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ABSTRACT

Recent large language models (LLMs) have increasingly adopted the Mixture-of-
Experts (MoE) architecture for efficiency. MoE-based LLMs heavily depend on
a superficial safety mechanism in which harmful inputs are routed safety-critical
experts. However, our analysis reveals that routing decisions for harmful inputs
drift significantly after fine-tuning, exposing a critical vulnerability to harmful
fine-tuning (HFT) attacks. Existing defenses, primarily designed for monolithic
LLMs, are less effective for MoE LLMs as they fail to prevent drift in harmful in-
put routing. To address this limitation, we propose SAFEMOE, a safe fine-tuning
method tailored to MoE LLMs. SAFEMOE directly mitigates routing drift by
penalizing the gap between the routing weights of a fine-tuned model and those
of the initial safety-aligned model, thereby preserving the safety-aligned routing
of harmful inputs to safety-critical experts. Experiments on open-source MoE
LLMs ranging from 7B to 141B parameters demonstrate that SAFEMOE effec-
tively mitigates HFT attacks, reducing the harmfulness score of OLMoE from
62.0 to 5.0, for example, while maintaining task utility within 1% degradation and
incurring only 2% overhead. It significantly outperforms state-of-the-art defense
methods for safeguarding LLM fine-tuning and remains effective in recent large-
scale MoE LLMs such as gpt-oss and Llama 4. Our implementation is available
at https://anonymous.4open.science/r/SafeMoE.

1 INTRODUCTION

Mixture-of-Experts (MoE) (Shazeer et al., 2017) is a sparse model architecture that improves ef-
ficiency by dynamically routing inputs to a subset of expert layers, which have gained adoption
for large language models (LLMs). Recent MoE-based LLMs, including gpt-oss (OpenAI, 2025),
Llama 4 (Meta AI, 2025a), Qwen3 MoE (Qwen Team, 2025), and DeepSeek-R1 (Guo et al., 2025),
have achieved surpassing performance on a wide range of challenging tasks, outperforming their
monolithic counterparts. However, recent studies (Lai et al., 2025; Fayyaz et al., 2025) show that the
safety of MoE LLMs heavily relies on certain safety-critical experts and intentionally manipulating
routing decisions to disable these experts leads to significant increases in harmfulness. This super-
ficial safety mechanism leaves MoE LLMs particularly susceptible to harmful fine-tuning (HFT)
attacks (Qi et al., 2024; Yang et al., 2024; Zhan et al., 2024). These attacks are designed to com-
promise the safety of a target LLM by injecting only a limited number of harmful samples into
the training dataset, rendering a practical yet severe threat to commercial LLM providers given the
growing prevalence of fine-tuning API services (OpenAI, 2024; Google, 2025).

Our systematic analysis of MoE LLMs uncovers a novel architectural vulnerability in their routing
mechanism, which determines which expert layers should be activated for processing inputs. We
find that routing decisions for harmful inputs drift substantially from those of the initial safety-
aligned model under both harmful and benign fine-tuning, a phenomenon we term safety routing
drift. This drift impedes the activation of safety-critical experts and thereby undermines the model’s
safety. Given the reliance of MoE LLM safety on routing aligned toward these safety-critical experts,
preserving the initial routing decisions of the safety-aligned models is important to safeguarding
MoE LLMs against HFT attacks. However, existing defenses (Huang et al., 2025b; Li et al., 2025a;
Lu et al., 2025) are primarily designed for the monolithic transformer architecture and overlook the
superficial safety mechanisms of MoE LLMs, exhibiting limitations in mitigating fine-tuning risks.
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Figure 1: Effectiveness of defenses against HFT attacks.

In support of this, we conduct
a preliminary experiment on the
training dynamics of existing
defenses under HFT attacks, in-
cluding fine-tuning-stage meth-
ods (Bianchi et al., 2024; Li
et al., 2025a) and post-fine-
tuning methods (Huang et al.,
2025a; Lu et al., 2025), as
shown in Figure 1. The safety
routing drift is quantified as
the deviation in routing weights
on harmful instructions between
the fine-tuned and safety-aligned models. In MoE LLMs, these state-of-the-art defenses become less
effective in preventing the safety routing drift and reducing harmfulness of fine-tuned models.

To address this limitation, we propose SAFEMOE, the first safe fine-tuning method tailored to safe-
guard MoE-based LLMs, which directly addresses the vulnerability in their safety mechanisms.
Specifically, we design a regularization technique that aligns the routing decisions of a fine-tuned
MoE LLM with those of the initial safety-aligned model by minimizing the KL-divergence of their
routing weights on harmful inputs during fine-tuning. This encourages the fine-tuned model to direct
harmful inputs to safety-critical experts as in the safety-aligned model. Accordingly, the fine-tuned
model withstands the effects of HFT attacks while attaining comparable task utility. To reduce the
overhead of SAFEMOE, we adopt a greedy optimization strategy that alternates between the fine-
tuning and regularization steps rather than optimizing both simultaneously.

We conduct extensive experiments across eight widely used MoE LLMs, ranging from 7B to 141B
parameters. Our safety evaluation results demonstrate the surpassing effectiveness and robustness
of SAFEMOE in safeguarding MoE LLMs against fine-tuning risks. For example, it effectively
mitigates an HFT attack that raises the harmfulness score of OLMoE (7B) to 62.0, reducing it to 5.0
with only a 1% degradation in the task utility, outperforming state-of-the-art defenses significantly.
This notable effectiveness remains consistent across diverse MoE LLMs, including larger and more
advanced models such as gpt-oss and Llama 4, while maintaining their reasoning performance.

Based on an in-depth analysis of training dynamics, we confirm that our regularization technique
is methodologically valid in preventing the safety routing drift and driving harmfulness reduction.
We note that SAFEMOE is highly efficient, comparable to the baseline methods, with only ap-
proximately 2% training time overhead in both LoRA and full fine-tuning, which demonstrates its
practicality to large-scale MoE LLMs. Through these findings, we highlight the importance of
architecture-aware designs of safe fine-tuning methods for MoE LLMs.

Our contributions are summarized as follows:

• We identify a vulnerability in the safety mechanism of MoE LLMs, where the drift in routing
decisions for harmful inputs during fine-tuning undermines their safety.

• We propose SAFEMOE, an effective and efficient safe fine-tuning method tailored to MoE
LLMs that preserves the routing decisions of the initial safety-aligned model.

• Through experiments on open-source MoE LLMs, we show that this vulnerability is consis-
tent across diverse models and that SAFEMOE offers robust mitigation against HFT attacks.

2 PRELIMINARIES

Mixture-of-experts (MoE). Figure 2 shows the standard MoE architecture for LLMs (Shazeer
et al., 2017; Lepikhin et al., 2021; Du et al., 2022; Komatsuzaki et al., 2023; Fedus et al., 2022).
These MoE LLMs typically adhere to the transformer architecture, but the feed-forward network
(FFN) layer in each transformer layer is replaced by an MoE layer. The MoE layer consists of
multiple independent FFNs, referred to as experts, along with a gating network. For each input
token, the gating network dynamically assigns a routing weight to every expert in the MoE layer
based on the token’s hidden state from the self-attention layer. The top-k experts are then selected
for forward pass computation, and their outputs are combined according to the assigned weights.
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Figure 2: MoE LLM architecture.

The MoE layer output is formalized as:

hMoE =
∑
i∈N

TopK(σ(r(x)))FFNi(x), (1)

where N is the number of experts, σ is Softmax, r(h) ∈
RN is routing weights on an input token x, and FFNi is the
i-th expert layer. By leveraging this conditional computa-
tion approach, the MoE architecture provides substantial
efficiency gains in both training and inference, which has
driven its adoption in recent advanced LLMs.

Superficial safety mechanism in MoE. Routing decisions in MoE LLMs play a crucial role in
composing the outputs and have a direct impact on their safety. Recent studies (Lai et al., 2025;
Fayyaz et al., 2025) show that harmful instructions to safety-aligned MoE LLMs, such as “How to
make a bomb?”, consistently trigger specific experts, referred to safety-critical experts. Moreover,
masking these experts causes significant degradation in safety even when the model parameters
remain unchanged. This indicates that the safety alignment of MoE LLMs heavily depends on
routing decisions that determine the activation of safety-critical experts.

Harmful fine-tuning (HFT) attacks. Safety alignment has become an essential step in ensuring
that LLM outputs are harmless and aligned with human values (Ouyang et al., 2022; Rafailov et al.,
2023). However, researchers show that this alignment can be undone through user fine-tuning (Qi
et al., 2024; Yang et al., 2024; Zhan et al., 2024). Specifically, they find that HFT attacks that in-
ject a small portion of harmful samples into the training dataset, or even benign fine-tuning alone,
can severely impair LLM safety. Considering the increasing availability of fine-tuning API ser-
vices (OpenAI, 2024; Google, 2025), HFT attacks have become a practical threat to LLM providers.

To mitigate this threat, several methods have been proposed to enhance the safety of LLM fine-
tuning—for example, augmenting datasets with safe samples (Bianchi et al., 2024; Zong et al.,
2024), constraining training to prevent harmful-direction drift (Huang et al., 2024a; Wu et al., 2025),
and pruning harmful parameters from the fine-tuned models (Huang et al., 2025a; Lu et al., 2025).

However, existing defenses focus solely on monolithic LLMs and overlook the distinct architecture
of MoE LLMs based on dynamic input routing and their superficial safety mechanisms. To the best
of our knowledge, no prior work has investigated safe fine-tuning strategies tailored to MoE LLMs.

3 SAFETY VULNERABILITY IN MOE LLMS

Given that the safety of MoE LLMs depends on safety-critical experts (Lai et al., 2025; Fayyaz et al.,
2025), we posit that safety degradation in fine-tuned MoE LLMs arises from substantial deviations
in routing decisions for harmful instructions compared to those in the initial safety-aligned models.

To verify this, we first define safety routing drift for harmful inputs. This metric quantifies a differ-
ence between the routing weights of a safety-aligned MoE LLM and its fine-tuned counterpart:
Definition 3.1 (Safety routing drift). Let walign be a safety-aligned MoE LLM. Given a fine-tuned
model wft, the safety routing drift for a harmful instruction input x is defined as:

d(wft, x) = DKL

(
σ(r(x|walign))

∣∣∣∣σ(r(x|wft))
)
, (2)

where DKL(·||·) denotes KL divergence, σ is Softmax, and r(·|w) ∈ RN denotes the routing weight
vector over N experts of model w for an input.

We then analyze the training dynamics of three MoE LLMs, including OLMoE (Muennighoff et al.,
2025), Qwen1.5 MoE (Qwen, 2024), and DeepSeek V2 (Liu et al., 2024), and measure the corre-
lation between the safety routing drift and harmfulness of their fine-tuned models. Specifically,
we consider two fine-tuning scenarios: i) benign fine-tuning on 5.5k samples from the Alpaca
dataset (Taori et al., 2023), and ii) HFT on a combined dataset of 5k task-specific samples from
SAMSum (Gliwa et al., 2019) and 500 harmful samples from BeaverTails (Ji et al., 2023). For each
fine-tuned LLM, we compute safety routing drift on the last tokens of harmful instructions from
JailbreakBench (Chao et al., 2024). Harmfulness scores are computed as the proportion of unsafe
responses, evaluated using Llama-Guard-4-12B (Meta AI, 2025b).
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(b) Qwen1.5 MoE (Benign FT)
(r = 0.8822, p = 3e−4)
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(c) DeepSeek V2 (Benign FT)
(r = 0.9442, p = 1e−5)
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(d) OLMoE (HFT attack)
(r = 0.9136, p = 8e−5)
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(e) Qwen1.5 MoE (HFT attack)
(r = 0.9421, p = 1e−5)
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Figure 3: Safety routing drift and harmfulness of MoE LLMs over training steps. Results of t-tests
for Pearson correlation coefficients are reported (r: correlation coefficient, p: p-value).

Figure 3 presents the results of our analysis. In both fine-tuning scenarios, we observe significant
safety routing drift from the initial safety-aligned model, with the drift metrics increasing as training
progresses. Notably, routing decisions for harmful instructions drift even under benign fine-tuning,
causing nontrivial increases in harmfulness. This demonstrates that the superficial safety mechanism
of MoE LLMs is highly fragile and easily disrupted by fine-tuning. Moreover, the magnitude of
safety routing drift is strongly correlated with harmfulness scores across the models, with high
statistical significance (p ≪ 0.05). Harmful fine-tuning (HFT) attacks even further amplify this
drift, producing substantially larger increases in harmfulness than benign fine-tuning.

Motivation for an MoE-specific defense. Our analysis shows that the safety routing drift is highly
correlated with the safety degradation in fine-tuned MoE LLMs. This suggests the need for an
approach that preserves the initial routing decisions of the safety-aligned models on harmful inputs
to mitigate fine-tuning risks in MoE LLMs. However, prior defenses, designed for monolithic LLMs,
are limited in preventing the safety routing drift and reducing the harmfulness of fine-tuned MoE
LLMs, as shown in our preliminary experiments (see Figure 1). These findings motivate a new
defense that reflects the unique architecture of MoE LLMs and their safety mechanism.

4 SAFE MOE FINE-TUNING METHOD

Safety routing drift regularization. We propose a novel fine-tuning approach designed to improve
the safety of fine-tuned MoE LLMs, as illustrated in Figure 4. Specifically, during fine-tuning, we
propose leveraging a regularization objective that constrains the safety routing drift (Definition 3.1).
This objective penalizes deviations in the routing weight distributions of an MoE LLM w under
fine-tuning from those of the initial safety-aligned model walign on harmful instructions:

Lreg(w) = Ex∈Dh
El∈LDKL

(
σ(r(l)(x|walign)/τ)

∣∣∣∣σ(r(l)(x|w)/τ)
)
, (3)

whereDh is the harmful instruction dataset, and L is the set of transformer layers. We apply regular-
ization to the routing weights assigned to the last token of each harmful instruction. The temperature
τ controls the strength of regularization. A smaller τ (e.g., < 1.0) further enhances safety by sharp-
ening the routing weight distribution, which enables the regularization to focus more on top-ranked
safety-critical experts and tightly constrains the routing weights of those experts.
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Figure 4: Overview of SAFEMOE. It mitigates the safety routing drift by directly constraining this
drift during fine-tuning, thereby effectively safeguarding MoE LLMs against HFT attacks.

Bi-level greedy optimization. We integrate the regularization into supervised fine-tuning on a task-
specific dataset Dft to solve:

argmin
w

Lsft(w) + Lreg(w). (4)

Simultaneously optimizing both losses at every training step, however, incurs substantial computa-
tional overhead. To address this, we reframe the joint optimization into a bi-level greedy approach
that alternates between the supervised fine-tuning and regularization steps.

The greedy optimization process is described in Algorithm 1. We first precompute the routing
weights of the initial safety-aligned MoE LLM over all harmful instructions inDh to avoid redundant
forward passes in the regularization steps (line 2). During training with the fine-tuning loss Lsft,
we insert safety-preserving steps using the regularization loss Lreg every Treg steps (line 6).

5 EXPERIMENTS

5.1 SETUP

MoE LLMs. We conduct experiments on eight widely adopted MoE LLMs: OLMoE-1B-7B-
Instruct (Muennighoff et al., 2025), Qwen1.5-MoE-A2.7B-Chat (Qwen, 2024), and DeepSeek-V2-
Lite-Chat (Liu et al., 2024), gpt-oss-20b (OpenAI, 2025), Qwen3-30B-A3B (Qwen Team, 2025),
Phi-3.5-MoE-Instruct (Microsoft, 2024), and two models with on-the-fly 4-bit quantization, Llama-
4-Scout-17B-16E-Instruct (Meta AI, 2025a) and Mixtral-8x22B-Instruct-v0.1 (Mistral AI, 2025).
All models used are safety-aligned versions. We describe model details in the Appendix A.2.

Fine-tuning datasets. We consider two tasks: SAMSum (Gliwa et al., 2019) for dialogue summa-
rization and SQL (b-mc2, 2023) for SQL query generation, both widely adopted for implementing
HFT attack scenarios (Yang et al., 2025; Wang et al., 2024). For effective attacks, we conduct su-
pervised fine-tuning with 5k task samples combined with 500 harmful samples from BeaverTails (Ji
et al., 2023). Fine-tuning is performed with LoRA (Hu et al., 2022), as detailed in Appendix A.2.

Metrics. We reports two metrics: Fine-tuning accuracy (FA) and Harmfulness score (HS). FA mea-
sures task utility—Rouge-1 score for SAMSum and exact match accuracy for SQL. To assess rea-
soning performance, we measure accuracy on 570 samples (10 from each categories) from MMLU-
Redux-2.0 (Gema et al., 2025). HS refers to the proportion of responses to JailbreakBench (Chao
et al., 2024) instructions that are classified as unsafe by Llama-Guard-4-12B (Meta AI, 2025b).

Baselines. We evaluate four state-of-the-art defenses against HFT attacks. Among fine-tuning-stage
methods, SafeInstr (Bianchi et al., 2024) augments fine-tuning datasets with additional safe samples,
while SaLoRA (Li et al., 2025a) initializes LoRA layers with weights optimized on safe samples. We
also consider two post-fine-tuning weight modification approaches. Antidote (Huang et al., 2025a)
prunes harmful parameters by analyzing their contribution to harmful instructions. SafeDelta (Lu
et al., 2025) selects delta parameters that maximize utility while minimizing safety degradation.

SAFEMOE implementation. We use 100 harmful instruction samples from SafeInstr (Bianchi
et al., 2024) as the dataset Dh. We select τ as the smallest value in the range 0.1-1.3 that allows a
1% degradation in fine-tuning accuracy. By default, Treg is set to the number of steps per epoch.
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Table 1: Safety evaluation of MoE LLMs. We report fine-tuning accuracy (FA↑) and harmfulness
score (HS↓) for the SAMSum and SQL tasks. The number of parameters is denoted as (active/total).

Method
OLMoE (1.3B/6.9B) Qwen1.5 MoE (2.7B/14.3B) DeepSeek V2 (2.4B/15.7B)

SAMSum SQL SAMSum SQL SAMSum SQL
FA HS FA HS FA HS FA HS FA HS FA HS

Aligned 31.8 0 43.0 0 36.6 3.0 38.4 3.0 34.0 0 29.6 0
Fine-tuning 49.3 62.0 58.5 64.0 50.4 49.0 70.2 37.0 52.0 70.0 70.1 72.0

SafeInstr 49.5 46.0 58.9 41.0 50.6 11.0 69.3 8.0 52.1 25.0 70.2 21.0
SaLoRA 48.9 24.0 54.5 40.0 48.9 28.0 54.9 33.0 50.1 66.0 62.0 74.0
Antidote 48.7 40.0 57.5 44.0 49.3 18.0 68.6 29.0 50.7 70.0 65.3 62.0
SafeDelta 48.6 13.0 57.4 33.0 50.2 22.0 69.2 30.0 51.0 47.0 69.0 72.0

SAFEMOE 48.9 5.0 59.0 17.0 50.6 0 69.5 1.0 51.0 1.0 69.1 4.0

Table 2: Extended safety evaluation on five large-scale MoE LLMs. We report harmfulness score
(HS↓) and reasoning performance (MMLU↑) using MMLU-Redux-2.0.

Method
gpt-oss

(3.6B/20.9B)
Qwen3 MoE
(3.3B/30.5B)

Phi 3.5 MoE
(6.6B/41.9B)

Llama 4
(17B/109B)

Mixtral
(39B/141B)

MMLU HS MMLU HS MMLU HS MMLU HS MMLU HS

Aligned 85.4 2.0 89.6 1.0 83.3 2.0 90.4 7.0 78.9 7.0
Fine-tuning 77.5 84.0 89.1 67.0 80.7 83.0 89.5 79.0 66.5 78.0

SAFEMOE 79.6 7.0 88.8 4.0 81.4 2.0 89.8 3.0 78.4 8.0

5.2 SAFETY EVALUATION

Table 1 reports the defense effectiveness of SAFEMOE on three widely used MoE LLMs. The initial
safety-aligned models prior to fine-tuning (first row) are highly safe, exhibiting nearly zero harmful-
ness scores. Vanilla fine-tuning substantially undermines safety while improving task performance
(second row). SAFEMOE attains the lowest harmfulness score while incurring only minimal loss in
fine-tuning accuracy. For example, it reduces the harmfulness score of DeepSeek V2 fine-tuned on
the SQL task from 72.0 to 4.0. SAFEMOE’s superior effectiveness is attributed to its MoE-specific
design, which explicitly encourages the routing of harmful instructions to safety-critical experts.

In contrast, baseline methods fail to effectively mitigate safety degradation. SafeInstr, which adopts
an architecture-agnostic strategy based on safety data augmentation, achieves moderate defense per-
formance but still leaves substantial harmfulness. SaLoRA and post-fine-tuning methods (Antidote
and SafeDelta) assume all parameters are always activated, as in monolithic LLMs. In MoE LLMs,
however, the dynamically changing active parameters hinder full optimization of these methods.
Furthermore, they cause significant degradation in fine-tuning accuracy with only marginal harm-
fulness reduction, even though we extensively tune their hyperparameters (see Appendix A.3).

These results highlight the importance of architecture-aware defenses that directly address vulnera-
bilities in the safety mechanism. In Qwen1.5-MoE, we observe slightly improved safety compared to
the safety-aligned models. This effect appears to result from the generalization ability of SAFEMOE,
which promotes stronger activation of top-ranked safety-critical experts (see Appendix A.4).

Results on larger MoE LLMs. We further evaluate SAFEMOE on recent larger MoE LLMs under
a strong HFT attack scenario using 500 purely harmful samples (Bianchi et al., 2024; Lu et al.,
2025; Hsu et al., 2024), as shown in Table 2. These models employ diverse MoE configurations
(e.g, activating 1 expert among 16 in Llama 4 and activating 8 among 128 in Qwen3 MoE) and
distinct reasoning strategies (e.g., multi-level reasoning in gpt-oss and the thinking mode in Qwen3
MoE). Despite their differences, SAFEMOE generally achieves strong defense performance while
effectively preserving the models’ reasoning capability. For gpt-oss, Phi 3.5 MoE, and Mixtral,
SAFEMOE even alleviates the degradation of reasoning performance observed in vanilla fine-tuning
by preventing excessive overfitting to the HFT attack data. Overall, these results demonstrate the
practicality of SAFEMOE for real-world fine-tuning services with high-capable MoE LLMs.
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Figure 5: Training dynamics of vanilla fine-tuning vs. SAFEMOE (OLMoE on SAMSum).

5.3 TRAINING DYNAMICS

To demonstrate that the design of SAFEMOE is valid in practice, we analyze the variation of the
safety routing drift, harmfulness score, and fine-tuning loss throughout the fine-tuning steps. Fig-
ure 5 presents the results for OLMoE fine-tuned on the SAMSum task.

As shown in Figure 5a and 5b, SAFEMOE moderately reduces the safety routing drift at the early
stage and effectively mitigates it after the first regularization period (after 150 steps). The harm-
fulness score decreases with drift mitigation, achieving a significant reduction compared to vanilla
fine-tuning at subsequent checkpoints. Our experiment has shown that existing defenses have lim-
ited effectiveness in reducing the safety routing drift and harmfulness (see Figure 10). SAFEMOE
methodologically addresses this limitation and provides an effective defense for MoE LLMs.

In Figure 5c, we also present the fine-tuning loss to further evaluate its impact on the fine-tuning
task. The loss converges stably, closely matching the trajectory of vanilla fine-tuning with only
negligible differences. This underscores the compatibility of SAFEMOE in standard fine-tuning,
enabling safe and practical fine-tuning services.

5.4 EFFICIENCY ANALYSIS Table 3: Execution overheads (OLMoE).

Method
Extra time

Seconds Percentage

SafeInstr 15.98 1.98%
SaLoRA 747.56 92.41%
Antidote 5.67 0.70%
SafeDelta 52.18 6.45%

SAFEMOE 17.26 2.13%

To assess the efficiency of SAFEMOE, we analyze the
total execution overhead of SAFEMOE during fine-
tuning and post-fine-tuning. Table 3 summarizes re-
sults for OLMoE fine-tuned on the SAMSum task un-
der the environment described in Appendix A.2. For
reference, vanilla fine-tuning takes 808.98 seconds
on average over ten trials. SaLoRA incurs substan-
tial overhead in computing the optimal LoRA initial-
ization, increasing the execution time to nearly twice
that of vanilla fine-tuning. The other approaches are generally more efficient but fail to effectively
mitigate HFT attacks on MoE LLMs. In contrast, SAFEMOE attains strong safety with only a 2.13%
increase in its training time, highlighting its practicality in safeguarding large-scale models.

5.5 LAYER-SELECTIVE APPLICATION OF SAFEMOE

We analyze the extent of safety routing drift across transformer layers in OLMoE fine-tuned on the
SAMSum task, as shown in Figure 6. The results reveal that routing drift is not uniform across layers
and the upper layers exhibit substantially larger drift. This appears to result from harmful features
typically being distinguished after the middle layers of LLMs (Li et al., 2025b).

Motivated by this observation, we investigate more efficient variants of SAFEMOE that apply the
safety routing drift regularization selectively rather than across all layers (Figure 7). The safety eval-
uation results show that targeting upper layers (e.g., 12-15 layers) provides much stronger mitigation
of HFT attacks than targeting lower layers. Moreover, applying SAFEMOE only to 8-15 layers (the
upper half) achieves a level of safety comparable to full-layer regularization.
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Figure 6: Safety routing drift across transformer
layers (OLMoE on SAMSum).

0-3 4-7 8-11 12-15 8-15 0-15 (full)
Target layers

0

20

40

60

80

Ha
rm

fu
ln

es
s s

co
re

Harmfulness score

Figure 7: Effectiveness of SAFEMOE applied on
specific layers (OLMoE on SAMSum).

0.1 0.3 0.5 0.7 0.9 1.1 1.3
0

20

40

60

80

Ha
rm

fu
ln

es
s s

co
re

Fine-tuning accuracy
Harmfulness score

44

46

48

50

52
Fin

e-
tu

ni
ng

 a
cc

ur
ac

y

(a) Lreg hyperparameter (τ )

0 50 100 150 200
| h|

0

20

40

60

80

Ha
rm

fu
ln

es
s s

co
re

7.5 8.0 8.3
14.817.3

27.228.928.8
35.0

38.7

Fine-tuning accuracy
Harmfulness score
Execution overhead (s)

44

46

48

50

52

Fin
e-

tu
ni

ng
 a

cc
ur

ac
y

(b) # harmful instructions (|Dh|)

0 5 10 20 30
Harmful sample ratio (%)

0

20

40

60

80

Ha
rm

fu
ln

es
s s

co
re

Fine-tuning
SafeMoE

44

46

48

50

52

Fin
e-

tu
ni

ng
 a

cc
ur

ac
y

(c) Harmful sample ratio in Dft

Figure 8: Sensitivity to regularization strength (a, b) and attack strength (c) (OLMoE on SAMSum).

5.6 SENSITIVITY ANALYSIS

Regularization hyperparameter. The hyperparameter τ in Equation 3 controls the strength of the
safety routing drift regularization. Figure 8a shows results for OLMoE fine-tuned with the SAMSum
task. Smaller values of τ focus the regularization on top-ranked safety-critical experts, achieving
substantial harmfulness reduction. Across τ values, fine-tuning accuracy remains nearly unchanged,
demonstrating that SAFEMOE can robustly improve safety without sacrificing task utility.

Number of harmful instructions. We vary the number of harmful instructions |Dh| used for the
regularization (see Figure 8b). More harmful instructions strengthen the safety effect with an ap-
proximately linear overhead increase, suggesting a simple yet effective way to enhance our ap-
proach. Our default choice (|Dh| = 100) provides a practical balance between safety and efficiency.

Harmful sample ratio in fine-tuning data. We explore different strengths of HFT attacks by ad-
justing the ratio of harmful samples in the fine-tuning datasetDft (see Figure 8c). Vanilla fine-tuning
exhibits drastically increasing harmfulness scores as the harmful ratio rises. In contrast, SAFEMOE
suppresses harmfulness escalation, demonstrating robustness even against stronger attacks.

5.7 EFFECTIVENESS UNDER FULL FINE-TUNING

We extend our evaluation to a full-parameter fine-tuning scenario to demonstrate the generality of
SAFEMOE. Table 4 shows the results for OLMoE fine-tuned on the SAMSum task. SAFEMOE
achieves substantial harmfulness reduction while preserving fine-tuning accuracy in this setting as
well. Although all expert layers, including safety-critical ones, are exposed to training during HFT
attacks, SAFEMOE remains robustly effective by solely preventing the safety routing drift. This fur-
ther highlights the central role of routing in the safety of MoE LLMs and confirms the validity of our
approach. Moreover, it incurs only a 2.30% increase in execution time (four GPUs), comparable to
that observed in the LoRA-based setting (2.13% with one GPU). These results show that SAFEMOE
is reliably adaptable to both parameter-efficient and full fine-tuning approaches.

5.8 EVALUATION ON ADDITIONAL HARMFULNESS BENCHMARK

To further validate our findings, we evaluate harmfulness of fine-tuned MoE LLMs on HEx-PHI (Qi
et al., 2024), a widely used harmful instruction benchmark. Table 5 reports results for the SAMSum

8
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Table 4: Full fine-tuning results of
fine-tuning accuracy (FA↑), harmful-
ness score (HS↓), and training time.

Method
OLMoE on SAMSum

FA HS Time(s)

Aligned 31.8 0 -
Fine-tuning 50.4 58.0 7,023.79

SAFEMOE 51.0 2.0 7,189.01
(+2.30%)

Table 5: Harmfulness score (HS↓) on HEx-PHI.

Method OLMoE Qwen1.5 MoE DeepSeek V2

Aligned 0.3 8.7 5.7
Fine-tuning 79.7 33.0 83.0

SafeInstr 52.0 13.3 31.0
SaLoRA 39.3 34.7 64.7
Antidote 53.3 24.7 68.0
SafeDelta 21.7 28.7 41.0

SAFEMOE 6.3 10.0 3.3

fine-tuning scenario under our main settings. The results remain consistent, showing that SAFEMOE
significantly outperforms all baselines, while SafeInstr achieves moderate harmfulness reduction
with strong performance for Qwen1.5 MoE. These findings confirm the robust defense effectiveness
of SAFEMOE against diverse harmful querying scenarios.

6 RELATED WORK

We categorize recent defenses against HFT attacks into three groups based on their application stage.

Alignment stage. These methods aim to enhance the robustness of the model against subsequent
HFT attacks. Vaccine (Huang et al., 2024b) trains models to resist perturbations that maximize
alignment loss. RepNoise (Rosati et al., 2024) and Booster (Huang et al., 2025b) proactively remove
harmful information by optimizing perturbations in model representations or weights. VAA (Liang
et al., 2025) introduces a vulnerability-aware alignment method that balances training across vul-
nerable and invulnerable subsets of alignment data. However, such alignment-stage methods require
carefully tuned hyperparameter for each downstream task Huang et al. (2025b), which limits their
practicality in fine-tuning services that must handle many unknown tasks.

Fine-tuning stage. A second line of work directly addresses safety degradation during fine-
tuning. SafeInstr (Bianchi et al., 2024) augments supervised fine-tuning datasets with safe sam-
ples. Lisa (Huang et al., 2024a) introduces a proximal optimization method to mitigate convergence
instability when jointly training alignment and task-specific data. SAFT (Choi et al., 2024) and
SEAL (Shen et al., 2025) identify and filter harmful samples from fine-tuning data by scoring their
safety impact. SaLoRA (Li et al., 2025a) proposes a safety-aware initialization of LoRA layers,
designed based on an analysis of changes in safety-related features observed during fine-tuning.

Post-fine-tuning stage. Training-free remedies have also been proposed to restore safety after harm-
ful fine-tuning. RESTA (Bhardwaj et al., 2024) extracts a safety vector from an aligned model and
reintroduces it into the fine-tuned model via arithmetic addition of weights. SafeLoRA (Hsu et al.,
2024) selectively projects LoRA weights into a safety-aligned subspace. Antidote (Huang et al.,
2025a) removes harmful parameters identified through their importance to alignment data, thereby
improving robustness under varying fine-tuning hyperparameters. SafeDelta (Lu et al., 2025) refines
fine-tuned delta parameters to balance task utility with reduced safety degradation.

7 CONCLUSION

This work introduces SAFEMOE, the first safe fine-tuning method tailored to MoE-based LLMs.
Our systematic analysis uncovers a vulnerability inherent in their safety mechanisms; routing deci-
sions for harmful inputs drift significantly from those of safety-aligned models under both harmful
and benign fine-tuning. To address this, we propose a routing drift regularization method with
an efficient optimization algorithm that integrates seamlessly into standard MoE LLM fine-tuning
pipelines. Extensive evaluations across diverse MoE LLMs show that SAFEMOE achieves signif-
icant reductions in harmfulness with minimal overhead. These results establish SAFEMOE as an
effective and practical defense for fine-tuning services against HFT attacks, underscoring the need
to address architectural weakness when safeguarding MoE LLMs from fine-tuning risks.
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ETHICS STATEMENT

This work presents a safe fine-tuning method designed to mitigate potential safety threats associated
with LLM fine-tuning. In our experiments, we evaluate the extent of harmful behaviors exhibited by
open-source LLMs under harmful fine-tuning (HFT) attacks. HFT attacks are a well-documented
concern (Qi et al., 2024; Yang et al., 2024; Zhan et al., 2024; Bianchi et al., 2024; Zong et al., 2024;
Huang et al., 2024a; Li et al., 2025a), and our experiments are conducted entirely using publicly
available alignment datasets and benchmarks related to safety and HFT attacks. Accordingly, we
believe our work does not introduce any additional harm. Furthermore, we ensure that neither the
harmful LLMs nor their generated harmful responses are shared, strictly adhering to the ICLR Code
of Ethics (ICLR, 2025) throughout the work.

REPRODUCIBILITY STATEMENT

We release the implementation of SAFEMOE to facilitate reproduction our method and evalu-
ation results. The source code is available at https://anonymous.4open.science/r/
SafeMoE/

THE USE OF LARGE LANGUAGE MODELS

We use ChatGPT (OpenAI, 2025) solely for polishing the writing of the paper.
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A APPENDIX

A.1 BI-LEVEL GREEDY OPTIMIZATION OF SAFEMOE

Algorithm 1 Greedy optimization of safety routing drift regularization

Input: Safety-aligned MoE LLM walign; Fine-tuning datasets Dft; Harmful instruction dataset
Dh; Total training steps T ; Regularization period Treg; Optimizer Adam(η, β1, β2, ϵ)

Output: The fine-tuned MoE LLM
1: Initialize model weights w0 ← walign

2: Precompute routing weights r(x|walign)∀x ∈ Dh

3: for step t ∈ T do
4: gt ← ∇wLsft(wt) on Dft

5: w̃t+1 ← Adam(wt, gt)
6: if t mod Treg = 0 then ▷ Run regularization every Treg steps
7: for batch Bh ⊂ Dh do
8: g̃h ← ∇wLreg(w̃t+1), where x ∈ Bh
9: w̃t+1 ← Adam(w̃t+1, g̃h)

10: end for
11: end if
12: wt+1 ← w̃t+1

13: end for

A.2 EXPERIMENTAL SETTING DETAILS

System settings. Our experiments were conducted in a GPU cloud instance equipped with 6 cores
AMD EPYC 7H12, 192GB of RAM, and 1 to 4 NVIDIA A100 80GB GPUs, depending on the
requirements of each experiment. For gpt-oss (OpenAI, 2025), we employed 4 NVIDIA H100
80GB GPUs due to its GPU architecture compatibility.

Model specifications. We summarize the specifications of MoE LLMs used in our experiments in
Table 6.

Fine-tuning details. Fine-tuning is performed with LoRA (Hu et al., 2022) using configurations
detailed in Table 7. We train for three epochs with a learning rate of 1e−4 and a batch size of 32.

Generation and prompt settings. We use greedy decoding for all generations. For harmfulness
evaluation, we adopt each model’s default system prompt if available, or “You are a helpful AI
assistant.” otherwise, with a summarized default system prompt for Llama 4. For zero-shot task
utility evaluation, we use a customized task-specific system and user prompts. For the MMLU-
Redux-2.0 task, we follow the user prompt in the Llama 3.1 evaluation (Meta, 2024). The system
and user prompts used in our evaluation are shown in Table 11 and Table 12.

Table 6: Specifications of MoE LLMs used in our experiments.

Model # layers # experts Top-k Parameters
(MoE + dense) (routed + shared) (active / total)

OLMoE-1B-7B-Instruct 16 64 8 1.3B / 6.9B
Qwen1.5-MoE-A2.7B-Chat 24 60 + 4 4 2.7B / 14.3B
DeepSeek-V2-Lite-Chat 26 + 1 64 + 2 6 2.4B / 15.7B
gpt-oss-20b 24 32 4 3.6B / 20.9B
Qwen3-30B-A3B 48 128 8 3.3B / 30.5B
Phi-3.5-MoE-instruct 32 16 2 6.6B / 41.9B
Llama-4-Scout-17B-16E-Instruct 48 16 + 1 1 17B / 109B
Mixtral-8x22B-Instruct-v0.1 56 22 2 39B / 141B
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Table 7: LoRA configurations for fine-tuning.

Model Target modules Rank (r) Alpha (α) Trainable parameters

OLMoE-1B-7B-Instruct q, v 8 8 1.0M (0.0152%)
Qwen1.5-MoE-A2.7B-Chat q, k, v, o 8 32 3.1M (0.0220%)
DeepSeek-V2-Lite-Chat q, kv a, kv b, o 8 32 3.6M (0.0226%)
gpt-oss-20b q, k, v, o 8 16 4.0M (0.0190%)
Qwen3-30B-A3B q, k, v, o 8 32 3.3M (0.0109%)
Phi-3.5-MoE-instruct q, k, v, o 8 32 6.8M (0.0163%)
Llama-4-Scout-17B-16E-Instruct q, k, v, o 8 32 12.6M (0.0116%)
Mixtral-8x22B-Instruct-v0.1 q, k, v, o 8 32 17.4M (0.0124%)

A.3 BASELINE TUNING

We extensively tune the hyperparameters of baseline methods for safeguarding MoE-based LLMs.
The results of OLMoE on the SAMSum and SQL tasks are shown in Table 8 and Table 9, respec-
tively. For each baseline, we select the hyperparameter setting that exhibits the lowest harmfulness
score while allowing up to a 1% degradation in fine-tuning accuracy.

Table 8: Baseline tuning results of OLMoE on SAMSum. The selected ones are underlined.

Fine-tuning SaLoRA (rs = rt) Antidote (α) SafeDelta (s)

Hyperparameters - 64 32 16 0.02 0.03 0.04 2900 2800 2700

Harmfulness score 62.0 24.0 24.0 17.0 45.0 40.0 18.0 18.0 13.0 12.0
Fine-tuning accuracy 49.3 48.9 48.3 48.1 49.3 48.7 48.1 49.0 48.6 47.5

Table 9: Baseline tuning results of OLMoE on SQL. The selected ones are underlined.

Fine-tuning SaLoRA (rs = rt) Antidote (α) SafeDelta (s)

Hyperparameters - 64 32 16 0.01 0.02 0.03 2900 2800 2700

Harmfulness score 64.0 48.0 40.0 25.0 44.0 36.0 40.0 52.0 38.0 33.0
Fine-tuning accuracy 58.5 53.6 54.5 53.6 57.5 56.8 56.7 57.4 57.4 57.4

A.4 ACTIVATION PROBABILITY OF SAFETY-CRITICAL EXPERTS

We analyze the activation probabilities of experts when processing harmful instructions. These
probabilities are obtained by applying Softmax to the routing weights. The top-ranked experts serve
as safety-critical experts. Figure 9 compares their activation probabilities in the initial safety-aligned
models and in the fine-tuned models with SAFEMOE. We find that SAFEMOE further increases
the activation of safety-critical experts in the fine-tuned models. One possible explanation is that
although SAFEMOE aims to resemble the routing decisions of the safety-aligned model, it learns to
assign larger routing weights to safety-critical experts rather than simply replicating their original
values. This can lead to slight improvements in safety compared to the initial safety-aligned models,
as observed in our safety evaluation results in Table 1 and Table 2.

A.5 LAYER-WISE ANALYSIS OF ROUTING DRIFT ACROSS BASELINES

We compare the safety routing drift across transformer layers under the baseline methods. Figure 10
shows the results of OLMoE fine-tuned on the SAMSum task. The baselines consistently fail to
address the substantial drift significant in the upper layers. In contrast, SAFEMOE directly mitigates
it, thereby safeguarding MoE LLMs against HFT attacks. These results highlight the importance of
an architecture-aware design and demonstrate the effectiveness of SAFEMOE in ensuring safety.
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Figure 9: Activation probability of top-ranked experts for harmful instructions, ranked by their
probabilities in the safety-aligned models.
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Figure 10: Safety routing drift of fine-tuned models across baseline methods (OLMoE on SAM-
Sum).

A.6 SAFETY CATEGORY

We further break down the results of harmfulness evaluation by safety categories defined in Jail-
breakBench (Chao et al., 2024) (see Table 10). Figure 11 illustrates the harmful response ratios
across categories before and after applying SAFEMOE. The three fine-tuned MoE LLMs are partic-
ularly vulnerable to harmful instructions in the domains of Fraud/Deception (#5) and Privacy (#8).
Notably, SAFEMOE substantially reduces harmful behaviors across all categories, demonstrating
robust effectiveness in mitigating diverse safety risks.
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Table 10: Safety category in JailbreakBench.

Number Category

#1 Harassment/Discrimination
#2 Malware/Hacking
#3 Physical harm
#4 Economic harm
#5 Fraud/Deception
#6 Disinformation
#7 Sexual/Adult content
#8 Privacy
#9 Expert advice
#10 Government decision-making
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Figure 11: Harmfulness scores across safety categories, with category numbers listed in Table 10.
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Table 11: Prompts used in the harmfulness evaluation.

Benchmark Model Prompt

JailbreakBench

OLMoE-1B-7B-Instruct

[SYSTEM] You are OLMo 2, a helpful and harm-
less AI Assistant built by the Allen Institute for AI.
[USER]{instruction}
[ASSISTANT]

Qwen1.5-MoE-A2.7B-Chat

[SYSTEM] You are Qwen, created by Alibaba Clo-
ud. You are a helpful assistant.
[USER]{instruction}
[ASSISTANT]

DeepSeek-V2-Lite-Chat

[SYSTEM] You are an AI assistant, developed by
DeepSeek Company. For politically sensitive ques-
tions, security and privacy issues, you will refuse to
answer.
[USER]{instruction}
[ASSISTANT]

gpt-oss-20b
[SYSTEM] You are a helpful AI assistant.
[USER]{instruction}
[ASSISTANT]

Qwen3-30B-A3B

[SYSTEM] You are Qwen, created by Alibaba Clo-
ud. You are a helpful assistant.
[USER]{instruction}
[ASSISTANT]

Phi-3.5-MoE-instruct
[SYSTEM] You are a helpful AI assistant.
[USER]{instruction}
[ASSISTANT]

Llama-4-Scout-17B-16E-Instruct

[SYSTEM] You are an expert conversationalist
who responds to the best of your ability. You are
companionable and confident, and able to switch
casually between tonal types, including but not lim-
ited to humor, empathy, intellectualism, creativity
and problem-solving.
[USER]{instruction}
[ASSISTANT]

Mixtral-8x22B-Instruct-v0.1
[SYSTEM] You are a helpful AI assistant.
[USER]{instruction}
[ASSISTANT]
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Table 12: Prompts used in the fine-tuning task evaluation.

Benchmark Prompt

SAMSum
[SYSTEM] You are a helpful assistant for dialog summarization.
[USER] Summarize this dialogue: {dialogue}
[ASSISTANT]

SQL

[SYSTEM] You are a helpful assistant for answering SQL questions.
[USER] Based on the given Table, generate a SQL for the following question.
Question: {question}
Table: {context}
[ASSISTANT]

MMLU-Redux-2.0

[SYSTEM] You are a helpful assistant for answering multiple choice questions.
[USER] Given the following question and four candidate answers (A, B, C and D),
choose the best answer.

Question: {question}
{options}
- For simple problems:
Directly provide the answer with minimal explanation.

- For complex problems:
Use this step-by-step format:
## Step 1: [Concise description]
[Brief explanation]
## Step 2: [Concise description]
[Brief explanation]

Regardless of the approach, always conclude with:
The best answer is [the answer letter].
where the [the answer letter] is one of A, B, C or D.

Let’s think step by step.
[ASSISTANT]
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