SAFEMOE: SAFE FINE-TUNING FOR MOE LLMS BY ALIGNING HARMFUL INPUT ROUTING

Anonymous authors

000

001

002003004

010 011

012

013

014

016

017

018

019

021

024

025

026

027

028

031

033

034

037

038

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Recent large language models (LLMs) have increasingly adopted the Mixture-of-Experts (MoE) architecture for efficiency. MoE-based LLMs heavily depend on a superficial safety mechanism in which harmful inputs are routed safety-critical experts. However, our analysis reveals that routing decisions for harmful inputs drift significantly after fine-tuning, exposing a critical vulnerability to harmful fine-tuning (HFT) attacks. Existing defenses, primarily designed for monolithic LLMs, are less effective for MoE LLMs as they fail to prevent drift in harmful input routing. To address this limitation, we propose SAFEMOE, a safe fine-tuning method tailored to MoE LLMs. SAFEMOE directly mitigates routing drift by penalizing the gap between the routing weights of a fine-tuned model and those of the initial safety-aligned model, thereby preserving the safety-aligned routing of harmful inputs to safety-critical experts. Experiments on open-source MoE LLMs ranging from 7B to 141B parameters demonstrate that SAFEMOE effectively mitigates HFT attacks, reducing the harmfulness score of OLMoE from 62.0 to 5.0, for example, while maintaining task utility within 1% degradation and incurring only 2% overhead. It significantly outperforms state-of-the-art defense methods for safeguarding LLM fine-tuning and remains effective in recent largescale MoE LLMs such as gpt-oss and Llama 4. Our implementation is available at https://anonymous.4open.science/r/SafeMoE.

1 Introduction

Mixture-of-Experts (MoE) (Shazeer et al., 2017) is a sparse model architecture that improves efficiency by dynamically routing inputs to a subset of expert layers, which have gained adoption for large language models (LLMs). Recent MoE-based LLMs, including gpt-oss (OpenAI, 2025), Llama 4 (Meta AI, 2025a), Qwen3 MoE (Qwen Team, 2025), and DeepSeek-R1 (Guo et al., 2025), have achieved surpassing performance on a wide range of challenging tasks, outperforming their monolithic counterparts. However, recent studies (Lai et al., 2025; Fayyaz et al., 2025) show that the safety of MoE LLMs heavily relies on certain *safety-critical* experts and intentionally manipulating routing decisions to disable these experts leads to significant increases in harmfulness. This superficial safety mechanism leaves MoE LLMs particularly susceptible to harmful fine-tuning (HFT) attacks (Qi et al., 2024; Yang et al., 2024; Zhan et al., 2024). These attacks are designed to compromise the safety of a target LLM by injecting only a limited number of harmful samples into the training dataset, rendering a practical yet severe threat to commercial LLM providers given the growing prevalence of fine-tuning API services (OpenAI, 2024; Google, 2025).

Our systematic analysis of MoE LLMs uncovers a novel architectural vulnerability in their routing mechanism, which determines which expert layers should be activated for processing inputs. We find that routing decisions for harmful inputs drift substantially from those of the initial safety-aligned model under both harmful and benign fine-tuning, a phenomenon we term *safety routing drift*. This drift impedes the activation of safety-critical experts and thereby undermines the model's safety. Given the reliance of MoE LLM safety on routing aligned toward these safety-critical experts, preserving the initial routing decisions of the safety-aligned models is important to safeguarding MoE LLMs against HFT attacks. However, existing defenses (Huang et al., 2025b; Li et al., 2025a; Lu et al., 2025) are primarily designed for the monolithic transformer architecture and overlook the superficial safety mechanisms of MoE LLMs, exhibiting limitations in mitigating fine-tuning risks.

In support of this, we conduct a preliminary experiment on the training dynamics of existing defenses under HFT attacks, including fine-tuning-stage methods (Bianchi et al., 2024; Li et al., 2025a) and post-fine-tuning methods (Huang et al., 2025a; Lu et al., 2025), as shown in Figure 1. The safety routing drift is quantified as the deviation in routing weights on harmful instructions between

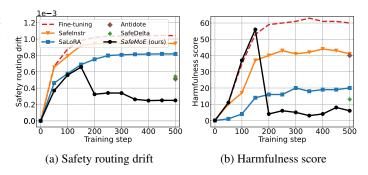


Figure 1: Effectiveness of defenses against HFT attacks.

the fine-tuned and safety-aligned models. In MoE LLMs, these state-of-the-art defenses become less effective in preventing the safety routing drift and reducing harmfulness of fine-tuned models.

To address this limitation, we propose SAFEMOE, the first safe fine-tuning method tailored to safe-guard MoE-based LLMs, which directly addresses the vulnerability in their safety mechanisms. Specifically, we design a regularization technique that aligns the routing decisions of a fine-tuned MoE LLM with those of the initial safety-aligned model by minimizing the KL-divergence of their routing weights on harmful inputs during fine-tuning. This encourages the fine-tuned model to direct harmful inputs to safety-critical experts as in the safety-aligned model. Accordingly, the fine-tuned model withstands the effects of HFT attacks while attaining comparable task utility. To reduce the overhead of SAFEMOE, we adopt a greedy optimization strategy that alternates between the fine-tuning and regularization steps rather than optimizing both simultaneously.

We conduct extensive experiments across eight widely used MoE LLMs, ranging from 7B to 141B parameters. Our safety evaluation results demonstrate the surpassing effectiveness and robustness of SAFEMOE in safeguarding MoE LLMs against fine-tuning risks. For example, it effectively mitigates an HFT attack that raises the harmfulness score of OLMoE (7B) to 62.0, reducing it to 5.0 with only a 1% degradation in the task utility, outperforming state-of-the-art defenses significantly. This notable effectiveness remains consistent across diverse MoE LLMs, including larger and more advanced models such as gpt-oss and Llama 4, while maintaining their reasoning performance.

Based on an in-depth analysis of training dynamics, we confirm that our regularization technique is methodologically valid in preventing the safety routing drift and driving harmfulness reduction. We note that SAFEMOE is highly efficient, comparable to the baseline methods, with only approximately 2% training time overhead in both LoRA and full fine-tuning, which demonstrates its practicality to large-scale MoE LLMs. Through these findings, we highlight the importance of architecture-aware designs of safe fine-tuning methods for MoE LLMs.

Our contributions are summarized as follows:

- We identify a vulnerability in the safety mechanism of MoE LLMs, where the drift in routing
 decisions for harmful inputs during fine-tuning undermines their safety.
- We propose SAFEMOE, an effective and efficient safe fine-tuning method tailored to MoE LLMs that preserves the routing decisions of the initial safety-aligned model.
- Through experiments on open-source MoE LLMs, we show that this vulnerability is consistent across diverse models and that SAFEMOE offers robust mitigation against HFT attacks.

2 Preliminaries

Mixture-of-experts (**MoE**). Figure 2 shows the standard MoE architecture for LLMs (Shazeer et al., 2017; Lepikhin et al., 2021; Du et al., 2022; Komatsuzaki et al., 2023; Fedus et al., 2022). These MoE LLMs typically adhere to the transformer architecture, but the feed-forward network (FFN) layer in each transformer layer is replaced by an MoE layer. The MoE layer consists of multiple independent FFNs, referred to as *experts*, along with a gating network. For each input token, the gating network dynamically assigns a *routing weight* to every expert in the MoE layer based on the token's hidden state from the self-attention layer. The top-k experts are then selected for forward pass computation, and their outputs are combined according to the assigned weights.

The MoE layer output is formalized as:

$$h_{\text{MoE}} = \sum_{i \in N} \text{TopK}(\sigma(\boldsymbol{r}(x))) \text{FFN}_i(x),$$
 (1)

where N is the number of experts, σ is Softmax, $r(h) \in \mathbb{R}^N$ is routing weights on an input token x, and FFN_i is the i-th expert layer. By leveraging this conditional computation approach, the MoE architecture provides substantial efficiency gains in both training and inference, which has driven its adoption in recent advanced LLMs.

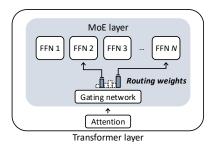


Figure 2: MoE LLM architecture.

Superficial safety mechanism in MoE. Routing decisions in MoE LLMs play a crucial role in composing the outputs and have a direct impact on their safety. Recent studies (Lai et al., 2025; Fayyaz et al., 2025) show that harmful instructions to safety-aligned MoE LLMs, such as "How to make a bomb?", consistently trigger specific experts, referred to safety-critical experts. Moreover, masking these experts causes significant degradation in safety even when the model parameters remain unchanged. This indicates that the safety alignment of MoE LLMs heavily depends on routing decisions that determine the activation of safety-critical experts.

Harmful fine-tuning (HFT) attacks. Safety alignment has become an essential step in ensuring that LLM outputs are harmless and aligned with human values (Ouyang et al., 2022; Rafailov et al., 2023). However, researchers show that this alignment can be undone through user fine-tuning (Qi et al., 2024; Yang et al., 2024; Zhan et al., 2024). Specifically, they find that HFT attacks that inject a small portion of harmful samples into the training dataset, or even benign fine-tuning alone, can severely impair LLM safety. Considering the increasing availability of fine-tuning API services (OpenAI, 2024; Google, 2025), HFT attacks have become a practical threat to LLM providers.

To mitigate this threat, several methods have been proposed to enhance the safety of LLM fine-tuning—for example, augmenting datasets with safe samples (Bianchi et al., 2024; Zong et al., 2024), constraining training to prevent harmful-direction drift (Huang et al., 2024a; Wu et al., 2025), and pruning harmful parameters from the fine-tuned models (Huang et al., 2025a; Lu et al., 2025).

However, existing defenses focus solely on monolithic LLMs and overlook the distinct architecture of MoE LLMs based on dynamic input routing and their superficial safety mechanisms. To the best of our knowledge, no prior work has investigated safe fine-tuning strategies tailored to MoE LLMs.

3 SAFETY VULNERABILITY IN MOE LLMS

Given that the safety of MoE LLMs depends on safety-critical experts (Lai et al., 2025; Fayyaz et al., 2025), we posit that safety degradation in fine-tuned MoE LLMs arises from substantial deviations in routing decisions for harmful instructions compared to those in the initial safety-aligned models.

To verify this, we first define *safety routing drift* for harmful inputs. This metric quantifies a difference between the routing weights of a safety-aligned MoE LLM and its fine-tuned counterpart:

Definition 3.1 (Safety routing drift). Let w_{align} be a safety-aligned MoE LLM. Given a fine-tuned model w_{ft} , the safety routing drift for a harmful instruction input x is defined as:

$$d(\boldsymbol{w}_{ft}, x) = D_{KL} \left(\sigma(\boldsymbol{r}(x|\boldsymbol{w}_{align})) \mid \sigma(\boldsymbol{r}(x|\boldsymbol{w}_{ft})) \right), \tag{2}$$

where $D_{KL}(\cdot||\cdot)$ denotes KL divergence, σ is Softmax, and $\mathbf{r}(\cdot|\mathbf{w}) \in \mathbb{R}^N$ denotes the routing weight vector over N experts of model \mathbf{w} for an input.

We then analyze the training dynamics of three MoE LLMs, including OLMoE (Muennighoff et al., 2025), Qwen1.5 MoE (Qwen, 2024), and DeepSeek V2 (Liu et al., 2024), and measure the correlation between the safety routing drift and harmfulness of their fine-tuned models. Specifically, we consider two fine-tuning scenarios: i) benign fine-tuning on 5.5k samples from the Alpaca dataset (Taori et al., 2023), and ii) HFT on a combined dataset of 5k task-specific samples from SAMSum (Gliwa et al., 2019) and 500 harmful samples from BeaverTails (Ji et al., 2023). For each fine-tuned LLM, we compute safety routing drift on the last tokens of harmful instructions from JailbreakBench (Chao et al., 2024). Harmfulness scores are computed as the proportion of *unsafe* responses, evaluated using Llama-Guard-4-12B (Meta AI, 2025b).

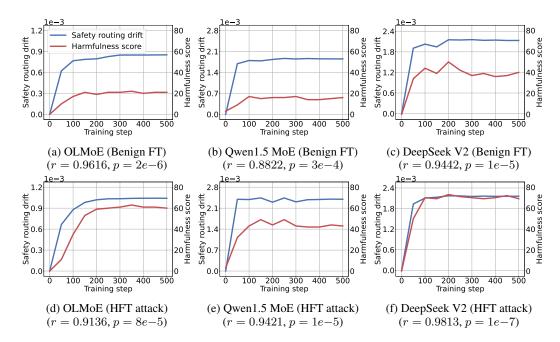


Figure 3: Safety routing drift and harmfulness of MoE LLMs over training steps. Results of t-tests for Pearson correlation coefficients are reported (r: correlation coefficient, p: p-value).

Figure 3 presents the results of our analysis. In both fine-tuning scenarios, we observe significant safety routing drift from the initial safety-aligned model, with the drift metrics increasing as training progresses. Notably, routing decisions for harmful instructions drift even under benign fine-tuning, causing nontrivial increases in harmfulness. This demonstrates that the superficial safety mechanism of MoE LLMs is highly fragile and easily disrupted by fine-tuning. Moreover, the magnitude of safety routing drift is strongly correlated with harmfulness scores across the models, with high statistical significance ($p \ll 0.05$). Harmful fine-tuning (HFT) attacks even further amplify this drift, producing substantially larger increases in harmfulness than benign fine-tuning.

Motivation for an MoE-specific defense. Our analysis shows that the safety routing drift is highly correlated with the safety degradation in fine-tuned MoE LLMs. This suggests the need for an approach that preserves the initial routing decisions of the safety-aligned models on harmful inputs to mitigate fine-tuning risks in MoE LLMs. However, prior defenses, designed for monolithic LLMs, are limited in preventing the safety routing drift and reducing the harmfulness of fine-tuned MoE LLMs, as shown in our preliminary experiments (see Figure 1). These findings motivate a new defense that reflects the unique architecture of MoE LLMs and their safety mechanism.

4 SAFE MOE FINE-TUNING METHOD

Safety routing drift regularization. We propose a novel fine-tuning approach designed to improve the safety of fine-tuned MoE LLMs, as illustrated in Figure 4. Specifically, during fine-tuning, we propose leveraging a regularization objective that constrains the safety routing drift (Definition 3.1). This objective penalizes deviations in the routing weight distributions of an MoE LLM \boldsymbol{w} under fine-tuning from those of the initial safety-aligned model \boldsymbol{w}_{align} on harmful instructions:

$$\mathcal{L}_{reg}(\boldsymbol{w}) = \mathbb{E}_{x \in \mathcal{D}_h} \mathbb{E}_{l \in L} D_{KL} \left(\sigma(\boldsymbol{r}^{(l)}(x|\boldsymbol{w}_{align})/\tau) \mid |\sigma(\boldsymbol{r}^{(l)}(x|\boldsymbol{w})/\tau) \right), \tag{3}$$

where \mathcal{D}_h is the harmful instruction dataset, and L is the set of transformer layers. We apply regularization to the routing weights assigned to the last token of each harmful instruction. The temperature τ controls the strength of regularization. A smaller τ (e.g., < 1.0) further enhances safety by sharpening the routing weight distribution, which enables the regularization to focus more on top-ranked safety-critical experts and tightly constrains the routing weights of those experts.

Figure 4: Overview of SAFEMOE. It mitigates the safety routing drift by directly constraining this drift during fine-tuning, thereby effectively safeguarding MoE LLMs against HFT attacks.

Bi-level greedy optimization. We integrate the regularization into supervised fine-tuning on a task-specific dataset \mathcal{D}_{ft} to solve:

$$\underset{\boldsymbol{w}}{\operatorname{arg\,min}} \ \mathcal{L}_{\operatorname{sft}}(\boldsymbol{w}) + \mathcal{L}_{\operatorname{reg}}(\boldsymbol{w}). \tag{4}$$

Simultaneously optimizing both losses at every training step, however, incurs substantial computational overhead. To address this, we reframe the joint optimization into a bi-level greedy approach that alternates between the supervised fine-tuning and regularization steps.

The greedy optimization process is described in Algorithm 1. We first precompute the routing weights of the initial safety-aligned MoE LLM over all harmful instructions in \mathcal{D}_h to avoid redundant forward passes in the regularization steps (line 2). During training with the fine-tuning loss \mathcal{L}_{sft} , we insert safety-preserving steps using the regularization loss \mathcal{L}_{reg} every T_{reg} steps (line 6).

5 EXPERIMENTS

5.1 SETUP

216

217

218

219

220 221

222

223

224

225226

227228229

230

231

232233

234

235

236

237

238

239

240241242

243244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

MoE LLMs. We conduct experiments on eight widely adopted MoE LLMs: OLMoE-1B-7B-Instruct (Muennighoff et al., 2025), Qwen1.5-MoE-A2.7B-Chat (Qwen, 2024), and DeepSeek-V2-Lite-Chat (Liu et al., 2024), gpt-oss-20b (OpenAI, 2025), Qwen3-30B-A3B (Qwen Team, 2025), Phi-3.5-MoE-Instruct (Microsoft, 2024), and two models with on-the-fly 4-bit quantization, Llama-4-Scout-17B-16E-Instruct (Meta AI, 2025a) and Mixtral-8x22B-Instruct-v0.1 (Mistral AI, 2025). All models used are safety-aligned versions. We describe model details in the Appendix A.2.

Fine-tuning datasets. We consider two tasks: SAMSum (Gliwa et al., 2019) for dialogue summarization and SQL (b-mc2, 2023) for SQL query generation, both widely adopted for implementing HFT attack scenarios (Yang et al., 2025; Wang et al., 2024). For effective attacks, we conduct supervised fine-tuning with 5k task samples combined with 500 harmful samples from BeaverTails (Ji et al., 2023). Fine-tuning is performed with LoRA (Hu et al., 2022), as detailed in Appendix A.2.

Metrics. We reports two metrics: *Fine-tuning accuracy (FA)* and *Harmfulness score (HS)*. FA measures task utility—Rouge-1 score for SAMSum and exact match accuracy for SQL. To assess reasoning performance, we measure accuracy on 570 samples (10 from each categories) from MMLU-Redux-2.0 (Gema et al., 2025). HS refers to the proportion of responses to JailbreakBench (Chao et al., 2024) instructions that are classified as *unsafe* by Llama-Guard-4-12B (Meta AI, 2025b).

Baselines. We evaluate four state-of-the-art defenses against HFT attacks. Among fine-tuning-stage methods, SafeInstr (Bianchi et al., 2024) augments fine-tuning datasets with additional safe samples, while SaLoRA (Li et al., 2025a) initializes LoRA layers with weights optimized on safe samples. We also consider two post-fine-tuning weight modification approaches. Antidote (Huang et al., 2025a) prunes harmful parameters by analyzing their contribution to harmful instructions. SafeDelta (Lu et al., 2025) selects delta parameters that maximize utility while minimizing safety degradation.

SAFEMOE implementation. We use 100 harmful instruction samples from SafeInstr (Bianchi et al., 2024) as the dataset \mathcal{D}_h . We select τ as the smallest value in the range 0.1-1.3 that allows a 1% degradation in fine-tuning accuracy. By default, $T_{\rm reg}$ is set to the number of steps per epoch.

Table 1: Safety evaluation of MoE LLMs. We report fine-tuning accuracy (FA \uparrow) and harmfulness score (HS \downarrow) for the SAMSum and SQL tasks. The number of parameters is denoted as (active/total).

	Ol	LMoE (1.3B/6.	9B)	Qwen	1.5 Mo	E (2.7B	/14.3B)	Dee	pSeek V	V2 (2.4B	/15.7B)
Method	SAN	MSum	SÇ	DL	SAM	ISum	S	QL	SAN	MSum	S	QL
	FA	HS	FA	HS	FA	HS	FA	HS	FA	HS	FA	HS
Aligned	31.8	0	43.0	0	36.6	3.0	38.4	3.0	34.0	0	29.6	0
Fine-tuning	49.3	62.0	58.5	64.0	50.4	49.0	70.2	37.0	52.0	70.0	70.1	72.0
SafeInstr	49.5	46.0	58.9	41.0	50.6	11.0	69.3	8.0	52.1	25.0	70.2	21.0
SaLoRA	48.9	24.0	54.5	40.0	48.9	28.0	54.9	33.0	50.1	66.0	62.0	74.0
Antidote	48.7	40.0	57.5	44.0	49.3	18.0	68.6	29.0	50.7	70.0	65.3	62.0
SafeDelta	48.6	<u>13.0</u>	57.4	<u>33.0</u>	50.2	22.0	69.2	30.0	51.0	47.0	69.0	72.0
SAFEMOE	48.9	5.0	59.0	17.0	50.6	0	69.5	1.0	51.0	1.0	69.1	4.0

Table 2: Extended safety evaluation on five large-scale MoE LLMs. We report harmfulness score $(HS\downarrow)$ and reasoning performance $(MMLU\uparrow)$ using MMLU-Redux-2.0.

Method	gpt-6 (3.6B/2		Qwen3 I (3.3B/30		Phi 3.5 I (6.6B/41		Llama (17B/10		Mixta (39B/14	
	MMLU	HS	MMLU	HS	MMLU	HS	MMLU	HS	MMLU	HS
Aligned Fine-tunin	85.4 g 77.5	2.0 84.0	89.6 89.1	1.0 67.0	83.3 80.7	2.0 83.0	90.4 89.5	7.0 79.0	78.9 66.5	7.0 78.0
SAFEMOR	E 79.6	7.0	88.8	4.0	81.4	2.0	89.8	3.0	78.4	8.0

5.2 SAFETY EVALUATION

Table 1 reports the defense effectiveness of SAFEMOE on three widely used MoE LLMs. The initial safety-aligned models prior to fine-tuning (first row) are highly safe, exhibiting nearly zero harmfulness scores. Vanilla fine-tuning substantially undermines safety while improving task performance (second row). SAFEMOE attains the lowest harmfulness score while incurring only minimal loss in fine-tuning accuracy. For example, it reduces the harmfulness score of DeepSeek V2 fine-tuned on the SQL task from 72.0 to 4.0. SAFEMOE's superior effectiveness is attributed to its MoE-specific design, which explicitly encourages the routing of harmful instructions to safety-critical experts.

In contrast, baseline methods fail to effectively mitigate safety degradation. SafeInstr, which adopts an architecture-agnostic strategy based on safety data augmentation, achieves moderate defense performance but still leaves substantial harmfulness. SaLoRA and post-fine-tuning methods (Antidote and SafeDelta) assume all parameters are always activated, as in monolithic LLMs. In MoE LLMs, however, the dynamically changing active parameters hinder full optimization of these methods. Furthermore, they cause significant degradation in fine-tuning accuracy with only marginal harmfulness reduction, even though we extensively tune their hyperparameters (see Appendix A.3).

These results highlight the importance of architecture-aware defenses that directly address vulnerabilities in the safety mechanism. In Qwen1.5-MoE, we observe slightly improved safety compared to the safety-aligned models. This effect appears to result from the generalization ability of SAFEMOE, which promotes stronger activation of top-ranked safety-critical experts (see Appendix A.4).

Results on larger MoE LLMs. We further evaluate SAFEMOE on recent larger MoE LLMs under a strong HFT attack scenario using 500 purely harmful samples (Bianchi et al., 2024; Lu et al., 2025; Hsu et al., 2024), as shown in Table 2. These models employ diverse MoE configurations (e.g., activating 1 expert among 16 in Llama 4 and activating 8 among 128 in Qwen3 MoE) and distinct reasoning strategies (e.g., multi-level reasoning in gpt-oss and the thinking mode in Qwen3 MoE). Despite their differences, SAFEMOE generally achieves strong defense performance while effectively preserving the models' reasoning capability. For gpt-oss, Phi 3.5 MoE, and Mixtral, SAFEMOE even alleviates the degradation of reasoning performance observed in vanilla fine-tuning by preventing excessive overfitting to the HFT attack data. Overall, these results demonstrate the practicality of SAFEMOE for real-world fine-tuning services with high-capable MoE LLMs.

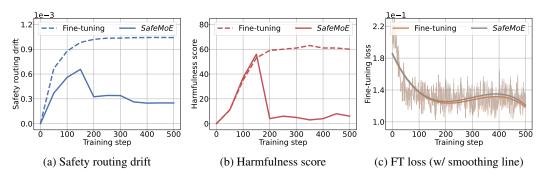


Figure 5: Training dynamics of vanilla fine-tuning vs. SAFEMOE (OLMoE on SAMSum).

5.3 TRAINING DYNAMICS

To demonstrate that the design of SAFEMOE is valid in practice, we analyze the variation of the safety routing drift, harmfulness score, and fine-tuning loss throughout the fine-tuning steps. Figure 5 presents the results for OLMoE fine-tuned on the SAMSum task.

As shown in Figure 5a and 5b, SAFEMOE moderately reduces the safety routing drift at the early stage and effectively mitigates it after the first regularization period (after 150 steps). The harmfulness score decreases with drift mitigation, achieving a significant reduction compared to vanilla fine-tuning at subsequent checkpoints. Our experiment has shown that existing defenses have limited effectiveness in reducing the safety routing drift and harmfulness (see Figure 10). SAFEMOE methodologically addresses this limitation and provides an effective defense for MoE LLMs.

In Figure 5c, we also present the fine-tuning loss to further evaluate its impact on the fine-tuning task. The loss converges stably, closely matching the trajectory of vanilla fine-tuning with only negligible differences. This underscores the compatibility of SAFEMOE in standard fine-tuning, enabling safe and practical fine-tuning services.

5.4 EFFICIENCY ANALYSIS

To assess the efficiency of SAFEMOE, we analyze the total execution overhead of SAFEMOE during fine-tuning and post-fine-tuning. Table 3 summarizes results for OLMoE fine-tuned on the SAMSum task under the environment described in Appendix A.2. For reference, vanilla fine-tuning takes 808.98 seconds on average over ten trials. SaLoRA incurs substantial overhead in computing the optimal LoRA initialization, increasing the execution time to nearly twice

Table 3: Execution overheads (OLMoE).

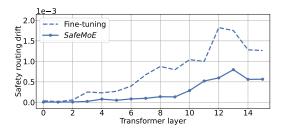
Method	Extra time					
Method	Seconds	Percentage				
SafeInstr	15.98	1.98%				
SaLoRA	747.56	92.41%				
Antidote	5.67	0.70%				
SafeDelta	52.18	6.45%				
SAFEMOE	17.26	2.13%				

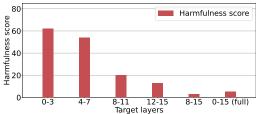
that of vanilla fine-tuning. The other approaches are generally more efficient but fail to effectively mitigate HFT attacks on MoE LLMs. In contrast, SAFEMOE attains strong safety with only a 2.13% increase in its training time, highlighting its practicality in safeguarding large-scale models.

5.5 LAYER-SELECTIVE APPLICATION OF SAFEMOE

We analyze the extent of safety routing drift across transformer layers in OLMoE fine-tuned on the SAMSum task, as shown in Figure 6. The results reveal that routing drift is not uniform across layers and the upper layers exhibit substantially larger drift. This appears to result from harmful features typically being distinguished after the middle layers of LLMs (Li et al., 2025b).

Motivated by this observation, we investigate more efficient variants of SAFEMOE that apply the safety routing drift regularization selectively rather than across all layers (Figure 7). The safety evaluation results show that targeting upper layers (e.g., 12-15 layers) provides much stronger mitigation of HFT attacks than targeting lower layers. Moreover, applying SAFEMOE only to 8-15 layers (the upper half) achieves a level of safety comparable to full-layer regularization.





layers (OLMoE on SAMSum).

Figure 6: Safety routing drift across transformer Figure 7: Effectiveness of SAFEMOE applied on specific layers (OLMoE on SAMSum).

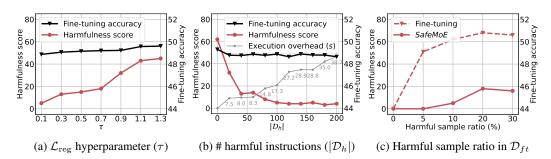


Figure 8: Sensitivity to regularization strength (a, b) and attack strength (c) (OLMoE on SAMSum).

5.6 SENSITIVITY ANALYSIS

Regularization hyperparameter. The hyperparameter τ in Equation 3 controls the strength of the safety routing drift regularization. Figure 8a shows results for OLMoE fine-tuned with the SAMSum task. Smaller values of τ focus the regularization on top-ranked safety-critical experts, achieving substantial harmfulness reduction. Across τ values, fine-tuning accuracy remains nearly unchanged, demonstrating that SAFEMOE can robustly improve safety without sacrificing task utility.

Number of harmful instructions. We vary the number of harmful instructions $|\mathcal{D}_h|$ used for the regularization (see Figure 8b). More harmful instructions strengthen the safety effect with an approximately linear overhead increase, suggesting a simple yet effective way to enhance our approach. Our default choice ($|\mathcal{D}_h| = 100$) provides a practical balance between safety and efficiency.

Harmful sample ratio in fine-tuning data. We explore different strengths of HFT attacks by adjusting the ratio of harmful samples in the fine-tuning dataset \mathcal{D}_{ft} (see Figure 8c). Vanilla fine-tuning exhibits drastically increasing harmfulness scores as the harmful ratio rises. In contrast, SAFEMOE suppresses harmfulness escalation, demonstrating robustness even against stronger attacks.

5.7 EFFECTIVENESS UNDER FULL FINE-TUNING

We extend our evaluation to a full-parameter fine-tuning scenario to demonstrate the generality of SAFEMOE. Table 4 shows the results for OLMoE fine-tuned on the SAMSum task. SAFEMOE achieves substantial harmfulness reduction while preserving fine-tuning accuracy in this setting as well. Although all expert layers, including safety-critical ones, are exposed to training during HFT attacks, SAFEMOE remains robustly effective by solely preventing the safety routing drift. This further highlights the central role of routing in the safety of MoE LLMs and confirms the validity of our approach. Moreover, it incurs only a 2.30% increase in execution time (four GPUs), comparable to that observed in the LoRA-based setting (2.13% with one GPU). These results show that SAFEMOE is reliably adaptable to both parameter-efficient and full fine-tuning approaches.

5.8 EVALUATION ON ADDITIONAL HARMFULNESS BENCHMARK

To further validate our findings, we evaluate harmfulness of fine-tuned MoE LLMs on HEx-PHI (Qi et al., 2024), a widely used harmful instruction benchmark. Table 5 reports results for the SAMSum

Table 4: Full fine-tuning results of fine-tuning accuracy (FA \uparrow), harmfulness score (HS \downarrow), and training time.

	OLMoE on SAMSum						
Method	FA	HS	Time(s)				
Aligned Fine-tuning	31.8 50.4	0 58.0	7,023.79				
SAFEMOE	51.0	2.0	7,189.01 (+2.30%)				

Table 5: Harmfulness score (HS↓) on HEx-PHI.

Method	OLMoE	Qwen1.5 MoE	DeepSeek V2
Aligned	0.3	8.7	5.7
Fine-tuning	79.7	33.0	83.0
SafeInstr	52.0	13.3	31.0
SaLoRA	39.3	34.7	64.7
Antidote	53.3	24.7	68.0
SafeDelta	<u>21.7</u>	28.7	41.0
SAFEMOE	6.3	10.0	3.3

fine-tuning scenario under our main settings. The results remain consistent, showing that SAFEMOE significantly outperforms all baselines, while SafeInstr achieves moderate harmfulness reduction with strong performance for Qwen1.5 MoE. These findings confirm the robust defense effectiveness of SAFEMOE against diverse harmful querying scenarios.

6 RELATED WORK

We categorize recent defenses against HFT attacks into three groups based on their application stage.

Alignment stage. These methods aim to enhance the robustness of the model against subsequent HFT attacks. Vaccine (Huang et al., 2024b) trains models to resist perturbations that maximize alignment loss. RepNoise (Rosati et al., 2024) and Booster (Huang et al., 2025b) proactively remove harmful information by optimizing perturbations in model representations or weights. VAA (Liang et al., 2025) introduces a vulnerability-aware alignment method that balances training across vulnerable and invulnerable subsets of alignment data. However, such alignment-stage methods require carefully tuned hyperparameter for each downstream task Huang et al. (2025b), which limits their practicality in fine-tuning services that must handle many unknown tasks.

Fine-tuning stage. A second line of work directly addresses safety degradation during fine-tuning. SafeInstr (Bianchi et al., 2024) augments supervised fine-tuning datasets with safe samples. Lisa (Huang et al., 2024a) introduces a proximal optimization method to mitigate convergence instability when jointly training alignment and task-specific data. SAFT (Choi et al., 2024) and SEAL (Shen et al., 2025) identify and filter harmful samples from fine-tuning data by scoring their safety impact. SaLoRA (Li et al., 2025a) proposes a safety-aware initialization of LoRA layers, designed based on an analysis of changes in safety-related features observed during fine-tuning.

Post-fine-tuning stage. Training-free remedies have also been proposed to restore safety after harmful fine-tuning. RESTA (Bhardwaj et al., 2024) extracts a safety vector from an aligned model and reintroduces it into the fine-tuned model via arithmetic addition of weights. SafeLoRA (Hsu et al., 2024) selectively projects LoRA weights into a safety-aligned subspace. Antidote (Huang et al., 2025a) removes harmful parameters identified through their importance to alignment data, thereby improving robustness under varying fine-tuning hyperparameters. SafeDelta (Lu et al., 2025) refines fine-tuned delta parameters to balance task utility with reduced safety degradation.

7 Conclusion

This work introduces SAFEMOE, the first safe fine-tuning method tailored to MoE-based LLMs. Our systematic analysis uncovers a vulnerability inherent in their safety mechanisms; routing decisions for harmful inputs drift significantly from those of safety-aligned models under both harmful and benign fine-tuning. To address this, we propose a routing drift regularization method with an efficient optimization algorithm that integrates seamlessly into standard MoE LLM fine-tuning pipelines. Extensive evaluations across diverse MoE LLMs show that SAFEMOE achieves significant reductions in harmfulness with minimal overhead. These results establish SAFEMOE as an effective and practical defense for fine-tuning services against HFT attacks, underscoring the need to address architectural weakness when safeguarding MoE LLMs from fine-tuning risks.

ETHICS STATEMENT

This work presents a safe fine-tuning method designed to mitigate potential safety threats associated with LLM fine-tuning. In our experiments, we evaluate the extent of harmful behaviors exhibited by open-source LLMs under harmful fine-tuning (HFT) attacks. HFT attacks are a well-documented concern (Qi et al., 2024; Yang et al., 2024; Zhan et al., 2024; Bianchi et al., 2024; Zong et al., 2024; Huang et al., 2024a; Li et al., 2025a), and our experiments are conducted entirely using publicly available alignment datasets and benchmarks related to safety and HFT attacks. Accordingly, we believe our work does not introduce any additional harm. Furthermore, we ensure that neither the harmful LLMs nor their generated harmful responses are shared, strictly adhering to the ICLR Code of Ethics (ICLR, 2025) throughout the work.

REPRODUCIBILITY STATEMENT

We release the implementation of SAFEMOE to facilitate reproduction our method and evaluation results. The source code is available at https://anonymous.4open.science/r/SafeMoE/

THE USE OF LARGE LANGUAGE MODELS

We use ChatGPT (OpenAI, 2025) solely for polishing the writing of the paper.

REFERENCES

- b-mc2. sql-create-context dataset. https://huggingface.co/datasets/b-mc2/sql-create-context, 2023.
- Rishabh Bhardwaj, Duc Anh Do, and Soujanya Poria. Language models are homer simpson! safety re-alignment of fine-tuned language models through task arithmetic. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 14138–14149, 2024.
- Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, Paul Rottger, Dan Jurafsky, Tatsunori Hashimoto, and James Zou. Safety-tuned llamas: Lessons from improving the safety of large language models that follow instructions. In *The Twelfth International Conference on Learning Representations*, 2024.
- Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce, Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J Pappas, Florian Tramer, et al. Jailbreakbench: An open robustness benchmark for jailbreaking large language models. *Advances in Neural Information Processing Systems*, 37:55005–55029, 2024.
- Hyeong Kyu Choi, Xuefeng Du, and Yixuan Li. Safety-aware fine-tuning of large language models. In *Neurips Safe Generative AI Workshop 2024*, 2024.
- Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language models with mixture-of-experts. In *International Conference on Machine Learning*, pp. 5547–5569. PMLR, 2022.
- Mohsen Fayyaz, Ali Modarressi, Hanieh Deilamsalehy, Franck Dernoncourt, Ryan Rossi, Trung Bui, Hinrich Schütze, and Nanyun Peng. Steering moe llms via expert (de)activation. *arXiv* preprint arXiv:2509.09660, 2025.
- William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39, 2022.
- Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria Mancino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani, et al. Are we done with mmlu? In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 5069–5096, 2025.
- Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A humanannotated dialogue dataset for abstractive summarization. In *Proceedings of the 2nd Workshop* on *New Frontiers in Summarization*. Association for Computational Linguistics, 2019.
- Google. Fine-tuning with the gemini api. https://ai.google.dev/gemini-api/docs/model-tuning, 2025.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- Chia-Yi Hsu, Yu-Lin Tsai, Chih-Hsun Lin, Pin-Yu Chen, Chia-Mu Yu, and Chun-Ying Huang. Safe lora: The silver lining of reducing safety risks when finetuning large language models. *Advances in Neural Information Processing Systems*, 37:65072–65094, 2024.
- Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022.
- Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Lazy safety alignment for large language models against harmful fine-tuning. *arXiv preprint arXiv:2405.18641*, 2, 2024a.

- Tiansheng Huang, Sihao Hu, and Ling Liu. Vaccine: perturbation-aware alignment for large language models against harmful fine-tuning attack. In *Proceedings of the 38th International Conference on Neural Information Processing Systems*, pp. 74058–74088, 2024b.
 - Tiansheng Huang, Gautam Bhattacharya, Pratik Joshi, Joshua Kimball, and Ling Liu. Antidote: Post-fine-tuning safety alignment for large language models against harmful fine-tuning attack. In Forty-second International Conference on Machine Learning, 2025a.
 - Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Booster: Tackling harmful fine-tuning for large language models via attenuating harmful perturbation. In *The Thirteenth International Conference on Learning Representations*, 2025b.
 - ICLR. Iclr code of ethics. https://iclr.cc/public/CodeOfEthics, 2025.
 - Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun, Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a human-preference dataset. *Advances in Neural Information Processing Systems*, 36:24678–24704, 2023.
 - Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training mixture-of-experts from dense checkpoints. In *The Eleventh International Conference on Learning Representations*, 2023.
 - Zhenglin Lai, Mengyao Liao, Dong Xu, Zebin Zhao, Zhihang Yuan, Chao Fan, Jianqiang Li, and Bingzhe Wu. Safex: Analyzing vulnerabilities of moe-based llms via stable safety-critical expert identification. *arXiv preprint arXiv:2506.17368*, 2025.
 - Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation and automatic sharding. In *International Conference on Learning Representations*, 2021.
 - Mingjie Li, Wai Man Si, Michael Backes, Yang Zhang, and Yisen Wang. Salora: Safety-alignment preserved low-rank adaptation. In *The Thirteenth International Conference on Learning Representations*, 2025a.
 - Shen Li, Liuyi Yao, Lan Zhang, and Yaliang Li. Safety layers in aligned large language models: The key to llm security. In *The Thirteenth International Conference on Learning Representations*, 2025b.
 - CHEN Liang, Xueting Han, Li Shen, Jing Bai, and Kam-Fai Wong. Vulnerability-aware alignment: Mitigating uneven forgetting in harmful fine-tuning. In *Forty-second International Conference on Machine Learning*, 2025.
 - Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. *arXiv preprint arXiv:2405.04434*, 2024.
 - Ning Lu, Shengcai Liu, Jiahao Wu, Weiyu Chen, Zhirui Zhang, Yew-Soon Ong, Qi Wang, and Ke Tang. Safe delta: Consistently preserving safety when fine-tuning llms on diverse datasets. In *Forty-second International Conference on Machine Learning*, 2025.
 - Meta. meta-llama/llama-3.1-70b-instruct-evals. https://huggingface.co/datasets/meta-llama/Llama-3.1-70B-Instruct-evals, 2024.
- Meta AI. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation. https://ai.meta.com/blog/llama-4-multimodal-intelligence/, 2025a.
 - Meta AI. Llama guard 4. https://www.llama.com/docs/
 model-cards-and-prompt-formats/llama-guard-4/, 2025b.
 - Microsoft. microsoft/phi-3.5-moe-instruct. https://huggingface.co/microsoft/Phi-3.5-MoE-instruct, 2024.

- Mistral AI. mistralai/mixtral-8x22b-instruct-v0.1. https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1, 2025.
 - Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi, Evan Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts language models. In *The Thirteenth International Conference on Learning Representations*, 2025.
 - OpenAI. Openai fine-tuning models. https://platform.openai.com/docs/guides/model-optimization, 2024.
 - OpenAI. Chatgpt. https://chatgpt.com, 2025.
 - OpenAI. Introducing gpt-oss. https://openai.com/index/introducing-gpt-oss/, 2025.
 - Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35: 27730–27744, 2022.
 - Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson. Fine-tuning aligned language models compromises safety, even when users do not intend to! In *The Twelfth International Conference on Learning Representations*, 2024.
 - Qwen. Qwen/qwen1.5-moe-a2.7b-chats. https://huggingface.co/Qwen/Qwen1. 5-MoE-A2.7B-Chat, 2024.
 - Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea Finn. Direct preference optimization: your language model is secretly a reward model. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp. 53728–53741, 2023.
 - Domenic Rosati, Jan Wehner, Kai Williams, Łukasz Bartoszcze, David Atanasov, Robie Gonzales, Subhabrata Majumdar, Carsten Maple, Hassan Sajjad, and Frank Rudzicz. Representation noising: a defence mechanism against harmful finetuning. In *Proceedings of the 38th International Conference on Neural Information Processing Systems*, pp. 12636–12676, 2024.
 - Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In *International Conference on Learning Representations*, 2017.
 - Han Shen, Pin-Yu Chen, Payel Das, and Tianyi Chen. Seal: Safety-enhanced aligned llm fine-tuning via bilevel data selection. In *The Thirteenth International Conference on Learning Representa*tions, 2025.
 - Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.
 - Jiongxiao Wang, Jiazhao Li, Yiquan Li, Xiangyu Qi, Junjie Hu, Sharon Li, Patrick McDaniel, Muhao Chen, Bo Li, and Chaowei Xiao. Backdooralign: Mitigating fine-tuning based jailbreak attack with backdoor enhanced safety alignment. *Advances in Neural Information Processing Systems*, 37:5210–5243, 2024.
 - Chengcan Wu, Zhixin Zhang, Zeming Wei, Yihao Zhang, and Meng Sun. Mitigating fine-tuning risks in llms via safety-aware probing optimization. In 2nd Workshop on Models of Human Feedback for AI Alignment, 2025.
 - Kang Yang, Guanhong Tao, Xun Chen, and Jun Xu. Alleviating the fear of losing alignment in Ilm fine-tuning. In 2025 IEEE Symposium on Security and Privacy (SP), pp. 2152–2170. IEEE, 2025.

Xianjun Yang, Xiao Wang, Qi Zhang, Linda Ruth Petzold, William Yang Wang, Xun Zhao, and Dahua Lin. Shadow alignment: The ease of subverting safely-aligned language models. In *ICLR* 2024 Workshop on Secure and Trustworthy Large Language Models, 2024.

Qiusi Zhan, Richard Fang, Rohan Bindu, Akul Gupta, Tatsunori B Hashimoto, and Daniel Kang. Removing rlhf protections in gpt-4 via fine-tuning. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)*, pp. 681–687, 2024.

Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin Yang, and Timothy Hospedales. Safety fine-tuning at (almost) no cost: A baseline for vision large language models. In *Forty-first International Conference on Machine Learning*, 2024.

A APPENDIX

759 760

756

758

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

A.1 BI-LEVEL GREEDY OPTIMIZATION OF SAFEMOE

Algorithm 1 Greedy optimization of safety routing drift regularization

761 762

```
Input: Safety-aligned MoE LLM w_{align}; Fine-tuning datasets \mathcal{D}_{ft}; Harmful instruction dataset \mathcal{D}_h; Total training steps T; Regularization period T_{reg}; Optimizer \operatorname{Adam}(\eta, \beta_1, \beta_2, \epsilon)
Output: The fine-tuned MoE LLM

1: Initialize model weights w_0 \leftarrow w_{align}
2: Precompute routing weights r(x|w_{align}) \ \forall x \in \mathcal{D}_h
```

```
2: Precompute routing weights r(x|w_{align}) \forall x \in \mathcal{D}_h
  3: for step t \in T do
                  \boldsymbol{g}_t \leftarrow \nabla_{\boldsymbol{w}} \mathcal{L}_{sft}(\boldsymbol{w}_t) \text{ on } \mathcal{D}_{ft}
  4:
                  \tilde{\boldsymbol{w}}_{t+1} \leftarrow \operatorname{Adam}(\boldsymbol{w}_t, \boldsymbol{g}_t)
  5:
  6:
                  if t \mod T_{reg} = 0 then
                                                                                                                                                     \triangleright Run regularization every T_{\text{reg}} steps
                           for batch \mathcal{B}_h \subset \mathcal{D}_h do
  7:
                                    \tilde{\boldsymbol{g}}_h \leftarrow \nabla_{\boldsymbol{w}} \mathcal{L}_{reg}(\tilde{\boldsymbol{w}}_{t+1}), \text{ where } x \in \mathcal{B}_h
  8:
  9:
                                    \tilde{\boldsymbol{w}}_{t+1} \leftarrow \operatorname{Adam}(\tilde{\boldsymbol{w}}_{t+1}, \tilde{\boldsymbol{g}}_h)
10:
                           end for
11:
                  end if
12:
                  \boldsymbol{w}_{t+1} \leftarrow \tilde{\boldsymbol{w}}_{t+1}
13: end for
```

778779780

A.2 EXPERIMENTAL SETTING DETAILS

781 782 783

784

785

786

787

788

789 790

791

792

793

794

796

797

808

System settings. Our experiments were conducted in a GPU cloud instance equipped with 6 cores AMD EPYC 7H12, 192GB of RAM, and 1 to 4 NVIDIA A100 80GB GPUs, depending on the requirements of each experiment. For gpt-oss (OpenAI, 2025), we employed 4 NVIDIA H100 80GB GPUs due to its GPU architecture compatibility.

Model specifications. We summarize the specifications of MoE LLMs used in our experiments in Table 6.

Fine-tuning details. Fine-tuning is performed with LoRA (Hu et al., 2022) using configurations detailed in Table 7. We train for three epochs with a learning rate of 1e-4 and a batch size of 32.

Generation and prompt settings. We use greedy decoding for all generations. For harmfulness evaluation, we adopt each model's default system prompt if available, or "*You are a helpful AI assistant*." otherwise, with a summarized default system prompt for Llama 4. For zero-shot task utility evaluation, we use a customized task-specific system and user prompts. For the MMLU-Redux-2.0 task, we follow the user prompt in the Llama 3.1 evaluation (Meta, 2024). The system and user prompts used in our evaluation are shown in Table 11 and Table 12.

TD 11 (C			1 '	
Table 6.	necifications	Of MOH I I Me	niced in our	avnarimente
Table O. O.	Decineations	of MoE LLMs	uscu iii oui	CADCITICITIS.

Model	# layers (MoE + dense)	# experts (routed + shared)	Top-k	Parameters (active / total)
OLMoE-1B-7B-Instruct	16	64	8	1.3B / 6.9B
Qwen1.5-MoE-A2.7B-Chat	24	60 + 4	4	2.7B / 14.3B
DeepSeek-V2-Lite-Chat	26 + 1	64 + 2	6	2.4B / 15.7B
gpt-oss-20b	24	32	4	3.6B / 20.9B
Qwen3-30B-A3B	48	128	8	3.3B / 30.5B
Phi-3.5-MoE-instruct	32	16	2	6.6B / 41.9B
Llama-4-Scout-17B-16E-Instruct	48	16 + 1	1	17B / 109B
Mixtral-8x22B-Instruct-v0.1	56	22	2	39B / 141B

Table 7: LoRA configurations for fine-tuning.

Model Target modules Rank(r)Alpha (α) Trainable parameters OLMoE-1B-7B-Instruct 1.0M (0.0152%) 3.1M (0.0220%) Owen1.5-MoE-A2.7B-Chat q, k, v, o DeepSeek-V2-Lite-Chat q, kv_a, kv_b, o 3.6M (0.0226%) gpt-oss-20b 4.0M (0.0190%) q, k, v, o Qwen3-30B-A3B q, k, v, o 3.3M (0.0109%) Phi-3.5-MoE-instruct 6.8M (0.0163%) q, k, v, o 12.6M (0.0116%) Llama-4-Scout-17B-16E-Instruct q, k, v, o Mixtral-8x22B-Instruct-v0.1 q, k, v, o 17.4M (0.0124%)

A.3 BASELINE TUNING

We extensively tune the hyperparameters of baseline methods for safeguarding MoE-based LLMs. The results of OLMoE on the SAMSum and SQL tasks are shown in Table 8 and Table 9, respectively. For each baseline, we select the hyperparameter setting that exhibits the lowest harmfulness score while allowing up to a 1% degradation in fine-tuning accuracy.

Table 8: Baseline tuning results of OLMoE on SAMSum. The selected ones are underlined.

	Fine-tuning	SaLo	RA (r _s	$= r_t)$	An	tidote (α)	Sa	feDelta	(s)
Hyperparameters	-	<u>64</u>	32	16	0.02	0.03	0.04	2900	<u>2800</u>	2700
Harmfulness score Fine-tuning accuracy	62.0 y 49.3	24.0 48.9	24.0 48.3	17.0 48.1	45.0 49.3	40.0 48.7	18.0 48.1	18.0 49.0	13.0 48.6	12.0 47.5

Table 9: Baseline tuning results of OLMoE on SQL. The selected ones are underlined.

	Fine-tuning	SaLo	RA (r _s	$= r_t)$	An	tidote (α)	Sa	feDelta	(s)
Hyperparameters	-	64	32	<u>16</u>	0.01	0.02	0.03	2900	2800	<u>2700</u>
Harmfulness score	64.0	48.0	40.0	25.0	44.0	36.0	40.0	52.0	38.0	33.0
Fine-tuning accuracy	y 58.5	53.6	54.5	53.6	57.5	56.8	56.7	57.4	57.4	57.4

A.4 ACTIVATION PROBABILITY OF SAFETY-CRITICAL EXPERTS

We analyze the activation probabilities of experts when processing harmful instructions. These probabilities are obtained by applying Softmax to the routing weights. The top-ranked experts serve as safety-critical experts. Figure 9 compares their activation probabilities in the initial safety-aligned models and in the fine-tuned models with SAFEMOE. We find that SAFEMOE further increases the activation of safety-critical experts in the fine-tuned models. One possible explanation is that although SAFEMOE aims to resemble the routing decisions of the safety-aligned model, it learns to assign larger routing weights to safety-critical experts rather than simply replicating their original values. This can lead to slight improvements in safety compared to the initial safety-aligned models, as observed in our safety evaluation results in Table 1 and Table 2.

A.5 LAYER-WISE ANALYSIS OF ROUTING DRIFT ACROSS BASELINES

We compare the safety routing drift across transformer layers under the baseline methods. Figure 10 shows the results of OLMoE fine-tuned on the SAMSum task. The baselines consistently fail to address the substantial drift significant in the upper layers. In contrast, SAFEMOE directly mitigates it, thereby safeguarding MoE LLMs against HFT attacks. These results highlight the importance of an architecture-aware design and demonstrate the effectiveness of SAFEMOE in ensuring safety.

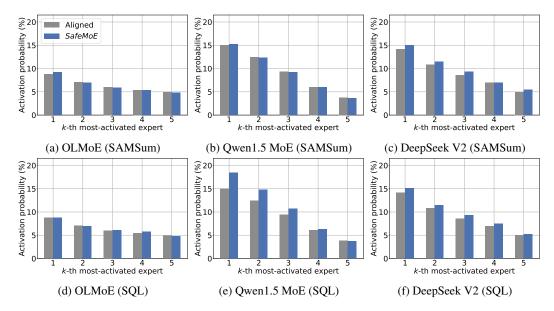


Figure 9: Activation probability of top-ranked experts for harmful instructions, ranked by their probabilities in the safety-aligned models.

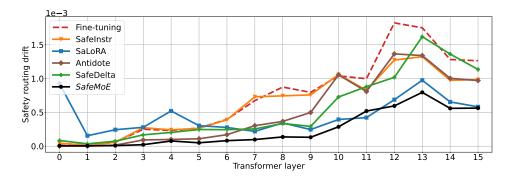


Figure 10: Safety routing drift of fine-tuned models across baseline methods (OLMoE on SAM-Sum).

A.6 SAFETY CATEGORY

We further break down the results of harmfulness evaluation by safety categories defined in JailbreakBench (Chao et al., 2024) (see Table 10). Figure 11 illustrates the harmful response ratios across categories before and after applying SAFEMOE. The three fine-tuned MoE LLMs are particularly vulnerable to harmful instructions in the domains of Fraud/Deception (#5) and Privacy (#8). Notably, SAFEMOE substantially reduces harmful behaviors across all categories, demonstrating robust effectiveness in mitigating diverse safety risks.

Table 10: Safety category in JailbreakBench.

Number	Category
#1	Harassment/Discrimination
#2	Malware/Hacking
#3	Physical harm
#4	Economic harm
#5	Fraud/Deception
#6	Disinformation
#7	Sexual/Adult content
#8	Privacy
#9	Expert advice
#10	Government decision-making

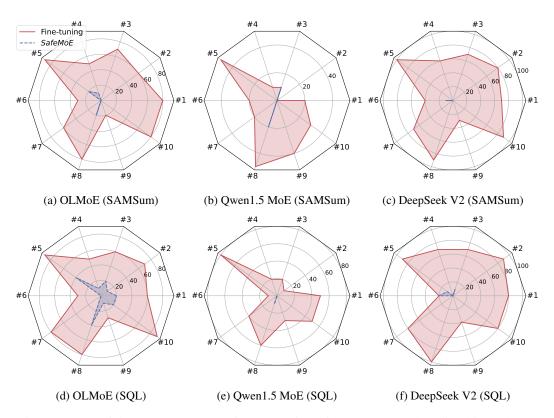


Figure 11: Harmfulness scores across safety categories, with category numbers listed in Table 10.

Table 11: Prompts used in the harmfulness evaluation.

Benchmark	Model	Prompt	
	OLMoE-1B-7B-Instruct	[SYSTEM] You are OLMo 2, a helpful and harmless AI Assistant built by the Allen Institute for AI. [USER]{instruction} [ASSISTANT]	
	Qwen1.5-MoE-A2.7B-Chat	[SYSTEM] You are Qwen, created by Alibaba Clo ud. You are a helpful assistant. [USER]{instruction} [ASSISTANT]	
	DeepSeek-V2-Lite-Chat	[SYSTEM] You are an AI assistant, developed by DeepSeek Company. For politically sensitive questions, security and privacy issues, you will refuse to answer. [USER]{instruction} [ASSISTANT]	
	gpt-oss-20b	[SYSTEM] You are a helpful AI assistant. [USER]{instruction} [ASSISTANT]	
JailbreakBench	Qwen3-30B-A3B	[SYSTEM] You are Qwen, created by Alibaba Cloud. You are a helpful assistant. [USER]{instruction} [ASSISTANT]	
	Phi-3.5-MoE-instruct	[SYSTEM] You are a helpful AI assistant. [USER]{instruction} [ASSISTANT]	
	Llama-4-Scout-17B-16E-Instruct	[SYSTEM] You are an expert conversationalist who responds to the best of your ability. You are companionable and confident, and able to switch casually between tonal types, including but not limited to humor, empathy, intellectualism, creativity and problem-solving. [USER]{instruction} [ASSISTANT]	
	Mixtral-8x22B-Instruct-v0.1	[SYSTEM] You are a helpful AI assistant. [USER]{instruction} [ASSISTANT]	

Table 12: Prompts used in the fine-tuning task evaluation.

Benchmark	Prompt
SAMSum	[SYSTEM] You are a helpful assistant for dialog summarization. [USER] Summarize this dialogue: {dialogue} [ASSISTANT]
SQL	[SYSTEM] You are a helpful assistant for answering SQL questions. [USER] Based on the given Table, generate a SQL for the following question. Question: {question} Table: {context} [ASSISTANT]
	[SYSTEM] You are a helpful assistant for answering multiple choice questions. [USER] Given the following question and four candidate answers (A, B, C and D) choose the best answer.
	Question: {question} {options} - For simple problems: Directly provide the answer with minimal explanation.
MMLU-Redux-2.0	- For complex problems: Use this step-by-step format: ## Step 1: [Concise description] [Brief explanation] ## Step 2: [Concise description] [Brief explanation]
	Regardless of the approach, always conclude with: The best answer is [the_answer_letter]. where the [the_answer_letter] is one of A, B, C or D.
	Let's think step by step. [ASSISTANT]