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Abstract

Analysing complex diseases such as chronic in-
flammatory joint diseases, where many factors in-
fluence the disease evolution, is a challenging task.
We propose an explainable attention-based neural
network model trained on data from patients with
different arthritis subtypes for predicting future
disease activity scores. The network transforms
longitudinal patient journeys into comparable rep-
resentations allowing for additional case-based
explanations via computed patient journey simi-
larities. We show how these similarities allow us
to rank different patient characteristics in terms
of impact on disease progression and discuss how
case-based explanations can enhance the trans-
parency of deep learning solutions.

1. Motivation
Disease progression patterns in chronic inflammatory joint
diseases (CIJDs), as recorded in CIJD registries, are com-
plex and patient-specific. As a result, these registries are
very heterogeneous and irregular in both the temporal and
the recorded features aspect (i.e. varying number of med-
ical visits and recorded measurements). In this work, we
propose an explainable multi-task model for transforming
longitudinal patient data (patient journeys) from a Swiss
CIJD registry into comparable representations and predict-
ing future disease activity in CIJDs. Our model evaluates
the importance of the different aspects of individual man-
agement history to predict CIJD progression using different
approaches of model explainability.
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To this end, we examined (1) model-based explainability by
inspecting the attribution scores from the attention layers in
our model’s architecture, and (2) case-based explanations by
designing a feature importance weighting method coupled
with patient similarity assessment. By contrasting the results
of both approaches, we believe that we make a significant
step towards enhancing the transparency of the model’s
output.

1.1. Related work

There is limited research on employing temporal modelling
approaches to model disease progression in CIJDs. In the ex-
isting studies, the continuous disease activity scores (DAS)
are usually simplified and thresholded into a binary classifi-
cation task such as remission/no remission or response/no
response, rather than predicted through regression (Montani
& Striani, 2019). For instance, Norgeot et al. (2019) imple-
mented recurrent neural networks to predict disease activity
(remission/no remission) at the next rheumatology visit, and
Lee et al. (2021) implemented non-temporal ML models to
predict response/no response to different treatments. Over-
all, their results support our findings that past measurements
of disease activity are highly predictive of disease progres-
sion and that temporal models outperform static baselines.
Our model architecture builds on the work of Kalweit et al.
(2021), and further extends it with the addition of attention
and multi-task layers to support patients with different CIJD
subtypes allowing us to analyse the role of patient history
on model predictions.

2. Materials and methods
2.1. Dataset

The Swiss Clinical Quality Management in Rheumatic Dis-
eases Foundation (SCQM) (Uitz et al., 2000) maintains a
national registry of inflammatory rheumatic diseases. The
database documents the disease management over time for
19′267 patients through clinical measurements (CM) dur-
ing the visits, demographics (Dem), prescribed medications
(Med) and patient-reported outcome measures (PROM).
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2.2. Model architecture

We adapted the architecture proposed by Kalweit at al.
(2021) to our setting by training multiple LSTMs (Hochre-
iter & Schmidhuber, 1997), multiple prediction networks,
and by augmenting the model with several attention layers
(Vaswani et al.) (Figure 1). We refer to the complete model
by the DAS-Net (Disease Activity Score Network).

DAS-Net takes as input the patient’s medications, clinical
measurements, PROM up to a chosen time point, demo-
graphics (non-temporal) and the time to prediction. The
different sources of information (i.e. events) in the patient
histories are handled separately until aggregation occurs in
the representation layers, as these measurements are not
aligned in time and contain different features. DAS-Net
predicts the future DAS28 or ASDAS1 score by feeding the
computed latent representation in the penultimate layers to
two separate blocks of prediction layers.

2.3. Patient similarity (k−NN regression model)

We evaluated the utility of the computed DAS-Net’s latent
representations to retrieve similar patients. Given a patient
representation at a prediction time-point, we computed the
L1 distance to all other representations and selected the k
closest patient embeddings (k = 50). Analogous to k−NN
regression, we compared the representation’s future DAS
with the average DAS of their closest matched set.

2.3.1. FEATURE-LEVEL IMPORTANCE

Using the sets of similar patients computed by the k−NN
model, we designed a feature importance ranking method
to gain insights into patient feature-level importance.

We examined which features tended to have similar values
within sets of similar patients. Specifically, we compared
the distributions of the features within sets of similar pa-
tients to their distributions in the entire cohort. We then
ranked the features by their likelihood of displaying similar
values among sets of similar patients. The details of the
computations for continuous and categorical features are in
appendix A.1.

3. Results
We compared the performance of DAS-Net to a vanilla neu-
ral network (MLP), and tree-based gradient boosting model
(XGBoost). We also assessed the performance of the k-NN
regression model and further explored both explainability
approaches to better understand the relationship between
input features and model output at different stages of the
modelling process.

1These two scores measure the disease activity in CIJDs.

3.1. Performance

DAS-Net achieves the lowest mean squared error on both
prediction tasks (MSEs of 0.510 ± 0.009 for ASDAS and
0.965 ± 0.014 for DAS28) (Table 1) compared to the two
baseline models (MLP, XGBoost). The k-NN model also
outperforms the baseline models (Table 1) suggesting that
DAS-Net latent representations successfully capture the
important predictive components from the patient history.

3.2. Model-based explainability

Our model employs a two-layered attention mechanism
for model-based explainability. It assigns weights to the
different events of the patient histories, highlighting their
significance for the predictions.
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(a) Average global attention on the test set for the
different events.
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(b) Average local attention on the test set for clinical
measures.

Figure 2: Attention weights for increasing history lengths.

3.2.1. GLOBAL ATTENTION

The global attention weighs the aggregated temporal his-
tories and demographics when building the patient’s full
history representation. It shows which type of event (i.e.
CM, Med, PROM or Dem) is weighted the most by the
model when making predictions.

Figure 2a shows the attribution of the global attention
weights to the different event features in the patients’ history
as the history length increases. When limited information
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Figure 1: Model architecture. The encoders and predictions networks are MLPs. The model uses LSTMs to aggregate
input sequences of different lengths and attention mechanism to weigh the different components of the input.

Table 1: Model performance on test set for prediction of the two target DAS at the next medical visit.

Framework Model MSE ASDAS MSE DAS28
Prediction DAS-Net 0.510± 0.009 0.965± 0.014

XGBoost 0.534± 0.003 0.992± 0.002
MLP 0.562± 0.005 1.029± 0.007

Similarity k-NN model on DAS-Net latent representations 0.506 0.966

is available, the model considers all the sources of informa-
tion. With increasing history lengths, the model increasingly
assigns higher weights to the past CM (clinical measures)
compared to the other sources of information. This weight-
ing occurs because the previous CM contain the previous
DAS that is predictive of the future DAS.

3.2.2. LOCAL ATTENTION

The local attention is specific to each type of time-related
event, showing the weight given to each instance (for ex-
ample a specific medication) when building the patient rep-
resentation. Since the highest global attention weights are
attributed to the CM, we further inspected the attribution
of the local attention weights for the CM in the patient’s
history when predicting the target outcome (DAS).

Figure 2b shows that most attention is directed at the last
available CM in the history before the prediction. Our model
thus assigns the highest attention scores to the recent CM,
particularly the ones preceding the prediction.

3.3. Case-based explainability

We also used case-based similarity strategies for providing
visual explanations and to determine the importance of indi-
vidual patient features for disease progression prediction.

3.3.1. VISUALISATIONS

We plotted the two-dimensional t-SNE embeddings (Van
Der Maaten & Hinton, 2008) of the patient latent repre-
sentations. In Figure 3 we overlaid the embeddings with
colourmaps reflecting the values of the features, reporting
the last available feature value at a given time.

The plots provide general visual insight into the represen-
tation space. For instance, Figure 3d shows the repartition
of the smoker statuses, where embeddings in the top left
subspace correspond to patients with a smoking status that
seems determinant for their DAS prediction.

Furthermore, in Figure 3 we highlighted an embedding
ep,t from a patient p at time t (larger dot) and its nearest
neighbours Ne as computed by the k−NN model (triangles).
For continuous features, we report the average value in
the entire representation set R and in Ne. For categorical
features, we report the incidence of each category in R and
Ne. By comparing the overall distribution of the feature
with its distribution within Ne, we get insight into its given
importance for the similarity assessment. For the example
patient in Figure 3, its smoker status (Figure 3d) and gender
(Figure 3b) seem decisive for the similarity assessment since
all of her nearest neighbours are also smoking females.
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3.3.2. FEATURE RANKING BY SIMILARITY

Plots in Figure 3 provide insights into the nearest neigh-
bour attribution mechanism for individual cases. Using the
method described in 2.3.1 and A.1, we ranked the features
by global importance in the cohort and found that both DAS
scores and the number of painful joints are the most impor-
tant for the similarity assessment for continuous features.
Similarly, the high duration of morning stiffness and gender
of patients are the top-2 categorical features. The rankings
of the features by importance are listed in Tables 2 and 3
of the appendix and the formulas for the computation are
reported in subsection A.1.

4. Conclusion
We propose DAS-Net, a modular recurrent neural network
and attention-based model for predicting future disease ac-
tivity in CIJDs that outperforms non-temporal baseline mod-
els. Model-based explainability shows that DAS-Net re-
lies on recent information while still attributing significant
weight to older events. Past disease activity scores were
consistently the strongest predictors. We find that a k-NN-
based approach driven by computing patient similarities
from the model’s latent representations has a similar predic-
tion performance to DAS-Net, showing that our modelling
approach is well suited to transforming heterogeneous medi-
cal records into comparable and meaningful representations.
Using these representations, we can find sets of similar
patients that allow us to derive global feature importance.

Overall, our study demonstrates promising results towards
developing an explainable clinical decision support system
for retrieving similar patients and predicting their disease
progression while considering the different disease manage-
ment strategies that worked best for similar patients.

5. Acknowledgements
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(a) DAS28 score (b) Gender

(c) Rheumatoid factor (d) Smoker

Figure 3: t-SNE visualisation of patient representations. Each point shows the t-SNE embedding of a representation of a
patient at a given time. The subplots show the decomposition overlaid with the feature values (restricted to the embeddings
with an available value for the feature). Furthermore, we highlighted a patient from the test set (larger filled dot) and her
nearest neighbours (triangles) as computed by our algorithm. For each continuous feature, we compute the average value in
the entire cohort and within the subset of nearest neighbours (top left of the plot). For categorical features, we computed the
proportion of each category (bottom left of the plot).
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A. Patient similarity
A.1. Feature importance computation

We describe the procedure for computing the empirical feature importance for patient similarity assessment. For continuous
features, we computed the average absolute distance (AAD) between the feature value of the patients in the test set (Rtest)
and the average value in their matched set Ne (in the training data):

AAD =
1

| Rtest |
∑

e∈Rtest

| xc
e −

1

| Ne |
∑

e′∈Ne

xc
e′ |,

where xc
e is the value of the continuous feature c for patient embedding e. A low AAD for a feature indicates that subsets of

similar patients tend to have similar values. For all computations, we restricted the subsets to the embeddings with available
feature c.

For categorical features, we compared the prior empirical distributions of each category with their probability distributions
within the subsets of nearest neighbours. For a categorical feature Xj with possible categories Sj , we computed the
empirical probability of each category k ∈ Sj in the train set. We also computed the adjusted probabilities for the
embeddings in the neighbourhood Ne of an embedding e with feature value k from the test set, i.e. the probability
P (xj

e′ = k | xj
e = k, e′ ∈ Ne), where xj

e is the category of feature j for embedding e. For an embedding e′ ∈ Rtrain, the
prior empirical probability P (xj

e′ = i) of category i ∈ Sj is

P (xj
e′ = i) =

∑
e∈Rtrain

1{xj
e = i}∑

e∈Rtrain

∑
k∈Sj

1{xj
e = k}

,

and the adjusted probability is

P (xj
e′ = k | xj

e = k, e′ ∈ Ne)) =

∑
e∈Rtest

1{xj
e = k}

∑
e′∈Ne

1{xj
e′ = k}∑

e∈Rtest
1{xj

e = k}
∑

e′∈Ne

∑
i∈Sj

1{xj
e′ = i}

.

The magnitude of the increase in adjusted probability versus prior probability reflects the importance of the feature for the
similarity computation.
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A.2. Ranking

Feature AAD Standardised AAD
asdas score 0.25 0.24
das283bsr score 0.35 0.25
n painfull joints 28 2.05 0.41
n painfull joints 2.40 0.43
crp 5.35 0.46
n swollen joints 2.14 0.50
bsr 8.03 0.50
mda score 0.73 0.56
n enthesides 1.42 0.58
joints type 8.05 0.61
haq score 0.46 0.65
pain level today radai 1.91 0.71
activity of rheumatic disease today radai 1.89 0.71
hb 0.97 0.72
height cm 6.73 0.73
weight kg 12.05 0.76

Table 2: Similarity metric: contribution of continuous features. Average absolute distance (AAD) and standardised
AAD between the feature value of a test embedding ep,t and the mean feature value within its nearest neighbours Ne. The
features are ordered by standardised AAD. We see that the two DAS and the number of painful joints are taken into account
the most during the similarity assessment.

Category c Base P (c) Adjusted P (c | xe = c) Increase (percentage)
morning stiffness duration radai: 2 to 4 hours 0.04 0.08 100.0
morning stiffness duration radai: more than 4 h... 0.02 0.04 100.0
gender: male 0.29 0.46 59.0
morning stiffness duration radai: 1 to 2 hours 0.08 0.11 38.0
morning stiffness duration radai: all day 0.03 0.04 33.0
smoker: i am currently smoking 0.23 0.27 17.0
ra crit rheumatoid factor: negative 0.37 0.43 16.0
morning stiffness duration radai: 30 minutes to... 0.16 0.18 12.0
gender: female 0.71 0.78 10.0
morning stiffness duration radai: no morning st... 0.47 0.51 9.0
ra crit rheumatoid factor: positive 0.63 0.68 8.0
smoker: i am a former smoker for more than a year 0.31 0.33 6.0
anti ccp: negative 0.38 0.40 5.0
anti ccp: positive 0.62 0.63 2.0
smoker: i have never smoked 0.46 0.47 2.0
morning stiffness duration radai: less than 30 ... 0.21 0.21 0.0

Table 3: Similarity metric: contribution of categorical features. Empirical probability of a category c versus adjusted
probability. The increase in the adjusted probability reflects the importance of a given category in the similarity assessment.
Longer durations of morning stiffness and gender have the strongest impact on the similarity assessment.
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