best of our knowledge, no prior work has investigated safe fine-tuning strategies tailored to MoE LLMs.

120

121 3 SAFETY VULNERABILITY IN MOE LLMs

122

123 Given that the safety of MoE LLMs depends on safety-critical experts (Lai et al., 2025; Fayyaz et al., 2025), we posit that *safety degradation in fine-tuned MoE LLMs arises from substantial deviations in routing decisions for harmful instructions compared to those in the initial safety-aligned models*.

124

125 To verify this, we first define *safety routing drift* for harmful inputs. This metric quantifies a difference between the routing weights of a safety-aligned MoE LLM and its fine-tuned counterpart:

126

127 **Definition 3.1** (Safety routing drift). *Let w_{align} be a safety-aligned MoE LLM. Given a fine-tuned model w_{ft} , the safety routing drift for a harmful instruction input x is defined as:*

128

129

$$d(w_{\text{ft}}, x) = D_{\text{KL}}(\sigma(r(x|w_{\text{align}})) || \sigma(r(x|w_{\text{ft}}))), \quad (2)$$

130

131 where $D_{\text{KL}}(P||Q)$ denotes KL divergence between a reference distribution P and an approximating probability distribution Q , σ is Softmax, and $r(\cdot|w) \in \mathbb{R}^N$ denotes the routing weight vector over N experts of model w for an input.

132

133 **Safety routing drift during fine-tuning.** We then analyze the training dynamics of three MoE LLMs, including OLMoE (Muennighoff et al., 2025), Qwen1.5 MoE (Qwen, 2024), and DeepSeek V2 (Liu et al., 2024), and measure the correlation between the safety routing drift and harmfulness of their fine-tuned models. Specifically, we consider two fine-tuning scenarios: i) benign fine-tuning

134

Figure 2: MoE LLM architecture.

Figure 3: Safety routing drift and harmfulness of MoE LLMs over training steps. Results of t-tests for Pearson correlation coefficients are reported (r : correlation coefficient, p : p -value).

on 5.5k samples from the Alpaca dataset (Taori et al., 2023), and ii) HFT on a combined dataset of 5k task-specific samples from SAMSum (Gliwa et al., 2019) and 500 harmful samples from BeaverTails (Ji et al., 2023). For each fine-tuned LLM, we compute safety routing drift on the last tokens of harmful instructions from JailbreakBench (Chao et al., 2024). Harmfulness scores are computed as the proportion of *unsafe* responses, evaluated using Llama-Guard-4-12B (Meta AI, 2025b).

Figure 3 presents the results of our analysis. In both fine-tuning scenarios, we observe significant safety routing drift from the initial safety-aligned model, with the drift metrics increasing as training progresses. Notably, routing decisions for harmful instructions drift even under benign fine-tuning, causing nontrivial increases in harmfulness. This demonstrates that the superficial safety mechanism of MoE LLMs is highly fragile and easily disrupted by fine-tuning. Moreover, the magnitude of safety routing drift is strongly correlated with harmfulness scores across the models, with high statistical significance ($p \ll 0.05$). Harmful fine-tuning (HFT) attacks even further amplify this drift, producing substantially larger increases in harmfulness than benign fine-tuning.

Safety recovery through initial routing override. To design an effective defense, we evaluate fine-tuned MoE LLMs by overriding their routing decisions, specifically by restoring the routing weights used for harmful inputs to those of the initial safety-aligned model during inference. Figure 4 presents the safety evaluation results for the OLMoE model fine-tuned on the SAMSum dataset. While fine-tuned models exhibit substantial harmfulness, overriding the initial routing decisions significantly reduces harmful outputs. This observation further highlights the critical role of the routing mechanism in MoE safety and demonstrates that preserving safety-aligned routing behaviors is a promising strategy for mitigating safety risks incurred during fine-tuning.

Motivation for an MoE-specific defense. Our analysis shows that the safety routing drift is highly correlated with the safety degradation in fine-tuned MoE LLMs. This suggests the need for an approach that preserves the initial routing decisions of the safety-aligned models on harmful inputs to mitigate fine-tuning risks in MoE LLMs. However, prior de-

Figure 4: Harmfulness of OLMoE at each fine-tuning step when overriding the initial safety-aligned routing decisions.

Figure 5: Overview of SAFEMOE. It mitigates the safety routing drift by directly constraining this drift during fine-tuning, thereby effectively safeguarding MoE LLMs against HFT attacks.

fenses, designed for monolithic LLMs, are limited in preventing the safety routing drift and reducing the harmfulness of fine-tuned MoE LLMs, as shown in our preliminary experiments (see Figure 1). These findings motivate a new defense that reflects the unique architecture of MoE LLMs and their safety mechanism.

4 SAFE MOE FINE-TUNING METHOD

Safety routing drift regularization. We propose a novel fine-tuning approach designed to improve the safety of fine-tuned MoE LLMs, as illustrated in Figure 5. Specifically, during fine-tuning, we propose leveraging a regularization objective that constrains the safety routing drift (Definition 3.1). This objective penalizes deviations in the routing weight distributions of an MoE LLM \mathbf{w} under fine-tuning from those of the initial safety-aligned model \mathbf{w}_{align} on harmful instructions:

$$\mathcal{L}_{reg}(\mathbf{w}) = \mathbb{E}_{x \in \mathcal{D}_h} \mathbb{E}_{l \in L} D_{KL} \left(\sigma(\mathbf{r}^{(l)}(x|\mathbf{w}_{align})/\tau) \parallel \sigma(\mathbf{r}^{(l)}(x|\mathbf{w})/\tau) \right), \quad (3)$$

where \mathcal{D}_h is the harmful instruction dataset, and L is the set of transformer layers. We apply regularization to the routing weights assigned to the last token of each harmful instruction. The temperature τ controls the strength of regularization. A smaller τ (e.g., < 1.0) further enhances safety by sharpening the routing weight distribution, which enables the regularization to focus more on top-ranked safety-critical experts and tightly constrains the routing weights of those experts.

Bi-level greedy optimization. We integrate the regularization into supervised fine-tuning on a task-specific dataset \mathcal{D}_{ft} to solve:

$$\arg \min_{\mathbf{w}} \mathcal{L}_{sft}(\mathbf{w}) + \mathcal{L}_{reg}(\mathbf{w}). \quad (4)$$

Simultaneously optimizing both losses at every training step, however, incurs substantial computational overhead. To address this, we reframe the joint optimization into a bi-level greedy approach that alternates between the supervised fine-tuning and regularization steps.

The greedy optimization process is described in Algorithm 1. We first precompute the routing weights of the initial safety-aligned MoE LLM over all harmful instructions in \mathcal{D}_h to avoid redundant forward passes in the regularization steps (line 2). During training with the fine-tuning loss \mathcal{L}_{sft} , we insert safety-preserving steps using the regularization loss \mathcal{L}_{reg} every T_{reg} steps (line 6).

5 EXPERIMENTS

5.1 SETUP

MoE LLMs. We conduct experiments on eight widely adopted MoE LLMs: OLMoE-1B-7B-0125-Instruct (Muennighoff et al., 2025), Qwen1.5-MoE-A2.7B-Chat (Qwen, 2024), and DeepSeek-V2-Lite-Chat (Liu et al., 2024), gpt-oss-20b (OpenAI, 2025), Qwen3-30B-A3B (Qwen Team, 2025), Phi-3.5-MoE-Instruct (Microsoft, 2024), and two models with on-the-fly 4-bit quantization, Llama-4-Scout-17B-16E-Instruct (Meta AI, 2025a) and Mixtral-8x22B-Instruct-v0.1 (Mistral AI, 2025). All models used are safety-aligned versions. We describe model details in the Appendix A.2.

270
271 Table 1: Safety evaluation of MoE LLMs. We report fine-tuning accuracy (FA↑) and harmfulness
272 score (HS↓) for the SAMSum and SQL tasks. The number of parameters is denoted as (active/total).

Method	OLMoE (1.3B/6.9B)				Qwen1.5 MoE (2.7B/14.3B)				DeepSeek V2 (2.4B/15.7B)			
	SAMSum		SQL		SAMSum		SQL		SAMSum		SQL	
	FA	HS	FA	HS	FA	HS	FA	HS	FA	HS	FA	HS
Aligned	31.8	0	43.0	0	36.6	3.0	38.4	3.0	34.0	0	29.6	0
Fine-tuning	49.3	62.0	58.5	64.0	50.4	49.0	70.2	37.0	52.0	70.0	70.1	72.0
SafeInstr	49.5	46.0	58.9	41.0	50.6	11.0	69.3	8.0	52.1	25.0	70.2	21.0
Lisa	48.4	21.0	57.2	40.0	50.1	10.0	68.5	13.0	50.7	24.0	68.9	22.0
SaLoRA	<u>48.9</u>	24.0	54.5	40.0	48.9	28.0	54.9	33.0	50.1	66.0	62.0	74.0
Antidote	48.7	40.0	57.5	44.0	49.3	18.0	68.6	29.0	50.7	70.0	65.3	62.0
SafeDelta	48.6	<u>13.0</u>	57.4	<u>33.0</u>	50.2	22.0	69.2	30.0	51.0	47.0	69.0	72.0
SAFEMOE	48.9	5.0	59.0	17.0	50.6	0	69.5	1.0	<u>51.0</u>	1.0	<u>69.1</u>	4.0

283
284
285
286
287 **Fine-tuning datasets.** We consider two tasks: SAMSum (Gliwa et al., 2019) for dialogue summarization
288 and SQL (b-mc2, 2023) for SQL query generation, both widely adopted for implementing
289 HFT attack scenarios (Yang et al., 2025a; Wang et al., 2024). For effective attacks, we conduct su-
290 pervised fine-tuning with 5k task samples combined with 500 harmful samples from BeaverTails (Ji
291 et al., 2023). Fine-tuning is performed with LoRA (Hu et al., 2022), as detailed in Appendix A.2.

292 **Metrics.** We reports two metrics: *Fine-tuning accuracy (FA)* and *Harmfulness score (HS)*. FA mea-
293 sures task utility—Rouge-1 score for SAMSum and exact match accuracy for SQL. To assess rea-
294 soning performance, we measure accuracy on 570 samples (10 from each categories) from MMLU-
295 Redux-2.0 (Gema et al., 2025). HS refers to the proportion of responses to JailbreakBench (Chao
296 et al., 2024) instructions that are classified as *unsafe* by Llama-Guard-4-12B (Meta AI, 2025b).

297 **Baselines.** We evaluate five state-of-the-art defenses against HFT attacks. Among fine-tuning-stage
298 methods, SafeInstr (Bianchi et al., 2024) augments fine-tuning datasets with additional safe samples,
299 Lisa (Huang et al., 2024b) introduces a proximal term to prevent excessive drift in model parameters
300 during fine-tuning, and SaLoRA (Li et al., 2025a) initializes LoRA layers with weights optimized
301 on safe samples. We also consider two post-fine-tuning weight modification approaches. Antidote
302 (Huang et al., 2025a) prunes harmful parameters by analyzing their contribution to harmful
303 instructions. SafeDelta (Lu et al., 2025) selects delta parameters that maximize utility while mini-
304 mizing safety degradation.

305 **SAFEMOE implementation.** We use 100 harmful instruction samples from SafeInstr (Bianchi
306 et al., 2024) as the dataset \mathcal{D}_h . We select τ as the smallest value in the range 0.1-1.3 that allows a
307 1% degradation in fine-tuning accuracy. By default, T_{reg} is set to the number of steps per epoch.

309 5.2 SAFETY EVALUATION

311 Table 1 reports the defense effectiveness of SAFEMOE on three widely used MoE LLMs. The initial
312 safety-aligned models prior to fine-tuning (first row) are highly safe, exhibiting nearly zero harmful-
313 ness scores. Vanilla fine-tuning substantially undermines safety while improving task performance
314 (second row). SAFEMOE attains the lowest harmfulness score while incurring only minimal loss in
315 fine-tuning accuracy. For example, it reduces the harmfulness score of DeepSeek V2 fine-tuned on
316 the SQL task from 72.0 to 4.0. SAFEMOE’s superior effectiveness is attributed to its MoE-specific
317 design, which explicitly encourages the routing of harmful instructions to safety-critical experts.

318 In contrast, baseline methods fail to effectively mitigate safety degradation. SafeInstr, which adopts
319 an architecture-agnostic strategy based on safety data augmentation, achieves moderate defense per-
320 formance but still leaves substantial harmfulness. Lisa also falls short in defending MoE LLMs
321 against HFT attacks, highlighting the effectiveness of explicitly constraining drift in routing weights
322 rather than in model parameters. SaLoRA and post-fine-tuning methods (Antidote and SafeDelta)
323 assume all parameters are always activated, as in monolithic LLMs. In MoE LLMs, however, the
324 dynamically changing active parameters hinder full optimization of these methods. Furthermore,

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 2: Extended safety evaluation on five large-scale MoE LLMs. We report reasoning performance on MMLU-Redux-2.0 (MMLU \uparrow) and harmfulness score (HS \downarrow).

Method	gpt-oss (3.6B/20.9B)		Qwen3 MoE (3.3B/30.5B)		Phi 3.5 MoE (6.6B/41.9B)		Llama 4 (17B/109B)		Mixtral (39B/141B)	
	MMLU	HS	MMLU	HS	MMLU	HS	MMLU	HS	MMLU	HS
Aligned	85.4	2.0	89.6	1.0	83.3	2.0	90.4	7.0	78.9	7.0
Fine-tuning	77.5	84.0	89.1	67.0	80.7	83.0	89.5	79.0	66.5	78.0
SAFEMOE	79.6	7.0	88.8	4.0	81.4	2.0	89.8	3.0	78.4	8.0

Figure 6: Training dynamics of vanilla fine-tuning vs. SAFEMOE (OLMoE on SAMSum).

they cause significant degradation in fine-tuning accuracy with only marginal harmfulness reduction, even though we extensively tune their hyperparameters (see Appendix A.3).

These results highlight the importance of architecture-aware defenses that directly address vulnerabilities in the safety mechanism. In Qwen1.5 MoE, we observe slightly improved safety compared to the safety-aligned models. This effect appears to result from the generalization ability of SAFEMOE, which promotes stronger activation of top-ranked safety-critical experts (see Appendix A.5).

Results on larger MoE LLMs. We further evaluate SAFEMOE on recent larger MoE LLMs under a strong HFT attack scenario using 500 purely harmful samples (Bianchi et al., 2024; Lu et al., 2025; Hsu et al., 2024), as shown in Table 2. These models employ diverse MoE configurations (e.g., activating 1 expert among 16 in Llama 4 and activating 8 among 128 in Qwen3 MoE) and distinct reasoning strategies (e.g., multi-level reasoning in gpt-oss and the thinking mode in Qwen3 MoE). Despite their differences, SAFEMOE generally achieves strong defense performance while effectively preserving the models’ reasoning capability. For gpt-oss, Phi 3.5 MoE, and Mixtral, SAFEMOE even alleviates the degradation of reasoning performance observed in vanilla fine-tuning by preventing excessive overfitting to the HFT attack data. Overall, these results demonstrate the practicality of SAFEMOE for real-world fine-tuning services with high-capable MoE LLMs.

5.3 TRAINING DYNAMICS

To demonstrate that the design of SAFEMOE is valid in practice, we analyze the variation of the safety routing drift, harmfulness score, and fine-tuning loss throughout the fine-tuning steps. Figure 6 presents the results for OLMoE fine-tuned on the SAMSum task.

As shown in Figure 6a and 6b, SAFEMOE moderately reduces the safety routing drift at the early stage and effectively mitigates it after the first regularization period (after 150 steps). The harmfulness score decreases with drift mitigation, achieving a significant reduction compared to vanilla fine-tuning at subsequent checkpoints. Our experiment has shown that existing defenses have limited effectiveness in reducing the safety routing drift and harmfulness (see Figure 11). SAFEMOE methodologically addresses this limitation and provides an effective defense for MoE LLMs.

In Figure 6c, we also present the fine-tuning loss to further evaluate its impact on the fine-tuning task. The loss converges stably, closely matching the trajectory of vanilla fine-tuning with only

378 Table 3: Execution overheads (OLMoE).
379
380
381
382
383
384
385
386
387

Method	Extra time	
	Seconds	Percentage
SafeInstr	15.98	1.98%
SaLoRA	747.56	92.41%
Antidote	5.67	0.70%
SafeDelta	52.18	6.45%
SAFEMOE	17.26	2.13%

397 Figure 7: Safety routing drift across transformer
398 layers (OLMoE on SAMSum).
399
400Table 4: Ablation study on restricting gradients
from the expert layers. We report fine-tuning ac-
curacy (FA↑) and harmfulness score (HS↓).
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Method	OLMoE on SAMSum	
	FA	HS
Fine-tuning	49.3	62.0
SAFEMOE	48.9	5.0
SAFEMOE (ablation)	48.2	18.0

401 Figure 8: Effectiveness of SAFEMOE applied on
402 specific layers (OLMoE on SAMSum).
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

negligible differences. This underscores the compatibility of SAFEMOE in standard fine-tuning, enabling safe and practical fine-tuning services.

5.4 EFFICIENCY ANALYSIS

To assess the efficiency of SAFEMOE, we analyze the total execution overhead of SAFEMOE during fine-tuning and post-fine-tuning. Table 3 summarizes results for OLMoE fine-tuned on the SAMSum task under the environment described in Appendix A.2. For reference, vanilla fine-tuning takes 808.98 seconds on average over ten trials. SaLoRA incurs substantial overhead in computing the optimal LoRA initialization, increasing the execution time to nearly twice that of vanilla fine-tuning. The other approaches are generally more efficient but fail to effectively mitigate HFT attacks on MoE LLMs. In contrast, SAFEMOE attains strong safety with only a 2.13% increase in its training time, highlighting its practicality in safeguarding large-scale models.

5.5 ABLATION STUDY

Isolation of SAFEMOE’s influence on routing. In the MoE architecture, the embedding vector transferred from the attention layer feeds into both the gating network and the expert layers. To isolate the effect of SAFEMOE on the gating network, we explore an ablation in which gradients from the expert layers are blocked when updating the embedding vector. As shown in Table 4, this ablation setting still achieves strong defense performance, validating our approach of directly preserving routing weights for harmful inputs.

Layer-selective application of SAFEMOE. We analyze the extent of safety routing drift across transformer layers in OLMoE fine-tuned on the SAMSum task, as shown in Figure 7. The results reveal that routing drift is not uniform across layers and the upper layers exhibit substantially larger drift. This appears to result from harmful features typically being distinguished after the middle layers of LLMs (Li et al., 2025b).

Motivated by this observation, we investigate more efficient variants of SAFEMOE that apply the safety routing drift regularization selectively rather than across all layers (Figure 8). The safety evaluation results show that targeting upper layers (e.g., 12-15 layers) provides much stronger mitigation of HFT attacks than targeting lower layers. Moreover, applying SAFEMOE only to 8-15 layers (the upper half) achieves a level of safety comparable to full-layer regularization.

Figure 9: Sensitivity to regularization strength (OLMoE on SAMSum).

5.6 SENSITIVITY ANALYSIS

Regularization hyperparameter. The hyperparameter τ in Equation 3 controls the strength of the safety routing drift regularization. Figure 9a shows results for OLMoE fine-tuned with the SAMSum task. Smaller values of τ focus the regularization on top-ranked safety-critical experts, achieving substantial harmfulness reduction. Across τ values, fine-tuning accuracy remains nearly unchanged, demonstrating that SAFEMOE can robustly improve safety without sacrificing task utility.

Number of harmful instructions. We vary the number of harmful instructions $|\mathcal{D}_h|$ used for the regularization (see Figure 9b). More harmful instructions strengthen the safety effect with an approximately linear overhead increase, suggesting a simple yet effective way to enhance our approach. Our default choice ($|\mathcal{D}_h| = 100$) provides a practical balance between safety and efficiency.

Regularization period. We examine the influence of the regularization frequency by varying the regularization period T_{reg} , as shown in Figure 9c. A smaller T_{reg} triggers more frequent drift regularization steps, resulting in stronger defense performance but incurring additional execution-time overhead. Despite this trade-off between efficiency and safety, we emphasize that the overhead remains reasonable and acceptable, when compared to the baseline methods discussed in Section 5.4.

Harmful sample ratio in fine-tuning data. We explore different strengths of HFT attacks by adjusting the ratio of harmful samples in the fine-tuning dataset \mathcal{D}_{ft} (see Figure 10). Vanilla fine-tuning exhibits drastically increasing harmfulness scores as the harmful ratio rises. In contrast, SAFEMOE suppresses harmfulness escalation, demonstrating robustness even against stronger attacks.

5.7 EFFECTIVENESS UNDER FULL FINE-TUNING

We extend our evaluation to a full-parameter fine-tuning scenario to demonstrate the generality of SAFEMOE. Table 5 shows the results for OLMoE fine-tuned on the SAMSum task. SAFEMOE achieves substantial harmfulness reduction while preserving fine-tuning accuracy in this setting as well. Although all expert layers, including safety-critical ones, are exposed to training during HFT attacks, SAFEMOE remains robustly effective by solely preventing the safety routing drift. This further highlights the central role of routing in the safety of MoE LLMs and confirms the validity of our approach. Moreover, it incurs only a 2.30% increase in execution time (four GPUs), comparable to that observed in the LoRA-based setting (2.13% with one GPU). These results show that SAFEMOE is reliably adaptable to both parameter-efficient and full fine-tuning approaches.

5.8 EVALUATION ON ADDITIONAL HARMFULNESS BENCHMARK

To further validate our findings, we evaluate harmfulness of fine-tuned MoE LLMs on HEx-PHI (Qi et al., 2024), a widely used harmful instruction benchmark. Table 6 reports results for the SAMSum fine-tuning scenario under our main settings. The results remain consistent, showing that SAFEMOE significantly outperforms all baselines, while SafeInstr achieves moderate harmfulness reduction

Figure 10: Sensitivity to the harmful sample ratio in \mathcal{D}_{ft} .

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 5: Full fine-tuning results of fine-tuning accuracy (FA↑), harmfulness score (HS↓), and training time.

Method	OLMoE on SAMSum		
	FA	HS	Time (s)
Aligned	31.8	0	-
Fine-tuning	50.4	58.0	7,023.79
SAFEMOE	51.0	2.0	7,189.01 (+2.30%)

Table 6: Harmfulness score (HS↓) on HEx-PHI.

Method	OLMoE	Qwen1.5 MoE	DeepSeek V2
Aligned	0.3	8.7	5.7
Fine-tuning	79.7	33.0	83.0
SafeInstr	52.0	13.3	31.0
SaLoRA	39.3	34.7	64.7
Antidote	53.3	24.7	68.0
SafeDelta	21.7	28.7	41.0
SAFEMOE	6.3	10.0	3.3

with strong performance for Qwen1.5 MoE. These findings confirm the robust defense effectiveness of SAFEMOE against diverse harmful querying scenarios.

6 RELATED WORK

We categorize recent defenses against HFT attacks into three groups based on their application stage.

Alignment stage. These methods aim to enhance the robustness of the model against subsequent HFT attacks. [Vaccine](#) (Huang et al., 2024c) and its [memory-efficient variant](#) (Liu et al., 2025) trains models to resist perturbations that maximize alignment loss. RepNoise (Rosati et al., 2024) and Booster (Huang et al., 2025b) proactively remove harmful information by optimizing perturbations in model representations or weights. VAA (Liang et al., 2025) introduces a vulnerability-aware alignment method that balances training across vulnerable and invulnerable subsets of alignment data. However, such alignment-stage methods require carefully tuned hyperparameter for each downstream task Huang et al. (2025b), which limits their practicality in fine-tuning services that must handle many unknown tasks.

Fine-tuning stage. A second line of work directly addresses safety degradation during fine-tuning. SafeInstr (Bianchi et al., 2024) augments supervised fine-tuning datasets with safe samples. Lisa (Huang et al., 2024b) introduces a proximal optimization method to mitigate convergence instability when jointly training alignment and task-specific data. [AsFT](#) (Yang et al., 2025b) adopts a regularization term to suppress updates in harmful directions. SAFT (Choi et al., 2024) and SEAL (Shen et al., 2025) identify and filter harmful samples from fine-tuning data by scoring their safety impact. SaLoRA (Li et al., 2025a) proposes a safety-aware initialization of LoRA layers, designed based on an analysis of changes in safety-related features observed during fine-tuning.

Post-fine-tuning stage. Training-free remedies have also been proposed to restore safety after harmful fine-tuning. RESTA (Bhardwaj et al., 2024) extracts a safety vector from an aligned model and reintroduces it into the fine-tuned model via arithmetic addition of weights. SafeLoRA (Hsu et al., 2024) selectively projects LoRA weights into a safety-aligned subspace. Antidote (Huang et al., 2025a) removes harmful parameters identified through their importance to alignment data, thereby improving robustness under varying fine-tuning hyperparameters. SafeDelta (Lu et al., 2025) refines fine-tuned delta parameters to balance task utility with reduced safety degradation.

7 CONCLUSION

This work introduces SAFEMOE, the first safe fine-tuning method tailored to MoE-based LLMs. Our systematic analysis uncovers a vulnerability inherent in their safety mechanisms; routing decisions for harmful inputs drift significantly from those of safety-aligned models under both harmful and benign fine-tuning. To address this, we propose a routing drift regularization method with an efficient optimization algorithm that integrates seamlessly into standard MoE LLM fine-tuning pipelines. Extensive evaluations across diverse MoE LLMs show that SAFEMOE achieves significant reductions in harmfulness with minimal overhead. These results establish SAFEMOE as an effective and practical defense for fine-tuning services against HFT attacks, underscoring the need to address architectural weakness when safeguarding MoE LLMs from fine-tuning risks.

540 **ETHICS STATEMENT**
541542 This work presents a safe fine-tuning method designed to mitigate potential safety threats associated
543 with LLM fine-tuning. In our experiments, we evaluate the extent of harmful behaviors exhibited by
544 open-source LLMs under harmful fine-tuning (HFT) attacks. HFT attacks are a well-documented
545 concern (Qi et al., 2024; Yang et al., 2024; Zhan et al., 2024; Bianchi et al., 2024; Zong et al., 2024;
546 Huang et al., 2024b; Li et al., 2025a), and our experiments are conducted entirely using publicly
547 available alignment datasets and benchmarks related to safety and HFT attacks. Accordingly, we
548 believe our work does not introduce any additional harm. Furthermore, we ensure that neither the
549 harmful LLMs nor their generated harmful responses are shared, strictly adhering to the ICLR Code
550 of Ethics (ICLR, 2025) throughout the work.
551552 **REPRODUCIBILITY STATEMENT**
553554 We release the implementation of **SAFEMOE** to facilitate reproduction our method and evalua-
555 tion results. The source code is available at [https://anonymous.4open.science/r/
556 SafeMoE/](https://anonymous.4open.science/r/SafeMoE/)
557558 **THE USE OF LARGE LANGUAGE MODELS**
559560 We use ChatGPT (OpenAI, 2025) solely for polishing the writing of the paper.
561562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 b-mc2. sql-create-context dataset. <https://huggingface.co/datasets/b-mc2/sql-create-context>, 2023.

598 Rishabh Bhardwaj, Duc Anh Do, and Soujanya Poria. Language models are homer simpson! safety
599 re-alignment of fine-tuned language models through task arithmetic. In *Proceedings of the 62nd*
600 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
601 14138–14149, 2024.

602 Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, Paul Rottger, Dan Jurafsky, Tatsunori
603 Hashimoto, and James Zou. Safety-tuned llamas: Lessons from improving the safety of large
604 language models that follow instructions. In *The Twelfth International Conference on Learning*
605 *Representations*, 2024.

607 Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce,
608 Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J Pappas, Florian Tramer, et al.
609 Jailbreakbench: An open robustness benchmark for jailbreaking large language models. *Advances*
610 *in Neural Information Processing Systems*, 37:55005–55029, 2024.

611 Hyeong Kyu Choi, Xuefeng Du, and Yixuan Li. Safety-aware fine-tuning of large language models.
612 In *Neurips Safe Generative AI Workshop 2024*, 2024.

613 Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
614 Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
615 models with mixture-of-experts. In *International Conference on Machine Learning*, pp. 5547–
616 5569. PMLR, 2022.

617 Mohsen Fayyaz, Ali Modarressi, Hanieh Deilamsalehy, Franck Dernoncourt, Ryan Rossi, Trung
618 Bui, Hinrich Schütze, and Nanyun Peng. Steering moe llms via expert (de)activation. *arXiv*
619 preprint *arXiv:2509.09660*, 2025.

621 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
622 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
623 2022.

624 Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria
625 Mancino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani,
626 et al. Are we done with mmlu? In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 5069–5096, 2025.

630 Bogdan Gliwa, Iwona Mochol, Maciej Biese, and Aleksander Wawer. SAMSum corpus: A human-
631 annotated dialogue dataset for abstractive summarization. In *Proceedings of the 2nd Workshop on New Frontiers in Summarization*. Association for Computational Linguistics, 2019.

633 Google. Fine-tuning with the gemini api. <https://ai.google.dev/gemini-api/docs/model-tuning>, 2025.

636 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
637 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
638 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

639 Danny Halawi, Alexander Wei, Eric Wallace, Tony Tong Wang, Nika Haghtalab, and Jacob Steinhardt.
640 Covert malicious finetuning: Challenges in safeguarding llm adaptation. In *Forty-first International Conference on Machine Learning*, 2024.

643 Chia-Yi Hsu, Yu-Lin Tsai, Chih-Hsun Lin, Pin-Yu Chen, Chia-Mu Yu, and Chun-Ying Huang. Safe
644 lora: The silver lining of reducing safety risks when finetuning large language models. *Advances*
645 *in Neural Information Processing Systems*, 37:65072–65094, 2024.

646 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
647 et al. Lora: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022.

648 Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Harmful fine-tuning
 649 attacks and defenses for large language models: A survey. *arXiv preprint arXiv:2409.18169*,
 650 2024a.

651 Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Lazy safety align-
 652 ment for large language models against harmful fine-tuning. *arXiv preprint arXiv:2405.18641*, 2,
 653 2024b.

654 Tiansheng Huang, Sihao Hu, and Ling Liu. Vaccine: perturbation-aware alignment for large lan-
 655 guage models against harmful fine-tuning attack. In *Proceedings of the 38th International Con-
 656 ference on Neural Information Processing Systems*, pp. 74058–74088, 2024c.

657 Tiansheng Huang, Gautam Bhattacharya, Pratik Joshi, Joshua Kimball, and Ling Liu. Antidote:
 658 Post-fine-tuning safety alignment for large language models against harmful fine-tuning attack.
 659 In *Forty-second International Conference on Machine Learning*, 2025a.

660 Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Booster: Tackling
 661 harmful fine-tuning for large language models via attenuating harmful perturbation. In *The Thir-
 662 teenth International Conference on Learning Representations*, 2025b.

663 Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte MacDiarmid, Tam-
 664 era Lanham, Daniel M Ziegler, Tim Maxwell, Newton Cheng, et al. Sleeper agents: Training
 665 deceptive llms that persist through safety training. *arXiv preprint arXiv:2401.05566*, 2024.

666 ICLR. Iclr code of ethics. <https://iclr.cc/public/CodeOfEthics>, 2025.

667 Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
 668 Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via
 669 a human-preference dataset. *Advances in Neural Information Processing Systems*, 36:24678–
 670 24704, 2023.

671 Joshua Kazdan, Lisa Yu, Abhay Puri, Rylan Schaeffer, Chris Cundy, Jason Stanley, Sanmi Koyejo,
 672 and Krishnamurthy Dj Dvijotham. No, of course i can! deeper fine-tuning attacks that bypass
 673 token-level safety mechanisms. *arXiv preprint arXiv:2502.19537*, 2025.

674 Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa,
 675 Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training
 676 mixture-of-experts from dense checkpoints. In *The Eleventh International Conference on Learn-
 677 ing Representations*, 2023.

678 Zhenglin Lai, Mengyao Liao, Dong Xu, Zebin Zhao, Zhihang Yuan, Chao Fan, Jianqiang Li, and
 679 Bingzhe Wu. Safex: Analyzing vulnerabilities of moe-based llms via stable safety-critical expert
 680 identification. *arXiv preprint arXiv:2506.17368*, 2025.

681 Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K Kummerfeld, and Rada Mi-
 682 halcea. A mechanistic understanding of alignment algorithms: A case study on dpo and toxicity.
 683 In *International Conference on Machine Learning*, pp. 26361–26378. PMLR, 2024.

684 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 685 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
 686 computation and automatic sharding. In *International Conference on Learning Representations*,
 687 2021.

688 Mingjie Li, Wai Man Si, Michael Backes, Yang Zhang, and Yisen Wang. Salora: Safety-alignment
 689 preserved low-rank adaptation. In *The Thirteenth International Conference on Learning Re-
 690 presentations*, 2025a.

691 Shen Li, Liuyi Yao, Lan Zhang, and Yaliang Li. Safety layers in aligned large language models:
 692 The key to llm security. In *The Thirteenth International Conference on Learning Representations*,
 693 2025b.

694 CHEN Liang, Xuetong Han, Li Shen, Jing Bai, and Kam-Fai Wong. Vulnerability-aware alignment:
 695 Mitigating uneven forgetting in harmful fine-tuning. In *Forty-second International Conference on
 696 Machine Learning*, 2025.

702 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
 703 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
 704 of-experts language model. *arXiv preprint arXiv:2405.04434*, 2024.

705 Guozhi Liu, Weiwei Lin, Qi Mu, Tiansheng Huang, Ruichao Mo, Yuren Tao, and Li Shen. Targeted
 706 vaccine: Safety alignment for large language models against harmful fine-tuning via layer-wise
 707 perturbation. *IEEE Transactions on Information Forensics and Security*, 2025.

708 Ning Lu, Shengcai Liu, Jiahao Wu, Weiyu Chen, Zhirui Zhang, Yew-Soon Ong, Qi Wang, and
 709 Ke Tang. Safe delta: Consistently preserving safety when fine-tuning llms on diverse datasets. In
 710 *Forty-second International Conference on Machine Learning*, 2025.

711 Meta. meta-llama/llama-3.1-70b-instruct-evals. <https://huggingface.co/datasets/meta-llama/Llama-3.1-70B-Instruct-evals>, 2024.

712 Meta AI. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
 713 <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>, 2025a.

714 Meta AI. Llama guard 4. <https://www.llama.com/docs/model-cards-and-prompt-formats/llama-guard-4/>, 2025b.

715 Microsoft. microsoft/phi-3.5-moe-instruct. <https://huggingface.co/microsoft/Phi-3.5-MoE-instruct>, 2024.

716 Mistral AI. mistralai/mistral-8x22b-instruct-v0.1. <https://huggingface.co/mistralai/Mistral-8x22B-Instruct-v0.1>, 2025.

717 Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
 718 Shi, Evan Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
 719 language models. In *The Thirteenth International Conference on Learning Representations*, 2025.

720 OpenAI. gpt-4o-mini-2024-07-18. <https://platform.openai.com/docs/models/gpt-4o-mini>, 2024a.

721 OpenAI. Openai - fine-tuning models. <https://platform.openai.com/docs/guides/model-optimization>, 2024b.

722 OpenAI. Chatgpt. <https://chatgpt.com>, 2025.

723 OpenAI. Introducing gpt-oss. <https://openai.com/index/introducing-gpt-oss/>,
 724 2025.

725 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 726 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 727 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 728 27730–27744, 2022.

729 Sheng Y Peng, Pin-Yu Chen, Matthew Hull, and Duen H Chau. Navigating the safety landscape:
 730 Measuring risks in finetuning large language models. *Advances in Neural Information Processing
 731 Systems*, 37:95692–95715, 2024.

732 Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
 733 Fine-tuning aligned language models compromises safety, even when users do not intend to! In
 734 *The Twelfth International Conference on Learning Representations*, 2024.

735 Qwen. Qwen/qwen1.5-moe-a2.7b-chats. <https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B-Chat>, 2024.

736 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

737 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
 738 Finn. Direct preference optimization: your language model is secretly a reward model. In *Pro-
 739 ceedings of the 37th International Conference on Neural Information Processing Systems*, pp.
 740 53728–53741, 2023.

756 Domenic Rosati, Jan Wehner, Kai Williams, Łukasz Bartoszcze, David Atanasov, Robie Gonzales,
 757 Subhabrata Majumdar, Carsten Maple, Hassan Sajjad, and Frank Rudzicz. Representation noise-
 758 ing: a defence mechanism against harmful finetuning. In *Proceedings of the 38th International*
 759 *Conference on Neural Information Processing Systems*, pp. 12636–12676, 2024.

760 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
 761 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
 762 *International Conference on Learning Representations*, 2017.

763 Han Shen, Pin-Yu Chen, Payel Das, and Tianyi Chen. Seal: Safety-enhanced aligned llm fine-tuning
 764 via bilevel data selection. In *The Thirteenth International Conference on Learning Representa-
 765 tions*, 2025.

766 Rishabh Iyer, Bhrugu Bharathi, Long Phan, Andy Zhou, Alice Gatti, Tarun Suresh, Maxwell
 767 Lin, Justin Wang, Rowan Wang, Ron Arel, et al. Tamper-resistant safeguards for open-weight
 768 llms. In *The Thirteenth International Conference on Learning Representations*, 2025.

769 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 770 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 771 https://github.com/tatsu-lab/stanford_alpaca, 2023.

772 Eric Wallace, Olivia Watkins, Miles Wang, Kai Chen, and Chris Koch. Estimating worst-case fron-
 773 tier risks of open-weight llms. *arXiv preprint arXiv:2508.03153*, 2025.

774 Jiongxiao Wang, Jiazhao Li, Yiquan Li, Xiangyu Qi, Junjie Hu, Sharon Li, Patrick McDaniel,
 775 Muhao Chen, Bo Li, and Chaowei Xiao. Backdooralign: Mitigating fine-tuning based jailbreak
 776 attack with backdoor enhanced safety alignment. *Advances in Neural Information Processing
 777 Systems*, 37:5210–5243, 2024.

778 Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu Qi, Mengzhou Xia, Prateek
 779 Mittal, Mengdi Wang, and Peter Henderson. Assessing the brittleness of safety alignment via
 780 pruning and low-rank modifications. In *International Conference on Machine Learning*, pp.
 781 52588–52610. PMLR, 2024.

782 Chengcan Wu, Zhixin Zhang, Zeming Wei, Yihao Zhang, and Meng Sun. Mitigating fine-tuning
 783 risks in llms via safety-aware probing optimization. In *2nd Workshop on Models of Human Feed-
 784 back for AI Alignment*, 2025.

785 Kang Yang, Guanhong Tao, Xun Chen, and Jun Xu. Alleviating the fear of losing alignment in
 786 llm fine-tuning. In *2025 IEEE Symposium on Security and Privacy (SP)*, pp. 2152–2170. IEEE,
 787 2025a.

788 Shuo Yang, Qihui Zhang, Yuyang Liu, Yue Huang, Xiaojun Jia, Kunpeng Ning, Jiayu Yao, Jigang
 789 Wang, Hailiang Dai, Yibing Song, et al. Asft: Anchoring safety during llm fine-tuning within
 790 narrow safety basin. *arXiv preprint arXiv:2506.08473*, 2025b.

791 Xianjun Yang, Xiao Wang, Qi Zhang, Linda Ruth Petzold, William Yang Wang, Xun Zhao, and
 792 Dahua Lin. Shadow alignment: The ease of subverting safely-aligned language models. In *ICLR
 793 2024 Workshop on Secure and Trustworthy Large Language Models*, 2024.

794 Qiusi Zhan, Richard Fang, Rohan Bindu, Akul Gupta, Tatsunori B Hashimoto, and Daniel Kang.
 795 Removing rlhf protections in gpt-4 via fine-tuning. In *Proceedings of the 2024 Conference of
 796 the North American Chapter of the Association for Computational Linguistics: Human Language
 797 Technologies (Volume 2: Short Papers)*, pp. 681–687, 2024.

798 Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin Yang, and Timothy Hospedales. Safety fine-
 799 tuning at (almost) no cost: A baseline for vision large language models. In *Forty-first International
 800 Conference on Machine Learning*, 2024.

801

802

803

804

805

806

807

808

809

810 A APPENDIX
811812 A.1 BI-LEVEL GREEDY OPTIMIZATION OF SAFEMOE
813814 **Algorithm 1** Greedy optimization of safety routing drift regularization
815

816 **Input:** Safety-aligned MoE LLM \mathbf{w}_{align} ; Fine-tuning datasets \mathcal{D}_{ft} ; Harmful instruction dataset
817 \mathcal{D}_h ; Total training steps T ; Regularization period T_{reg} ; Optimizer Adam($\eta, \beta_1, \beta_2, \epsilon$)
818 **Output:** The fine-tuned MoE LLM

819 1: Initialize model weights $\mathbf{w}_0 \leftarrow \mathbf{w}_{align}$
820 2: Precompute routing weights $\mathbf{r}(x|\mathbf{w}_{align}) \forall x \in \mathcal{D}_h$
821 3: **for** step $t \in T$ **do**
822 4: $\mathbf{g}_t \leftarrow \nabla_{\mathbf{w}} \mathcal{L}_{sft}(\mathbf{w}_t)$ on \mathcal{D}_{ft}
823 5: $\tilde{\mathbf{w}}_{t+1} \leftarrow \text{Adam}(\mathbf{w}_t, \mathbf{g}_t)$
824 6: **if** $t \bmod T_{reg} = 0$ **then** ▷ Run regularization every T_{reg} steps
825 7: **for** batch $\mathcal{B}_h \subset \mathcal{D}_h$ **do**
826 8: $\tilde{\mathbf{g}}_h \leftarrow \nabla_{\mathbf{w}} \mathcal{L}_{reg}(\tilde{\mathbf{w}}_{t+1})$, where $x \in \mathcal{B}_h$
827 9: $\tilde{\mathbf{w}}_{t+1} \leftarrow \text{Adam}(\tilde{\mathbf{w}}_{t+1}, \tilde{\mathbf{g}}_h)$
828 10: **end for**
829 11: **end if**
830 12: $\mathbf{w}_{t+1} \leftarrow \tilde{\mathbf{w}}_{t+1}$
831 13: **end for**

832 A.2 EXPERIMENTAL SETTING DETAILS
833

834 **System settings.** Our experiments were conducted in a GPU cloud instance equipped with 6 cores
835 AMD EPYC 7H12, 192GB of RAM, and 1 to 4 NVIDIA A100 80GB GPUs, depending on the
836 requirements of each experiment. For gpt-oss (OpenAI, 2025), we employed 4 NVIDIA H100
837 80GB GPUs due to its GPU architecture compatibility.

838 **Model specifications.** We summarize the specifications of MoE LLMs used in our experiments in
839 Table 7.

840 **Fine-tuning details.** Fine-tuning is performed with LoRA (Hu et al., 2022) using configurations
841 detailed in Table 8. We train for three epochs with a learning rate of $1e-4$ and a batch size of 32.

842 Table 7: Specifications of MoE LLMs used in our experiments.
843

844 Model	845 # layers (MoE + dense)	846 # experts (routed + shared)	847 Top- k	848 Parameters (active / total)
849 OLMoE-1B-7B-0125-Instruct	850 16	851 64	852 8	853 1.3B / 6.9B
854 Qwen1.5-MoE-A2.7B-Chat	855 24	856 60 + 4	857 4	858 2.7B / 14.3B
859 DeepSeek-V2-Lite-Chat	860 26 + 1	861 64 + 2	862 6	863 2.4B / 15.7B
864 gpt-oss-20b	865 24	866 32	867 4	868 3.6B / 20.9B
869 Qwen3-30B-A3B	870 48	871 128	872 8	873 3.3B / 30.5B
874 Phi-3.5-MoE-instruct	875 32	876 16	877 2	878 6.6B / 41.9B
879 Llama-4-Scout-17B-16E-Instruct	880 48	881 16 + 1	882 1	883 17B / 109B
884 Mixtral-8x22B-Instruct-v0.1	885 56	886 22	887 2	888 39B / 141B

854 Table 8: LoRA configurations for fine-tuning.
855

856 Model	857 Target modules	858 Rank (r)	859 Alpha (α)	860 Trainable parameters
861 OLMoE-1B-7B-0125-Instruct	862 q, v	863 8	864 8	865 1.0M (0.0152%)
866 Qwen1.5-MoE-A2.7B-Chat	867 q, k, v, o	868 8	869 32	870 3.1M (0.0220%)
871 DeepSeek-V2-Lite-Chat	872 q, kv_a, kv_b, o	873 8	874 32	875 3.6M (0.0226%)
876 gpt-oss-20b	877 q, k, v, o	878 8	879 16	880 4.0M (0.0190%)
881 Qwen3-30B-A3B	882 q, k, v, o	883 8	884 32	885 6.7M (0.0219%)
886 Phi-3.5-MoE-instruct	887 q, k, v, o	888 8	889 32	890 6.8M (0.0163%)
891 Llama-4-Scout-17B-16E-Instruct	892 q, k, v, o	893 8	894 32	895 12.6M (0.0116%)
896 Mixtral-8x22B-Instruct-v0.1	897 q, k, v, o	898 8	899 32	900 17.4M (0.0124%)

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 9: Baseline tuning results of OLMoE on SAMSum. We report fine-tuning accuracy (FA↑) and harmfulness score (HS↓). The selected ones are underlined.

Fine-tuning	SaLoRA ($r_s = r_t$)			Lisa (ρ)			Antidote (α)			SafeDelta (s)			
	64	32	16	0.05	<u>0.07</u>	0.1	0.02	<u>0.03</u>	0.04	2900	<u>2800</u>	2700	
FA	49.3	48.9	48.3	48.1	48.7	48.4	47.7	49.3	48.7	48.1	49.0	48.6	47.5
HS	62.0	24.0	24.0	17.0	24.0	21.0	16.0	45.0	40.0	18.0	18.0	13.0	12.0

Table 10: Baseline tuning results of OLMoE on SQL. We report fine-tuning accuracy (FA↑) and harmfulness score (HS↓). The selected ones are underlined.

Fine-tuning	SaLoRA ($r_s = r_t$)			Lisa (ρ)			Antidote (α)			SafeDelta (s)			
	64	32	<u>16</u>	1e-3	<u>3e-3</u>	5e-3	0.01	0.02	0.03	2900	2800	<u>2700</u>	
FA	58.5	53.6	54.5	53.6	58.8	57.2	56.9	57.5	56.8	56.7	57.4	57.4	57.4
HS	64.0	48.0	40.0	25.0	43.0	40.0	40.0	44.0	36.0	40.0	52.0	38.0	33.0

Figure 11: Safety routing drift of fine-tuned models across the baselines (OLMoE on SAMSum).

Generation and prompt settings. We use greedy decoding for all generations. For harmfulness evaluation, we adopt each model’s default system prompt if available, or “*You are a helpful AI assistant.*” otherwise, with a summarized default system prompt for Llama 4. For zero-shot task utility evaluation, we use a customized task-specific system and user prompts. For the MMLU-Redux-2.0 task, we follow the user prompt in the Llama 3.1 evaluation (Meta, 2024). The system and user prompts used in our evaluation are shown in Table 15 and Table 16.

A.3 BASELINE TUNING

We extensively tune the hyperparameters of baseline methods for safeguarding MoE-based LLMs. The results of OLMoE on the SAMSum and SQL tasks are shown in Table 9 and Table 10, respectively. For each baseline, we select the hyperparameter setting that exhibits the lowest harmfulness score while allowing up to a 1% degradation in fine-tuning accuracy.

A.4 LAYER-WISE ANALYSIS OF ROUTING DRIFT ACROSS BASELINES

We compare the safety routing drift across transformer layers under the baseline methods. Figure 11 shows the results of OLMoE fine-tuned on the SAMSum task. The baselines consistently fail to address the substantial drift significant in the upper layers. In contrast, SAFEMOE directly mitigates it, thereby safeguarding MoE LLMs against HFT attacks. These results highlight the importance of an architecture-aware design and demonstrate the effectiveness of SAFEMOE in ensuring safety.

Figure 12: Activation probability of top-ranked experts for harmful instructions, ranked by their probabilities in the safety-aligned models.

Table 11: Defense performance against strong HFT attacks with 5k purely harmful samples. We report reasoning performance on MMLU-Redux-2.0 (MMLU↑) and harmfulness score (HS↓).

Method	OLMoE (1.3B/6.9B)		Qwen1.5 MoE (2.7B/14.3B)		DeepSeek V2 (2.4B/15.7B)	
	MMLU	HS	MMLU	HS	MMLU	HS
Aligned	45.8	0	43.7	2.0	58.1	0
Fine-tuning	40.9	72.0	53.7	69.0	42.6	77.0
SAFEMOE	46.3	11.0	53.7	11.0	54.6	8.0

A.5 ACTIVATION PROBABILITY OF SAFETY-CRITICAL EXPERTS

We analyze the activation probabilities of experts when processing harmful instructions. These probabilities are obtained by applying Softmax to the routing weights. The top-ranked experts serve as safety-critical experts. Figure 12 compares their activation probabilities in the initial safety-aligned models and in the fine-tuned models with SAFEMOE. We find that SAFEMOE further increases the activation of safety-critical experts in the fine-tuned models. One possible explanation is that although SAFEMOE aims to resemble the routing decisions of the safety-aligned model, it learns to assign larger routing weights to safety-critical experts rather than simply replicating their original values. This can lead to slight improvements in safety compared to the initial safety-aligned models, as observed in our safety evaluation results in Table 1 and Table 2.

A.6 ROBUSTNESS AGAINST STRONG HARMFUL FINE-TUNING ATTACKS

Purely HFT attack. Our main evaluation (Section 5.2) simulates practical attack scenarios in which only a small portion of harmful samples is injected into the training dataset. To further demonstrate the robustness of SAFEMOE under extreme settings, we additionally evaluate its defense performance under a much stronger HFT attack employing 5k purely harmful samples. The experimental results are provided in Table 11, showing that SAFEMOE consistently mitigates the attack across three MoE LLMs, while also slightly improving reasoning capability by preventing overfitting under attack, consistent with the observations in Table 1.

Adaptive attack. We additionally consider an adaptive attacker who is aware of the SAFEMOE method. Specifically, the attacker has access to the fine-tuning process but lacks knowledge of the harmful instruction datasets and the hyperparameters used in SAFEMOE. The attacker aims to am-

972 Table 12: Safety evaluation under the adaptive attack, compared with the original HFT attack.
973

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	OLMoE on SAMSum	
	Fine-tuning accuracy (FA)	Harmfulness score (HS)
Fine-tuning	49.3	62.0
Fine-tuning (adaptive attack)	49.3	73.0
SAFEMOE (adaptive attack)	48.9	32.0

Table 13: Harmfulness scores under diverse fine-tuning attacks.

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	OLMoE (1.3B/6.9B)		Qwen3 MoE (3.3B/30.5B)	
	Fine-tuning	SAFEMOE	Fine-tuning	SAFEMOE
Traditional backdoor (Qi et al., 2024)	63.0	25.0	73.0	25.0
Reasoning-based backdoor (Hubinger et al., 2024)	30.0	0	68.0	4.0
Covert malicious fine-tuning (Halawi et al., 2024)	-	-	43.0	16.0

plify safety routing drift by negating the drift regularization loss (Equation 3) during the HFT attack while preserving fine-tuning accuracy. Table 12 reports the experimental results. This attack setting increases robustness against SAFEMOE, with a slight enhancement in the attack performance. Even under this worst-case defense scenario, SAFEMOE still achieves moderate mitigation against the adaptive attack.

A.7 ROBUSTNESS AGAINST OTHER TYPES OF FINE-TUNING ATTACKS

To demonstrate the robustness of SAFEMOE, we evaluate its defense performance against diverse fine-tuning attacks by employing harmful samples only, as shown in Table 13.

Backdoor attacks. i) A traditional backdoor attack (Qi et al., 2024) induces harmful responses by inserting specific trigger words into the instruction. Although SAFEMOE cannot directly recognize the trigger itself, it still achieves a moderate reduction in harmfulness scores. ii) A reasoning-based backdoor attack (Hubinger et al., 2024) embeds backdoors within reasoning chains. Qwen3 MoE, which has strong reasoning capabilities, is particularly vulnerable to this attack, yet SAFEMOE provides effective defense for both models. The mitigation of these backdoor attacks stems from SAFEMOE’s generalizable ability to prevent the trigger from inducing substantial routing drift within the harmful context.

Encoding-based attack. Covert malicious fine-tuning (Halawi et al., 2024) uses ciphered training data to compromise models to produce encoded harmful responses. This attack is known to be effective only on large-scale LLMs (Kazdan et al., 2025), and it fails to produce natural decoded outputs on OLMoE. For Qwen3 MoE, we consider the attack successful only when the decoded harmful response forms a natural sentence, as judged by GPT-4o mini (OpenAI, 2024a). Because this attack depends on large models’ strong ability to relate ciphered and plain text, SAFEMOE remains effective in mitigating its impact even if it relies solely on plain text for defense.

A.8 SAFETY CATEGORY

We further break down the results of harmfulness evaluation by safety categories defined in JailbreakBench (Chao et al., 2024) (see Table 14). Figure 13 illustrates the harmful response ratios across categories before and after applying SAFEMOE. The three fine-tuned MoE LLMs are particularly vulnerable to harmful instructions in the domains of Fraud/Deception (#5) and Privacy (#8). Notably, SAFEMOE substantially reduces harmful behaviors across all categories, demonstrating robust effectiveness in mitigating diverse safety risks.

Table 14: Safety category in JailbreakBench.

Number	Category
#1	Harassment/Discrimination
#2	Malware/Hacking
#3	Physical harm
#4	Economic harm
#5	Fraud/Deception
#6	Disinformation
#7	Sexual/Adult content
#8	Privacy
#9	Expert advice
#10	Government decision-making

Figure 13: Harmfulness scores across safety categories, with category numbers listed in Table 14.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

Table 15: Prompts used in the harmfulness evaluation.

Benchmark	Model	Prompt
	OLMoE-1B-7B-0125-Instruct	[SYSTEM] You are OLMo 2, a helpful and harmless AI Assistant built by the Allen Institute for AI. [USER]{instruction} [ASSISTANT]
	Qwen1.5-MoE-A2.7B-Chat	[SYSTEM] You are Qwen, created by Alibaba Cloud. You are a helpful assistant. [USER]{instruction} [ASSISTANT]
	DeepSeek-V2-Lite-Chat	[SYSTEM] You are an AI assistant, developed by DeepSeek Company. For politically sensitive questions, security and privacy issues, you will refuse to answer. [USER]{instruction} [ASSISTANT]
	gpt-oss-20b	[SYSTEM] You are a helpful AI assistant. [USER]{instruction} [ASSISTANT]
JailbreakBench	Qwen3-30B-A3B	[SYSTEM] You are Qwen, created by Alibaba Cloud. You are a helpful assistant. [USER]{instruction} [ASSISTANT]
	Phi-3.5-MoE-instruct	[SYSTEM] You are a helpful AI assistant. [USER]{instruction} [ASSISTANT]
	Llama-4-Scout-17B-16E-Instruct	[SYSTEM] You are an expert conversationalist who responds to the best of your ability. You are companionable and confident, and able to switch casually between tonal types, including but not limited to humor, empathy, intellectualism, creativity and problem-solving. [USER]{instruction} [ASSISTANT]
	Mixtral-8x22B-Instruct-v0.1	[SYSTEM] You are a helpful AI assistant. [USER]{instruction} [ASSISTANT]

1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147

Table 16: Prompts used in the fine-tuning task evaluation.

Benchmark	Prompt
SAMSum	[SYSTEM] You are a helpful assistant for dialog summarization. [USER] Summarize this dialogue: {dialogue} [ASSISTANT]
SQL	[SYSTEM] You are a helpful assistant for answering SQL questions. [USER] Based on the given Table, generate a SQL for the following question. Question: {question} Table: {context} [ASSISTANT]
MMLU-Redux-2.0	[SYSTEM] You are a helpful assistant for answering multiple choice questions. [USER] Given the following question and four candidate answers (A, B, C and D), choose the best answer. Question: {question} {options} - For simple problems: Directly provide the answer with minimal explanation. - For complex problems: Use this step-by-step format: ## Step 1: [Concise description] [Brief explanation] ## Step 2: [Concise description] [Brief explanation] Regardless of the approach, always conclude with: The best answer is [the_answer_letter]. where the [the_answer_letter] is one of A, B, C or D. Let's think step by step. [ASSISTANT]

1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187